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A B S T R A C T

The effort to increase the converted power is a common challenge to players in the field of wave energy
conversion, both academic and industrial. In the case devices are found to be prone to parametric resonance,
it typically has a negative impact on power harvesting and may jeopardize the reliability of the device. This
paper makes the case that parametric resonance is not a danger that should be avoided, but rather a chance
to achieve a broader system response bandwidth and ultimately increase the amount of power available at the
power take-off. Since a time-varying wetted surface causes the highly nonlinear phenomenon of parametric
resonance, linear models are unable to fully capture this instability. As a result, nonlinear Froude–Krylov
forces are herein implemented via a computationally effective method for prismatic floaters that is compatible
with both exhaustive simulation methods and real-time computing, as the whole simulations runs up to 50
times faster than real-time. A novel pendulum-based device is intentionally defined to exhibit a 2:1 ratio
between heave and pitch natural frequencies, causing parametric instability. Results demonstrate that linear
models predict a single zone of meaningful potential power extraction around the pitch natural frequency,
as expected; however, by using the designed attitude to develop parametric instability, a second additional
region develops near the heave natural period. As a result, the free response bandwidth is in fact increased,
making more energy available at the power take-off axis thanks to the nonlinear instability embedded in the
wave energy converter.
1. Introduction

Despite significant technological advances in recent years, the wave
energy sector still faces the major challenge of reducing the levelised
cost of electricity (LCoE) to become competitive with other forms of
renewable energy and attractive to public and private investors [1].
On the one hand, efforts are being made to reduce capital and op-
erational costs: techno-economic optimizations [2] are based on cost
functions that, although difficult to estimate due to a still immature
industry [3], are becoming more representative and informative of the
real system thanks to bottom-up approaches [4]. On the other hand,
the complementary path to LCoE reduction is to increase the overall
productivity [5], expanding the frequency bandwidth of the device
to make it perform well under a wide range of wave conditions [6],
thus achieving a higher capacity factor [7]. The main tool to increase
the power efficiency, especially far from the natural frequency of the
system, is optimal control: normally using the Power-Take-Off (PTO)
system, the control strategy applies an action aimed at changing the
free response of the device (the baseline) to achieve the control ob-
jective, which typically includes the converted energy. Under ideal
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conditions, where the PTO action can be arbitrarily chosen, the optimal
control action can change the system dynamics to virtually any ex-
tent to optimize performance. However, practical physical constraints
(typically on force, displacement, and/or velocity) limit the range of
action of the control such that the controlled response lies within the
neighbourhood of free response, as close as tight the constraints are; it
follows that realistic optimal control with tight constraints results in a
much lower improvement over the baseline. Therefore, although it is
tempting to rely on optimal control alone to enhance productivity, it is
still necessary to increase the free response: to this purpose, also design
should be optimized (ideally in conjunction with control) to provide
a fruitful baseline that a realistic (constrained) control can practically
lead to optimal power generation. Such significant design changes,
ranging from operating principles and subsystem configurations to
geometry and dimensions, should be performed at low Technology
Readiness Levels (TRLs), when costs are relatively low and failures
are not catastrophic [8]. However, knowledge of the system may
still be superficial at low TRLs, because experience is limited and
numerical models may not be reliable. The effectiveness of holistic
techno-economic optimizations in a real-world application depends on
vailable online 31 December 2023
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the representativeness of their underlying numerical models. Neverthe-
less, due to the stringent requirement of low computational time, design
definition and optimizations are performed using either linear [9],
linearized [10], spectral [11], or reduced models [12]. Within this
context, accuracy is usually interpreted as a gradient, with gradually
higher accuracy for incrementally more complex models [13]. Based
on the hypothesis that accuracy is a gradient, the real behaviour of
the wave energy converter (WEC) is assumed to lie within a certain
error range that is roughly proportional to the complexity of the model.
However, the accuracy of the representation of certain nonlinear phe-
nomena is Boolean (yes or no) rather than a gradient, in the sense
that they are either articulated or completely overlooked [14]. This
is the case of parametric resonance, which is a type of instability that
can only be captured by models that account for time-varying wetted
surfaces; therefore, linear models are completely blind to parametric
resonance. When present, it is usually discovered well after design,
likely in the first experimental tests [15]; it usually is detrimental and
late mitigation actions are sought [16].

In this paper, it is argued that, if properly embedded early in
the design phases, parametric resonance can actually be exploited
to improve power conversion capabilities. The strategy of leverag-
ing strongly nonlinear phenomena is common, if not fundamental, in
mechanical vibration energy harvesters (VEHs) [17]; conversely, only
seldom examples can be found in wave energy applications. The reason
why this is quite uncommon in the wave energy field is that numerical
models typically able to articulate parametric resonance are time con-
suming and not suitable for early design applications, while nonlinear
solid mechanical systems are relatively easy to be modelled. In this
paper, a computationally efficient mathematical formulation is briefly
presented and used, based on a recent description of nonlinear Froude–
Krylov forces for prismatic floaters [18], which is computationally
compatible with early design applications and extensive simulations,
as well as an input generator for data-driven system identification
approaches. Based on this mathematical model, a 2:1 parametric reso-
nance condition is prescribed for the conceptual definition of a novel
inertial WEC with a broader bandwidth than its linear counterpart.

The remainder of the paper is organized as follows: Section 2
describes parametric resonance, when it is detrimental (most cases) and
a few examples when it is exploited (within and outside wave energy
field). Section 3 proposes a WEC that is purposely designed to be prone
to parametric resonance, with the objective to have a broader free
response bandwidth. Section 4 presents the computationally efficient
numerical model that can articulate such a nonlinear phenomenon. Fi-
nally, Section 5 presents results and Section 6 provides some discussion
to get further insights, while Section 7 draws final conclusions.

2. Parametric resonance in energy harvesters

Time-variations of one or more parameters of a system may induce
it into parametric resonance, which is a mechanism for internal excita-
tion [19]. The standard approach in nonlinear dynamics to preliminary
describe such a phenomenon is via a Mathieu-type of instability [20]: it
is a single degree of freedom (DoF) second-order differential equation
of motion of the generic variable 𝜒 , where the stiffness term varies
with time (𝑡) following a harmonic function with circular frequency
(𝜔𝑐); in real engineering applications, the damped Mathieu equation
is considered:

�̈� + 𝜇�̇� + (𝛥 + 𝛬 cos 𝜏)𝜒 = 0, (1)

where the time-derivatives are with respect to the dimensionless 𝜏 =
𝜔𝑐 𝑡, 𝛥 represents a dimensionless stiffness, 𝛬 is the dimensionless
amplitude of the stiffness variation, and 𝜇 is the dimensionless damping
coefficient. The consequent stability diagram of Eq. (1) is shown in
Fig. 1, where 𝜔𝑛 is the natural frequency of the 1-DoF system and
𝛥2 = 𝜔 ∕𝜔 ; two conditions for instability (shaded areas in Fig. 1) arise:
2

𝑛 𝑐
Fig. 1. Stability diagram of the damped Mathieu equations (𝜇 is the damping), shown
in (1). Unstable regions are shaded; they arise when the excitation frequency is twice
(𝛥 = 0.25) of or equal (𝛥 = 1) to the natural frequency of the system, and for sufficiently
large excitation amplitude (increasing 𝛬).

1. The excitation frequency (𝜔𝑐) is twice of or equal to the natural
frequency (𝜔𝑛) of the system (𝛥 = 0.25 or 1, respectively)

2. The excitation amplitude exceeds internal dissipations of the
system (increasing 𝛬)

Despite the fact that the Mathieu equation can only provide some
insights on the conditions triggering parametric resonance, and not on
the quantitative estimation of its severity [15], it can still guide inter-
pretation of experimental behaviour and potentially inspire convenient
design choices (as in this paper). Hereafter, Section 2.1 briefly discusses
how parametric resonance is often just a detrimental phenomenon
for wave energy conversion; conversely, Section 2.2 presents virtuous
examples where it is leveraged as an enabling factor to make energy
conversion viable, most commonly in vibration energy harvesters and
rarely in the wave energy field.

2.1. Parametric resonance as a detrimental phenomenon

Parametric resonance is a well-known phenomenon in traditional
marine engineering, currently being extensively examined because of
the serious safety and cost issues it raises [20]. Numerous techniques to
detect and avoid parametric roll are being developed and implemented.
Large cargo ships are particularly concerned in this issue because unde-
tected parametric roll instability can result in cargo loss and even crew
injury [21]. Similarly, spar-like structures can experience significant
rotations due to parametric resonance [22]; since such structures (typi-
cally for oil extraction or floating offshore wind turbines) are expected
to have small rotations to be fit for purpose, parametric resonance is not
desirable. Additionally, the station-keeping system should be designed
with sufficient knowledge of the types of motions that will occur during
operation.

In the wave energy field, parametric resonance has been observed
in some floating systems consisting of either a tethered body or a
self-referenced two-body system: in an offshore oscillating water col-
umn [23], in a floating sloped device [24], in pendulum-based [25]
or two-body [26] self-referenced WECs, and in a bottom-tethered sys-
tem [27]. In each of these scenarios, parametric resonance decreases
the efficiency of energy conversion by rerouting a portion of the energy
away from the degree of freedom where the PTO is installed, and
thereby decreasing the amount of energy that is available. Additionally,
higher and perhaps unexpected loads may be transferred to other WEC
subsystems, particularly the mooring system, raising the possibility
of damage and decreasing dependability. To prevent an increase in
parametric instability, dedicated detection and suppression strategies
are put in place to avoid the rise or parametric instability [28].
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2.2. Parametric resonance as an enabling phenomenon

When properly incorporated into early design phases, parametric
resonance can be a way to obtain a broader bandwidth and increase
power yields. In fields other than wave energy, particularly in the
field of mechanical vibration energy harvesting, nonlinearities and
instabilities are frequently considered to be a system’s primary strength
rather than its weakness. Indeed, the frequency response curve of
linear VEHs is typically sharp and narrow, rendering energy genera-
tion unprofitable; therefore, nonlinearities are typically introduced into
the system to increase their bandwidth [17]: parametrically excited
non-linear energy harvester [29], 1:2 internal resonance embedded
condition in cantilever VEHs [30], parametric oscillators [31], bista-
bility [32], among others. The simplicity of the underlying nonlinear
mathematical model, which is typically algebraic and completely white
(i.e., transparently based on physical quantities), is primarily the reason
instability-based working principles are so popular in VEH.

There are a few examples of WECs that use parametric resonance
to improve energy extraction. Most concepts are based on inertial
coupling between a float and one [33] or more [34] pendula; in some
concepts, rotational control may be required to initiate and maintain
parametric rotation [35], possibly realized via length adjustments [36].
In [37], a single float system is considered, where a control strategy can
account for the nonlinear hydrodynamic coupling between buoyancy
and surge/pitch, such that the energy extracted from buoyancy is
increased. [38] considers a WEC with two concentric floats where the
parametric resonance is induced by modulating the mass. A negative
stiffness mechanism is used for a raft-type device in [39], while [40]
implements a bistable mechanism in a wave energy converter. Other
methods to increase power extraction comprise increase the number of
active degrees of freedom and leverage linear and nonlinear coupling
between them, as in [41] for an inertial device, and in [42] for a point
absorber.

3. A 2:1 parametric resonance pitching WEC

This study focuses on WECs that derive power from the pitching
motion of a floater, either directly (for example, through the use of a
fixed reference structure) or indirectly (for example, through the use
of inertial coupling with an internal mechanism); numerical results
are produced for a case study involving inertial coupling, though the
notional considerations are more general.

Evidences from [37] or [18] have shown that heave and pitch
DoFs are linearly independent but hydrodynamically coupled once the
instantaneous wetted surface is taken into account in the calculation of
the excitation forces, especially in the case of the nonlinear Froude–
Krylov component. Therefore, it is argued in this work that a WEC
specifically designed for a 2:1 ratio between the natural frequency of
heave and pitch would greatly benefit from the resulting parametric
resonance. Under conditions of parametric instability (Section 3), some
of the incoming energy would be redirected from the heave DoF to the
pitch DoF, making it available for conversion by the PTO.

To test such an assumption and to obtain initial quantitative results
on the significance of the benefits, if any, a case study is herein formu-
lated. The Pendulum Wave Energy Converter (PeWEC) is considered
as a baseline [43], which is a sealed float containing a pendulum:
when the hull pitches in response to incoming waves, oscillations of
the pendulum are induced by the inertial coupling, and damped by the
PTO. A schematic representation of a PeWEC-like device is shown in
Fig. 2. The geometry, dimensions, and mass properties of the PeWEC-
like device are inspired by [18,44]; however, the pitching inertia of the
system is artificially modified so that the heaving natural period (𝑇3)
s half of the pitching natural period (𝑇5), i.e., a 2:1 ratio between the

respective natural frequencies.
It should be noted that the present case study has the objective of a

proof of concept, while evaluating the actual performance [45] of real
3

Fig. 2. A pendulum in a sealed hull is shown in the schematic diagram of a wave
energy converter inspired by the PeWEC. While the solid lines depict a displacement
in sea water, the transparent body is shown in a resting state in still water.

wave energy converters is a complex task; the final productivity and
effectiveness of design improvement is highly dependent on detailed
wave resource characterization [46], eventually including appropriate
bias correction [47]. In fact, the representative yearly occurrence of
panchromatic waves should be considered for a thorough evaluation of
the annual energy production; however, the purpose of this work is to
provide a first go/no-go decision to assess the potential of the concept
herein proposed.

4. Mathematical modelling

Studying the effects of parametric resonance caused by the non-
linear coupling between the degrees of freedom of heave and pitch is
the goal of this work. In order to enable meaningful and unambiguous
observations, the mathematical model and setup are carefully chosen;
in particular, confounding factors are eliminated to ensure a clear,
transparent, and unambiguous inference of causality. As a result, the
following simulation conditions are set:

• Monochromatic waves: Since parametric resonance is a frequency-
dependent phenomenon, regular waves are considered to clearly
discriminate trends in the dynamic response of the system. In ad-
dition, to study potential hysteresis and bifurcation phenomena,
up-chirp and down-chirp signals are also considered [19].

• Time-domain model: described in Section 4.1, it is necessary to
numerically solve nonlinear systems in the time domain.

• Nonlinear Froude–Krylov (NLFK) force: it is the only nonlinearity
included in the system, described in Section 4.2, since it can
articulate parametric resonance; all other nonlinear effects are
neglected (i.e., viscosity, PTO saturations, pendulum kinematics,
moorings, etc.), so that any nonlinear behaviour is univocally due
to NLFK.

• Only heave and pitch hydrodynamic DoFs: being linearly uncoupled,
any coupling in the nonlinear response only depends on the para-
metric resonance, which activates an internal energy exchange
between such DoFs. It should be noted that the surge simulation
would have been a confounding factor because it would have in-
troduced a linear coupling with pitch and therefore an additional
direction of energy flow; moreover, it would have required an
additional term for station-keeping in the equation of motion.

• No PTO: Considering the free response of the device is paramount
to articulate its inherent characteristics and evaluate the raw
energy availability; this can then be leveraged by an appropriate
control system, acting through the PTO force.

4.1. Time domain model

The only distinction between the two time domain models herein
implemented is whether linear (LFK) or nonlinear (NLFK) static and
dynamic Froude–Krylov forces are included. Regular waves are taken
into consideration, and their heights and periods are selected using a
typical bivariate distribution [48].
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Let us consider first the linear equation of motion of the 2 hydro-
dynamic DoFs only, i.e. heave and pitch, defined about the centre of
gravity and in the frequency domain as follows:
[

−𝜔2 (𝐌 + 𝐀(𝜔)) + 𝑗𝜔𝐁(𝜔) +𝐊ℎ
]

𝝃2 = 𝐅𝑑 + 𝐅𝐹𝐾𝑑
(2)

where 𝝃2 is the 2 × 1 state vector, composed of heave (𝑧) and pitch (𝜃),
𝐌 the diagonal inertia matrix, 𝐀(𝜔) and 𝐁(𝜔) the diagonal frequency-
dependent added mass and radiation damping, 𝐊ℎ the diagonal linear
hydrostatic stiffness, 𝐅𝑑 and 𝐅𝐹𝐾𝑑

are the diffraction and linear dy-
namic FK forces, whose sum gives the total hydrodynamic excitation
force 𝐅𝑒𝑥.

The linear hydrodynamic curves are computed for the mean wetted
surface of the floater via a linear Boundary Element Method (BEM)
software, such as Nemoh [49] or WAMIT [50]. The NLFK version of
(2) alternatively computes

(

𝐅𝐹𝐾𝑑
− 𝐊ℎ𝝃2

)

in a nonlinear way, as
described in Section 4.2.

The resulting linear hydrodynamic curves are presented in Ap-
pendix A. Diffraction, dynamic Froude–Krylov, and their sum (excita-
tion), are presented in Fig. 9: dynamic FK components are significantly
larger in magnitude than diffraction, making the NLFK approach rep-
resentative of nonlinear hydrodynamic interactions due to the time-
varying wetted surface. The phase shift of the linear hydrodynamic
forces with respect to the incoming wave is constant for FK, and
almost-constant for diffraction within the range of physically meaning-
ful wave frequencies; however, the nonlinear representation of NLFK
forces may show a drift of the phase difference with increasing wave
amplitude [51]. Finally, note that heaving and pitching driving forces
have a phase shift of about 90 degrees.

Radiation force coefficients, depending on the incoming wave fre-
quency, are presented in Fig. 10. The total radiation force in the
frequency domain is given by:

𝐅𝑟𝑎𝑑 (𝑗𝜔) =
[

𝜔2𝐀(𝜔) − 𝑗𝜔𝐁(𝜔)
]

𝝃2(𝑗𝜔) (3)

It is possible to translate (3) from frequency to time domain as fol-
lows [52]:

𝐅𝑟𝑎𝑑 (𝑡) = −𝐀∞�̈�2 − ∫

𝑡

0
𝐊(𝑡 − 𝑡′)�̇�2(𝑡′)𝑑𝑡′ = −𝐀∞�̈�2 − 𝐅𝑐𝑜𝑛(𝑡) (4)

where the time and frequency dependence are loosely used for sim-
plicity, and the kernel of the convolution integral (𝐊) is the impulse
response function, also known as retardation function. The added mass
at infinity (𝐀∞) and 𝐊 can be computed from the 𝐴 and 𝐵 as follows:

𝐀∞ = lim
𝜔→∞

𝐀(𝜔) (5a)

𝐊(𝑡) = 2
𝜋 ∫

∞

0
𝐁(𝜔) cos (𝜔𝑡)𝑑𝜔 (5b)

From the computational point of view, (4) is typically consid-
red prohibitive, due to the integration to infinity of the memory
ffect provided by the convolution term. Therefore, it is common
ractice to apply system identification techniques to obtain a state
pace representation of 𝐅𝑐𝑜𝑛(𝑡) for a generic DoF 𝜒 :
{

�̇� = 𝐀𝑠𝑠𝜿 + 𝐁𝑠𝑠𝝌
𝐅𝑐𝑜𝑛(𝑡) = 𝐂𝑠𝑠𝜿 (6)

Since heave and pitch DoFs are hydrodynamically uncoupled, the
state space representation of (6) can be performed separately for each
DoF, leading to the following triplets for heave

(

𝐀𝑠𝑠
𝑧 ,𝐁𝑠𝑠

𝑧 ,𝐂𝑠𝑠
𝑧
)

and pitch
(

𝐀𝑠𝑠
𝜃 ,𝐁𝑠𝑠

𝜃 ,𝐂𝑠𝑠
𝜃
)

. Such parameters, identified with a moment-matching
approach [53], are presented in Appendix A.

Finally, the mechanical coupling between the external hull, subject
to the incoming waves, and the internal pendulum, is considered. A
Jacobian linearization of the Lagrangian equation of motion is imple-
mented, which has been extensively validated in wave tank tests for
the PeWEC device [54]. The resulting complete time domain model is
4

presented in Appendix B, p
Fig. 3. Snapshot of a displaced hull, depicted as a green thick solid line, with the blue
thick solid line representing the instantaneous free surface elevation and the shaded
area representing the instantaneous submerged volume. The position of the centre of
gravity is indicated by the crossed circle, and the centre of buoyancy is indicated by
the square (empty: LFK; full: NLFK). The rest position (LFK) is shown in thin line.
Source: Adapted from [18].

4.2. Nonlinear Froude–Krylov force model

Since parametric resonance is due to time-varying parameters of the
system, nonlinear Froude–Krylov forces are well suited numerical tools;
in fact, NLFK forces are calculated as the integral of the pressure of the
unperturbed wave field onto the instantaneous wetted surface (𝑆𝑤(𝑡)).
ngineering studies relying on simulating results in real-time and/or
umerous iterations in a short period of time require models with a rea-
onable computational cost. Axisymmetric and prismatic floaters can
enefit from a computationally effective analytical description of NLFK
ntegrals, whereas geometries of arbitrary complexity may necessitate
esh-based NLFK methods that are frequently very computationally

ntensive. The device herein considered is prismatic, meaning that its
eometry is invariant in the horizontal direction that is perpendicular
o the wave propagation and parallel to the wave front.

Although throughout details of the NLFK integration method for
rismatic floaters are given in [18], a brief summary is presented
ereafter. Assuming two-dimensional waves in the (𝑥, 𝑧) coordinate
ystem, where 𝑥 is the direction of propagation of the wave, and 𝑧 is
he vertical axis, positive upwards, with the origin at the still water
evel (SWL), 𝑎 the wave amplitude, 𝜔𝑤 the wave frequency, 𝑘 the wave
umber, ℎ the water depth, and 𝑧′ the vertical coordinate modified
ccording to Wheeler’s stretching [55], the total undisturbed pressure
𝑝𝑢) follows:

𝑢 = −𝜌𝑔𝑧 + 𝑎 cos
(

𝜔𝑤𝑡 − 𝑘𝑥
) cosh

(

𝑘
(

𝑧′ + ℎ
))

cosh(𝑘ℎ)
, (7)

where 𝜌 is the water density and 𝑔 the acceleration of gravity.
Froude–Krylov generalized forces (𝐅𝐹𝐾 ), divided into linear forces

(𝐟𝐹𝐾 ) and torques (𝝉𝐹𝐾 ), integrate the undisturbed pressure field (𝑝𝑢),
hown in (7), as follows:

𝐹𝐾 (𝑡) = 𝐟𝑔 +∬𝑆𝑤(𝑡)
𝑝𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝐧 𝑑𝑆, (8a)

𝝉𝐹𝐾 (𝑡) = (𝐫𝑔 − 𝐫𝑅) × 𝐟𝑔 +∬𝑆𝑤(𝑡)
𝑝𝑢(𝑥, 𝑦, 𝑧, 𝑡) (𝐫 − 𝐫𝑅) × 𝐧 𝑑𝑆, (8b)

here 𝐟𝑔 is the gravity force, 𝝉𝑔 its contribution to the torque, 𝐧 is the
nity vector normal to the surface, 𝐫 is the generic position vector,
𝑅 = (𝑥𝑅, 𝑦𝑅, 𝑧𝑅)′ is the reference point around which the torque is
omputed, and likewise 𝐫𝑔 is the position vector of the centre of gravity.

Generic NLFK solvers for arbitrary complex floaters rely on a
eshed discretization of 𝑆𝑤(𝑡) that becomes the computational bottle-
eck, that may be incompatible with extensive analysis of nonlinear
ynamics behaviour requiring many long iterations. Therefore, in this
aper, a faster analytical representation is used, which is available for
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Fig. 4. From left to right: amplitudes in normalized heave (𝑧∕𝐷), pitch (𝜃), and the pendulum oscillation (𝜀), plotted with respect to the normalized wave period (𝑇𝑤∕𝑇5) and
normalized wave height (𝐻𝑤∕𝐷); top and bottom rows refer to LFK and NLFK models, respectively. The dashed and dash-dotted lines highlight 𝑇𝑤∕𝑇5 equal to 0.5 and 1,
respectively.
Fig. 5. Instantaneous kinetic energy in heave (top) and pitch (bottom) for a wave with
𝑇𝑤 = 0.55𝑇5 and 𝐻𝑤 = 4m.

both axisymmetric and prismatic floaters [56]. This method leverages
the simplified geometry to obtain an analytical definition of the keel of
the hull as it moves, hence enabling the analytical representation of the
instantaneous wetted surface, as graphically shown in Fig. 3. Finally, an
5

explicit definition of integrals in (8) is obtained, which are then solved
numerically.

The computational time of the NLFK force method depends on the
required relative and absolute accuracy of the numerical integration,
as well as on the states of the simulation, the time-step and the time-
integration scheme; however, the variability is relatively small. For the
simulations performed in this paper, the NLFK model is only about
100 times slower than the LFK model. The relative computational time,
defined as the total simulation time divided by the simulated time, or
alternatively as the time required to simulate one time step, is between
2% and 3%. This means that NLFK simulations run between 30 and 50
times faster than real time.

5. Results

Time-domain simulations are performed for a dense grid of monoc-
hromatic waves, sweeping wave periods (𝑇𝑤) and wave heights (𝐻𝑤)
to include relevant operational conditions [48]. In addition, with the
objective to highlight parametric resonance behaviour, 𝑇𝑤 ranges from
0.25 to 1.4 times the natural period in pitch (𝑇5); likewise, 𝐻𝑤 is
defined as a ratio of the draft (𝐷) of the floater at rest, ranging from 0
to 1. The initial transient is smoothed by applying sigmoid weighting
function from 0 to 1 during the first five wave periods of the incoming
free surface elevation. Sufficiently long time-domain simulations are
run to ensure reaching a smooth and periodic response at the steady
state. At the conclusion of the simulation, the motion amplitude is
calculated as the difference between the signal’s peak and trough over
a time window; the time window’s length is 2𝑇𝑤 to take into account
the anticipated period doubling brought on by parametric resonance.
Fig. 4 presents such amplitudes in normalized heave (𝑧∕𝐷), pitch (𝜃),
and the pendulum oscillation (𝜀), plotted with respect to the normalized
wave period (𝑇𝑤∕𝑇5) and normalized wave height (𝐻𝑤∕𝐷), according
to LFK and NLFK models. Meaningful ratios of 𝑇 ∕𝑇 are highlighted
𝑤 5
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Fig. 6. Stroboscopic phase diagram for a wave with 𝑇𝑤 = 0.55𝑇5 and 𝐻𝑤 = 4m. The
ransient is presented in thin cyan line, the steady state in thick orange line, and bold
arkers are plotted every 𝑇𝑤 during the limit cycle.

ith 2 red lines: a dash-dotted line is located at 𝑇𝑤 = 𝑇5, whereas a
ashed line highlights 𝑇𝑤 = 𝑇3 = 0.5𝑇5, following the 2:1 resonance
ondition imposed in Section 3, i.e. both the heave natural period and
he simplified parametric resonance condition.

The linear response (top row of Fig. 4) shows no coupling between
itch and heave, as expected. The peak response in each DoF is reached
t their respective natural frequency (𝑇𝑤 = 𝑇3 = 0.5𝑇5 for heave, and
𝑤 = 𝑇5 for pitch); the inertial coupling makes the pendulum oscillation
ollow directly the pitching response, as the pendulum natural period is
ignificantly lower (about 1

4𝑇5). Following the hypothesis discussed in
Section 4, the LFK model is fully linear and not dampened, and no satu-
ration or end-stop is included; the direct consequence is that unrealistic
responses are predicted by the LFK model close to the pitching natural
frequency. Therefore, to improve readability and enable meaningful
discussion, any oscillation above 50◦ is excluded from Fig. 4 (white
area).

The nonlinear response (bottom row of Fig. 4) is presented with the
same colour scale of the LFK model, to facilitate qualitative comparison
of the resulting amplitudes of motion. It is evident that a nonlinear
coupling occurs at both highlighted normalized wave periods. In par-
ticular, at 𝑇𝑤 = 0.5𝑇5, the heave response decreases with respect to
the LFK model, with a clear wedge incision in the response scatter;
the same wedge is found in the 𝜃 and 𝜀 responses, highlighting how
parametric resonance effectively redirects part of the energy away from
the heaving DoF. Notably, the linear model almost completely fails
to predict the response at this frequency, indicating that parametric
resonance is the only excitation mechanism introduced as a result of
the 2:1 ratio prescribed during the design phase (see Section 3).
6

While the left edge of the wedge remains vertical as 𝐻𝑤 increases,
the right edge shifts at higher periods, giving the wedge an asymmetric
appearance with respect to the vertical line 𝑇𝑤 = 0.5𝑇5. As a result,
the range of the parametric resonance response expands, and since
the wave energy content is proportional to 𝑇𝑤 and to 𝐻2

𝑤 [57], the
amplitude of the parametric response increases for larger wave periods.
This behaviour is in line with the qualitative prediction of the Mathieu
diagram shown in Fig. 1, which states that once the system’s internal
damping is overcome, the width of the instability region increases for
higher input energy.

Similarly, nonlinear coupling also occurs at 𝑇𝑤 = 𝑇5; however, in
this case, the energy flow is reversed because the heave response at
𝑇𝑤 = 𝑇5 is higher than in its neighbourhood. Based on the simulation
conditions, it is not possible to judge whether this is detrimental or
beneficial to energy production, since the LFK response in pitch is
unrealistic and cannot provide a meaningful comparison benchmark.
Assuming that the total mechanical energy absorbed by the entire
system is constant, parametric resonance removes some of the energy
from pitch to achieve a higher heaving response and would therefore be
detrimental. However, parametric instability may result in an overall
higher response, providing more mechanical energy at the floater; in
this case, parametric resonance may still have a net positive effect at
the PTO axis, in spite of the higher heave response.

It is also worth noting that the pitch and, consequently, the pen-
dulum swing are lower than the LFK prediction and never take un-
realistic values. This is specifically due to the use of a representative
NLFK model that accounts for the floater’s actual instantaneous wetted
surface.

Finally, Fig. 4 bring evidences that inducing parametric resonance
indeed has had the effect of enlarging the potential bandwidth of avail-
able energy conversion, since the PTO axis is excited in a wider range
of wave periods, i.e. close to 0.5𝑇5 and 𝑇5. In addition, the magnitude
of the induced oscillation at the nonlinear 2:1 parametric resonance is
comparable to the response at the linear natural period; therefore, the
enhancement brought by parametric resonance is significant and worth
of further investigation.

Such a modification of the free response of the system can be
exploited by a control strategy if and only if its underlying numerical
model is capable of articulating parametric resonance (if model-based
controllers are used). Such a nonlinear controller could act on the
system to trigger parametric instability and eventually amplify the
severity of the parametric response. However, incorporating complex
nonlinearities into a control-oriented numerical model is a challenging
task: promising approaches are based on identification data-driven
techniques, which have already been proven effective for NLFK-type
nonlinearities [58].

Having Fig. 4 proven that the 2:1 parametric resonance condition
does bring to a broader bandwidth across different relevant sea state
conditions, Section 6 provides further insight on the time domain evo-
lution of the response, especially in the parametric resonance region,
investigating the transient, the gradual build-up of instability, and
bifurcation behaviour that may be relevant to be taken into account
during the design of the system and of the control strategy.

6. Discussion

The increase of the amount of available energy at the PTO axis
is deduced from the steady-state response to monochromatic waves,
presented in Fig. 4; it is also worth to directly analyse the kinetic
energy, and evaluate the length of the transient required to build up
a sustained parametric response. Fig. 5 plots the instantaneous kinetic
energy in heave (𝐸𝑘,𝑧) and pitch (𝐸𝑘,𝜃), for a representative wave in
the 2:1 wedge of Fig. 4, i.e. at 𝑇𝑤 = 0.55𝑇5 and 𝐻𝑤 = 4m. Given
the oscillatory nature of the instantaneous kinematic energy, a rolling
average is also plotted in dashed line to facilitate the analysis of the
transient. Linear and nonlinear models are compared, to highlight the
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Fig. 7. Amplitudes (top row), maxima (mid row), and minima (bottom row) of the time-trace response to the up-/down-chirp signals with linearly increasing/decreasing
instantaneous frequency (𝜔).
differences in available energy and the length of the transient. The time
axis is normalized by the wave period, to indicate the number of wave
cycles. As long as the pitch response is low, in the first wave cycles,
LFK and NLFK are similar. However, as parametric resonance gradually
pumps energy from heave to pitch, the instability builds up; after about
15 wave periods, the transient is fully elapsed, as highlighted by the
steady-state available energy.

Fig. 5 also shows suggests the nonlinear response has a period
doubling. To better visualize the characteristics of the limit cycle, a
stroboscopic phase diagram is shown in Fig. 6, for the same wave as
in Fig. 5. The transient is presented in thin cyan line, the steady state
in thick orange line, and bold markers are plotted every 𝑇𝑤 during
the limit cycle. In all DoFs, two distinct markers along the limit cycle
confirm the period doubling: the heave response presents two local
maxima of the positive displacement, i.e. two alternating amplitudes,
while the pitch limit cycle is elliptical, hence with the amplitude of
the response spanning over two wave periods. The topology of the
pendulum oscillation is richer, with three loops across the 2𝑇𝑤 steady
response. It is also worth highlighting that the transient for 𝜀 is much
longer, as shown by the dense bundle of thin cyan lines: in fact, while
heave and pitch are subject to radiation damping, the pendulum has
only a very small viscous damping 𝐵𝑝 to describe friction effects at the
hinge, whereas no PTO is included.

As already discussed, the nonlinear response of the system strongly
depends on the excitation frequency. Fig. 4 is obtained with regu-
lar waves, namely monochromatic harmonic functions, that gradually
bring the system to steady state starting from equilibrium initial condi-
tions at rest with a smoothed excitation force. On the one hand, regular
waves are physically plausible, since real waves are a superposition of
harmonic functions; on the other hand, monochromatic excitation does
not allow to explore potential bifurcation and hysteresis behaviour. In
addition, a comprehensive analysis of the 𝑇𝑤 space may be computa-
tionally demanding, since a refined period spacing should be explored
and simulations should be long enough to reach steady state. Therefore,
it is convenient to also consider a physically-unrealistic but informative
chirp signal, that can provide useful insight on the nonlinear behaviour
of the system, in a computationally compact way.
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In this paper, a fictitious chirp free surface elevation (𝜂) is consid-
ered, with frequency linearly changing with time, defined as:

⎧

⎪

⎨

⎪

⎩

𝜂 = 𝐻𝑤
2 cos

((

𝑐
2 𝑡 + 𝜔0

)

𝑡
)

𝑐 = 𝜔1−𝜔0
𝑇

(9)

where the frequency sweep goes from 𝜔0 to 𝜔1 within a time window
𝑇 , and the resulting instantaneous frequency is given as 𝜔 = 𝑐𝑡 + 𝜔0.
Both up-chirp and down-chirp are investigated, referring to the relative
comparison of 𝜔0 and 𝜔1, where 𝜔0 < 𝜔1 for the up-chirp, and vice
versa for the down-chirp; the range of interest goes from 0.8𝜔5 to
2.3𝜔5. A very long 𝑇 is chosen to ensure a smooth and slow sweeping
of the instantaneous frequency.

It is important to highlight that the chirp signal is applied on the
free surface elevation; then, the wave-structure interaction applies a
frequency-dependent amplitude modulation and phase shift for the two
hydrodynamic DoFs. In the simplified case of linear hydrodynamics, the
excitation force is constructed via the wave-to-force transfer functions,
shown in Fig. 9, dependent on the wave frequency. In the more realistic
case of NLFK model, there is also an implicit dependence on the wave
height and on the displacement of the floater with respect to the free
surface elevation.

Results of the up- and down-chirp simulations are shown in Fig. 7,
with the colour gradient proportional to the wave height, ranging
from almost zero (linear condition) to 4 m. The time traces are plot-
ted against the instantaneous frequency, normalized by the pitching
natural frequency 𝜔5, since the frequency content linearly increases
(or decreases) with time. Due to the period-doubling and nonlinear
behaviour, the definition of the amplitude of response is not univocal;
therefore, Fig. 7 shows the amplitude (�̂�, �̂�, or �̂�) defined as the
magnitude of the excursion between two consecutive extrema, i.e. the
distance between a maximum (𝑧𝑀 , 𝜃𝑀 , or 𝜀𝑀 ) and the following
minimum (𝑧𝑚, 𝜃𝑚, or 𝜀𝑚), which are also shown in Fig. 7.

Within the area close to the pitching natural period (𝜔∕𝜔5 = 1), the
pitch (and pendulum oscillation) response show a typical linear and
symmetrical peak at very low wave amplitude, which is consistent with
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the linear response assumption. As the wave height (and nonlinearity)
increases, the response curve bends towards lower frequencies; in
addition, the deformation of the curve becomes evident for higher wave
heights, with an abrupt increase at low frequency and a smoother re-
gion afterwards. The same trend can be appreciated for the amplitude,
maxima and minima.

Conversely, the trend in the heaving response is remarkably dif-
ferent, clearly showing a bifurcation as the effect of period doubling
within the area close to the pitching natural period (𝜔∕𝜔5 = 1). The
top-right plot in Fig. 7 shows that the amplitude alternates between a
high and a low value within two consecutive extrema; the difference
between these two amplitudes is greater at the edges of the instability
region, where the smaller amplitude is close to zero. A similar trend
is found for the maxima and minima, which also alternate between
two consecutive values; it is worth highlighting that, while the local
maxima are almost always positive, the local minima present a branch
that goes to well beyond positive values (bottom plots in Fig. 7 show
minima with switched signs).

Finally, note that the crossing point between the two alternating
branches of the amplitude, i.e. two consecutive equal �̂�, may wrongly
induce thinking that the period-doubling response may have locally
degenerated to a single-harmonic-looking response. However, this is
incorrect, since the crossing points of the branches of the maxima and
minima trends are at different frequency locations.

Considering all DoFs within the area close to the pitching natu-
ral period, only one curve can be distinguished: therefore, the two
directions of the frequency sweep of the chirp signals are insignifi-
cant. Conversely, hysteresis phenomena are evident closer to the 2:1
parametric resonance region since, for each colour (𝐻𝑤), two lines
can clearly be appreciated in all DoFs. The width of the parametric
resonance region increases with the wave height, but the edge at higher
frequency barely moves compared to the limit of instability at lower
frequency. In addition, while a smooth amplitude transition can be
remarked at higher frequency, an abrupt jump is obtained at the lower
frequency boundary, due to a fold-type bifurcation. In fact, an unstable
branch can be expected in between the two coexisting stable branches.

A clearer analysis of the hysteresis phenomenon resulting from the
comparison of the up- and down-chirp response is performed in Fig. 8,
where only one wave amplitude is shown. While the 1:1 region presents
a perfect overlap between the two responses, a significant difference in
the width of the 2:1 parametric resonance region can be appreciated,
caused by a fold-type bifurcation. In particular, while the stemming
point of the upper branch remains at the same higher frequency for
both sweeping directions, the abrupt jump of the down-chirp response
appears at a much smaller frequency than for the up-chirp, making the
overall instability region larger.

The presence of coexisting attractors is a typical phenomenon of
parametric resonance systems [19], which cannot be appreciated from
a single-frequency analysis as in Fig. 4; conversely, the chirp analysis
is able to reveal the actual and broader region of instability, which can
be stimulated by panchromatic sea waves and leveraged by appropriate
nonlinear control strategies.

7. Conclusion

This papers elaborates on the role of parametric resonance in wave
energy converters: although parametric resonance is typically viewed
as harmful and undesirable, if properly incorporated into the fun-
damental working principle and in the early design stages, it may
actually increase the conversion bandwidth and efficiency. Based on
these factors, a WEC with a 2:1 parametric resonance is suggested
here, where one degree of freedom’s natural period is purposefully
double that of another degree of freedom, in order to use nonlinear
hydrodynamic coupling to direct some of the external energy towards
the power harvesting system.
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Fig. 8. Hysteresis phenomenon in the amplitude of the response: coexisting attractors
resulting from up- and down-chirp input signals.

Exploiting this potential requires to appropriately address chal-
lenges in the mathematical modelling and energy-maximization con-
trol. Early design must be guided by computationally efficient mathe-
matical models; only models that take into account a time-varying wet-
ted surface can articulate parametric resonance. Therefore, for axisym-
metric and prismatic floaters, this paper makes use of a computationally
efficient formulation of nonlinear Froude–Krylov forces.

Thanks to the 2:1 parametric resonance condition herein proposed
and to the appropriate numerical model, this papers quantitatively
confirms that indeed parametric resonance does appear at the predicted
conditions, and its magnitude is also meaningful: evidences are brought
that the free response of the system shows amplitudes comparable to
the natural frequency resonance, which entail a consequent significant
increase in the available mechanical energy at the power take-off.

In addition, tools for analysing the nonlinear behaviour of the de-
vice are presented and results discussed; of particular practical interest
is the effect of period doubling, which may have consequences on
design and definition of physical constraints. Moreover, the presence
of coexisting attractors makes the evaluation of hysteresis and the
dimensions of the actual frequency bandwidth more delicate to the
simulating tools.

In conclusion, this paper provides proofs that the free response
has been indeed improved. This is the validation of a first notional
step: parametric resonance has only provided a more fertile baseline
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Fig. 9. From left to right: non-dimensional diffraction (𝐹𝑑 ), dynamic Froude–Krylov (𝐹𝐹𝐾𝑑
), and resulting excitation (𝐹𝑒𝑥) linear hydrodynamic forces, in magnitude and phase, for

heave (top row) and pitch (bottom row) degrees of freedom, for different incoming wave circular frequency (𝜔𝑤). The anonymization is performed by the mass (𝑀), draft (𝐷),
and pitching natural frequency (𝜔5). The green shaded area refers to the normalized frequency range of the incoming waves considered in the simulations.
with higher available energy; it is the role of an appropriate nonlinear
control to actually exploit this potential for a final higher power output.
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Appendix A. Hydrodynamic parameters

Figs. 9 and 10 show the linear hydrodynamic parameters of the hull
9

herein considered. Eqs. (10) and (11) the state-space approximation of
convolution related to the radiation coefficients for heave and pitch
DoFs, respectively.

𝐀𝑠𝑠
𝑧 =

⎡

⎢

⎢

⎢

⎢

⎣

−0.13821 1.1533 −0.13821 0.13821
−0.21243 −0.80268 0.80268 −0.80268
−0.68874 0.68874 −0.68874 2.5387
−0.035803 0.035803 −1.8858 0.035803

⎤

⎥

⎥

⎥

⎥

⎦

(10a)

𝐁𝑠𝑠
𝑧 =

[

0.13821 −0.80268 0.68874 0.035803
]𝑇 (10b)

𝐂𝑠𝑠
𝑧 =

[

5.0295 ⋅ 105 −7.8767 ⋅ 105 4.8602 ⋅ 104 −8.2958 ⋅ 105
]

(10c)

𝐀𝑠𝑠
𝜃

⎡

⎢

⎢

⎢

⎢

⎣

0.72678 0.65264 0.72678 −0.72678
−7.2388 5.8593 −5.8593 5.8593
−17.172 17.172 −17.172 17.488
−8.5847 8.5847 −8.9015 8.5847

⎤

⎥

⎥

⎥

⎥

⎦

(11a)

𝐁𝑠𝑠
𝜃 =

[

−0.72678 5.8593 17.172 8.5847
]𝑇 (11b)

𝐂𝑠𝑠
𝜃 =

[

1.8476 ⋅ 107 −1.8128 ⋅ 107 2.3944 ⋅ 106 2.3486 ⋅ 106
]

(11c)

Appendix B. Augmented time domain mathematical model

The augmented state vector includes the hydrodynamic DoFs (𝝃2),
the auxiliary vectors for the convolution integral (𝒌𝑧 and 𝒌𝜃), and the
pendulum oscillation (𝜀) as follows:

𝝃𝑎𝑢𝑔 =
[

𝑧, 𝜃, �̇�, �̇�,𝒌𝑧,𝒌𝜃 , 𝜀, �̇�
]𝑇 (12)

Being the dimension of both 𝒌𝑧 and 𝒌𝜃 equal to 4, as shown in (10)
and (11), the total size (�̂�) of 𝝃 is 14.
𝑎𝑢𝑔
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Fig. 10. Non-dimensional added mass (𝐴) and radiation damping (𝐵) for heave (left) and pitch (right) degrees of freedom, for different incoming wave circular frequency (𝜔𝑤).
he anonymization is performed by the mass (𝑀) and pitching natural frequency (𝜔5). The green shaded area refers to the normalized frequency range of the incoming waves
onsidered in the simulations.
The first order differential equation for the non-autonomous com-
lete system becomes:

̂ �̇�𝑎𝑢𝑔 = �̂�𝝃𝑎𝑢𝑔 + �̂�𝑒𝑥, (13)

here �̂�𝑒𝑥 ∈ R�̂�×1 is non-zero only in the third and fourth dimensions,
here the external hydrodynamic forces act on the heave and pitch
oFs. Similarly, �̂� ∈ R�̂�×�̂� is defined as follows:

̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

12×2
𝑀ℎ + 𝐀𝑧

∞
𝐼𝛿 + 𝐀𝜃

∞ − 2𝑚𝑑𝑙 𝐼𝑦 + 𝑚𝑙2 − 𝑚𝑑𝑙
18×8

1
𝐼𝑦 + 𝑚𝑙2 − 𝑚𝑑𝑙 𝐼𝑦 + 𝑚𝑙2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

nd zero otherwise, where 1𝑛×𝑛 is the squared identity diagonal matrix
f dimension 𝑛, 𝑀ℎ is the hull mass and 𝐼𝛿 its inertia, 𝑚 is the pendulum
ass and 𝐼𝑦 its inertia about its hinge, 𝑙 is the pendulum length and 𝑑

ts distance from the hull’s centre of gravity; 𝐀𝑧
∞ and 𝐀𝜃

∞ are the added
ass at infinite frequency in the heave and pitch DoFs, respectively.

Finally, �̂� is composed as follows:

̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1

−𝐊𝑧
ℎ −𝐂𝑠𝑠

𝑧
−𝐊𝜃

ℎ + 𝑚𝑔(𝑑 − 𝑙) −𝐂𝑠𝑠
𝜃 −𝑚𝑔𝑙

𝐁𝑠𝑠
𝑧 𝐀𝑠𝑠

𝑧
𝐁𝑠𝑠
𝜃 𝐀𝑠𝑠

𝜃 1
−𝑚𝑔𝑙 −𝑚𝑔𝑙 −𝐵𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

nd zero otherwise, where 𝐵𝑝 is a small friction coefficient at the pen-
ulum hinge, and 𝐊𝑧

ℎ and 𝐊𝜃
ℎ are the added mass at infinite frequency

n the heave and pitch DoFs, respectively. Note that, in the NLFK case,
ℎ is computed within the nonlinear framework of Section 4.2, so it is

emoved from �̂�.
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