POLITECNICO DI TORINO
Repository ISTITUZIONALE

VeryBug: An Attention-based Framework for Bug Localization in Hardware Designs

Original

VeryBug: An Attention-based Framework for Bug Localization in Hardware Designs / Stracquadanio, Giuseppe; Medya,
Sourav; Quer, Stefano; Pal, Debjit. - ELETTRONICO. - (2024), pp. 1-2. (Intervento presentato al convegno DATE 2024
Design, Automation and Test in Europe tenutosi a Valencia (ESP) nel 25-27 March 2024)
[10.23919/DATE58400.2024.10546890].

Availability:
This version is available at: 11583/2989448 since: 2024-06-11T22:34:03Z

Publisher:
IEEE

Published
DOI:10.23919/DATE58400.2024.10546890

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

18 November 2024

VeriBug: An Attention-based Framework for
Bug Localization in Hardware Designs

Giuseppe Stracquadanio'?, Sourav Medya
YWUniversity of Illinois Chicago, Chicago, IL, USA

!, Stefano Quer? and Debjit Pal!
2politecnico di Torino, Torino, Italy

{gstrac3, medya, dpal2} @uic.edu, stefano.quer@polito.it

Abstract—In recent years, there has been an exponential growth
in the size and complexity of System-on-Chip (SoC) designs tar-
geting different specialized applications. The cost of an undetected
bug in these systems is much higher than in traditional processors,
as it may imply loss of property or life. Despite decades of
research on simulation and formal methods for debugging and
verification, the problem is exacerbated by the ever-shrinking
time-to-market and ever-increasing demand to churn out billions
of devices. In this work, we propose VeriBug, which leverages
recent advances in deep learning (DL) to accelerate debugging
at the Register-Transfer level (RTL) and generates explanations
of likely root causes. Our experiments show that VeriBug can
achieve an average bug localization coverage of 82.5% on open-
source designs and a wide variety of injected bugs.

I. INTRODUCTION

Simulation and formal verification are two complementary
verification techniques. Given a design property, formal verifi-
cation proves the property holds for every point of the search
space. Simulation, instead, verifies the property by pseudo-
randomly testing a small subset of the search space.

Bug localization techniques relying on formal methods,
such as BDDs, BMC, Interpolants, IC3, and other SAT-based
methods offer a systematic and rigorous approach to identifying
and localizing bugs in hardware designs. However, they are
computationally intensive, require additional expertise, and
require conspicuous effort for specifying complex mathematical
logic models. Bug localization in simulation-based workflows is
addressed by identifying common patterns [5] in failure traces
and mapping them to the source code. Unfortunately, prior
localization techniques often lack explanation for a potential
bug, leaving the reasoning to the verification engineer.

These limitations, coupled with the ever-increasing hardware
complexity and shrinking time-to-market, mandate the develop-
ment of new hardware verification methods.

Following this research direction, we propose VeriBug, an
automated bug-localization framework that harnesses the power
of a data-driven approach and recent advances in deep learning
(DL). The major drawbacks of other DL-based verification
techniques are as follow. First of all, they directly extract
features from the specific code [6] and do not guarantee
generalization to unseen code structures. Secondly, they mainly
approach the problem as a classification task, where an entire
program is classified as buggy or not buggy [3], thus requiring
large annotated datasets to train neural networks. To overcome
these constraints, VeriBug avoids dependence on features of
a specific programming language and instead automatically

Target Variable t
—

Verilog Design D Feature
et aliN
Extraction

Simulation Cycles

Input Vector I,
—

Deep Learning Heatmap H;
Model H Explainer }»

Correcl
Traces

Failure

7. f Traces

Fig. 1: VeriBug workflow. The Feature Extraction component
(D) extracts features from the design. The Deep-Learning
Model (@) learns the execution semantics. The Explainer (3)
component aggregates trace-level semantics into condensed
execution information and produce heatmaps.

learns relevant design features from abstract design represen-
tations such as Abstract Syntax Trees (ASTs). This unique
capability to learn features from such representations makes
VeriBug broadly applicable to hardware designs developed in
other hardware programming languages. These learned features
are design agnostic, allowing for generalization to unseen
designs. Our DL architecture localizes the root cause of a
bug by comparing the learned semantics for failure and the
correct simulation traces. VeriBug does not need to be trained
on a labeled design corpus as we train it on a proxy task to
learn execution semantics from simulation traces. Moreover, the
approach is fully integrable with current verification workflows
without additional artifacts.

Our experiments show that learned knowledge can be trans-
ferred and generalized to unseen designs. In our bug injection
campaign, on four different real designs, we obtain an average
coverage of 82.5%, and we localize 85 injected bugs over a
total of 103 observable ones.

II. OVERVIEW OF OUR VERIBUG ARCHITECTURE

We aim to root-cause a design failure and localize it to a
subset of the design source code. Given a Verilog hardware
design D, with I inputs, O outputs, and an observed failure f
at output t € O, VeriBug localizes the failure to a subset of
likely suspicious source code statements £ C D and generates
quantitative explanations of suspiciousness.

Our tool VeriBug introduces a novel bug-localization tech-
nique by leveraging state-of-the-art DL. Figure 1 shows the
complete workflow of VeriBug, consisting of three components.

The first component, the Feature Extraction module, extracts
knowledge (i.e., raw features) from the input design D. We use
GOLDMINE [4] to extract a Control Data Flow Graph (CDFG)
and a Variable Dependency Graph (VDG) of the Verilog design

Module Name Ct¢(Ibug) He /Fi (lbug)
assign wbs0_dat o = wbm_dat i; assign wbs0_dat o = whm_dat_i;
WB MUX2 /* mutant no: 7 :: assign wbs0 wep = wbm we i & wbs0 _sel;* /* mutant no: 7 :: assign wbhs0 we 0 = wbhm we i & whs0_sel;*/
assign whs0_we 0 = & ~whs0_sel; assign whs0 we o = [Whm we il &
assign whs0 sel 0 = wbm sel i; assign wbs0_sel 0 = wbm _sel i;
/{ Frame Number (from SOF token) // Frame Number (from SOF token)
USB PL /* mutant no: 2 :: assign frame no we = token valid & !crc5 err & pid SOF;*/ /* mutant no: 2 :: assign frame no we = token valid & !crc5 err & pid SOF;*/
assign frame no we = token valid & lcrc5 err | pid SOF; assign frame no we = token valid & !cre5 err |
/I Memory Request) /[Memory Request
USB IDMA /¥ mutant no: 1 :: assign mreq = (mreq d & !'mack r) | word done r;*/ /* mutant no: 1 :: assign mreq = (mreq d & !mack 1) | word done r;*/
assign mreq = (mreq d "~ [!mackr) | word done r; assign mreq = [(réqid| ~ ['mack r) | word done r;
assign debug mode o = debug mode assign debug mode o = debug mode g
IBex RISC-V /* mutant no: 8 ass|gn stall = ((stall Isu_i | stall multdiv i) | staluump 1) | stall_branch_i);* /* mutant no: 8 :: assign stall = ((lsta]l Isu i | stall multdiv i) | stall jump i) | stall branch i);*/
assign stall = (((dret insn i | stall multdiv i) | stall jump i) | stall branch i assign stall = [(((dFet.insnii] | stall) mumﬂv) | ‘stall jump i) [stall branch i);
Controller assign id in ready 0 = (~stall & ~halt if; assign id_in ready o = (~stall & ~halt i
assign instr valid clear o = (~(stall | halt if) | flush id); assign instr valid clear 0 = (~(stall | ha]t if) | flush id);

Fig. 2: VeriBug generated heatmaps on real designs. We report a visual comparison between operand importance scores in C;
(blue, deeper is more important) and importance scores in IF; (red, deeper is more important).

D. We analyze the CDFG and the VDG to identify the control
and data dependencies for t and to extract design slices,
including relevant statements. All relevant statements are then
translated into Abstract Syntax Trees (ASTs).

Our Deep Learning Model produces rich operand embed-
dings for each operand in a statement [z, by encoding its
input assignment and embedding AST paths that contain the
operand. After that, it computes a weighted sum with operand
embeddings using attention weights produced by our Attention
[2] module. Given the AST of statement [;, and operands’ input
assignments, the model predicts its output value, together with
attention weights that we interpret as importance scores for
operands. Using this model architecture we enforce a strong
inductive bias for learning execution semantics.

The Explainer module aggregates importance scores for cor-
rect simulation traces 7. and failure simulation traces 7, pro-
ducing two different aggregated attention maps, respectively C,
and ;. The aggregation of such scores leads to a concise repre-
sentation of the design execution behavior in the two simulation
scenarios, allowing for a direct comparison for bug localization.
Specifically, when the euclidean distance d(Fy(l), Ci(lg)) is
higher than a pre-defined threshold, we store F;(l)) scores in a
heatmap H;. We also use d(F:(Ix), C,(lx)) as a suspiciousness
score for lj. Following this heuristics, the final heatmap H,
contains only importance scores of candidate buggy statements.

III. EXPERIMENTAL SETUP AND RESULTS

We train VeriBug on a synthetic data set to enforce variability
in training data necessary to achieve generalization. During
training, we create batches by sampling statements and their
associated input vectors from the training set. Our attention-
based neural network is trained to predict the output value of
each statement. We assume that models with higher prediction
accuracy can compute better statement representations and
generally learn better features related to execution semantics.
Thus, we select the model with the highest accuracy as the
output of the first step in our evaluation pipeline. After the
training phase, we evaluate the effectiveness of VeriBug for
bug localization using realistic designs.

Notice that, at inference time, the last layers for prediction
are discarded and only attention weights are used and aggre-
gated to create I, and C,. To validate the bug localization ef-
fectiveness, we inject bugs of varying complexity. Specifically,

we introduce data-centric bugs by automatically mutating the
designs according to a pre-defined set of mutation rules.

We compute a bug coverage metric for each design-target
(D, t) pair as the ratio between the number of localized bugs
and the total number of observable bugs. We consider a bug as
localized when the highest suspiciousness score in the heatmap
H, is assigned to the statement containing the actual root cause.
We observe that VeriBug effectively localizes different bug
types in data-flow with a top 97.6% bug coverage, obtained
on the IBex RISC-V Controller [1]. These experimental results
demonstrate that VeriBug is a promising approach for precise
bug localization of data-centric bugs. This empirical evidence
also shows that the learned knowledge is transferable to real
designs after synthetic training, making VeriBug a promising
approach for broader adoption and scaling.

VeriBug allows for further localization via mapping impor-
tance scores stored in heatmap H; back to the RTL code. We
provide a few examples of VeriBug generated heatmaps on real
designs in Figure 2.

IV. CONCLUSION

We presented VeriBug, a framework for bug localization
which automatically generates explanations for bugs, to make
decisions accessible to a debugging engineer. VeriBug is par-
ticularly effective for data-flow bug localization, and its learned
knowledge is transferable to unseen designs. Albeit preliminary,
our approach shows promising results, and it is compatible with
current verification flows without any additional artifacts.

REFERENCES

[1] IBex. https:/github.com/lowRISC/ibex. Accessed: January 17, 2024.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation
by Jointly Learning to Align and Translate. Int’l Conf. on Learning
Representations (ICLR), 2016.

[3] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen. Improving Bug
Detection via Context-Based Code Representation Learning and Attention-
Based Neural Networks. Proc. of the ACM on Programming Languages
(PACMPL), 2019.

[4] D. Pal, S. Offenberger, and S. Vasudevan. Assertion Ranking Using
RTL Source Code Analysis. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2020.

[5] D. Pal and S. Vasudevan. Symptomatic Bug Localization for Functional
Debug of Hardware Designs. Int’l Conf. on VLSI Design Embedded
Systems (VLSID), 2016.

[6] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan. Bugram: Bug
detection with n-gram language models. Int’l Conf. on Automated Software
Engineering (ASE), 2016.

https://github.com/lowRISC/ibex

	Introduction
	Overview of our VeriBug architecture
	Experimental Setup and Results
	Conclusion
	References

