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Abstract—In the edge-cloud continuum, datacenters provide
microservices (MSs) to mobile users, with each MS having specific
latency constraints and computational requirements. Deploying
such a variety of MSs matching their requirements with the
available computing resources is challenging. In addition, time-
critical MSs may have to be migrated as the users move, to
keep meeting their latency constraints. Unlike previous work
relying on a central orchestrator with an always-updated global
view of the available resources and of the users’ locations, this
work envisions a distributed solution to the above issues. In
particular, we propose a distributed asynchronous protocol for
MS deployment in the cloud-edge continuum that (i) dramatically
reduces the system overhead compared to a centralized approach,
and (ii) increases the system stability by avoiding having a single
point of failure as in the case of a central orchestrator. Our
solution ensures cost-efficient feasible placement of MSs, while
using negligible bandwidth.

Index Terms—Edge computing, 5G mobile communication.

I. INTRODUCTION

Today’s networks offer bulk virtualized resources, embodied
as a collection of datacenters on the continuum from the
edge to the cloud [1]–[4]. These datacenters host a plethora
of applications with versatile computational requirements and
latency constraints. For example, time-critical services such
as road safety applications require low latency, necessitating
processing them in an edge datacenter, close to the user.
In contrast, infotainment tasks require larger computational
resources, but looser latency constraints and therefore may
be placed on a cloud datacenter with abundant and affordable
computation resources [2], [5]. Placing services over the cloud-
edge continuum is thus challenging. It becomes even more
complex when changes in the users’ mobility or traffic demand
require migrating services to reduce latency.

Most of the existing solutions [1]–[3], [6]–[9] rely on
a central orchestrator to make all placement and migration
decisions. The orchestrator periodically (i) gathers informa-
tion about the state of resources and migration requirements,
(ii) calculates new placement and resource allocation, and
(iii) instructs datacenter local controllers accordingly. This
centralized synchronous approach has several shortcomings.
First, it does not scale well, thus failing to manage systems
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with multiple datacenters efficiently. In practice, gathering
fresh state information causes significant communication bot-
tlenecks, even within a single cloud datacenter [10]. Secondly,
the orchestrator is a natural single point of failure, compro-
mising the system’s stability. Finally, the datacenters may be
operated by distinct operators [11], [12], which are typically
unwilling to share proprietary information and implementation
details with competitors.

Our Contribution. We present a solution called Distributed
Asynchronous Placement Protocol for the Edge-Cloud Con-
tinuum (DAPP-ECC), which overcomes the aforementioned
issues effectively and efficiently. DAPP-ECC decreases com-
munication overhead by using simple single-hop control mes-
sages transmitted by a node to only relevant neighbors. More-
over, DAPP-ECC requires no out-of-band communication or
synchronization tools. DAPP-ECC can find a feasible solution
even with restricted resources, where a feasible placement
necessitates migrating also already-placed MSs. Finally, very
importantly, our solution allows multiple datacenters – pos-
sibly of distinct providers – to cooperate without exposing
proprietary information.

Paper organization. We introduce the system model in
Sec. II and formulate the placement and migration problem
in Sec. III. Sec. IV describes our algorithmic solution. Sec. V
evaluates the performance of DAPP-ECC in various settings,
using real-world mobility traces and antenna locations. Finally,
Sec. VI reviews relevant related work, and Sec. VII draws
some conclusions.

II. SYSTEM MODEL

We consider a fat-tree cloud-edge continuum architecture,
which comprises [5]: (i) a set of datacenters, S, denoting
generic computing resources, (ii) switches, and (iii) radio
Points of Access (PoA). Datacenters are connected through
switches, and PoAs have a co-located datacenter [13]. Each
user is connected to the network through a PoA, and they can
change PoA as they move.

We model such logical multi-tier network as a directed
graph G = (S,L), where the vertices are the datacenters, while
the edges are the directed virtual links connecting them. We
assume the existence of a single predetermined loop-free path
between each pair of datacenters.

Let us consider a generic user generating a service request
r, originating at the PoA pr, to which the user is currently
connected. Each request is served by placing an instance of



a microservice (MS) on a datacenter. Denote the instance of
the MS for service request r by mr. Let R denote the set of
service requests, and M the set of corresponding MSs that
are currently placed, or need to be placed, on datacenters.

Each service is associated with an SLA, which specifies
its requirements in terms of KPI target values [14]. Let
us consider latency as the most relevant KPI, although our
model could be extended to others, like throughput and energy
consumption. Due to these latency constraints, each request r
is associated with a list of delay-feasible datacenters Sr. The
delay-feasible servers in Sr are not too far from r’s PoA (pr),
or, more formally, their list is a prefix of the path from pr

to the root [1], [4], [6]. The top delay-feasible datacenter of
request r is denoted by s̄r.

To successfully serve request r on datacenter s ∈ Sr, s
should allocate (at least) βr,s CPU units, where βr,s is an
integer multiple of a basic CPU speed. As there exists a known
method to calculate Sr and βr,s given the characteristics of
mr [6], we refer to Sr and βr,s as known input parameters.
Each datacenter s ∈ S has a total processing capacity Cs,
expressed in the number of CPU cycles/s.

III. THE PLACEMENT AND MIGRATION PROBLEM

The delay experienced by an MS may vary over time due
to either (i) a change in the user’s PoA, which changes the
network delay, or (ii) a fluctuation in the traffic, and hence in
the processing latency [15]. Each user continuously monitors
its Quality of Experience (QoE) and warns its PoA as its
latency approaches the maximum acceptable value1. The PoA
then checks the request, and if the user is indeed critical –
namely, its latency constraint is about to be violated – the
PoA triggers a migration algorithm. The PoA also handles
new requests awaiting service.

Decision variables. Let y be the Boolean placement deci-
sion variables, i.e., y(r, s) = 1 if MS mr is scheduled to run
on datacenter s. Any choice for the values of such variables
provides a solution to the Placement and Migration Problem
(PMP), determining (i) where to deploy new MSs, (ii) which
existing MSs to migrate, and (iii) where to migrate them.

Constraints. The following constraints hold:∑
s∈S y(r, s) = 1 ∀r ∈ R (1)∑

r∈R y(r, s)βr,s ≤ Cs ∀s ∈ S . (2)
Constraint (1) ensures that at any point in time, each MS mr

is associated with a single scheduled placement. (2) assures
that the capacity of each datacenter is not exceeded.

Costs. The system costs are due to migration and compu-
tational resource usage, as detailed below.

Migrating MS mr from datacenter s to datacenter s′ incurs
a migration cost ψm(r, s, s′). Let x(r, s) denote the current
placement indicator parameters2, i.e., x(r, s) = 1 iff MS mr

is currently placed on datacenter s. We assume that a user does
not become critical again before it finishes being placed based

1If the user can predict its near-future location, it can inform the PoA before
the target delay is violated.

2x(r, s) are not decision variables, as they indicate the current deployment.

on the decision made by any previous run of the algorithm
solving the PMP. The migration cost incurred by a critical
MS mr is then:∑

s6=s′∈S

x(r, s) · y(r, s′) · ψm(r, s, s′).

Placing MS r on datacenter s incurs a computational
cost ψc(r, s). As computation resources in the cloud are
cheaper [2], [5], we assume that if s is an ancestor of s′,
placing MS mr on s is cheaper than placing mr on s′.

Objective. Our goal is to minimize the cost function:

φ(y) =
∑

s 6=s′∈S

∑
r∈C

x(r, s) · y(r, s′) · ψm(r, s, s′) (3)

+
∑
s∈S

y(r, s)
∑
r∈C

ψc(r, s)

subject to constraints (1), (2).
Following Proposition 2 in [6], it is easy to see that PMP

is NP-hard. We are interested in a distributed solution, where
no single datacenter (or any other entity) has a complete fresh
view of the status (e.g., the current place of each MS, or the
amount of available resources in each datacenter). Instead, the
placement and migration protocol should run on an as small as
possible subset of the datacenters. Furthermore, the solution
should be asynchronous, as distinct PoAs may independently
invoke different, simultaneous runs of the protocol.

IV. THE DAPP-ECC ALGORITHMIC FRAMEWORK

In this section, we present our algorithmic solution to PMP,
named Distributed Placement Protocol for the Edge-Cloud
Continuum (DAPP-ECC). We start with a high-level descrip-
tion and then provide the details of the single algorithms. In
our description, we let s.proc() denote a run of procedure
proc() on datacenter s. As our protocol is distributed, each
datacenter s maintains its local variables, denoted by a sub-
script s. We will use the procedure Sort() that sorts MSs in
non-increasing timing criticality, realized by a non-decreasing
|Sr \ T (s)|, i.e., the number of ancestor datacenters on which
the MS may be placed. Sort() breaks ties by non-decreasing
βr,s and breaks further ties by users’ FIFO order.

A. Protocol overview

Following the intuition, one would reduce the system costs
by placing MSs in the network continuum as close as possible
to the cloud, since cloud resources are cheaper and this may
prevent future migrations. However, such an approach may
make the algorithm fail to find feasible solutions, even when
they exist [6].

Our solution to this conflict between feasibility and cost-
efficiency is inspired from [6]. The proposed DAPP-ECC
algorithm initially assigns – or, better, reserves – CPU for
each request as close as possible to the edge. We dub this
stage Seek a Feasible Solution (SFS). Once such a solution
is found, the protocol Pushes Up (PU) the MSs towards the
cloud as much as possible, to reduce costs. If SFS cannot find
a feasible solution, non-critical MSs will be migrated via the
Push-Down (PD) procedure, to make room for a critical MS.



B. The DAPP-ECC algorithms
We now detail the algorithmic framework we developed. We

will denote by M̃ a list of currently unassigned requests, and
by PU a list of assigned requests that may be pushed-up to a
closer-to-the-cloud datacenter, to reduce costs. Let PD denote
a set of push-down requests. as denotes the available capacity
on datacenter s. Upon system initialization, each datacenter s
assigns M̃s = PUs = PDs = ∅ and as = Cs.

Seek for a feasible solution: s.SFS() is presented in Alg. 1.
It handles the unassigned MSs as follows. If the locally
available capacity suffices to locally place an unassigned MS
mr (Ln. 4), s reserves capacity for mr (Ln. 6). If mr cannot
be placed higher in the tree (Ln. 7), s.SFS() not only assigns
mr, but also locally places it. Otherwise, the procedure inserts
mr to the set of potentially-placed MSs, which s will later
propagate to its parent. If s.SFS() fails to place a request r
that cannot be placed higher, it calls s.PD() (Lines 12-15).
The arguments for s.PD() are (i) the identity of the initiator
datacenter, s∗; (ii) a list of MSs that s∗ asks its descendants to
push-down, and (iii) deficitCPU, namely, the amount of CPU
resources that must be freed from s∗ to find a feasible solution.

In Lines 16-17, s.SFS() checks whether there exist MSs that
are not yet assigned, or may be pushed-up to an ancestor. If
so, s.SFS() initiates a run of SFS() on s’s parent (Ln. 18). If
there are no pending push-up requests from its ancestors, s
initiates a push-up (Lines 20-21).

Algorithm 1 s. SFS(M̃,PU )
1: PU

s ← P
U
s ∪ P

U

2: M̃s ← Sort (M̃s ∪ M̃)
3: for each mr ∈ M̃s do
4: if as ≥ βr,s then . enough available CPU to place mr on s
5: remove mr from M̃s

6: as ← as − βr,s . assign mr on s
7: if s̄r = s then . must place mr on s for a feasible sol
8: place mr on s
9: else . Will place mr on s only if it won’t be pushed-up

10: insert mr to s.potentiallyPlacedRequests
11: insert (mr, s) to PU

s

12: else if s̄r = s then . mr can’t be placed here, nor higher in the tree
13: PD

s ←
{
r | mr ∈ M̃s and s̄(r) = s

}
. ”over-provisioned” MSs

14: deficitCpu =
∑

r∈PD
s
βr,s − as . capacity to free for finding a sol

15: run PD (PD
s , deficitCpu, s)

16: PU
prnt ←

{
(mr, s′)|(mr, s′) ∈ PU

s and s.prnt ∈ Sr
}

17: if M̃s 6= ∅ or PU
prnt 6= ∅ then . is there any req to send to parent?

18: send
(
s.parent, SFS

(
M̃s,PU

prnt

))
19: PU

s = PU
s \ P

U
prnt

20: if PU
prnt = ∅ then . No pending PU replies from parent

21: run s.PU
(
PU

s

)

Push-Up: s.PU(), detailed in Alg. 2, first displaces and
regains the CPU resources for all the MSs pushed-up from
s to a higher-level datacenter. Next, s.PU() handles all the
push-up requests as follows. Consider a request to push up
MS mr, currently placed on datacenter s′ that is a descendent
of s. If s has enough available capacity for that request, then
s.PU() locally places mr (Lines 4-5) and updates the relevant
record in PUs (Ln. 6). This record will later be propagated to
s′ which will identify that mr was pushed up, and regain the
resources allocated for it. In Lines 7-11, s propagates each

Algorithm 2 s.PU(PUs )
1: dis-place all MSs pushed-up from me, and update as and PU

s accordingly
2: PU

s ← Sort (PU
s )

3: for each (mr, s′) ∈ PU
s do

4: if as ≥ βr,s then
5: place mr on s and decrease as accordingly
6: remove (mr, s′) from PU

s and insert (mr, s) into PU
s

7: for each child c do
8: PU

c =
{

(mr, s′) | (mr, s′) ∈ PU
s and c ∈ Sr

}
9: if PU

c 6= ∅ then
10: send

(
c, PU

(
PU

c

))
11: PU

s = PU
s \ P

U
c

Algorithm 3 Datacenter s called by PD(PDs ,deficitCpu, s∗)
1: if s∗s 6= null and s∗s 6= s∗ then . Running another push-down procedure
2: send (caller, PD(PD

s , deficitCpu, s∗))
3: return
4: s∗s ← s∗

5: M̃s ← Sort (M̃s)
6: add s.potPlacedRequests, and then s.placedRequests to the end of PD

s
7: for each child c do
8: if I can push-down to myself enough MSs from s∗ to nullify deficitCpu then
9: break

10: PD
c =

{
mr | r ∈ PD

s , c ∈ Sr
}

. MSs to push-down relevant to child c

11: if PD
c 6= ∅ then . child c may help in freeing space

12: PD
c , deficitCpu = c.PD (PD

c , deficitCpu, s∗) . req. c & get ack
13: dis-place MSs pushed-down from me; update as, PD

s ,M̃s accordingly
14: for each r ∈ PD

s s.t. r.curPlace is s or an ancestor of s and βr,s ≤ as do
15: place mr and update as, PD

c and deficitCpu accordingly
16: if s 6= s∗s then . I’m not the initiator of this reshuffle
17: send

(
s.parent (PD

s , deficitCpu, s∗s )
)

18: run s.SFS(M̃s) in F -mode
19: s∗s ← null

push-up request to the child c that is delay-feasible for the
MS in question.

Push-Down: s.PD(), in Alg. 3, runs the same when either
a parent calls its child, or vice versa. If no PD procedure is
currently handled by s, then s∗=null. Else, at any time instant,
each run of PD is unequivocally identified by its initiator s∗.
Each such run is associated with a single current value of
deficitCpu. PD runs sequentially, in a DFS manner, in the sub-
tree rooted by s∗, and terminates once deficitCPU is nullified.

If s.PD() is invoked while s takes part in another run of
PD() (realized by a different initiator s∗), the procedure replies
with the minimal data necessary to retain liveness (Lines 1-
3). Otherwise, s.PD() adds to the given set of requests PDs its
locally assigned MSs. To reduce the number of migrations, the
locally assigned MSs are added to the end of PDs , so that the
procedure will migrate already-placed MSs only if necessary
for finding a feasible solution. In Lines 7-13, s serially requests
its children to push-down MSs, to free space in s∗. The amount
of space to be freed from s∗ is deficitCpu. Before each such
call, s checks whether nullifying deficitCpu without calling
an additional child is possible. If the answer is positive, s
skips calling its children (Lines 8-9). Upon receiving a reply
from child c, the procedure updates deficitCpu and s’s state
variables according to the MSs that were pushed-down to c’s
sub-tree (Lines 11-13). In Lines 14-15, s.PD() tries to push-
down to s MSs from the push-down list, PDs . Later, if s is
not the initiator of this push-down procedure, it calls its parent



(Lines 16-17). Finally, s.PD() calls SFS in F -mode (described
below) to place all its yet-unassigned MSs, if such exist.

The following theorem assures the convergence of DAPP-
ECC. The full proof is omitted due to space constraints.

Theorem 1. If there are no new requests, the protocol either
fails or finds a feasible solution after exchanging a finite
number of messages.

Proof sketch. In the worst case, each request r ∈ R∗ initiates
a distinct run of DAPP-ECC, and each such run involves runs
of SFS(), PU(), and PD(). Each run of SFS(), PU() and PD()
exchanges a finite number of messages. After all these runs,
the algorithm either fails or successfully places at least one
additional request.

C. Reducing the communication overhead

F-mode. Intuitively, a run of s.PD() indicates that a recent
run of SFS() – either in s, or in an ancestor of s – failed,
and hence called PD(). In such circumstances, there is a high
risk of failing again, and therefore finding a feasible solution
takes precedence over cost reduction: it does not make sense
to push-up MSs just to push them back down slightly later.
Hence, we define an F (feasibility)-mode of the protocol. Each
time s.PD() is called, s enters F -mode (if it was not already
in F -mode), and remains so for some pre-configured F-mode
period. While in F -mode, DAPP-ECC does not initiate new
push-up requests, and only replies to existing push-up requests
with the minimum necessary details to prevent deadlocks. If
s.SFS() does not find a feasible solution while s is in F -mode,
DAPP-ECC terminates with a failure.

Accumulation delay. Theoretically, each attempt to place a
single MS may result in a unique run of PD that involves all
the datacenters, thus incurring excessive overhead. To avoid
such case, observe that, typically, several users move together
in the same direction (e.g., cars moving simultaneously on
the road, on the same trajectory). Naively, such a scenario
may translate to multiple invocations of DAPP-ECC, each of
them for placing a single request. To tackle this problem, we
introduce short accumulation delays to our protocol. We let
each datacenter receiving a SFS message wait for a short SFS
accumulation delay before it begins handling the new request.
To deter long service delays or even deadlocks, each datacenter
maintains a single SFS accumulation delay timer that operates
as follows: if a run of SFS reaches Ln. 3 in Alg. 1 while
no SFS accumulation delay timer is ticking, the procedure
initiates a new SFS accumulation delay timer. This current
run of SFS, as well as all the subsequent runs, halt. After the
SFS accumulation delay terminates, only a single SFS process
resumes (see Alg. 1, Ln. 3).

Likewise, to initiate fewer runs of PD(), we let each
datacenter retain a single PD accumulation delay mechanism
that works similarly to the SFS accumulation delay timer.
Significantly, the accumulation delay only impacts the time
until the protocol finds a new feasible placement, not the delay
experienced by applications in the data plane. We assess the
impact of the accumulation delay in Sec. V-B.

V. NUMERICAL EVALUATION

A. Simulation settings

Service area, network, and datacenters. We consider two
mobility traces, representing real-world scenarios with distinct
characteristics: the vehicular traffic within the centers of the
cities of (i) Luxembourg [16], and (ii) the Principality of
Monaco [17]. For the PoAs, we rely on real-world antenna
locations, publicly available in [18]. For each simulated area,
we consider the antennas of the cellular telecom provider
having the largest number of antennas in the simulated area.
For both traces, we consider the 8:20-8:30 am rush hour
period. Further details about the mobility traces can be found
in [6], [16], [17].

Network and datacenters. The cloud-edge continuum is
structure as a 6-height tree; a topology level is denoted by
` ∈ {0, 1, . . . , 5}. The leaves (level 0) are the datacenters co-
located with the PoAs (antennas). Similarly to [8], [9], [12],
the higher levels 5, 4, 3, 2, 1 recursively partition the simulated
area. In both Luxembourg and Monaco, if no PoAs exist in a
particular rectangle, the respective datacenters are pruned from
the tree. The CPU capacity increases with the level ` to reflect
the larger computational capacity in datacenters closer to the
cloud. Denoting the CPU capacity at each leaf datacenter by
Ccpu, the CPU capacity in level ` is (`+ 1) · Ccpu.

Services and costs. Each vehicle that enters the considered
geographical area is randomly marked as requesting either real
time (RT) or non-RT services, with some probability defined
later. We calculate Sr, βr,s, and ψc(r, s) for each r ∈ R, s ∈
S using the GFA algorithm and the same data-plane latency
parameters as in [6]. We thus obtain the following values.
Each RT request can be placed on levels 0, 1, or 2 in the
tree, requiring CPU of 17, 17, and 19 GHz, associated with
costs of 544, 278, and 164, respectively. Each non-RT request
can be placed on any level, with a fixed allocated CPU of
17 GHz and associated costs of 544, 278, 148, 86, 58, and 47
for placing the MS on levels 0, 1, 2, 3, 4 and 5, respectively.
The migration cost is ψm(r, s, s′) = 600 for every request r
and datacenters s, s′.

Delays. The delay experienced by each packet consists of
(i) transmission delay and (ii) propagation delay.

The transmission delay is calculated as the packet’s size
over the capacity allocated for the control plane at each
link, through a dedicated network slice. We assume that this
capacity is 10 Mbps. We now detail the size of each field in
the messages exchanged by DAPP-ECC. As DAPP-ECC uses
only single-hop packets, we assume a fixed 80-bits header.
The IDs of datacenters, and requests, are represented using
12-bits, and 14-bits. Each MS belongs to a concrete class of
timing constraint, expressed through a 4-bit classId. The CPU
allocation of an MS on a datacenter βr,s is represented through
a 5-bits field. deficitCpu is at most the highest capacity of any
single datacenter; we assume that this requires 16 bits. For
the propagation delay, we use a pessimistic approach, where
the length of every single link in the network corresponds to
the diameter of the simulated area, and the propagation speed



is 2 · 108 ms−1. Consequently, the propagation delay of each
link in Luxembourg and Monaco is 22 µs and 8 µs (resp.).
For a datacenter at level `, SFS accumulation delay, and PD
accumulation delay are (` + 1) · TSFSad , and (` + 1) · TPDad
(resp.). We assign TSFSad = 0.1 ms and TPDad = 0.4 ms. F -
mode period (recall Sec. IV-C) is 10 s.

Benchmark algorithms. We are unaware of any fully
distributed, asynchronous algorithm for the PMP. Hence, we
consider centralized placement schemes that identify the cur-
rently critical and new users once in a second and solve the
respective PMP. We will consider the following algorithms.

Lower Bound (LBound): An optimal solution to the PMP
that can place fractions of an MS on distinct datacenters. Also,
the LP formulation considers all MSs in the system every 1 s
period, not just critical MSs. Hence, it serves as a lower bound
on the cost of any feasible solution to the problem.

F-Fit: It places each request r on the lowest datacenter in Sr
that has sufficient available resources to place MS mr. This
is an adaptation to our problem of the placement algorithm
proposed in Sec. IV.B in [19].

BUPU [6]: It consists of two stages. At the bottom-up, it
places all the critical and new MSs as low as possible. If this
stage fails to place an MS while considering datacenter s, the
algorithm re-places all the MSs associated with s’s sub-tree
from scratch. Later, BUPU performs a push-up stage similar
to our DAPP-ECC’s PU() procedure.

Simulation methodology. We simulate users’ mobility us-
ing SUMO [20]. The benchmark algorithms use the Python
code publicly available in [21]. DAPP-ECC is implemented
using OMNeT++ network simulator [22]. Each new user, or an
existing user which becomes critical, invokes a run of DAPP-
ECC datacenter co-located with the user’s PoA. DAPP-ECC’s
code is available in [23]. LBound is computed using Gurobi
optimizer [24].

B. Resources required for finding a feasible solution

We now study the amount of resources each algorithm
requires to find a feasible solution. We vary the fraction of
RT MSs. For each setting, a binary search is used to find
the minimum amount of resources needed by the algorithm
in question to successfully place all the critical MSs along
the trace. Fig. 1 presents the results of this experiment. The
amount of resources required for obtaining a feasible solution
consistently increases with the ratio of RT chains, as tighter
delay constraints dictate allocating more resources closer to the
edge. This phenomenon is especially noticeable in Monaco,
where edge resources are scarcer (only 231 leaf datacenters
in Monaco, compared to 1,524 in Luxembourg), thus forcing
any solution (even LBound) to use excessive resources.

For each concrete setting, the amount of CPU required by
BUPU is almost identical to LBound. Despite being fully
distributed and asynchronous, the amount of CPU needed by
DAPP-ECC is only slightly higher than BUPU. Finally, F-Fit
requires a processing capacity that is 50% to 100% higher than
LBound to provide a feasible solution.
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Fig. 1: Minimum required processing capacity for finding a
feasible solution when varying the ratio of RT service requests.
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Fig. 2: Per-request signaling overhead due to DAPP-ECC.

C. Communication overhead

For each simulated scenario, we now set the CPU resources
to 10% above the amount of resources required by LBound
to find a feasible solution when 100% of the requests are RT.
While maintaining this amount of CPU resources, we vary the
ratio of RT requests, and measure the overall amount of data
for signaling used by DAPP-ECC. Fig. 2 presents the per-
request signaling overhead, defined as the overall signaling
data exchanged by DAPP-ECC (“control bytes”) over the
overall number of critical/new requests along the trace. We
consider several values of the SFS accumulation delay param-
eter TSFSad . A run of PD() may migrate also non-critical MSs,
thus incurring a higher overhead than PU(). Hence, we set
TPDad = 4 ·TSFSad . The results show that increasing the fraction
of RT requests decreases the signaling overhead. The reason
is that RT requests can be placed only in the three lowest
levels in the tree, thus avoiding any signaling message between
higher-level datacenters. When increasing the accumulation
delays, the protocol aggregates more requests before sending a
message, thus decreasing the signaling overhead. However, an
accumulation delay of about 10 µs suffices. We stress that the
accumulation delay only impacts the time until the protocol
finds a new feasible placement, not the delay experienced by
the user’s application. Indeed, delaying the migration decision
may deteriorate the user’s QoE. However, this performance
deterioration can be mitigated using an efficient prediction
mechanism for the user’s mobility. Furthermore, in practical
scenarios, an accumulation delay of about 10 µs may be
negligible compared to the more considerable delay incurred
by the migration process. Finally, in all the settings consid-
ered, the signaling overhead associated with each request is
∼ 100 bytes, implying a very low bandwidth overhead.



D. Cost comparison

In our next experiment, we compare the cost of various
solutions for the PMP. We set the ratio of RT requests to 30%,
and vary the resource augmentation.

The results (not detailed here due to lack of space) show
that the costs obtained by BUPU and DAPP-ECC are al-
most identical, and both are up to 10% higher than LBound
(depending on the concrete setting). That is, despite being
distributed and asynchronous, DAPP-ECC obtain costs that
are almost identical to those obtained by BUPU, which relies
on a centralized controller with an always-accurate view of the
system state. F-Fit typically only finds any feasible solution
when resources are abundant, in which case all the placement
algorithms easily obtain close-to-optimal costs.

VI. RELATED WORK

State-of-the-art solutions to the PMP [2], [8], [9]. assume
a centralized orchestrator that possesses fresh, accurate in-
formation about the locations, trajectories, and computational
demands of all users, and the available resources at all the
datacenters. Such an assumption may be impractical in a large
system, possibly operated by several distinct operators.

Other solutions [12] independently select an optimal desti-
nation for each migration request, based on multiple consider-
ations, such as topological distance, availability of resources at
the destination, and the data protection level in the destination.
However, such a selfish user-centric approach may fail to
provide a feasible system-level solution when multiple RT
users compete for resources in the edge.

The work [19] uses dynamic clustering of datacenters to
handle multiple simultaneous independent placement requests.
However, the complex dynamic clustering mechanism may re-
sult in significant communication and computational overhead.
Also, [19] does not consider migrating non-critical requests to
make room for a new user, as we do.

The PMP combines several properties of the Multiple
Knapsack problem [25] with added restrictions typical for bin-
packing problems (e.g., each item can be packed only on a
subset of the knapsacks, and a feasible solution must pack all
the items). However, in contrast to the usual settings of such
problems, we aim at a distributed and asynchronous scheme
that runs independently on multiple datacenters (“knapsacks”),
using only little communication between them.

The work [26] optimizes lower-level implementational de-
tails of the migration process, to decrease its overhead.
LSTM [27] considers learning algorithms that predict future
service requests. These solutions are orthogonal to the PMP
and hence could be incorporated into our solution to boost
performance.

VII. CONCLUSIONS

We proposed a distributed asynchronous protocol for service
provisioning in the cloud-edge continuum. Our solution is
carefully designed to reduce signaling overhead by using only
small control messages between immediate neighbor datacen-
ters. Numerical results, derived using realistic settings, show

that our approach may provide a feasible solution while using
only slightly higher computing resources than a centralized
scheduler, which may be impractical for large communication
networks. Also, our protocol obtains reduced costs and incurs
only a small communication overhead.
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