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Abstract 

In the last decades, advanced statistical and machine-learning tools have made enormous progress 
and they find applications in many fields. On the other hand, their penetration in the scientific domain 
is delayed by various factors, among which one fundamental limitation is that they assume stationary 
conditions. This is due to the fact that traditional machine learning tools guarantee their results only 
if the data in the training set, the test set and the final application are sampled from the same 
probability distribution function. On the contrary, in most scientific applications, the main objective 
of new experiments consists precisely of exploring uncharted regions of the parameter space to 
acquire new knowledge. Traditional methods of covariate shift to address this issue are clearly 
insufficient. In this paper, a completely new method is proposed, which is based on the falsification 
of data driven models. The technique is based on symbol manipulation with evolutionary 
programmes. The performance of the approach has been extensively tested numerically, proving its 
competitive advantages. The capability of the methodology, to handle practical and experimental 
cases, has been shown with the example of determining scaling laws for the design of new 
experiments, a typical issue violating the assumptions of stationarity. The same methodology can be 
adopted also to investigate large databases or the outputs of complex simulations, to focus the analysis 
efforts on the most promising entries. 
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1 Learning in non-stationary conditions and experimental design   

For about two decades, new technologies have allowed collecting unprecedented quantities 

of data about society. This data deluge has been experienced also by the sciences, in particular Big 

Physics experiments. For example, among the experiments coordinated by Eiroforum, at CERN the 

main detector ATLAS has shown the capability of producing 25 Petabytes of data per year and in its 

prime the Hubble space telescope was able of sending to earth Gigabytes of data per day. Coming to 

fusion, the data warehouse of the Joint European Torus (JET) is now approaching 0.5 Petabytes. 

These amounts of data challenge human understanding and manual analysis.  Machine learning tools 

and advanced statistical techniques have therefore been extensively used to derive useful knowledge 

from increasingly large datasets. The great performance of these new tools has motivated also an 

increase in the ambitions, resulting in new challenges, ranging from the analysis of more complex 

phenomena to increasing demands in terms of interpretability and reliability of the results. Progress 

on these fronts is very substantial but, in the perspective of scientific applications, a basic limitation 

of present day tools is becoming very relevant. This is the fact that practically all machine-learning 

tools are based on the i.i.d. assumption [1]. Assuming that the data are independent and identically 

distributed means that the examples in the training set and test set are sampled randomly from the 

same probability distribution function as the final application. Such an assumption is clearly violated 

in experimental planning for the exact sciences. Indeed, the vast majority of new experiments in these 

fields are meant to explore new regions of the parameter space. Typically, a right trade-off has to be 

found. Extrapolating excessively in the unexplored regions of the parameter space can be too risky 

and cause the entire experiments to fail. On the other hand, too conservative choices can result in 

modest increases in knowledge, insufficient to justify the efforts. In any case, for experimental 

planning the i.i.d assumption is clearly untenable. 

New methods are therefore needed to address situations, in which significant extrapolations are 

required, as in the case of planning of new experiments or of designing new devices.  In probabilistic 

terms, the problem can be illustrated in following way. Let us assume that the goal of the experiments 

consists of studying the relation between the regressors xi and the dependent variable y. According to 

the Bayesian theory, one can write: 

 

yi = P(y|x=𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝)P(𝑥𝑥𝑖𝑖

𝑝𝑝𝑝𝑝)               (1) 

 

 where the superscript pe indicates previous experiments, P(y|x=𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝) is the conditional probability 

and P(𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝) the prior. In new experiments, in general both the conditional and the prior probabilities 



could be different. This is a situation of learning in non-stationary conditions or under “concept shift” 

[2,3].  

In many applications, to solve the issues inherent in learning in non-stationary environments, the 

approach of Learning under Covariate Shift (LCS) is adopted [4]. This methodology consists of a 

series of techniques for supervised learning, aimed at addressing the situation when the input points 

for the training follow a different probability density function as the input points of the test and of the 

final application. On the other hand, it is assumed that the conditional distribution of the output values, 

given the input points, remains unchanged: 

  

P(y|x=𝑥𝑥𝑖𝑖
𝑝𝑝𝑝𝑝) = P(y|x=𝑥𝑥𝑖𝑖𝑛𝑛𝑛𝑛) (2) 

 

where the superscript ne indicates new experiments. The traditional way of addressing the issue 

of covariate shift consists therefore of increasing the weight of the training points close to the one of 

the final application. The weights can 

be calculated on the basis of the 

probability ratio of the various inputs 

in the training set and in the test set. 

An academic example, similar to the 

one introduced in [4], is shown in 

Figure 1, in which linear fits are 

shown for different weights of the 

data. If the actual experiments are 

planned to take place in the region of 

the red squares, the fit obtained by 

weighting more those points has 

higher predictive power but can be 

misleading in other parts of the x axis.   

Learning under covariate shift is insufficient in the case of the design of new experiments for 

various reasons. First of all, the methodology assumes and does not derive the new values of the 

regressors and therefore cannot guide in the planning of new experiments. Moreover, LCS needs also 

an a priori definition of the mathematical form of the models to fit the data (the linear fit in the 

academic example of Figure 1). In addition, LCS provides only a partial interpretation of the 

experimental evidence and not holistic models, which take into account all the available data. Finally, 

Figure 1 Example of learning under covariate shift for a function of one 

variable. Bottom left: linear fit for equal weights. Bottom right: linear fit 

for increased weights of the red squares.  

 



there is no reason to assume a priori that equation (2) is respected in the regions of the parameters 

explored by new experiments.  

On the contrary, the new methodology proposed in this paper is not affected by any of the previous 

limitations. The approach is based on the falsification of the candidate models, extracted from the 

results of the already executed experiments, with the help of data driven tools. The analysis of the 

available data is performed with manipulation of symbols (formulas) using evolutionary 

programming (see next section for the details). The best models obtained from the available data are 

compared to identify the values of the parameters for which they provide clearly distinguishable 

predictions. New experiments can therefore be planned in these parts of the operational space to 

falsify the models. The process can be iterated until a satisfactory solution is found. The technique 

has been tested successfully with a systematic series of numerical tests, of which some examples are 

reported in Section 3. An application to the definition of the scaling laws for the energy confinement 

time in Tokamaks, on the basis of the ITPA database, is reported in Section 4.  It is worth mentioning 

that the developed methodology is absolutely general and therefore can be applied also to guide in 

the investigation of large databases, which typically cannot be studied systematically for lack of 

resources; the proposed approach can therefore be very useful in identifying the most relevant entries 

on which to concentrate the further analysis efforts. The same can be said for the results of complex 

simulation. These points are discussed in the last section of the paper together with the conclusions.  

 

2 Symbolic Regression via Genetic Programming for experimental design   

As mentioned in the introductory section, this paper presents a new methodology for 

experimental design. The objective consists of determining the most important regions of the 

operational space to plan experiments, in order to identify the best models to describe the 

phenomenon under study. In this perspective, the main tool used is Symbolic regression via Genetic 

Programming.  The main characteristics of these tools are summarised in the next subsection. Their 

application to the problem of extrapolation for  experimental design is the subject of the following 

subsection. 

2.1 Short overview of Symbolic Regression via Genetic Programming 



SR via GP permits to identify the most appropriate 

mathematical expressions for modelling the process 

under investigation. The approach consists basically of 

testing a large number of mathematical expressions to fit 

a given database. To keep the number of alternatives to 

be fitted at a manageable level, various generations of 

models are tested. The most performing ones of the 

previous generation are retained and used as the basis for 

producing a new generation of models with genetic 

programming techniques.  

In more detail, in terms of knowledge representation, the various candidate formulas are 

expressed as trees. In this context, the trees can be considered as constituted of functions and terminal 

nodes. The function nodes can be arithmetic operators, any type of mathematical functions and 

squashing terms [5,6]. This representation of the formulas is not unique but it is the preferred one 

because permits an easy implementation of Genetic Programming (GP) operations. Genetic Programs 

are computational techniques, which have been explicitly developed to help addressing complex 

optimization problems [5,6]. They are designed to emulate the evolution of living beings through the 

interplay of mutation and selection. They operate on a population of individuals, e.g. mathematical 

expressions in our case. Each individual represents a possible solution, a potential model of the 

experiment under investigation in our case. One of the crucial aspects of SR via GP is the qualification 

of these candidate models. Such an evaluation is based on specific indicators called fitness functions 

(FFs). The FF is a metric selected to measure how good an individual is with respect to the database. 

Once the best individuals have been identified, on the basis of the FF, genetic operators 

(Reproduction, Crossover and Mutation) are applied to them to generate the new population. 

Therefore SR via GP operates in such a way that better individuals are more likely to have more 

descendants than inferior individuals. The iteration is stopped when a stable and acceptable solution 

is identified or some halting condition is met (e.g., a maximum number of iterations or sufficiently 

small errors in subsequent iterations). At this point, the algorithm provides the solution with best 

performance in terms of the FF [7-10].  

The fitness function is probably the most crucial element of the genetic programming 

approach, because it is the indicator that measures the quality of the candidate solutions. Various 

quantities have been used in the past to implement the FF: the Akaike Information Criterion (AIC), 

the Takeuchi Information Criterion (TIC) and the Bayesian Information Criterion (BIC) [11-13]. The 

AIC is based on the Kullback-Leibler divergence and it can be demonstrated that it minimises the 

Figure 2 Pictorial example of a Pareto Frontier 

 



generalisation error. The AIC can therefore be considered an unbiased estimate of the predictive 

inaccuracy of a model. The most widely used form of AIC is:  

 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛 ⋅ ln �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 2𝑘𝑘,               (3) 

 

where RMSE is the Root Mean Square Error, errors indicate the residuals, the difference 

between the experimental values and the estimates of the scaling laws.  𝑘𝑘 is the number of nodes in 

the model and 𝑛𝑛 the number of 𝑦𝑦data provided, so the number of entries in the database (DB).  

A variation of the AIC criterion has been developed to improve its discrimination capability 

when the “right model” is not included in the list of candidate models under investigation. This more 

robust indicator is called the Takeuchi’s Information Criterion (TIC), which in practice can be 

calculated with the formula: 

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙 �𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + � 𝜏𝜏

𝜎𝜎0
�
2
⋅ �𝑘𝑘 + 1 − � 𝜏𝜏

𝜎𝜎0
�
2
�,         (4) 

 

where RSS is the residual sum of squares, σ0 the standard deviation of the models uncertainties 

and τ the standard deviation of the measurements, both assumed to present a Gaussian probability 

density function.  

An alternative criterion, the BIC, is an unbiased estimator of the likelihood of a model. The 

form of the BIC indicator used in this paper is: 



 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛 ⋅ ln�𝜎𝜎(𝜖𝜖)
2 � + 𝑘𝑘 ⋅ ln(𝑛𝑛),               (5) 

 

where 𝜖𝜖 = 𝑦𝑦data − 𝑦𝑦model are the residuals, 𝜎𝜎(𝜖𝜖)
2  

their variance and the others symbols are defined in 

analogy with the AIC expression.  

All three criteria are indicators to be minimised, in the 

sense that better models have lower values of these metrics. 

This can be appreciated by inspection of the three 

indicators. Indeed, all of them consist basically of two 

parts. The first one depends on the quality of the fit. Models 

closer to the data have lower values of this term. The 

second addend implements a penalty for complexity, since 

it is proportional to the number of nodes in the three 

representing the model equations.  All the mathematical 

background to fully appreciate the relative merits of these 

criteria can be found in [14]. To derive the results presented 

in this paper, the AIC criterion has been adopted for the FF.  

In practical applications, given the limitations of 

the databases available, the Fitness Functions do not 

necessarily manage to identify a single individual model, clearly outperforming all the others. 

Normally, SR via GP converges on a series of models, which are good candidates for the 

interpretation of the data available. The main tool implemented to select the most performing 

candidate models is the Pareto Frontier (an example is shown in Figure 2). The Pareto Frontier (PF) 

reports the best models according to the FF for each level of complexity. As can be appreciated from 

Figure 2, the PF present an L shape form, meaning that there is a tendency of lower returns: increasing 

the complexity above a certain level does not produces significant improvements in the fitting quality 

of the models. The models around the inflexion points of the PF are the ones, which require attention 

and are the best candidates for extrapolation.  

The last step of the methodology consists of nonlinear fitting of the candidate models, 

identified with SR via GP. This is an essential phase to associate confidence levels to the estimates 

of the models, which is an indispensable piece of information for the applications considered in this 

paper. A graphic overview of the methodology is shown in Figure 3.  

 

 

 

Figure 3 Block diagram of the steps required 

to perform Symbolic Regression via Genetic 

Programming for the data driven derivation 

of mathematical models. 

 

 



2.2 Application of Symbolic Regression via Genetic Programming to Experimental Design 

The tools described in Subsection 2.1 can be applied to the planning of future experiments. 

Indeed, the selection of the most profitable operational region, where to perform new experiments, 

can be considered an essential task of the data 

analysis process. In this perspective, the crucial 

aspect is the identification of the best parameter 

space region where to plan new experiments, which, 

from a statistical point of view, is equivalent to 

determining the new range of the regressors. 

Therefore, the technique should be refined to derive 

the parameter range more appropriate for the 

falsification of the available models.  In this 

perspective, the database of past experiments is 

analysed first with SR via GP. The main idea 

consists of selecting a pool of reasonable candidate models on the basis of the Pareto Frontier. The 

crucial point to appreciate is that at this stage, after application of nonlinear fitting, it is possible to 

obtain confidence intervals for the models predictions. With this information available, the algorithm, 

implemented to obtain the results reported in this paper,  explores the operational space to identify 

the regions closest to the past data, where the candidate models differ sufficiently for their the 

predictions to be outside the confidence intervals. In practice, the technique determines the smallest 

variations in the operational parameters of the experiments to falsify the derived models. The range 

of parameters closest to the one already explored is selected, because typically this is the most 

accessible region for additional experiments. Moreover, because predictions of the previous models 

in this close neighbourhood are expected to be the soundest even in presence of concept shift, it is 

wise not to extrapolate too much. In any case, the level of extrapolation for the following experiments 

is a parameter which can be tuned to best suit the needs of each experiment. At this point, once the 

experiments have explored the new region of the operational space and new data are collected, the 

process can be repeated. The best model, according to the FF, are selected using the Pf and a new 

region where they can be falsified is identified to perform the successive experiments. The process 

terminates when convergence on a sufficiently specific model, for the interpretation of the phenomena 

under study, is reached. The potential advantages of SR via GP for experimental design are various. 

The technique allows deriving directly from the data the most suited form of the models. A purely 

exploratory version of the algorithms can be implemented, with minimal a priori assumptions about 

the mathematical expression of the models (contrary to traditional fitting). On the other hand, if 

 

Figure 4 Function of one variable to illustrate the 

methodology. 

 



relevant a priori information is available, the solutions can be influenced to converge on certain 

specific classes of functions (by selecting appropriately the basis functions or the structure of the 

trees). The method also does not impose constraints neither on the type of errors affecting the data 

nor on the collinearity between the regressors. The proposed methodology is described in detail with 

the help of a simple example in the next section. 

 

3 The falsification approach to experimental design: numerical tests 

The methodology proposed in the last section has been subjected to a systematic series of 

numerical tests. Many families of mathematical 

functions have been used to generate synthetic data. 

Various levels of Gaussian noise have been added to 

the points generated by the numerical functions to 

simulate experimental conditions. This statistics of the 

noise has been chosen because typically many 

measurements are affected by various sources of 

disturbance and therefore they satisfy the conditions of 

the central limit theorem. The proposed method has 

then been iteratively applied to the data until the 

original function is identified. The results have always 

been positive and the proposed technique has always 

allowed recovering the original equations generating 

the data in a very efficient way. The proposed 

methodology is also much more efficient than LCS, the more so the more complicated the problem. 

In the following, a quite challenging example is described in some detail to show the potential of the 

proposed approach. For clarity’s sake, mainly a low dimensional case is illustrated, but it has been 

verified that the approach is equally valid for high dimensional cases, provided of course a sufficient 

number of good quality examples and adequate computational resources are available. 

In Figure 4 a simple example of a function of a single variable is shown. The equation of the 

function used to generate the data is: 

 

𝑓𝑓(𝑥𝑥) = 3 sin 𝑥𝑥 + exp (𝑥𝑥/5)         (4) 

 

Gaussian noise, of zero mean and variance equal to 10% of the average dependent variable 

absolute value, has been added to the individual points.  

Figure 5. First step of the proposed methodology to 

identify equation (4). The data provided to SR via GP 

are 100 points in the in the interval between 0 and 2. 

The three best candidates derived from the Pareto 

Frontier are reported in green, red and blue with the 

relative confidence intervals. The input points are 

depicted in black. In black also the actual function 

generating the data. 



The first training has been performed by generating 100 points in the interval between 0 and 

2. The best three solutions identified from the Pareto Frontier are: 

 

𝑦𝑦1,1 = 2.28 �sin 𝑥𝑥 +
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−1.26𝑥𝑥)� 

𝑦𝑦1,2 = 4.38 sin 𝑥𝑥0.62 

𝑦𝑦1,3 = 3.53𝑥𝑥0.41 

 

The three functions are shown in Figure 5; from the confidence intervals it appears clearly 

that a very advantageous interval to falsify the three 

solutions is the one between 4 and 6. Therefore 100 

additional points have been generated in this interval.  

The best solutions identified by SR via GP are shown 

in Figure 6 and their equations are: 

 

𝑦𝑦2,1 = 1.28 �sin(𝑥𝑥0.67) + sin 𝑥𝑥 +
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−1.14𝑥𝑥)�

+ 0.65  

𝑦𝑦2,2 = 2.60 �sin 𝑥𝑥 +
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.48𝑥𝑥)� 

𝑦𝑦2,3 = 11.14 𝑥𝑥 exp (−𝑥𝑥) 

 

At this point, a suitable interval to discriminate 

between the models is the one between 8 and 12. To 

progress the identification of the most suitable solution, therefore 100 points have been generated in 

this interval. The best outputs of SR via GP, considering also these additional entries (100 more 

points), are the following three equations: 

 

𝑦𝑦3,1 = 3.27 sin 𝑥𝑥 + 0.43𝑥𝑥1.31 − 3.69
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.70𝑥𝑥) + 2.98  

𝑦𝑦3,2 = 0.83𝑥𝑥 + 3.47 sin 𝑥𝑥 

𝑦𝑦3,3 = 0.79 exp (0.19 𝑥𝑥) 

Figure 6 Second step of the proposed methodology to 

identify equation (4). The data provided to SR via GP 

are 100 points in the interval in the interval between 

4 and 6.  The three best candidates derived from the 

Pareto Frontier are report in green, red and blue 

with the relative confidence intervals. The input 

points are depicted in black. In black also the actual 

function generating the data. 

 



 

These equations provide different 

predictions in the interval of the x axis 

between 16 and 18. Taking into account 

these additional inputs, the right solutions 

emerges quite clearly among the 

competing models, as shown graphically 

in Figure 7. A part from the pictorial 

view, the right equation can be identified 

on the basis of the statistical indicators, 

which are all clearly better for the right 

model. 

 

 

 

4 The falsification approach to experimental design: energy confinement time 

To exemplify the potential of the proposed methodology with a concrete example from 

Tokamak physics, in the following the scaling law of the energy confinement time is investigated. 

The importance of this parameter is obvious since it quantifies the rate at which energy is lost from 

the plasma. To cover a large range of regressors, an international database has been considered [14], 

which was explicitly built to support advanced studies of the confinement time. This ITPA database 

indeed includes validated signals from the vast majority of the most relevant Tokamak machines ever 

operated in the world. Coherently with the proposed procedure, for the next steps, only the intervals 

of plasma current indicated by symbolic regression have been considered. For the sake of direct 

comparison with previous scalings reported in the literature, the following quantities have been 

considered good candidates for the independent variables:  

 

𝐵𝐵[𝑇𝑇], 𝐼𝐼[𝑀𝑀𝐴𝐴],𝑛𝑛[1019𝑚𝑚−3],𝑅𝑅[𝑚𝑚],𝑀𝑀, 𝜀𝜀,𝑘𝑘;𝑃𝑃[𝑀𝑀𝑀𝑀],𝑀𝑀 [𝑎𝑎.𝑚𝑚. 𝑢𝑢. ]. 

 

In the previous lists k indicates the volume elongation, 𝜀𝜀 the inverse aspect ratio, 𝑞𝑞95 the plasma 

safety factor evaluated at the flux surface enclosing the 95% of the poloidal flux, n the central line 

average plasma density, B the toroidal magnetic field, R the plasma major radius, I the plasma current 

and finally P the estimated lost power [15]. The selection of the discharges included in the following 

Figure 7 Fourth step to converge on the final and correct solution: 

eqution (4). The best data provided to SR via GP are 100 points in the 

interval in the interval between 16 and 18.  The three best candidates 

derived from the Pareto Front are reported in green, red and blue with 

the relative confidence intervals. The input points are depicted in black. 

In black also the actual function generating the data. 

 



analysis obeys also the selection rules of the DB3 dataset [15,16], used to obtain the famous IPB98y 

scaling law. 

Since the main scaling parameter for this kind of studies is the plasma current I, at the first 

step of the procedure it is assumed than only data from devices with I less than 0.5 MA was available. 

This subset includes a total of 702 entries and with this data symbolic regression identifies the 

following 5 scaling laws as the most performing in terms of the model selection criteria:  

 
 

𝑦𝑦1,1
𝜏𝜏 = 0.1434 ∙ 𝐼𝐼 ∙ 𝑅𝑅2 ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.0363𝑃𝑃−7.626) ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−1.015𝑛𝑛2𝜀𝜀) ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−0.5112 � 𝑛𝑛
𝑃𝑃1.486�

1.697
�
 

 

𝑦𝑦1,2
𝜏𝜏 = 0.0239 ∙ 𝐼𝐼0.8469 ∙ 𝑅𝑅 ∙ exp(𝑅𝑅) ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−2.5222𝑛𝑛3.759𝑀𝑀𝜀𝜀4𝑘𝑘) ∙ 𝑃𝑃

−0.604 

 

𝑦𝑦1,3
𝜏𝜏 = 0.0272 ∙ 𝐼𝐼 ∙ 𝑅𝑅 ∙ exp(𝑅𝑅) ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−1.370 𝑛𝑛
3𝜀𝜀2
𝐵𝐵 �

∙ 𝑃𝑃−0.576 

 

𝑦𝑦1,4
𝜏𝜏 = 0.1515 ∙ 𝐼𝐼 ∙ 𝑅𝑅3.540 ∙ exp �

𝐼𝐼 ∙ 𝑅𝑅
𝑘𝑘11.62� ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−1.025𝑅𝑅) ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−2.519𝑛𝑛3𝜀𝜀2𝑘𝑘) ∙ 𝑃𝑃

−0.730 

 

𝑦𝑦1,5
𝜏𝜏 = 0.091 ∙ 𝐼𝐼 ∙ 𝑅𝑅2 ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.548𝑛𝑛) ∙

1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.557𝑛𝑛) ∙ 𝑃𝑃

−0.539 

 
 

 

 

The values of the model selection indicators for these 

models and the plots of the variable ranges are reported in 

Appendix 1. As expected, the current interval is too small to 

obtain coherent results. The scaling laws vary wildly in 

mathematical form and provide an unrealistic range of 

extrapolations to ITER, as reported in Table I. On the other hand, 

the models obtained in this first step belong basically to three 

families, which differ well outside the confidence intervals 

Table I Prediction for the τITER based 
on the examples up to 0.5 MA.  

Model τITER 

𝑦𝑦1,1
𝜏𝜏  20.6747 

𝑦𝑦1,2
𝜏𝜏  48.7173 

𝑦𝑦1,3
𝜏𝜏  94.9609 

𝑦𝑦1,4
𝜏𝜏  0.1175 

𝑦𝑦1,5
𝜏𝜏  4.7231 

 



already in the current range 1.5 MA < I < 

2.5 MA, as shown in Figure 8. Including 

the entries in this interval of currents 

increases the number of entries to 1428. 

Performing another iteration of the 

methodology allows identifying the 

following set of equations as again the 

most performing according to the Pareto 

Frontier: 

 

 

𝑦𝑦2,1
𝜏𝜏 = 0.1162 ∙ 𝐼𝐼2 ∙ 𝑅𝑅1.953 ∙ �

𝑘𝑘0.553

𝑃𝑃1.2008�
3.622

∙
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−0.782 𝑛𝑛
1.465

𝐼𝐼 �
∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−0.553 𝑛𝑛
𝑀𝑀�

∙ 

 

𝑦𝑦2,2
𝜏𝜏 = 0.113 ∙ 𝐼𝐼 ∙ 𝑅𝑅 ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−7.284 
𝑛𝑛
𝑃𝑃2�

∙
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−7.381 
𝑛𝑛
𝑃𝑃�

 

𝑦𝑦2,3
𝜏𝜏 = 0.115 ∙ 𝐼𝐼 ∙ 𝑅𝑅 ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.998 𝑛𝑛) ∙
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−1.705 
𝑛𝑛
𝑃𝑃�
∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−5.650 
𝐼𝐼 𝑅𝑅 𝑘𝑘2

𝑃𝑃2 �
 

𝑦𝑦2,4
𝜏𝜏 = 0.084 ∙ 𝐼𝐼 ∙ 𝑅𝑅 ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−26.774 
𝑛𝑛 𝑅𝑅 𝑘𝑘
𝑃𝑃3  �

 

 

Even if the obtained scalings show again a wide range of different dependencies, the range of 

extrapolations to ITER is significantly narrowed to the interval between 2.9 s to about 4 s. On the 

other hand, the models still vary significantly in their form, suggesting that more data would be 

required. The details, including the extrapolations to ITER, the plots of the scalings and ranges of the 

variable are reported in Appendix 2.  From the material in the Appendix, it can be seen how the 

estimates of the various models differ outside of the confidence intervals in the plasma current range 

between 3.5 and 5 MA. Fortunately in the database there are additionally examples also in this high 

current range for a final complete set of 1480 inputs. Repeating the procedure including these new 

entries identifies the following three high quality models: 

 

𝑦𝑦3,1
𝜏𝜏 = 0.076 ∙ 𝐼𝐼 ∙ 𝑅𝑅2 ∙ 𝑘𝑘 ∙ 𝑃𝑃−1 ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.201𝑛𝑛2.004) ∙ �
1

𝑛𝑛 ∙ 𝑃𝑃1.293 ∙
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(0.715𝑀𝑀)�
−0.1761

 

 

Figure 8 Main families of scaling laws which can be derived on the 
basis of the experiments with plasma current blow 0.5 MA. 



𝑦𝑦3,2
𝜏𝜏 = 0.1831 ∙ 𝐼𝐼 ∙ 𝑅𝑅2 ∙ 𝑃𝑃−0.662 ∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.094 ∙ 𝐼𝐼)
∙

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.408 ∙ 𝑛𝑛) 

𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁 = 0.070 ∙ 𝐼𝐼1.071 ∙ 𝑅𝑅1.706 ∙ 𝑘𝑘1.250 ∙ 𝑃𝑃−0.715𝑛𝑛0.100 ∙
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−0.408 ∙ 𝑛𝑛1.036) 

 

These are to be compared with the pure power law monomials 

reported in [15] and obtained using the whole of the database and not 

only the entries the ranges identified by the proposed technique: 

 

𝑦𝑦𝑃𝑃𝑃𝑃1 = 5.55 ⋅ 10−2𝐼𝐼0.75𝐵𝐵0.32𝑛𝑛0.35𝑀𝑀0.06𝑅𝑅2.0𝜖𝜖0.76𝜅𝜅𝑎𝑎1.14𝑃𝑃−0.62 

𝑦𝑦𝑃𝑃𝑃𝑃2 = 5.62 ⋅ 10−2𝐼𝐼0.93𝐵𝐵0.15𝑛𝑛0.41𝑀𝑀0.19𝑅𝑅1.97𝜖𝜖0.58𝜅𝜅𝑎𝑎0.78𝑃𝑃−0.69 

   

Of course at this stage the procedure has to be stopped because 

there are no more examples at higher plasma current.  

The scaling law yNPL is the one already identified in [7].      

From the statistical parameters provided 

in Appendix 3, it appears very clearly that 

the exponential and squashing factors 

improve the scalings significantly 

compared to the power law monomials. It 

is also worth noticing that, with the 

developed tools, much less data is needed 

to converge on competitive if not superior 

scaling laws: 1480 instead of 3093. The 

values of the estimates for ITER are 

reported in Table II, showing that 

expecting τ well above 3 s could be on the 

optimistic side. In any case, as can be 

appreciated from Figure 9, ITER plasma current will be more than sufficient to clearly discriminate 

between the proposed models.  

 

5 Conclusions and further lines of investigation 

In this paper, an original methodology has been presented to guide scientists in the design of 

experiments in new regions of the operational space. This is a very important step in the scientific 

process, since only exploration of a new range of the regressors can provide real additional 

Table II Prediction for the τITER 

obtained at the last iteration of 
the developed methodology.  

Model τITER 

𝑦𝑦3,1
𝜏𝜏  2.55 

𝑦𝑦3,2
𝜏𝜏  4.34 

𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁 2.85 

𝑦𝑦𝑃𝑃𝑃𝑃1 3.64 

𝑦𝑦𝑃𝑃𝑃𝑃2 3.22 

 

 

Figure 9 Plots of the scaling laws obtained with all the three 
current intervals: I<0.5 MA, 1.5 MA< I<2.5 MA, 3.5 MA< I<5 
MA.  



information and knowledge. On the other hand, planning experiments in an unexplored zone of the 

parameters is delicate both conceptually and practically, because the extrapolation of previous 

knowledge is uncertain. Since the available models have been derived in conditions different from 

the ones of the final applications, the i.i.d conditions cannot be invoked. As a consequence, care must 

be taken because the models trained with old data can perform sub optimally and provide even wrong 

answers. Moreover, contrary to other domains, no obvious assumption can be made to pin down the 

best model. To operate in such a situation of concept shift, it is important to find a good trade-off in 

exploring the operational space. The parameter region for the new experiments should not be too 

close to the previous cases, otherwise their added value would be limited. On the other hand, the 

extrapolation cannot be too aggressive, penalty the failure of the experiments, because the available 

models are completely at the loss to provide guidance in the new region of the parameter space; 

obviously, if there is no relation between the data in the training set and the final applications there is 

nothing to learn from the past. The methodology proposed in this paper is based on the falsification 

of the models with experiments in the range of parameters as close as possible to the previous 

experiments.  Of course, this condition can be relaxed or substitute with others if appropriate for the 

studies to be performed. The approach, based on SR via GP, has been successfully tested with a 

variety of numerical tests. The application to a multimachine international database of Tokamak 

devices has also provided very encouraging results.  The procedure is more efficient and reliable than 

previous approaches such as LCS. Moreover the proposed approach provides better results, at least 

from a statistical point of view, even with a significant smaller set of examples. On the other hand, it 

should be emphasized that the example of the energy confinement time is just meant to illustrate the 

potential of the proposed methodology not to propose a final form of the scaling, because the database 

is insufficient and also because the issue is to be addressed again with data of metallic devices.  

It is worth pointing out that the developed technique can be used not only for experimental 

design. The approach can also be deployed to focus the analysis on existing databases, which are 

typically too large for exhaustive investigations. Indeed in many large devices, and particularly at 

JET given the large warehouse, only a small fraction of the data is actually analysed in detail. The 

tools developed can be utilised to identify the most relevant entries in the DB to be analysed with 

specific attention. The same applies to computer simulations, which are nowadays sometimes so 

complex that a lot of information remains untapped because for lack of resources to investigate the 

details of their outputs.  

With regard to future developments, an important topic to be further developed is the 

treatment of the errors. Methods of Information Geometry, particularly the Geodesic Distance 

between probability density functions, are expected to have strong potential to improve the capability 



of the proposed methodology [17]. Application to scenario integration, with specific attention to the 

effects of the impurities, is also expected to provide interesting results [18-22].  
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Appendix 1 Data for plasma current below 0.5 MA 
This set of discharges includes 702 inputs. The histograms of the main variables are reported 

in Figure 1.1 and their averages in Table 1.2. The values of the AIC and BIC of the various candidate 

models are reported in Table 1.1. 

 
Figure 1.1 

 
 
The values of AIC and BIC are reported in Table 1.1 

 
Tabella 1.1 

Model k AIC [103] BIC [103] 

𝑦𝑦1,1
𝜏𝜏  32 -6.9789 -6.8328 

𝑦𝑦1,2
𝜏𝜏  26 -6.9264 -6.8071 

𝑦𝑦1,3
𝜏𝜏  29 -6.8704 -6.7374 

𝑦𝑦1,4
𝜏𝜏  17 -6.8248 -6.7467 

𝑦𝑦1,5
𝜏𝜏  42 -6.3828 -6.2714 

 

 

 

Tabella 2.2 

Variable Average 

B 1.9144 

n 4.1996 

R 1.5379 

M 1.6091 
Ɛ 0.2419 

k 1.1545 

P 1.7319 
 

  



Appendix 2 Data for plasma current in the intervals 0<Ip< 0.5 MA and 1.5 

MA<Ip<2.5 MA 
This set of discharges includes 1428 inputs. The histograms of the main variables are reported 

in Figure 2.1 and their averages in Table 2.3. The values of the AIC and BIC of the various candidate 

models and their extrapolations to ITER are reported in Table 2.1 and 2.2. 

 
Figura 2.1 

 
Table 2.1 

Model k AIC [103] BIC [103] 

𝑦𝑦2,1
𝜏𝜏  35 -9.7962 -9.6115 

𝑦𝑦2,2
𝜏𝜏  33 -9.6692 -9.4945 

𝑦𝑦2,3
𝜏𝜏  17 -9.457 -9.3699 

𝑦𝑦2,4
𝜏𝜏  19 -9.3558 -9.2554 

 

Table 2.2 

Model τITER 

𝑦𝑦2,1
𝜏𝜏  2.8903 

𝑦𝑦2,2
𝜏𝜏  4.1469 

𝑦𝑦2,3
𝜏𝜏  3.2341 

𝑦𝑦2,4
𝜏𝜏  3.9519 

 

 
Table 2.3 

Variable Average value 

B 2.0854 

n 4.7019 

R 2.2421 

M 1.8143 
Ɛ 0.2796 



k 1.3660 

P 6.5544 

 

  



Appendix 3 Data for plasma current in the intervals 0<Ip<0.5 MA 1.5 MA<Ip<2.5 

MA and 3.5 MA<Ip<5 MA 
 

This set of discharges includes 1480 inputs. The histograms of the main variables are reported 

in Figure 3.1 and their averages in Table 3.2. The values of the AIC and BIC of the various candidate 

models are reported in Table 3.1. 

 
Figura 3.1 

 
Table 3.1 

Model k AIC  BIC  

𝑦𝑦3,1
𝜏𝜏  29 -9935.54 -9781.27 

𝑦𝑦3,2
𝜏𝜏  17 -9752.85 -9662.69 

𝑦𝑦𝑁𝑁𝑁𝑁𝑁𝑁 9 -9778.58 -9760.42 

𝑦𝑦𝑃𝑃𝑃𝑃1 10 -9628.72 -9599.26 

𝑦𝑦𝑃𝑃𝑃𝑃2 10 -9379.43 -9506.43 
 

Table 3.2 

Variable Average 

B 2.1313 

n 4.7314 

R 2.2644 

M 1.8241 
Ɛ 0.2818 

k 1.3750 

P 6.8464 
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