POLITECNICO DI TORINO
Repository ISTITUZIONALE

Multi-objective Framework for Training and Hardware Co-optimization in FPGAs

Original

Multi-objective Framework for Training and Hardware Co-optimization in FPGAs / Casu, Mario Roberto; Mansoori,
Mohammadamir. - ELETTRONICO. - (2023), pp. 273-278. (Intervento presentato al convegno Applepies 2022 tenutosi
a Genova nel September 2627, 2022) [10.1007/978-3-031-30333-3_36].

Availability:
This version is available at: 11583/2978334 since: 2023-05-04T09:12:06Z

Publisher:
Springer

Published
DOI:10.1007/978-3-031-30333-3_36

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
Springer postprint/Author's Accepted Manuscript

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’'s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-30333-3_36

(Article begins on next page)

13 September 2024

Multi-objective Framework for Training and
Hardware Co-optimization in FPGAs

Mohammad Amir Mansoori and Mario R. Casu

Department of Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract. Although several works have recently addressed the problem
of performance co-optimization for hardware and network training for
Convolutional Neural Networks, most of them considered either a fixed
network or a given hardware architecture. In this work, we propose a new
framework for joint optimization of network architecture and hardware
configurations based on Bayesian Optimization (BO) on top of High
Level Synthesis. The multi-objective nature of this framework allows for
the definition of various hardware and network performance goals as
well as multiple constraints, and the multi-objective BO allows to easily
obtain a set of Pareto points. We evaluate our methodology on a network
optimized for an FPGA target and show that the Pareto set obtained by
the proposed joint-optimization outperforms other methods based on a
separate optimization or random search.

Keywords: Machine Learning, FPGA, High-Level Synthesis, Bayesian
Optimization, Co-optimization

1 Introduction

Like in other Machine Learning (ML) models, in Convolutional Neural Net-
works (CNNs) the number of layers, neurons, kernel size, number of filters, etc.,
can be considered as hyper-parameters to tune in order to maximize the ac-
curacy achievable during training. When it comes to implementing a CNN in
FPGA using a dedicated accelerator, however, the accuracy requirements and
the corresponding network architecture that meets those requirements might be
in contrast with hardware-related requirements and constraints, such as latency
and FPGA resources utilization. Therefore, a trade-off must be found, and this
can be done by solving a multi-objective optimization problem.

In recent years, several approaches based on Hardware-aware Neural Ar-
chitecture Search (Hw-NAS) have addressed the problem of co-optimizing the
network and its hardware accelerator [1,2]. To solve the multi-objective optimiza-
tion problem, some works use a two-stage optimization, which we call separate
method [3,4], in which the network parameters are first tuned to maximize the
accuracy, and then the hardware configurations are tuned to meet the hardware
constraints (e.g., data precision can be reduced). Other works try to reshape
the problem into a single-objective one subject to some constraints on hardware

2 Training and Hardware Co-optimization in FPGAs

performance [5,6]. Another method combines multiple objectives in a single func-
tion and uses single-objective optimization approaches [7], even though merging
multiple objectives can limit the performance of the optimization and degrade
the final Pareto-optimal sets. The last methodology is to employ a truly multi-
objective optimization approach to obtain the non-dominated Pareto solutions.
This approach has attracted considerable attention in the evolutionary compu-
tation community [8]. However, the computational complexity in evolutionary
algorithms is the main limitation of these approaches.

Not all Hw-NAS approaches co-optimize the network and its accelerator:
most of them use a fized hardware configuration (fixed-Hw) where the search
space is limited to the model architecture [1]: if the hardware requirements are
not met, the network architecture must change. Another category uses multiple
hardware configurations (multi-Hw) in which the search space combines hard-
ware configurations and network architectures, which is also our approach.

The optimization algorithms in Hw-NAS are usually divided into Reinforce-
ment Learning (RL), Evolutionary algorithms (EAs), Gradient-based methods,
and Bayesian Optimization (BO) methods [9]. RL and EA have been recently
used for both fized-Hw and multi-Hw categories (e.g., the Genetic Algorithm
in [10]). Despite their proven effectiveness in several works, they have some
drawbacks: EAs are computationally intensive due to their requirement for a
large population size in each generation; in RL, customizing the policies and
reward function for each optimization problem is a challenge.

Gradient-based methods fall in the fixed-Hw category. In these methods a
super-network containing all the possible realizations in the search space is
trained and a sub-network is sampled in each Hw-NAS iteration, guiding the
search to the optimal network [11]. Although hardware metrics can be included
in the loss function of the super-network, the search space includes only the
network configurations, hence the fixed-Hw categorization.

BO approaches consider a Gaussian Process for each objective, which is a
natural fit for the optimization problems in Hw-NAS, and no customization is
required in contrast to RL methods [12,13]. In addition, BO enables a truly multi-
objective optimization. Despite these advantage, to the best of our knowledge,
BO methods in FPGAs have been used only for the fixed-Hw category.

In this paper, we propose a new framework based on Multi-Objective Bayesian
Optimization with Constraints (MOBOC) on top of High Level Synthesis (HLS)
to jointly optimize the network architecture and the HLS-based hardware config-
urations for FPGA devices. The search space supports multi-Hw configurations.
In this multi-objective framework, we can assign multiple objectives and con-
straints related to the hardware and network performance, and use the truly
multi-objective BO approach to find the optimal Pareto sets.

2 Proposed Methodology

Our method can be divided in the four parts shown in Fig. 1 (B-E) and connected
inside the multi-objective BO framework (A). MOBOC will update the samples

Training and Hardware Co-optimization in FPGAs 3

R Search space (B)

i Acquisition function ! Giiordes | Foedpont
: ' — Training + Hardware
1
u =

(A) v DAl L

H .
i P
v i . 1101
. Pareto set !
\ (OF

Objectives + Constraints (D)
eror .

MOBOC ry ‘; e e Vivado™ HLS
b < : Hw latency, '
— |« t - interval N

FPGA resource Timing, error
constraints | constraints

Gaussian models !

Fig. 1: Proposed methodology for training and hardware co-optimization in FPGAs.

from the search space based on the expected improvement in the Pareto sets to
find the optimum configurations for network and hardware accelerator. In the
following, we illustrate in detail MOBOC and each part of the framework.
Multi-Objective BO with Constraints (MOBOC): BO is a method to op-
timize black-box functions that are expensive to evaluate. In MOBOC, a Gaus-
sian model is initially built for each objective and constraint using few samples.
An acquisition function is also built, based on the expected improvement of the
estimated Pareto sets obtained from the Gaussian models. The maximum value
of this function will suggest a new point in the search space. Objectives and
constraints are evaluated for the new point and guide the search towards the
optimum configurations by updating the Gaussian model at each iteration [14].
Search Space: It combines all the values of training hyper-parameters and HLS
hardware configurations. Although the framework supports any ML model with
an HLS code ready for FPGA implementation, in this work we focus on a CNN
classifier for the MNIST dataset inspired from Lenet-5 [15] and consisting of
two Convolutional, two max-pooling, and three dense layers. For each layer, the
hyper-parameters include the number of neurons, filters, and kernel size.
Several HL'S hardware knobs can configure the FPGA accelerator, such as the
choice between on-chip or off-chip memory for storing the weights of a layer, spe-
cific HLS pragmas for loop pipelining and for loop unrolling with a configurable
unroll factor, enabling or disabling the Dataflow pragma for task-level concur-
rency, the configuration of the fixed-point precision, and the value of the clock
frequency. The optimal choice of these HLS directives and hardware parameters
is achieved by MOBOC in conjunction with the optimal training parameters.
Function Evaluations: At each iteration, a new suggested point in the search
space must be evaluated. For this evaluation, we used Keras for training and
HLS C-simulation and Synthesis for hardware verification.
Objectives and Constraints: Even though we can assign any number of ob-
jectives and constraints, the larger the number, the longer the time to update
the Bayesian model in each iteration. In this work, we selected to optimize the
prediction error on the validation set, the hardware latency, and the throughput,
with constrained FPGA resources (BRAM, DSP48, FF, LUT), clock period, and

4 Training and Hardware Co-optimization in FPGAs

maximum admissible error (< 10%). Note that instead of using the prediction
error during training, we use the prediction error after execution in hardware:
in this way the error includes also the effect of the fixed-point precision.
Update Bayesian model: The new evaluation is used to update the Gaus-
sian models. For the acquisition function, Predictive Entropy Search for Multi-
objective Optimization with Constraints (PESMOC) [16] is used to update the
expected improvement of the estimated Pareto set. After the update, the maxi-
mum value of the acquisition function corresponds to the parameters of the new
suggestion. Convergence criteria or maximum iterations stop the procedure.

3 Results

The FPGA target is a Zyng-7000 SoC (XC7Z020-CSG484). For MOBOC, the
latest Spearmint package is used [16]. The search space is described in Tab. 1, in
which On Chip refers to the option of selecting on-chip BRAMs to store weights
and bias values for each layer (as opposed to an off-chip external DRAM), hence
5 options are available for 5 layers. Total and Integer bits in Tab. 1 determine the
fixed-point data precision that can be individually configured for weights, activa-
tions, and accumulations for the intermediate calculations (i.e., sum of products).
Note that the search space size is on the order of 10! total configurations—even
without considering other parameters such as the learning rate, which prevents
to do an exhaustive search of the best configurations. However, the BO conver-
gence would be slower: in the current setting 100 BO iterations are sufficient to
obtain a Pareto set, with more parameters more iterations would be needed.
Fig. 2 shows the Pareto-optimal points in the space of prediction error evalu-
ated in hardware (Hw error, axis) and execution latency (Time, y axis) achieved
by three different methods: Random search, Separate, and the proposed Joint
method. The search space for all the methods is the same and the same limit
of 100 iterations is used. In the Random case, we randomly choose in each it-
eration a point in the search space. In the Separate method, we first optimize
the network hyper-parameters to obtain the best accuracy, and then BO opti-
mizes the hardware configurations to maximize the hardware performance. In
the Joint method, BO jointly optimizes the hyper-parameters and the hardware
configuration to maximize both prediction accuracy and performance. Note that
since in Random search we cannot set an error constraint, there is one Pareto
point with error larger than the admissible threshold (> 10%). With the excep-

Configs Range Configs Range
#Filters Convl [2,20] Dataﬂo.w act%ve/inactive
’ On Chip [active/inactive
#Filters Conv2 [2,20] T((j)]tl;l(l};:ijzs [[180”220(;]
Kernel size 2*%([1,4]) + 1| Integer bits [1,9]
#Neurons Densel/2| [50,150] [Convl/2 UF 2" ([0,4])

Table 1: Search space: network and hardware parameters (UF:Unroll Factor)

Training and Hardware Co-optimization in FPGAs 5

—e— Time Sep (ms)
—e— Time Joint (ms)

e~ Time Random (ms) Random Separate Joint
Error|Time|Error|Time|Error|Time

(%) |(ms) | (%) |(ms)| (%) | (ms)

EIS Error=10% 1.4 [24.67| 1.4 | 20.1 | 1.4 |14.22
2 1.7 1936 | 1.8 |19.89| 1.7 | 8.06
F o 22 | 783] 6.5 [19.564| 1.8 | 5.31
2.3 | 4.19 - - 1.9 | 4.74
11.9 | 2.53 - - 2.6 | 4.68

2 4 6 8
Hw Error (%)

Fig. 2: Pareto-points found by the joint method, random search, and separate method
in the space of prediction error (Hw error) and execution latency (Time).

401 e Time joint (ms) .
® Time Random (ms) "
80 354 e Time Sep (ms) Error=10%
. oo
30 o ° g
60 s’ H B
e e
g 1 251 @ .: o. ..: . ..o.’
H 0] o%%° o o o ® oo e o
s a0 e ° & ole o°
B ° ° ° U ° <
[® 0ot . N6 oS c e ® o ..
o 20 L) 80 o8 o o oo
20 l 10 s 8% LIS P R .g' .
E"' *'..00.”.00" LA
“ sl v 5 S o . o o
0 % !Vu i\ ° .
0 20 40 60 80 100 025 050 075 100 125 150 175 2.00
BO iters Hw Error (log)
@) (b)

Fig. 3: (a) Hardware inference error in our joint method in each BO iteration (linear
and exponential), (b) Total points suggested by the joint, separate, and random search
methods; note the concentration of the joint method on low errors (< 10%).

tion of one lucky point detected by the Random search, all the other points are
Pareto-dominated by those found by the Joint method.

To help speed-up the BO convergence toward low prediction error, we mod-
ified the objective function with a non-linear exponential of the error. Fig. 3(a)
shows the error as a function of the BO iterations: the exponential definition of
the error helps reach a quicker convergence than a linear definition does. The
final results in this work are based on the exponential error.

Finally, Fig. 3(b) shows all the points found in 100 iterations. For better
clarity, a log scale is used for the error. Notice how the error threshold concen-
trates the points below 10% for our joint MOBOC method, which helps in better
optimization convergence by searching in the area of interest.

4 Conclusions

We proposed a joint optimization of CNN training and hardware configura-
tions in FPGAs, within a multi-objective Bayesian Optimization (BO) frame-

Training and Hardware Co-optimization in FPGAs

work. In contrast to more common BO approaches, the search space includes
multiple hardware configurations in addition to the hyper-parameters used for
CNN training. Moreover, conflicting objectives related to training and hardware
performance can be considered separately to achieve a Pareto-optimal set of
configurations without merging them into a single objective function. We com-
pared our joint methodology with conventional approaches, random search and
separate optimization method. The Pareto set achieved with our method outper-
forms those obtained with random and separate methods, with 1.7x and 1.4x
improvement in execution time for the minimum error, respectively.

References

10.

11.

12.

13.

14.

15.

16.

. H. Benmeziane et al., “A comprehensive survey on hardware-aware neural archi-

tecture search,” CoRR, vol. abs/2101.09336, 2021.

L. Sekanina, “Neural architecture search and hardware accelerator co-search: A
survey,” IEEE Access, vol. 9, pp. 151 337-151 362, 2021.

H. Cai et al., “Once-for-all: Train one network and specialize it for efficient deploy-
ment,” in International Conference on Learning Representations, 2020.

S. Han et al., “Design automation for efficient deep learning computing,” CoRR,
vol. abs/1904.10616, 2019.

M. Tan et al., “Mnasnet: Platform-aware neural architecture search for mobile,”
CoRR, vol. abs/1807.11626, 2018.

B. Wu et al., “Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

C. Hsu et al., “MONAS: multi-objective neural architecture search using reinforce-
ment learning,” CoRR, vol. abs/1806.10332, 2018.

X. Chu et al., “Multi-objective reinforced evolution in mobile neural architecture
search,” CoRR, vol. abs/1901.01074, 2019.

M. Parsa et al., “Pabo: Pseudo agent-based multi-objective bayesian hyperparam-
eter optimization for efficient neural accelerator design,” in ICCAD, 2019, pp. 1-8.
Y. Yu et al., “Software-defined design space exploration for an efficient dnn accel-
erator architecture,” IFEE Trans. Computers, vol. 70, no. 1, pp. 45-56, 2021.

H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search on
target task and hardware,” CoRR, vol. abs/1812.00332, 2018.

D. Stamoulis et al., “Hyperpower: Power- and memory-constrained hyper-
parameter optimization for neural networks,” in DATE, 2018, pp. 19-24.

E. Liberis et al., “uNAS: constrained neural architecture search for microcon-
trollers,” in 1st Workshop on Machine Learning and Systems, 2021, p. 70-79.

S. Greenhill et al., “Bayesian optimization for adaptive experimental design: A
review,” IEFEE Access, vol. 8, pp. 13937-13 948, 2020.

Y. Lecun et al., “Gradient-based learning applied to document recognition,” Pro-
ceedings of the IEFEE, vol. 86, no. 11, pp. 2278-2324, 1998.

E. Garrido-Merchan et al., “Predictive entropy search for multi-objective bayesian
optimization with constraints,” Neurocomputing, vol. 361, pp. 50—68, 2019.

