POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating the impact of Permanent Faults in a GPU running a Deep Neural Network

Original

Evaluating the impact of Permanent Faults in a GPU running a Deep Neural Network / Juan-David, Guerrero-Balaguera;
Galasso, Luigi; LIMAS SIERRA, ROBERT ALEXANDER; Ernesto, Sanchez; SONZA REORDA, Matteo. - (2022), pp. 96-
101. (Intervento presentato al convegno 2022 {IEEE} International Test Conference in Asia ({ITC}-Asia) tenutosi a
Taipei (Taiwan) nel 24-26 August 2022) [10.1109/itcasia55616.2022.00027].

Availability:
This version is available at: 11583/2973543 since: 2022-12-01T11:34:25Z

Publisher:
IEEE

Published
DOI:10.1109/itcasia55616.2022.00027

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 April 2024

Evaluating the impact of Permanent Faults 1n a
GPU running a Deep Neural Network

Juan-David Guerrero-Balaguera®, Luigi Galasso*, Robert Limas Sierra’, Ernesto Sanchez* Matteo Sonza Reorda

*

*Politecnico di Torino - Department of Control and Computer Engineering (DAUIN)
TUniversidad Pedagogica y Tecnologica de Colombia (UPTC) - Electronic Engineering School

Abstract—Currently, Deep Neural Networks (DNNs) are fun-
damental computational structures deployed in a wide range
of modern application domains (e.g., data analysis, healthcare,
automotive, robotics). The computational complexity is inherent
in these cognitive models, which demand high-performance
devices like Graphics Processing Units (GPUs). Therefore, the im-
plementation of DNNs on GPU devices is becoming increasingly
frequent, even for cutting-edge safety-critical applications (e.g.,
autonomous and semi-autonomous cars). Thus, the reliability
evaluation of these applications is mandatory because several
phenomena (including aging) may produce permanent defects in
the GPU, thus inducing the DNN to produce wrong results. Until
now, the effects of permanent faults on DNNs have been mainly
investigated at the application level, only, e.g., acting on the
parameters of the network. This paper presents an environment
allowing for the first time a more detailed experimental evaluation
of the impact of permanent faults in a GPU on the reliability
of a DNN running on it, based on considering faults at the
architectural level. The results of the fault injection campaigns
we performed on the GPU register files are compared with those
at the application level, proving that the latter ones are generally
optimistic.

Index Terms—Artificial Neural Networks, Deep Neural Net-
works, Graphics Processing Units (GPUs), Reliability evaluation.

I. INTRODUCTION

Nowadays, Deep Neural Networks (DNNs) are widely used
in numerous application areas such as multimedia, healthcare,
robotics, and automotive [1]. Image and video processing are
the primary fields where the DNNs support intelligent systems
that can recognize objects and make decisions based on
the environment’s information. Lately, Convolutional Neural
Networks (CNNs), which are a type of DNNs, have gained
importance in safety-critical systems, such as self-driving
vehicles [[1]-[3]]. The reliability estimation of these intelligent
systems is crucial since they must meet the requirements set by
safety standards (e.g., [SO26262 for the automotive domain).

The inherent computational complexity of modern DNNs
demands high-performance hardware accelerators to fulfill the
application’s constraints. Among the wide variety of hardware
accelerators [2f], [4]], [S]l, Graphics Processing Units (GPUs)
have become the dominant devices to support the implemen-
tation and acceleration of DNNs-based applications.

The GPU popularity is mainly due to their flexible archi-
tecture combined with their computational power and scala-
bility. Companies have also developed specialized ecosystems
that provide hardware and software solutions increasingly

adopted by cutting-edge safety-critical applications such as
autonomous driving systems [6]. Consequently, the reliability
evaluation of the DNNs executed on GPUs warrants special
attention considering their growing popularity in safety-critical
applications domains.

Historically, the DNNs are known to be resilient to errors
mainly due to their redundant architecture and connections
structure, which allow them to tolerate some level of neuron
faults or noise corrupting the input data during the computa-
tional process [7], [8]. However, the operational conditions of
the application may induce aging of the GPU device (e.g., due
to the wear-out produced by long operational times), which can
produce permanent defects forcing the DNN model to produce
wrong inference results [9]. Thus, Permanent Faults (PFs) in
the GPU device may endanger the DNN’s proper operation
affecting its reliability and possibly producing catastrophic
results during its operational life.

The resiliency assessment of neural networks to PFs mainly
resorts to Fault Injection (FI) campaigns at different abstrac-
tion levels, from the application level down to the hardware
one [10]], [11f]. So far, the application-level FI campaign is the
primary methodology employed to investigate the impact of
PFs on DNNs. This approach only targets the Neural network
parameters (e.g., weights or activation functions) [8]], [9], [12],
[13]. Unfortunately, the degree of accuracy at the application
level differs by far from a real scenario considering faults
in the physical hardware employed to execute the Neural
Network. In fact, the application level can only mimic PFs
in the system memory but it does not allow to consider faults
in hardware elements such as register files, functional units,
and control units.

On the other hand, Fault Injection of PFs at the hardware
abstraction level involves injecting permanent defects (e.g.,
stuck-at-0/1) in the gate-level circuit description. Then, in
theory, the faulty hardware simulates the execution of the DNN
on the GPU in order to find the final effect of each evaluated
fault. Unfortunately, the lower the hardware abstraction level,
the higher the simulation time required by the FI campaign.
Although the gate-level FI is more accurate, the size of the
hardware accelerator (million of gates for GPUs) and of the
DNN architecture (tens of layers and hundreds of millions of
parameters) generate an excessive simulation time requirement
(e.g., > 10,000 days for thousand faults on an RT-level
GPU model running LeNet). These off-limits simulation times

prevent the possibility of performing reliability evaluation
at this or lower hardware levels. [10]. Consequently, we
need to explore further alternatives (e.g., combining different
abstraction levels) to find a trade-off between the simulation
time and the accuracy of the analysis of the impact of the
faults.

An alternative solution to be considered relies on
architectural-level fault injections using the Hardware Injec-
tion Through Program Transformation (HIPT) technique [11]],
[14], [[15]. This strategy modifies the application’s source code
at the ISA level to mimic the fault effect. Then, the modified
program is executed on a real GPU, and the possible fault
effects are propagated at hardware device speed.

In the reported literature, the HIPT method has been inves-
tigated for estimating the reliability of the GPUs with respect
to transient faults, only [[16]—[/19]]. However, modeling a PF at
the architectural level through HIPT for GPUs implies a chal-
lenging endeavor because the fault effect must be described in
such a way that it persists during the application’s execution,
affecting only some of the parallel threads that share the faulty
GPU’s resources.

This work presents for the first time a solution allowing
the reliability evaluation of DNNs with respect to PFs at the
architectural level and compares its results against the results
of the FIs performed at the application level. The architectural
fault injector is a customized binary instrumentation tool
designed to conduct permanent FIs on the register files of
the GPUs. The tool bases its operation on the mechanism
implemented by the NVBItFI tool [[14], which was initially
developed for transient faults injections. Our Fault Injection
environment permits the evaluation of the register sensitivity
to faults and the assessment of their impact on the reliability
of a DNN within reasonable simulation times (e.g., ~ 12
hours for seven thousand faults evaluating the LeNet model).
Additionally, the environment allows a bit-oriented analysis to
identify the group of bits in the registers which are most prone
to threaten the reliability of the DNN.

The experimental results indicate that FI at the application
level is not enough to assess the reliability of DNNs, since
this type of FI does not reveal the real impact of faults at the
hardware level, thus producing incorrect and optimistic results.

The rest of the paper is organized as follows. Section II
introduces the essential background. Section III describes the
fault injection methodology. Section IV provides the fault
injection results and presents a brief discussion about the
reliability evaluation of DNNs using application and archi-
tectural fault injection levels. Finally, Section V draws some
conclusions and outlines future research work.

II. BACKGROUND
A. Deep Neural Networks

A Deep Neural Network is an Artificial Neural Network
composed of multiple layers between the input and output
layers. Convolutional Neural Networks (CNNs) are one class
of DNNs. CNN’s architecture mimics the pattern of neuronal
connections in the human brain’s visual cortex. A CNN

comprises an input layer, several hidden layers, and an output
layer. Unlike other DNNs, the hidden layer of a CNN performs
a convolution operation between the filter elements and the
inputs. For this purpose, the input corresponds to a two-
dimensional matrix (i.e., an image). The filter or kernel is
also a two-dimensional matrix but smaller in size. There
are weight filters and bias filters. The weight filter element
is multiplied by the input node, and the bias filter element
is added. Pooling operations are performed to reduce the
dimensions of the output. The most common pooling operation
is the max-pooling operation. Additionally, each layer of the
CNN contains a non-linear activation function to limit the
output value of neurons. Finally, the output layers of the CNN
employ a fully connected layer to perform the classification
task [20] [7]. Well-known CNN architectures include LeNet,
AlexNet, VGGNet, GoogleNet, ResNet, and DenseNet.

B. Graphics Processing Units (GPUs)

Graphic Processing Units (GPUs) are hardware accelerators
specially designed to provide a high throughput during the
execution of high-performance applications such as machine
learning using DNNSs.

Modern GPUs are composed of Streaming Multiprocessors
(SMs) organized in a hierarchical structure. The SM is the
primary execution unit in the GPU, which encompasses several
independent sub-cores (up to four for modern GPU devices).
Each SM sub-core comprises several parallel processing cores
known as Stream Processors (SP), Special Function Units
(SFU), and Tensor Cores Units (TCU). The SP supports
integer and floating-point operations, the SFU executes tran-
scendental functions, and the TCU performs parallel matrix
multiplications usually employed to deploy DNNs. Typically,
one SM sub-core contains up to 32 SPs, 4 SFUs, and 2 TCUs.
Additionally, a SM includes local memories and register file
banks to support the parallel execution of several threads.
The SM core in a GPU performs Single-Instruction Multiple-
Tread (SIMT) scheduling of a Warp (i.e., one SIMT group
of 32 threads). Each SM sub-core scheduler issues one Warp
instruction per clock.

C. Hardware Injection Through Program Transformation

Hardware Injection Through Program Transformation
(HIPT) is a fault injection technique that reproduces at soft-
ware level errors produced by a fault at the hardware level.
This approach uses a software-level abstraction of fault models
to inject software errors while it runs on the device or by
modifying programs before their execution. This fault injection
method does not need any hardware modification, and the fault
propagation is performed at device speed. The implementation
of the HIPT technique resorts to specialized tools that auto-
matically allow modifying the application’s source code or the
insertion of instrumentation functions to reproduce the fault
behavior [11]].

In the case of NVIDIA GPUs, NVBIitFI is the state-of-
the-art error injecting tool, based on the HIPT approach, that
instruments the target program to inject errors and propagate

them using a real GPU device. Additionally, this tool can
instrument unknown libraries during compilation since the
instrumentation process is performed directly on the CUDA
executable at the SASS abstraction level. NVBitFI mainly
provides support to perform transient fault injections using
different fault models. Despite the fact that this tool includes
a simple implementation of a Permanent Faults injector, the
tool can be improved to incorporate other fault models, such
as the popular stuck-at model [14].

III. FAULT INJECTION METHODOLOGY

This work presents an environment based on a binary
instrumentation tool able to perform FI campaign of PFs on a
GPU device during the inference of DNNs. The environment
allows evaluating the reliability of any DNN architecture
considering the presence of faults at the hardware level rather
than the usual high-level approaches that only consider faults
affecting the parameters of the neural network.

The framework includes four building blocks: (1) profiler,
(2) fault list generator, (3) fault injector, and (4) fault classifier.
Additionally, a global controller manages each building block
to control the fault injection process considering PFs that occur
during the inference phase of the DNNs. The FI requires
three steps: i) the fault list generation, ii) the golden model
generation, and iii) the fault injection process.

The first step (fault list generation) performs profiling of the
DNN to gather the execution information, such as the number
of SMs used, of Threads per Kernel, of Registers per Kernels,
as well as the opcodes of the instructions used to deploy
the Neural Network on the GPU. Thenceforth, the collected
information allows the generation of valid faults. In the second
step, the global controller initiates the inference of the DNN
considering the fault-free scenario, which serves as a reference
to evaluate the results produced by faults on the DNN model.
Finally, in the last step, each fault (identified in the first
step) is injected and propagated through all executed kernels
mimicking its effects in the GPU. The results of the faulty
inference of the DNN are collected and compared against the
reference model. This comparison allows the classification of
the fault according to its severity impact on the DNN results.

A. Fault classification

The accuracy is a usual metric employed to measure the
neural network generalization capabilities. This metric can
be calculated as the number of correct predictions divided
by the total number of input evaluated images. A Permanent
Fault at the hardware level may produce different possible
effects during the inference of a DNN affecting its accuracy
in the most critical cases. To quantify the damage produced
by a Permanent Fault, we define the Relative Accuracy
Degradation as RAD = (ACCyo1qg — ACCauity) /ACCyold,
where ACCyo1q and ACCquy indicate the classification
accuracies of the fault-free and the faulty models, respectively.
Usually, the PFs classification falls into three main categories:
Silent Data Corruption (SDC), Detected Unrecoverable Error

Critical Failure

Thread Block; |
Thread Block; |
Thread Block;

b W.‘ff’."’ qo |Warp: (Warps |«=«[Warpy 1
A A A
1 1 1
Ry | Ry Ry
| R R
e Register Files
Ry | 11, Ry
Permanent
HW [Ba] & Bn
Fault
SM, SV, | weeuenes SM,

Fig. 1. Propagation of PFs from GPU register files to the application level.

(DUE), Masked. In this work, we consider four possible fault
categories as follows:

o Masked: RAD = 0.0. No difference is observed between
the faulty scenario and the golden one.

o SDC-safe: RAD = 0.0. The confidence prediction values
for at least one image differ from the fault-free scenario
but the classification is still correct

o SDC-Critical: RAD > 0.0. At least one image was
wrongly classified with respect to the fault-free scenario

o DUE: The fault produces a system hang or crash. This
error interrupts the execution of the CNN at any time. The
causes of this behavior can be memory access violation,
memory misalignment violation, or timeout (the fault
stucks the CNN model in an infinite loop).

B. Permanent fault injection

The fault injector module resorts to the HIPT technique
to mimic the Permanent Fault presence in the register files
of the GPU. Nonetheless, the same concepts presented here
can be expanded to other internal modules of the GPU. The
modeling of a PF in the register files considers the parallel
execution model used by GPU and the possible effect that the
fault might produce when propagates through the application.

Each kernel executed by the GPU is composed of several
threads organized in groups called Thread-Blocks. The block
scheduler assigns to each SM several blocks scheduled in a
queue, maximizing the occupancy and the GPU’s performance.
Each thread block is then issued in the SM when the previous
block finishes and releases its resources. Each thread inside
each warp has access to a private set of registers to support
the SIMT parallel execution model. Clearly, any PF affecting
the register files may induce errors during the execution of
threads that share the same faulty hardware.

Fig. |1} illustrates the relationship between a fault in the reg-
isters of the GPU and its propagation through the application.
It is worth noting that one fault can affect more than one
thread, mainly when they belong to different blocks executed
by the same SM. Therefore, the fault injector tool requires an
appropriate definition of fault to meet the behavior mentioned
above. We define the fault location as the quintuple <SMID,
threadlD, RegisterID, Mask, stuck-at>. SMID represents the
SM where the fault should be injected; threadID is the resident
thread in the SM: this allows to identify a unique WarpID and
LanelD; RegisterID 1is the faulty target register; Mask is the

Algorithm 1 Permanent fault injection adopting the HIPT FI campaign
technique in GPU register files

Input: Fault F; defined by: < SM;p, Thrdrp, Regrp, Mask, ST@ >

Output: Application output affected by the fault F;
1: for each kernel K; in the

2 for each instruction I; in K; do

3 Inspection(Z;)

4 if R4 in I; matches the target Regrp then

5: Insert injection function after I;

6: end if

7

8

9

0:

DNN model do

end for
Just In Time compilation

Instrumented kernel execution

10: end for

bit location inside the target register; stuck-at represents the
type of the fault (0 or 1) according to the stuck-at fault model.

Algorithm. [T] describes the mechanism we devised to mimic
the permanent effect of the fault during the DNN’s execution.
First, the tool works on each kernel and modifies its assembly
source code, inserting an instrumentation function right after
the instructions whose destination register corresponds to the
fault location. The instrumentation function consists of reading
the content of the target register (in a Warp and Thread) and
then modifying one of its bits by forcing it to 0 or 1 to emulate
the permanent characteristics of the fault. Finally, when the
kernel is totally instrumented, the tool performs the Just-in-
Time compilation to update the binary representation of the
new kernel version. After that, the tool resumes the execution
of the application and submits the instrumented kernel on the
GPU device.

IV. EXPERIMENTAL RESULTS

In this section we present the results obtained by the
proposed fault injection approach in order to evaluate the
reliability of different DNN architectures. Four pre-trained
DNN models were employed for the experiments: LeNet,
AlexNet, Darknetl9, and VGG-16. The LeNet model can
classify images of handwritten digits (0 to 9) using the MNIST
dataset, AlexNet and Darknetl9 classify images from 1,000
categories from the ImageNet dataset, and VGG-16 classifies
images from 10 different classes defined by the CIFAR-10
dataset. The implementation of each DNN resorts to the dark-
net [21]] environment which support GPUs acceleration. These
fault injection campaigns were performed on a workstation
HP 72 G5 with an Intel Core i9-10800 CPU with 20 cores,
32 GB of RAM memory, and equipped with an RTX 3060TI
GPU platform including an NVIDIA Ampere architecture with
compute capability (CC) 8.6.

The Fault Injections are performed at two different levels of
abstractions: the architectural level and the application level.
The fault injection at the architectural level implements the
methodology proposed in this work by modifying the NVBitFI
tool in order to support the modeling of PFs on the register
files of the GPU using the stuck-at fault model.

The universe of permanent faults to be considered during
the fault injection campaign may be excessive due to the

zDUE ®Critical-SDC B Safe-SDC @Masked

AlexNet DarkNet19
SMO; Warp0, Thread0

AlexNet DarkNetl9 VGG-16
RO-R9 in SMO

Fig. 2. Fault classification results: architectural Fls.

TABLE I
NUMBER OF FAULTS CONSIDERED FOR EACH FI
FI Campaign LeNet AlexNet DarkNetl9 VGG-16
SMO0, Warp0,Thread0 7,233 7,296 10,945 7,233
RO-R9 in SM0O 16,410 16,545 16,410 16,547
Weights 62,435 132,412 306,750 260,869

complexity of the DNN and the number of fault locations at
the application and architectural level. In the case of a PF in
the weights, the number of faults can exceed 3,000 million for
AlexNet. Similarly, the number of faults in the register files of
a single SM of the GPU can exceed 5 million for the Ampere
architecture. Thus, exhaustive fault simulations in all possible
fault locations are impractical due to the time and complexity
required to evaluate the entire set of possible faults.

This work performs first an exhaustive fault injection target-
ing only the registers used by one of the resident threads in the
SMO. After that, an extended fault simulation is performed,
resorting to a fault sampling methodology exposed by [9],
[22]], using 99% of confidence level and 1% of margin error.
This sampling approach is applied at the application level
(i.e., faults in the DNN weights) and at the architectural level
(i.e., targeting the first ten registers of each resident thread
in the SMO). This last fault simulation considers the first
ten registers per thread since the profiling tool reports that
this subset of registers is the most frequently used during the
CNN s inference. The number of faults considered for each FI
campaign are presented in Table [I} The fault simulation lasts
around 107 hours for all DNN models.

Fig. [2| depicts the fault classification results of the FICs
at architectural level. When the FI campaign considers all
registers in one resident thread (SMy, Warpg, Thready), the
results show that between 32% to 45% of faults hang the
GPU device (DUE), preventing the DNN complete execution.
Furthermore, the number of faults inducing wrong results
(Critical-SDC) for LeNet, Darknet19, and VGG-16 does not
exceed 10%, only for AlexNet the number of these faults
reaches almost 20%. Between the 20% and 37% of the faults
induce tolerable results (Safe-SDC), and less than 40% of
faults does not have any impact in the DNN’s inference
(Masked).

When we consider faults distributed in the first ten registers
of one SM, the results report up to 60% of DUE faults.
Additionally, a significant portion of faults (> 20%) are
considered critical-SDC. Faults classified as Masked do not
exceed the 5% for AlexNet, Darknet19, and VGG-16, and no
more than 13% in the case of LeNet.

B Destination 0.9
mmm Source
0.8

0.7
| 0.6
“ 0s
‘ |

0.4

Occurrence (%)
o

—
RAD

0.3

il
i
AR 1Y — o

0.7
—— Stuck-at 0

0.6 Stuck-at 1

0.5

0.4+

0.2

0.1

e N, PN

0.01

| S ool

Register ID

(a) Register Usage

0 8 16 24 32 40 48 56 64 72 80 88 096 104 112 120

(b) Register sensitivity

1234567 RGmN121515151617 1819202122 232625 2627 2829 30 31
Register Bit
(c) Bit sensitivity

Fig. 3. Sensitivity of GPU’s Registers to Permanent Faults in the GPU running AlexNet

A. Register sensitivity to PFs

Permanent faults in the register files produce different ef-
fects on the DNN’s outputs. Some registers are more sensitive
to faults than others due to their usage inside the application.
Fig. Bla depicts the register usage for AlexNet. The chart
shows the occurrence percentage of each register when it is
used as the source (gray color) and destination (red color). It
is worth noting that the evaluated DNN models have the same
registers usage characteristics where the first ten registers are
the most commonly used.

Fig. Blb depicts the impact of PFs in the registers (DUE
are not included in the analysis). The figure represents the
Mean Relative Accuracy Degradation (MRAD) per register.
This MRAD metric measures the average degree of misclassi-
fication produced by faults in the registers used by one resident
thread in the SMO. From the chart, we can observe that the
registers from R3 to R11 are the most critical ones, producing
more than 50% of accuracy degradation and reaching up to
90% for R8. The accuracy degradation in the other registers is
uniform, and does not exceed 15%. Despite the fact that many
registers have less than 20% of accuracy degradation due to
PFs, this is still a high percentage of critical effects that create
risky results for any application running these DNN models.

The first ten registers of each thread in the GPU are more
sensitive to faults because they are commonly used for the
CUDA thread indexing at the beginning of each kernel. These
registers contain the threadID and blockID parameters to
identify the operations of individual threads and memory ad-
dresses. Although this is the primary use of these registers, the
compiler also reuses them during the execution of elaborated
algorithms such as matrix and vector procedures. The majority
of faults affecting these registers most likely generate DUE
effects due to memory addressing violations. Therefore, only
a few faults produce effects on the DNN’s outputs, modifying
the threads or block identifiers without crashing the application
but generating dangerous results.

B. Bit-oriented Registers sensitivity to PFs

The computation of the mean accuracy degradation consid-
ers the bit position of the faults inside any register in order
to evaluate its impact on the classification result of the DNN.
This analysis resorts to the exhaustive set of faults targeting
the registers of one allocated thread on the SMO.

Fig. Blc illustrates the bit-oriented accuracy degradation for
the AlexNet model produced by stuck-at-0/1 faults. Although
we introduce the results for AlexNet in order to simplify the
presentation of the results, it is important to highlight that we
found similar results for all other evaluated DNNs. The results
consider only the effect of the faults propagated to the DNN’
output. The DUEs are discarded from the analysis since those
faults do not generate a valid DNN inference.

The obtained results show that the propagation effect of
stuck-at-0 faults does not exceed the 9% of MRAD. However,
stuck-at-1 faults significantly impact the classification result of
the DNN, especially for the most significant bits (MSBs) of
the registers (25th to 30th, but especially the 30th bit), which
generate an accuracy degradation up to 68%.

Interestingly, the MSBs causing the higher accuracy degra-
dation correspond to the exponent bits used by the IEEE754
standard for the floating-point representation. The results sug-
gest that stuck-at 1 faults located in the exponent bits produce
higher MRAD, because the representation of the floating-
point value grows several orders of magnitude compared
to the original value. This yields wrong results during the
computation and surely wrong prediction results. These results
are aligned with results presented by other works such [3],
[9], in which the injection of PFs at the application level
indicates a high sensitivity on the bit 30th. Although our
results confirm the previous findings, they demonstrate that
more bits further than 30th are susceptible to permanent faults
at the hardware level inside the GPU device. These results also
indicate that the fault injection at the application level targeting
only the parameters of the DNN does not reveal the actual
vulnerabilities of the hardware when executing the DNN.

In the previous subsections, we showed that many of the
faults may produce a Silent Data Corruption (SDC) effect
on the outputs of the DNN. These faults are dangerous for
any applications running a DNN because their presence may
induce wrong decisions in the final applications without any
way for knowing that the system is faulty. Therefore, we
compare the effect of PFs at the application and architectural
level when different DNNs are executed on a GPU device. The
results show that in a more realistic hardware fault scenario
(architectural-level FI), the number of faults that induce wrong
effects is significantly higher than when a high-level fault
simulation scenario is evaluated (application-level FI).

B Critical-SDC @ Safe-SDC @ Masked

LeNet AlexNet DarkNetl9 VGG-16

RO-R9 in SMO

LeNet AlexNet DarkNetl9 VGG-16

Weigths

Fig. 4. Fault classification results: architectural- and application- level FI
campaigns.

C. Application vs. architectural fault injection campaigns

Fig. @] presents the classification results of faults at applica-
tion level and architectural level. The fault classified as DUE
are not considered in the analysis, because they do not allow
to generate a valid inference result. The results demonstrate
that up to 64% of the faults produce critical-SDC for AlexNet.
The faults that generate a safe impact do not exceed 33.15%
for VGG-16, and the masked ones do not exceed 12% for
AlexNet, Darkenet19, and VGG-16, except for LeNet, where
the percentage of masked faults reaches 24%. The results
of the FI campaign at the application level show optimistic
results about the reliability of the DNN with respect to PFs.
No more than 7% of the faults produce a critical impact on
the prediction results of any DNN model. In contrast, 85.66%
of faults may produce a tolerable result (safe-SDC) in the case
of Darknet19. The masked faults do not exceed 37% for all
evaluated DNNS.

According to these results, we can state that FI campaigns
performed at the application level are more optimistic than the
FI at the architectural level in terms of reliability assessment
of Neural networks. We also demonstrate that PFs in the GPU
device jeopardize the DNN application by more than 40%
when compared to the reliability evaluation done by injecting
faults in the parameters of the neural network.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a framework for studying the influence
of permanent faults in a GPU device and their impact on the
reliability of a Deep Neural Network. The characterization
resorts on fault injection campaigns using a binary instrumen-
tation approach specially designed to mimic the PF presence
on the register files of a GPU device. The experiments are
performed on different DNNs implemented through the dark-
net environment. For the first time we are able to evaluate
the impact of PFs affecting the GPU register files on the
executed DNN. We also demonstrate that faults in the different
registers have a different impact on the reliability of the DNNSs;
in particular, the first ten registers are the most sensitive to
PFs. Furthermore, faults located in the most significant bits
of the registers have a higher impact on the reliability of the
DNNSs, especially the bits 25th to 30th, generating an accuracy
degradation of the DNN up to 68%. Finally, our results show
that the reliability evaluation of a DNN using an application-
level FI campaign (i.e., injecting faults in the DNN weights)
generates optimistic results. Using application-level FI, less
than 7% of faults induce wrong classification results; when
the faults are considered at the hardware level in the GPU, the

number of faults that create a critical effect on the prediction
result of the DNN can reach up to 64%. Future activities
aim to extend the set of locations where to inject faults, to
evaluate more CNN architecture models, to consider aditional
GPU architectures, and to propose hardening techniques to
counteract the vulnerabilities caused by PFs in CNN using
GPUs.

REFERENCES

[11 H. Mun, et al., “Recycling of adversarial attacks on the dnn of
autonomous cars,” in 2021 International Conference on Information
Networking (ICOIN), 2021, pp. 814-817.

[2] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms,
applications and emerging research trends,” IEEE Access, vol. 6, pp.
24411-24432, 2018.

[3] R. Ravindran et al., “Multi-object detection and tracking, based on dnn,
for autonomous vehicles: A review,” IEEE Sensors Journal, vol. 21,
no. 5, pp. 5668-5677, 2021.

[4] Y. Chen et al., “A survey of accelerator architectures for deep neural
networks,” Engineering, vol. 6, no. 3, pp. 264-274, 2020.

[5]1 S. Mittal et al., “A survey on hardware security of dnn models and
accelerators,” Journal of Systems Architecture, vol. 117, p. 102163, 2021.

[6] NVIDIA, “NVIDIA DRIVE End-to-End Solutions for Autonomous
Vehicles,” https://developer.nvidia.com/drive, 2022, [Online; accessed
21-April-2022].

[7]1 C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural
networks: A review,” IEEE Access, vol. 5, pp. 17322-17 341, 2017.

[8] S. Hong et al., “Terminal brain damage: Exposing the graceless degra-
dation in deep neural networks under hardware fault attacks,” in 28th
USENIX Conference on Security Symposium, ser. SEC’19. USA:
USENIX Association, 2019, p. 497-514.

[91 A. Ruospo et al., “Investigating data representation for efficient and reli-
able convolutional neural networks,” Microprocessors and Microsystems,
vol. 86, p. 104318, 2021.

, “A pipelined multi-level fault injector for deep neural networks,”

in 2020 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), 2020, pp. 1-6.

[11] S. K. Bukasa er al., “When fault injection collides with hardware
complexity,” in Foundations and Practice of Security. Cham: Springer
International Publishing, 2019, pp. 243-256.

[12] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences,
vol. 11, no. 14, 2021.

[13] A. Ruospo et al., “Evaluating convolutional neural networks reliability
depending on their data representation,” in 2020 23rd Euromicro Con-
ference on Digital System Design (DSD), 2020, pp. 672-679.

[14] T. Tsai et al., “Nvbitfi: Dynamic fault injection for gpus,” in 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021, pp. 284-291.

[15] S. K. S. Hari et al., “Sassifi: An architecture-level fault injection tool
for gpu application resilience evaluation,” in 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2017, pp. 249-258.

[16] T. Garrett and A. D. George, “Improving dependability of onboard
deep learning with resilient tensorflow,” in 2021 IEEE Space Computing
Conference (SCC), 2021, pp. 134-142.

[17] Y. Ibrahim et al., “Soft error resilience of deep residual networks for
object recognition,” IEEE Access, vol. 8, pp. 19490-19 503, 2020.

[18] I. Younis et al, “Soft errors in dnn accelerators: A comprehensive
review,” Microelectronics Reliability, vol. 115, p. 113969, 2020.

[19] FE F. d. Santos et al., “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663-677, 2019.

[20] H. S. Das and P. Roy, “Chapter 5 - a deep dive into deep learning
techniques for solving spoken language identification problems,” in
Intelligent Speech Signal Processing, N. Dey, Ed. Academic Press,
2019, pp. 81-100.

[21] J. Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.
com/darknet/, 2013-2016.

[22] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 Design, Automation Test in Europe Conference
Exhibition, 2009, pp. 502-506.

[10]

https://developer.nvidia.com/drive
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

	Introduction
	Background
	Deep Neural Networks
	Graphics Processing Units (GPUs)
	Hardware Injection Through Program Transformation

	Fault Injection Methodology
	Fault classification
	Permanent fault injection

	Experimental Results
	Register sensitivity to PFs
	Bit-oriented Registers sensitivity to PFs
	Application vs. architectural fault injection campaigns

	Conclusions and Future Work
	References

