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Efficient Multikernel Hierarchical Compression
for Boundary Element Matrices

Damiano Franzò, Simon B. Adrian, Adrien Merlini, and Francesco P. Andriulli

Abstract – We present a new scheme that allows
for the compression of operators of the combined field
integral equation in the low-frequency regime using a
hierarchical decomposition that leverages a unified
pseudoskeleton approximation of both the single- and
the double-layer Green’s function at the quadrature points.
Compared with a standard adaptive cross approximation,
the numerical results show a reduced memory consump-
tion without sacrificing computational run time.

1. Introduction

The boundary element method (BEM) gives rise
to dense matrices, which are typically hierarchically
compressed by so-called fast methods, such as the fast
multipole method [1] or the adaptive cross approxima-
tion (ACA) [2, 3] to yield at most O ðNÞ and
O ðN logNÞ global complexity, respectively, for electri-
cally small problems, where N is the number of
unknowns. What makes the ACA appealing is its purely
algebraic nature, which allows for a straightforward
combination with existing BEM codes. A less com-
monly used algorithm, which is also of purely algebraic
nature, is the pseudoskeleton approximation, also
known as CUR [4, 5].

Regardless of whether the ACA or the CUR is
used, when the underlying integral equation formulation
consists of several operators, one has to either store and
compress a single-system matrix of the linear combination
of the operators or to separately discretize, store, and com-
press the system matrix of each operator. Although the
first approach is more memory efficient, it makes it diffi-
cult, if not impossible, to allow for a combination with
advanced preconditioning strategies [6, 7]. The second
approach, on the other hand, results in an increased mem-
ory consumption, a slower execution of matrix vector

products, and an increased compression time. Moreover, if
material parameters are changed, the entire matrix must
be rebuilt.

In this article, we present a new scheme that is
compatible with advanced preconditioning strategies,
that is, where each operator has its own discretization,
however, by using a CUR-based single hierarchical
decomposition leveraging a pseudoskeleton approxima-
tion of the single- and double-layer Green’s function
kernel for electrically small problems at the quadrature
points, the memory cost is significantly reduced com-
pared with traditional approaches. We achieve this by
compressing the Green’s function sampled at the quadra-
ture points instead of compressing the weakly tested opera-
tors (e.g., as in a standard ACA approach) together with
using a CUR-based decomposition. The latter allows to
efficiently compute rows and columns of the compressed
submatrices on the fly, so only a small portion of the sys-
tem matrices needs to be stored, thus reducing the memory
consumption. The weak discretization of the operators are
then reconstructed through the usage of sparse mappings,
which contain the Gaussian quadrature weights and the eval-
uated basis functions. The hybrid cross approximation
(HCA), introduced in [8], leverages the compression of an
interpolated kernel-generating function to efficiently handle
single- and double-layer matrices. Although the objectives
of the method we propose and those of the HCA exhibit
some similarities in philosophy, compressing the Green’s
function matrix at the quadrature points as we propose
allows for straightforward integration into existing
H -matrix-enabled frameworks and remains a purely
matrix-based technique. Although the method we present
targets electrically small problems, extensions to handle
electrically larger problems are foreseen, by properly lever-
aging advanced preconditioning and compression tech-
niques, and will be the subject of future contributions.

2. Background and Notation

The Helmholtz equation

r2’ðxÞ þ k2’ðxÞ¼ 0 x 2 Xþ � Rd (1)

with d 2 f2; 3g is used to model two-dimensional (2D)
and three-dimensional acoustic and 2D electromagnetic
scattering and radiation problems, where k is the wave-
number, X denotes the scatterer, Xþ ¼R3n�X, and in the
context of acoustics, ’ denotes the total pressure field.
For the impenetrable scatterer, we have the sound soft
boundary condition ’¼’sca þ ’inc ¼ 0 on the boundary
C¼ ]X, where ’inc is the incident and ’sca is the scat-
tered pressure field. To solve the sound soft scattering
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problem, we use the Brakhage–Werner equation com-
bined field integral equation (CFIE) formulation [9, 10]

I =2þD � j�Sð Þψ ¼ �’inc for r 2 C (2)

where ψ is a surface scalar field, j is the imaginary
unity, I fð ÞðxÞ¼ f ðxÞ is the identity operator, and
h is the coupling parameter of the single-layer
S fð ÞðxÞ¼ Ð

CGðx;yÞf ðyÞdsðyÞ and the double-layer
operator D fð ÞðxÞ¼ Ð

C]n0Gðx;yÞf ðyÞdsðyÞ, where
Gðx;yÞ¼ ejkkx�yk=ð4�kx � ykÞ is the free-space
Green’s function associated with (1). We will refer to
Gðx;yÞ as kernel of S and to ]n0Gðx; yÞ¼ryGðx; yÞ �
n0 as the kernel of D . Once ψ is found, the scattered
field ’sca can be computed via ’sca ¼ D � j�Sð Þψ .

Using the BEM, we approximate ψ � PN
n¼ 1 vn�n

in terms of piecewise linear basis functions f�ngNn¼ 1,
where vn is the unknown expansion coefficient and

�nðrÞ¼
1 forx¼ vn
0 forx¼ vp 6¼n

linear otherwise

8<
: (3)

where vn is the nth vertex of the mesh. Leveraging a
Galerkin approach, the discretized Brakhage–Werner
equation becomes

1=2 ½I� þ ½D� � j�½S�ð Þ½v� ¼ � ½’inc� (4)

where ½D�mn ¼ð�m;D �nÞL2 ; ½S�mn ¼ð�m;S �nÞL2 ; ½I�mn ¼
ð�m; �nÞL2 ; ½’inc�m ¼ð�m; ’

incÞL2 ; and ½v�n ¼ vn are the
unknown expansion coefficients.

The matrices ½S� and ½D� are fully populated,
resulting in O ðN2Þ complexity for memory storage and
as complexity for the cost of a single matrix vector
product (MVP). The goal of any fast method is, at most,
to obtain a quasilinear complexity, that is, to reduce the
storage and the MVP time complexity to O ðN logNÞ.

To obtain such a complexity, H matrices can be
used [11–14], where the fact is leveraged that the matri-
ces ½S� and ½D� have submatrices ½B� 2 Ct3s formed by
rows and columns � f1; :::;Ng, admitting a low-rank
form (LRF), where the rank is O ð1Þ in the low-fre-
quency regime, and we used MATLAB notation to
denote the submatrices. In this article, we leverage
the pseudoskeleton form ½B�ðt; sÞ � ½C�½U�½R�, where
½C� 2 C n3r; ½U � 2 C r3r; ½R� 2 C r3m and r is the e
rank of the decomposition satisfying an error bound
k½B�ðt; sÞ � ½C�½U �½R�k2 # ek½B�ðt; sÞk2, thereby lower-
ing the cost of the MVP and storage time complexity if
r3 ðnþ mÞ, n3m. This form arises typically from
sampling rows ½R� and columns ½C� according to a cer-
tain pattern. The matrix ½U � is usually the inverse or
pseudoinverse of the intersection between the sampled
rows and columns. To identify suitable submatrices, a
partitioning algorithm such as an octree must be used,
which creates a hierarchical partition of row and col-
umn indices (for details, see [12]). In the following, we

refer to a cluster as a set of either row or column indi-
ces; thus, a row and a column cluster together corre-
spond to a specific submatrix.

For compressible ½B�ðt; sÞ, the associated inte-
grands are nonsingular because the support of the
expansion and of the testing functions are well sepa-
rated. Because the integrand is nonsingular, a Gauss
quadrature can be used for both the integrals over the
domain of the testing and of the expansion function. Let
Q be an integral operator with kernel qðx;yÞ. We indi-
cate with ½Qns� and ½Qs� the nonsingular and the singular
interactions so that ½Qns� þ ½Qs� ¼ ½Q�. We note that

½Qns�i;j ¼h�i;Q �ji �
X
i0

wi0�ðpi0 Þ
X
j0

wj0�ðpj0 Þqðpi0 � pj0 Þ

(5)

where pi0 and pj0 are the quadrature points associated
with the integration over supp ð�iÞ and supp ð�jÞ. By
leveraging (5), we can rewrite ½Qns� as a composition
of matrix multiplications, leading to the matrix
decomposition

½Q� ¼ ½W �T ½~Q� ½W � þ ½Qs� þ ½Qc� (6)

where ½Qs�; ½W �, and ½Qc� are sparse matrices whose
values are zeros except ½W �ii0 ¼ �iðpi0 Þwi0 , if pi0 � suppð�iÞ;
½Qc�ij ¼ � ½W �T ½~Q� ½W �

h i
ij
, if h�j;Q �ii is singular; ½Qs�ij ¼

h�j;Q �ii, and if h�j;Q �ii is singular and ½~Q�i0j0 ¼ ð1� d i0; j0 Þ
qðpi0 � pj0 Þ, where d i;j ¼ 1, if i ¼ j, and 0, otherwise, is a
dense matrix containing the kernel evaluation on the quad-
rature points. This approach has been referred to as point
based [15], and it is equivalent to replacing the traditional
basis-to-basis interactions with point-to-point interactions.
The correction matrix ½Qc� subtracts contributions that are
considered twice in ½Qs� and ½~Q�. All the matrices above
are sparse except ½~Q�, as it contains the kernel evaluations
for quadrature points of nonsingular interactions.

3. A Multikernel Compression for the CFIE

We now consider ½Q� ¼ ½S� and ½Q� ¼ ½D�, where
we show that ½~D� can be computed by reusing ½~S �, which
we directly obtain, based on (5). Defining Ĝðx;yÞ¼ 4�G
ðx;yÞ, we find that

]n0Gðx;yÞ¼Gðx;yÞ
ðkĜðx;yÞk2 � kjkĜðx; yÞkÞðx � n0 � y � n0Þ (7)

By leveraging the decomposition (6), we obtain

½~D� ¼ ½H1x�½~Gd�½H2x� þ ½H1y�½~Gd�½H2y� þ
½H1z�½~Gd�½H2z� � ½~Gd�½Mx� � ½~Gd�½My� � ½~Gd�½Mz�

(8)

where ½~Gd�i0;j0 ¼ ½~S �i0;j0 ð16�2 j ½~S �i0;j0 j 2 � 4�kj j ½~S �i0;j0 j Þ, ½Mp� ¼
diagðyi0;pn0i0;pÞ; ½H1p� ¼ diagðn0i0;pÞ, and ½H2p� ¼ diagðxi0;pÞ
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with p 2 1; 2; 3f g; ni0;p are the pth components of the
normal of the ith triangle, xi0;p and yi0;p are the pth com-
ponents of the quadrature points xi0 and yi0 of the ith tri-
angle, respectively.

Assume that ½Bs� and ½B~Gd
� are rank-deficient

submatrices of ½~S � and ½~Gd� that are based on the same
subset of rows and columns. Further assume the LRF of
½Bs� � ½Cs�½Us�½Rs� with ½Cs� ¼ ½Bs�ð:; Ĵ Þ; ½Rs� ¼ ½Bs�ðÎ ; :Þ;
½Us� ¼ ½Bs�ðÎ ; Ĵ Þ

� �†
, where Î and Ĵ are index sets con-

taining the row and column indices used in the fac-
torization and the † denotes the Moore–Penrose
pseudoinverse. With the same definitions, we denote
the decomposition ½B~Gd

� � ½C~Gd
�½U~Gd

�½R~Gd
�, where we

use the same index sets Î and Ĵ for ½Bs�. The matrix
decomposition of ½B~Gd

� can be related to ½Bs� by

½C~Gd
�½U~Gd

�½R~Gd
� ¼ ½Cs��¼ ½U~Gd

��¼ ½Rs� (9)

where, as in [16], �¼ is defined as

½A��¼x¼ 4�
XN
j¼ 1

ð4�j½A�i;jj2 � kjj½A�i;jjÞ½A�i;jxj (10)

Also, (9) shows that once a decomposition of ½Bs�
has been obtained, the only additional information
needed to approximate the submatrix ½B~Gd

� is the matrix
½U~Gd

�, which can be computed in constant time. To
obtain a memory-efficient compression, we note that
the computation of ½Cs� and ½Rs� is extremely fast.
Unlike in a traditional ACA scheme, where the actual
system matrix is sampled, the direct evaluation of the
Green’s function at the quadrature points is much faster
in terms of CPU time. For this reason, we will compute
the matrix vector products with ½Cs� and ½Rs� on the fly.
Due to (9), the same approach carries over to ½B~Gd

�.
Thus, in our approach, we store only the intersections
½Bs�ðÎ ; Ĵ Þ and ½B~Gd

�ðÎ ; Ĵ Þ for each admissible cluster,
which significantly reduces the stored memory. During
each MVP ½C�½U �½R�½x�, rather than computing the pseu-
doinverse, which is subject to instabilities and depends
on a truncation threshold, we use an lower–upper
solver. Because the rank r is not known beforehand, we
use the heuristic algorithm described in [5] to sample
rows and columns: on each iteration, the indices I and J
are chosen randomly, and the error is computed with
respect to the projection into a random subspace of the
previous iteration. If the error exceeds the demanded
threshold, the sample size is doubled, and the algorithm
continues with the next iteration. For each cluster, we
have to compress the two submatrices ½Bs� and ½B~Gd

�.
For stability reasons, we first start factorizing ½Bs�, and
the obtained Is and Js are used as a starting point for fac-
torizing ½B~Gd

�.
It is possible to optimize storage by only saving

rows and columns, where the single layer is evaluated

for I and J indices. One can use the subset of rows Is �
I and columns Js � J to compute the single-layer MVP.
Likewise, the double-layer MVP can be computed with
the stored rows I and columns J by using (9) and (8).
Our approach is based on two assumptions: 1) the e
rank of ½B~Gd

� is larger than that of ½Bs�; and 2) the same
rows and columns can be used for the factorization. In
the next paragraph, we will provide some consider-
ations that support these assumptions.

Assume gðxi;yiÞ to be the kernel function associ-
ated to the matrix ½Bg�. We have

½Bg�i;j ¼ gðxi;yjÞ¼ gpðxi;yjÞ þ rgy;pðxiÞ (11)

where gp is the polynomial (Lagrange) interpolation
of g of order p and rgy;p is the associated remainder.
Also, assume a pseudoskeleton approximation of rank

Kp¼
Pp�1

l¼ 0
l þ 2
l

� �

½Bg� ¼ ½Cg�½Ug�½Rg� þ ½Eg� (12)

where ½Eg�i;j ¼ rgKp
ðxi;yjÞ is the associated remainder.

This definition can also be written as

½Bg�i;j ¼ ½Cg�ði; :Þ½Ug�½Rg�ð:; jÞ þ rgKp
ðxi;yjÞ (13)

It can be shown that rgKp
is related to rgy;p [17, eq.

(6)]

j rgKp
ðxi; yjÞ j#ð1þ 2KpÞ sup

x
j rgy;pðxÞ j (14)

that later will allow us to shift the results on the bound
of the polynomial remainder to the one arising from the
pseudoskeleton approximation. As a consequence, we
exploit this connection to justify our method by show-
ing that given a function gsðx; yÞ¼ kx� yk�s, for s ¼
1, the relative error of an associated polynomial interpo-
lation will decrease faster to zero than for s . 1 and
p ! 1. To show this, we first recall that the kernels
gs : R

3 3R3 ! R are asymptotically smooth, so
Cas1;gs;Cas2;gs . 0 and s 2 N� exist and we have [18]

j]ni gsðx; yÞj#Cas1gs Cas2;gskx� yk� ��n�sn! (15)

where gsðx;yÞ¼ kx� yk�s and ]ni is the nth derivative
with respect to xi. The constants Cas1 and Cas2 are indi-
cated with a subscript gs to indicate the kernel depen-
dency. For s ¼ 1, we have Cas1;g1 ¼Cas2;g1 ¼ 1 [8,
section 2.1]. Furthermore, to show the faster conver-
gence, we need Cas2;gs, 1 for s . 1, which is guaran-
teed by the following lemma.

3.1 Lemma 1

Let gsðx; yÞ¼ kx� yk�s with x;y 2 R3; x 6¼ y
and Cas1;gs 2 Rþ. For N3 s. 1, we have Cas2;gs , 1.

URSI RADIO SCIENCE LETTERS, VOL. 5, 2023 3



3.1.1 Proof: Let i 2 1; 2; 3. For proving the
lemma, it is sufficient to consider the special case xj ¼
yj for j 6¼ i. Given the kernel gsðx;yÞ¼ kx� yk�s, with
s$ 1, we have

j]ni gsðx;yÞj ¼ kx� yk�n�sðnþ s� 1Þ! (16)

that can be substituted in the asymptotic condition (15),
leading to

kx� yk�n�sðnþ s� 1Þ!#Cas1;gs

Cas2;gskx� yk� ��n�sn! (17)

that simplifies to

Ynþs�1

l¼ nþ1

l#Cas1;gsC
�n�s
as2;gs

(18)

that leads to a contradiction if Cas2;gs $ 1. h

Let x 2 B� � R3 and y 2 B� � R3, where B�

and B� are boxes as an octree would generate them. We
introduce the auxiliary constants defined in [18] g gs :¼
1= Cas2;gsdistðB� ;B�Þ
� �

, Cgs :¼Cas1;gs= Cas2;gsdistðB� ;B�Þ
� �s,

and Cdiam :¼minfdiamðB�Þ; diamðB�Þg. Let ~gs be an
approximation of gs obtained via an interpolation
scheme. Assuming that distðB� ;B�Þ. 0, the interpola-
tion (absolute) error is bounded by [18, eq. (12)]

kgs � ~gsk1;B�3B�
# 24eKpCgs

ð1þ g gsCdiamÞðpþ 1Þ 1þ 2=ðg gsCdiamÞ
� ��ðpþ1Þ

(19)

where Kp is the Lebesgue constant, which depends on
the specific interpolation scheme used.

To simplify the notation, we introduce the constant
b ¼Cdiam= 2distðB� ;B�Þð Þ. We note that ð1þ g gsCdiamÞ¼
ðCas2;gs þ 2b Þ=Cas2;gs and 1þ 2=ðg gsCdiamÞ

� ��ðpþ1Þ ¼
b =ðb þ Cas2;gsÞ
� �ðpþ1Þ

so that (19) becomes

kgs � ~gsk1;B�3B�
# 24eKpCgs

Cas2;gs þ 2b

Cas2;gs

� �
ðpþ 1Þ b

b þ Cas2;gs

� �ðpþ1Þ (20)

We divide (20) by kgsk1;B�3B�
¼ distðB� ;B�Þ�s,

yielding

~egsp : ¼ kgs � ~gsk1;B�3B�

kgsk1;B�3B�

# 24eKkðCas1;gs=C
s
as2;gsÞ

Cas2;gs þ 2b

Cas2;gs

� �
ðpþ 1Þ b

b þ Cas2;gs

� �ðpþ1Þ

(21)

Clearly, we have an exponential convergence in
K, where the speed of convergence is determined by the

last factor. Because we have Cas2;g1 ¼ 1 and due to
Lemma 1, we have Cas2;gs,1 for s . 1, and we have

b

b þ Cas2;g1

� �ðpþ1Þ
,

b

b þ Cas2;gs

� �ðpþ1Þ
(22)

The result ~egsp can be interpreted as the supreme
of the relative error of a polynomial interpolation of gs
of order p, which can be substituted in (14) on the right-
hand side, leading to

k½Egs � � ½Bgs �kmax ¼ sup
i;j

j rgKp
ðxi; yjÞ j

gsðxi; yjÞ
#ð1þ 2KpÞ~egsp

(23)

where to simplify the notation, we set ½~Egs � ¼ ½Egs � � ½Bgs �
to indicate the elementwise relative error matrix. By
multiplying all terms of (23) by

ffiffiffiffiffiffi
mn

p
, we obtain

k½~Egs �kF #
ffiffiffiffiffiffi
mn

p k½~Egs �kmax #
ffiffiffiffiffiffi
mn

p ð1þ 2KpÞ~egsp
(24)

Therefore, for each block, if a ~p exists so that
k½~Egs �kF #

ffiffiffiffiffiffi
mn

p ð1þ 2K~p Þ~egs~p , e for s . 1, then the

exponential convergence properties of ~egs~p will also

guarantee that k½~Eg1 �kF , e. Note, however, that the pre-
viously mentioned bound is often very pessimistic and
the use of the previously mentioned criterion could lead
to computational inefficiencies; thus, we opted for a
heuristic approach for determining K~p , as explained at
the beginning of this section. The validity of assump-
tions 1) and 2) for the use of heuristics is, as a conse-
quence, a numerical conjecture.

4. Numerical Results

Consider as a canonical example the scattering
from a sphere with radius 1m, sound soft boundary

condition, and a plane wave excitation with bk¼ bz, and
frequency 20Hz corresponding to k � 0:36m�1. We
study the asymptotic memory consumption and the
time. As denoted in Section 2, we apply our algorithm
to the CFIE (4). We compare the performance of our
scheme with a standard ACA. Table 1 compares the
timing between the two methods, while Figure 1 shows

Table 1. The timing performance of a standard ACA and our new
formulation (multikernel)

N
Time (min) 2562 10,242 40,962 163,842

ACA Assembly 0.0675 0.3538 1.8326 9.1448
Total 0.0690 0.3600 1.8605 9.2567

New Assembly 0.0408 0.2171 1.0742 5.2420
Total 0.1130 0.5204 2.4237 11.0048
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memory consumption and the relative error. First, we
note that the relative error of the solution displayed in
the plot is with respect to the result provided by the ana-
lytical solution for the far field. Our formulation yields
a similar accuracy as the standard ACA, while yielding
memory savings. We note that for larger problems, the
relative memory savings increase without jeopardizing
the total run time. Our experiments have been per-
formed on a cluster with a CPU Intel Xeon Gold 6238R
and 1.5 TB of RAM. We used GMRES [19] as the
numerical solver of the linear system, with a target
accuracy of 10�5. The target accuracy for the standard
and new compression schemes is set to 10�5. However,
given the differences between compression algorithms,
an identical target accuracy will lead to a lower level of
compression for the reference ACA-based scheme. In
practice, this means that a lower target accuracy can be
set for the new scheme to obtain the same field accu-
racy, which leads to time and memory savings. The dis-
cussion on the choice of optimal target accuracy is
omitted here because of space constraints.
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