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Abstract—We investigate deep learning-based regression and
classification for quality of transmission estimation in single-
mode and few-mode fiber links. Results show efficiency and low
complexity in both methods, however, regression performs better
and classification is faster.

Index Terms—Deep learning, single mode fiber, few-mode fiber,
quality of transmission estimation.

I. INTRODUCTION

Single-mode fiber (SMF) communication systems are com-
ing close to the capacity crunch due to nonlinear effects.
During the last decade, few-mode fiber (FMF) has been
proposed as an alternative solution to further increase optical
transmission capacity and they have attracted more and more
attentions [1].

Precise and fast quality of transmission (QoT) estimation
before deployment is important for ensuring the effective
and real-time planning of both SMF and FMF networks.
Thus, accurate QoT estimation is necessary for decreasing
the provisioning margins. In this context, QoT is effectively
evaluated by the generalized signal-to-noise ratio (GSNR),
which comprises the amplified spontaneous emission (ASE)
noise and accumulated effect of nonlinear interference (NLI)
noise. The NLI can be estimated by either exact analytical
models (e.g., enhanced Gaussian noise (EGN) model [2], [3])
which are accurate but computationally complex, or asymp-
totic analytical models (e.g., closed-form (CF)-EGN model
[4], [5]) which are approximate and computationally light.

Machine learning (ML) is an alternative data-driven QoT
estimation approach that has already been proven as an ef-
fective tool in different contexts of optical networks. ML-
based QoT estimation models can be employed in regression
and classification tasks. The regressor-based QoT estimator
provides a continuous output and can describe how close or
far is the output from the predefined threshold. The classifier-
based QoT estimator returns binary output values and it does
not care whether the output value is slightly or far above the
predefined threshold.

Different ML approaches are presented in [6] for predicting
continues GSNR values considering a full-load SMF link.
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ML is deployed in [7] for classification based on the la-
bels obtained by comparing the bit error rate (BER) with a
threshold. It is shown in [8] that artificial neural network is a
better QoT estimator than regular ML methods. Deep learning
(DL) based on deep neural network (DNN) is suitable for
QoT estimation as it is able to learn highly nonlinear input-
output relationships [9]. Authors of [10] employed DNN for
regression-based GSNR estimation in a full-load SMF link.

In this paper, we develop DL-based regressor and classi-
fier models to predict whether the BER meets the required
threshold in SMF and FMF links. We utilize EGN model
[2], [3] to generate synthetic datasets considering partial-
load for both SMF and FMF links. Performance-complexity
comparison of the regressor, classifier, and CF-EGN [4], [5]
show accuracy and low complexity of proposed methods,
with a little better performs of regressor and higher speed
in classifier. In any case both approaches are appropriate for
real-time QoT estimation applications such as in autonomous
network control and planning.

II. DATASET GENERATION AND PROPOSED QOT
ESTIMATION MODELS

While it is generally not feasible to produce large ex-
perimental dataset, DL-models require large training dataset
to be applicable in QoT estimation for a variety of system
and link characteristics. Thus, we utilize EGN models to
generate datasets synthetically [2], [3]. We consider signal
propagation in SMF and FMF (3 modes) links with 1 to
8 spans with a uniform length comprised between 80 and
120 km, and an ideal amplifier with 5 dB noise figure after
each span for attenuation compensation. We deployed up to 66
channels with 1550 nm center wavelength, 64 GBaud symbol
rate, and 75 GHz channel spacing. We randomly employ a
modulation format for each channel and mode among polariza-
tion multiplexing (PM)-BPSK, PM-QPSK and PM-M-QAM
;M = {8, 16, 32, 64}. The values for attenuation, chromatic
(modal) dispersion, and nonlinear (coupling) coefficient are
taken from [1].

We consider a partially-loaded link-state with 50% ran-
domly ON channels, however, inclusion of the link-state in
our feature space considerably increases the dimension and
complexity. To avoid this, inspired from [11], we provide



datasets on a sub-band basis rather than channel basis. We
group each 6 neighboring channels into a sub-band. Therefore,
we have 11 sub-bands with 7 possible levels according to their
number of ON channels. We produced 60000 train and 6000
test samples for SMF and FMF datasets.

We consider some features for each link configuration.
We devote the first 3 features to the indices of channel and
mode under test as well as the modulation format. The span
length and number of spans are added to the features due
to dependency of NLI noise on them. The right and left
traffic-volumes as well as the number of right and left empty
frequency slots with respect to the channel under test (on the
same mode) are also included as features. Likewise, the right
and left modulation formats of neighbor channel are added to
features. Moreover, we select each sub-band power level as
feature. By considering the same features for FMF, we sum
up 22 and 48 features for SMF and FMF links, respectively.

For generating the true class labels (i.e. 0, 1) for each
feature, we first calculate the GSNR value at the optimum
launch power per channel and mode. We obtain the GSNR of
nth channel and pth mode by GSNRn,p = Pn,p/(σ

2
ASE +

P 3
n,pηNLI,n,p), where Pn,p, σ2

ASE , and ηNLI,n,p are respec-
tively the launched power, ASE noise variance, and the NLI
noise variance (EGN model output [2], [3]) of nth channel
and pth mode. Then we calculate the BER based on GSNR
depending on the modulation format [12]. For defining the
class labels, we compare the obtained BER with a predefined
threshold BER. We choose 10−3 threshold BER according to
the selected forward-error code with 28% overhead.

The classifier output is the class label, while the CF-EGN
and regressor outputs are continuous predicted ηpredNLI,n,p values
which should be converted to class labels as explained above.
To have a fair comparison, we use the same DNN structure
for regressor and classifier. The only difference is the type of
last layer where we deploy linear in regressor and sigmoid in
classifier. The composed DNN has Nf input neurons where
Nf is number of features, one output neuron, 2 hidden layers
with Nf and 1000 hidden neurons, respectively, and we train
the DNN based on [13]- [16].

III. SIMULATION RESULTS

In this section, we provide the simulation results comparing
the regressor, classifier, and CF-EGN models. Fig. 1 demon-
strates the accuracy versus normalized runtime. One of the
main challenges in training DL-based QoT estimation for SMF
and FMF links is providing a large dataset, e.g., in our case
it took 3 months consuming 200 parallel computer processing
units. Despite that we did not provide such a large dataset for
a wide investigation scenario considering different system and
link configurations, the obtained results show the effectiveness
both of regressor and classifier. Better results can be seen
in SMF, as FMF nonlinear interactions are more complex to
be learnt, and our generated dataset is not enough to carry
all information. Deep transfer learning can help improving
performance in FMF case when a huge dataset is collected
once for a specific application and used as initial training
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Fig. 1. Accuracy versus normalized runtime of regressor, classifier, and CF-
EGN, for a) SMF and b) FMF.

the DL-model for a different application, but we leave this
case for future investigations. The binary classification task is
simpler than predicting continues values, thereby, the trained
classifier structure has less complexity and the classifier is
almost 2 times faster than regressor. Moreover, the regressor
and classifier are 4 orders of magnitudes faster than CF-EGN.

Fig. 2 plots the accuracy, precision, recall values for regres-
sor, classifier, and CF-EGN. Quite high precision and recall
values are obtained for SMF and FMF with a little better
performance in SMF which show the effectiveness of proposed
methods. Regressor has the same recall and precision values,
while classifier has higher precision, and CF-EGN has higher
recall value. This shows that classifier has precise but not
compact decisions around a specific point, i.e., it is on the
safe side, while CF-EGN makes compact decisions which are
not precise and is not always on the safe side.

Fig. 3 plots the confusion matrix for regressor (top), clas-
sifier (center), and CF-EGN (bottom). SMF has less false
decisions (false positive (FP) and false negative (FN)) than
FMF which indicates better performance of proposed methods.
Considering SMF, FN is more than FP in regressor, classifier,
and CF-EGN which indicates that they work on the safe side.
Considering FMF, in regressor and classifier FN is more than
FP and vice versa for CF-EGN which shows that CF-EGN is
not on the safe side.
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Fig. 2. Accuracy, precision, recall values of regressor, classifier, and CF-
EGN, for a) SMF and b) FMF.
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Fig. 3. Confusion matrix of regressor (top), classifier (center), and CF-EGN
(bottom), for a) SMF and b) FMF.

IV. CONCLUSION

We developed DL-based regressor and classifier for QoT
estimation in SMF and FMF links. DL-based regressor, clas-
sifier, considering wide range of SMF and FMF system and
link configurations. The classifier was 2 times faster than
the regressor and 10000 times faster than CF-EGN. In SMF,
all methods performed the same while in FMF case, results
reported safe classification only for the regressor and classifier.
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