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Abstract—Datacenters play a vital role in today’s society. At
large, a datacenter room is a complex controlled environment
composed of thousands of computing nodes, which consume kW
of power. To dissipate the power, forced air/liquid flow is employed,
with a cost of millions of euros per year. Reducing this cost involves
using free-cooling and average case design, which can create a
cooling shortage and thermal hazards. When a thermal hazard
happens, the system administrators and the facility manager must
stop the production to avoid IT equipment damage and wear-out.
In this paper, we study the thermal hazards signatures on a Tier-0
datacenter room’s monitored data during a full year of production.
We define a set of rules for detecting the thermal hazards based
on the inlet and outlet temperature of all nodes of a room. We
then propose a custom Temporal Convolutional Network (TCN)
to predict the hazards in advance. The results show that our TCN
can predict the thermal hazards with an F1-score of 0.98 for a
randomly sampled test set. When causality is enforced between the
training and validation set the F1-score drops to 0.74, demanding
for an in-place online re-training of the network, which motivates
further research in this context.

Index Terms—HPC, Thermal Hazard, Predictive Model, Ther-
mal Anomaly Detection, Temporal Convolutional Network

I. INTRODUCTION AND RELATED WORK
The ICT sector’s total electricity consumption is expected

to reach 20% of the world-wide demand by 2030, with data
centers expected to account for one-third of that [1]. Cooling
is a high cost item for datacenter operation. The power-usage
efficiency ratio (PUE) expresses the additional power required
by the IT for removing the heat produced by the IT power
consumption. While air-cooled datacenters easily reach PUE
up to 2 [1], advances in cooling technologies like direct-liquid,
hot water, and free-cooling can reduce it close to almost 1 [2].
In 2016, Google announced a PUE of 1.12 [3], while in 2018,
NREL achieved the world-record PUE of 1.036 by leveraging
thermosyphon technology [2]. A higher than nominal coolant
temperature is required to leverage free-cooling in temperate
regions [4], [5], which increases the risks of thermal runaway.
In the scientific computing sector, in Europe, a EuroHPC pre-
exascale system costs on average ∼600KC per day1. Thus
each day on which the supercomputer causes to the European
taxpayer a loss of ∼600kC. Whereas in the business datacenter

This work has been partially supported by the EU H2020 ICT/2018 project
IoTwins (g.a. 857191) and Emilia-Romagna POR-FESR 2014-2020 project
”SUPER: SuperComputing Unifier Platform – Emilia-Romagna.

1The EuroHPC program has invested ∼650MC in CAPEX ad OPEX for
the three procured pre-exascale systems with an estimated daily average cost
of ∼600kC for a supercomputer - https://www.etp4hpc.eu/euexascale.html .

sector, in 2016, an Amazon.com web service shortage would
have cost, on average, 15M$ of revenue lost [6].

A thermal hazard is a dramatic increase in node temperature,
which can be triggered by i) failures in the cooling equipment
(i.e. Computer Room Air Conditioning) or ii) failures in the
monitoring and controlling of the cooling system; this can
lead to the outage of the datacenter, with severe societal
and business losses. Detecting thermal hazards in time is of
extreme importance to avoid IT and facility equipment damage.
Therefore, holistic monitoring systems are in place to monitor
and visualize the datacenter state over time [7].

At the same time, progress in Deep Learning (DL) has
enabled techniques for training models on large-scale time-
series data. A recent DL architecture for detection of patterns in
time series is the Temporal Convolutional Network (TCN) [8],
which has proved able to outperform Long Short-Term Memory
(LSTM) nets [9]. As such, TCNs are good candidates to
perform prediction of thermal hazards, if a large data set of
thermal events is available. For these reasons we choose a TCN
model for our work. TCNs use dilated causal 1D-convolutions
inside residual blocks. For sequence-to-sequence modeling,
they can map the input series to an output with the same length.
Since our TCN is a probability predictor, we equipped it with
a block of dense layers at the end.

In the SoA, thermal hazards have been studied with different
methodologies. [10] proposed to use simulators. [11], [12]
proposed Machine Learning (ML) approaches, [13] proposed
mathematical models, and finally, [14] proposed to use sensors
with a computer model to create the room’s heat map or thermal
evolution model. While the simulator is hard to tune to the
real environment, [11] used an Artificial neural network (ANN)
model trained with offline simulation data of Computational
Fluid Dynamics (CFD). Compared to the CFD, the ANN
model’s fast response time is suitable for an online predictor.
To the best of our knowledge, no one has leveraged the large
data available from holistic monitoring systems to study the
statistical thermal hazard distribution, or proposed a data-driven
Big Data (BD) and DL model for predicting thermal hazards.

In this work, i) we study the room thermal distribution
during thermal hazards in a real Tier-0 datacenter; under these
hazards conditions, we found regularity across many nodes with
a significant percentage of them having an inlet temperature
above the 95% quantile. ii) we propose a statistical approach
to detect thermal hazards for an HPC room. With the proposed



method, we obtained a dataset with 19.5% of hazard labels.
iii) we investigate different machine and deep learning models
(SVMs, SGD-classifier, LSTM, and TCN) in predicting the
thermal hazard events 6 hours before they happen, which would
give ample time for taking proactive countermeasures. Based
on a set of experiments, we identify an optimal TCN achieving
an F1-score of 0.98 in the hazard prediction for a randomly
sampled. When causality is enforced between the training and
validation set, the F1-score drops to 0.74, demanding for an in-
place online re-training of the network, which motivates further
research in this context.

II. BACKGROUND SETUP
Our study focuses on Marconi-A2 (KNL), the largest parti-

tion of the Tier-0 cluster Marconi at the CINECA datacenter,
where it was hosted in the Marconi KNL Room (Figure 4,
bottom-left). In this room Marconi-A2 was composed of 3312
nodes with one 68-cores Intel Xeon Phi 7250 CPU Knights
Landing (KNL) running at 1.4GHz. Nodes had a 16GB/node
MCDRAM and a 96GB/node DDR4. The internal network
was Intel OmniPath Architecture 2:1. The cluster’s peak per-
formance was 11PFlop/s [15].

Marconi KNL Room hosted 46 racks, plus 1 rack of switches,
arranged in 3 rows; each rack had 18 stacked chassis, each with
4 nodes, totaling 3312 compute nodes. All racks had Rear Door
Heat eXchangers. The room’s 2 hot aisles, and 2 cold aisles
were supported by 6 Computer Room Air Conditioning units.

CINECA runs a holistic monitoring framework, called EX-
Ascale MONitoring (ExaMon) [7], scalable and capable of
high-rate HPC telemetry from a wide range of heterogeneous
sensors and data sources. For each cluster node and associated
components, such as voltage regulators and fans, the Intelli-
gent Platform Management Interface (IPMI) provides remote
telemetry access to the built-in sensors [16]. ExaMon collects
sensor data via IPMI at sampling interval 20 s [7] via an
MQTT broker, and stores them using KairosDB, a specialized
time-series database built on Cassandra (a NoSQL database
management system), remotely accessible via RESTful APIs.

III. THERMAL HAZARD PREDICTION METHODOLOGY
In this section, we define the statistical tool for thermal haz-

ard detection, based on the analysis of two real reported thermal
emergencies. We use this characterization to generate ground-
truth labeling of the HPC room for the whole year 2019. We
then suggest a framework for thermal hazard prediction, which
encompasses data query and preprocessing, model training, and
final model inference, which provides the prediction.

A. Thermal Hazard Analysis and Labels Generation
Based on the study in [16], CINECA Marconi KNL Room

had two known physical-thermal-hazard events in 2019: one on
28th June (peak from 16:00 to 19:00), and one on 1st July (peak
from 14:30 to 17:00). In this paper, physical-thermal-hazard
refers to these two recorded failures of the cooling system.
We analyze the distribution of temperatures during these two
peaks to compare the hazard distribution with the non-hazard
distribution: the aim is to find indicators of the thermal hazards
in the temperature data.

As a non-hazard distribution, we use the temperatures of the
nodes in June and July, and downsampled to 1 Sample/minute:
this yields ∼ 88k samples, large enough to be representa-
tive of the ordinary temperature distribution. In this study,
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Fig. 1: Temperature distributions for Marconi A2’s node 141
in June-July 2019.
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Fig. 2: Time Windowing and Labeling.

we selected two temperature metrics from ExaMon: the in-
let temperature BB_Inlet_Temp and the outlet temperature
Exit_Air_Temp. These are the metrics most related to room
temperature and were taken for every computing node.

Figure 1-top reports the inlet temperature distribution of one
node for the three cases: non-hazard, 28th June hazard, and
1st July hazard. The dashed black line is the quantile 0.95
of the node’s non-hazard distribution: as it is evident, the
quantile 0.95 is a threshold that separates well the non-hazard
and hazard temperatures. Figure 1-bottom reports the same
information for the outlet temperature: hazard and non-hazard
distributions overlap much more compared to inlet temperature,
making it impossible to discriminate by thresholding on outlet
temperature. We inspected some randomly selected nodes with
this approach. We determined that the single-node quantile 0.95
of the non-hazard inlet temperature is a good parameter to
discriminate between hazard and non-hazard.
1) Node-threshold

Based on the characterization of thermal hazards described
above, we introduce a node-threshold defined for each node
as the 0.95 quantile of its inlet temperature distribution over
the entire dataset (which covers the whole 2019 year). Fig-
ure 2(a) summarizes a 6-hour time window (TW) of the
inlet temperature dataset. We applied the node-threshold to
assign to each (node, time) cell a True/False label indicating
sample-by-sample thermal trouble, as shown in Figure 2(b). We
empirically chose TW = 6hours.
2) Spatial-temporal-impact-threshold

To assign hazard /non-hazard labels to TWs (Figure 2(a)), not
just to samples, we exploit the time-series nature of the temper-
ature data. We introduce a spatial-temporal-impact-threshold



able to account for thermal hazards’ spatial and temporal
continuity. A 3312-node 6-hour TW with 1 Sample/minute
amounts to 3312 × 6 × 60 = 1192320 True/False values
(Figure 2(b)). The spatial-temporal-impact-threshold regulates
the portion of True’s inside the TW required to declare the
room in thermal hazard. A higher quorum will select thermal
hazards that are more widespread, i.e. involve more nodes for
a longer time.

It is essential to remark that, though based on real infor-
mation extracted from the physical hazard distribution, this
statistical labeling approach is artificial and must be con-
firmed by comparing with the ground-truth reported thermal
emergencies. As made evident in Figure 3(x-axis is date),
if we set the spatial-temporal-impact-threshold to 5%, our
statistical approach captures the reported ground-truth thermal
emergency, while detecting additional thermal hazards, which
were unnoticed by the system administrators. Indeed, these are
conditions for which the compute nodes’ temperatures have
drastically increased without causing immediate damage, but
still possibly damaging the nodes. With our statistical labeling
approach, we can capture these events which are unnoticed by
humans.

25-6     26-6         27-6        28-6        29-6        30-6         01-7        02-7      03-7

Statistical Labeling           Expert Human Reported Hazards

Fig. 3: Thermal Hazard Detection
If we increased the spatial-temporal-impact-threshold quo-

rum to 25%, the statistical labeling approach could
only detect the second hazard, thus being to restric-
tive in identifying unnormal states. For the selected
spatial-temporal-impact-threshold = 5%, the room is labeled
in thermal hazard for 19.5% of the time in 2019.

B. Thermal Hazard Prediction Framework
Our thermal hazard predictor is a model that, based on time

series data of computing nodes’ sensors, predicts if a thermal
hazard will happen in the room in the next hours. Input data are
the time series of nodes’ temperature (and power consumption),
and the output is a binary classification: likely forthcoming
hazard or not. We define Prediction Horizon (PH) the label’s
time distance since the last input data. For instance, if the input
is the temperature TW 00:00:00-5:59:59 and PH = 6hours,
the task is to predict the state of the time interval 06:00:00-
11:59:59. For the PH = 0, we have the detection task.

In particular, PH = 6hours was chosen upon discussions
with system administrators, as a tradeoff sufficient to provide
enough time for the different correction actions to be taken
by the system administrators. Treating PH = 6hours as a
time lag, the hazard/non-hazard binary ground-truth labels have
autocorrelation 0.65 over the year 2019 and identifying ground-
truth labels 6 hours apart as the output and target of a Last-
Value Predictor (LVP) yield an F1-score of 0.72. Being the
LVP, the simplest (non-)model, F1 = 0.72 is a baseline any
proposed model must be compared against.

Figure 4 illustrates our proposed architecture for the thermal
hazard predictor, composed of three main components: the
architecture for data collection, storage, based on ExaMon

(section II), the thermal hazard analysis including the data ex-
traction, preprocessing (e.g., missed data handling, time align-
ments), label generator and data loader, and the Deep Learning
(DL)-powered thermal hazard prediction system (training and
inference). For the DL model used for prediction, a Temporal
Convolutional Network (TCN) is selected [8].

The TCN’s input is a TW of data extracted from the
database. In the off-line training stage, a large set of TWs
is extracted (training set), and preprocessed to generate the
ground-truth labels with the two-threshold statistical approach
of Section III-A. Inferences with the trained model are the
predictions of thermal hazards.

Relying on ExaMon, it is possible to implement and test DL
models using a very broad set of node metrics collected from
sensors: the database stores hundreds of metrics, of which 42
are IPMI metrics. In this work, we focused on the nodes’ inlet
temperature (as motivated in Section III-A), and we plan to
boost our TCN by adding the nodes’ power consumption.

IV. PRELIMINARY RESULTS
In this section we evaluate the Temporal Convolutional Net-

work in predicting thermal hazard in CINECA’s Marconi KNL
Room. We describe the dataset, introduce our TCN topology
and competitor models, and finally discuss two experiments
highlighting our TCN’s promising prediction skills.

A. Experimental Dataset
Experiments were based on the inlet temperature time series

of HPC room, which hosts 46 racks containing 18 chassis, each
chassis include 4 nodes. So in total sensory data of 3312 nodes,
for the whole year 2019. There were two thermal hazards on
28th June and 1st July. We have utilized the IPMI interface to
data collection with a sampling rate of 20 seconds; then, data
were downsampled to 1 minute in the preprocessing step.

We generated the ground-truth labels with the statistical ap-
proach described in Section III-A, with node-threshold = 0.95
and spatial-temporal-impact-threshold = 0.05 as motivated.
With these values, 19.5% of the data is labeled as a thermal
hazard, sufficient for training our algorithms.

B. TCN and competitor predictors
The proposed TCN has 2 blocks: (1) a Feature Learning

Block (14k parameters) of 7 1D-convolutional layers with
average pooling; (2) Classification Block (173 parameters) of 4
dense layers of 15, 6, 4, 3, 2 units. All layers present the batch
normalization and the ReLU activation. We compare our TCN
against other models2:

0) Last Value Predictor (LVP): minimum baseline for any
time-series task; the prediction ŷ is simply a copy of the present
observation ytrue: ŷ(t + PH) = ytrue(t), with PH prediction
horizon as defined in Section III-B.

1) Support Vector Machine (SVM): SVM with either linear or
Radial Basis Function (RBF) kernels. SVMs produce decision
boundaries with margins to improve generalization.

2) Stochastic Gradient Descent (SGD)-classifier: linear SVM
trained with SGD instead of convex optimization, enabling
larger train set size.

3) Long Short-Term Memory (LSTM): a type of Recurrent
Neural Network (RNN) that learns long-term dependencies

2SVMs and SGD-classifier were implemented in Scikit-learn 0.23; LSTM
was implemented in Keras 2.4; TCN was implemented in PyTorch 1.5.
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TABLE I: Prediction Results

Recall Precision F1-score

Experiment 1: random validation set
Last value predictor 0.72 0.72 0.72
Linear SVM 0.55 0.56 0.55
RBF-SVM 0.80 0.94 0.86
SGD-classifier 0.64 0.76 0.69
LSTM 0.84 0.98 0.91
TCN - this work 0.97 0.99 0.98

Experiment 2: time-separate validation set
TCN - this work 0.79 0.70 0.74

thanks to additional gates [9]. Our LSTM has 2 layers of hidden
and output size 16, followed by a dense layer.

To keep the parameter space of the models small, the
models were built using as input only the BB_Inlet_Temp
temperatures of 72 nodes which composes one rack. The rack
was selected randomly in the room. We remark that all the 3312
nodes were used for generating the thermal hazard labels.

C. Experiment 1: random validation set.
In the random validation set experiment, we selected the

validation set randomly as 20% of the 2019 data, and trained
all models on the remaining 80%. Table I shows the results.

The linear SVM yields F1-score 0.55, essentially random
and worse than the LVP-baseline: this is due to the linear
models’ poorness and to the train set reduction made necessary
by computational complexity. The RBF ranks better, with F1-
score 0.86, which is also 0.17 above the SGD-classifier. Both
DL models outperform the non-deep ones: the LSTM reaches
F1-score 0.91, and our TCN ranks best, with F1-score 0.98.

D. Experiment 2: time-separate validation set
To simulate a real case scenario, we trained the TCN with

only May 2019 data and validated the model in the first week
of June 2019. Our TCN achieved an F1-score of 0.74 F1-
score, which is 0.24 lower than Experiment 1 with a random
validation set. Such degradation is due to the random selection
of the validation set in Experiment 1 for which similar samples
are present in the training and validation set. Experiment 2 is,
however, closer to the real usage of the predictive model. We
suspect that the limited accuracy of Experiment 2 is caused by
(1) the limited set of nodes considered for the prediction, and
(2) a non-stationarity in the thermal effects that is not captured
if we use only past data to predict the future. These will be
investigated in future works.

V. CONCLUSION
In this study, we used statistical analysis of real thermal

hazard data from CINECA Marconi KNL Room to characterize

thermal hazards and proposed a thermal hazard predictor,
namely a Temporal Convolutional Network, which outperforms
non-deep models and LSTM. Our TCN has a 0.24 drop in
F1-score when applied in a scenario simulating a real case of
training limited to (recent) past data. In future work, we aim
to improve the results by different strategies: (i) training on
more historical data; (ii) addition of input metrics, prioritizing
power consumption; (iii) 2D and 3D-convolutions; (iv) iterative
retraining, to simulate the real scenario even more accurately.

REFERENCES
[1] N. Jones, “How to stop data centres from gobbling up the world’s

electricity,” Nature, vol. 561, no. 7722, pp. 163–167, 2018.
[2] NREL. [Online]. Available: nrel.gov/computational-science/measuring-

efficiency-pue.html
[3] J. Gao et al., “Machine learning applications for data center optimization,”

2014.
[4] H. Shoukourian et al., “Forecasting power-efficiency related key per-

formance indicators for modern data centers using LSTMs,” Future
Generation Computer Systems, vol. 112, pp. 362–382, Nov. 2020.

[5] C. Conficoni et al., “Hpc cooling: A flexible modeling tool for effective
design and management,” IEEE Transactions on Sustainable Computing,
2018.

[6] J. L. Hennessy et al., Computer Architecture, Sixth Edition: A Quanti-
tative Approach, 6th ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2017.

[7] A. Bartolini et al., “Paving the way toward energy-aware and automated
datacentre,” in Proceedings of the 48th International Conference on
Parallel Processing: Workshops, ser. ICPP 2019. New York, NY, USA:
ACM, 2019, pp. 8:1–8:8.

[8] S. Bai et al., “An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling,” arXiv:1803.01271, 2018.

[9] S. Hochreiter et al., “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[10] J. Cho et al., “Measurements and predictions of the air distribution
systems in high compute density (internet) data centers,” Energy and
buildings, vol. 41, no. 10, pp. 1107–1115, 2009.

[11] J. Athavale et al., “Artificial neural network based prediction of temper-
ature and flow profile in data centers,” in 2018 17th IEEE Intersociety
Conference on Thermal and Thermomechanical Phenomena in Electronic
Systems (ITherm). IEEE, 2018, pp. 871–880.

[12] M. Marwah et al., “Thermal anomaly prediction in data centers,” in 2010
12th IEEE Intersociety Conference on Thermal and Thermomechanical
Phenomena in Electronic Systems, 2010, pp. 1–7.

[13] L. Wang et al., “Towards thermal aware workload scheduling in a data
center,” in 2009 10th International Symposium on Pervasive Systems,
Algorithms, and Networks. IEEE, 2009, pp. 116–122.

[14] Q. Tang et al., “Sensor-based fast thermal evaluation model for energy
efficient high-performance datacenters,” in International Conference on
Intelligent Sensing and Information Processing. IEEE, 2006.

[15] E. Rossi. (2017) Marconi-a2 (knl). [Online]. Available:
http://www.hpc.cineca.it/hardware/marconi

[16] M. Seyedkazemi Ardebili et al., “Thermal characterization of a tier0 data-
center room in normal and thermal emergency conditions,” in Proceedings
of High Performance Computing in Science and Engineering 2019.


