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Abstract—Graphics processing units (GPUs) are widely used to
accelerate Artificial Intelligence applications, such as those based
on Convolutional Neural Networks (CNNs). In some domains in
which CNNs are heavily employed (e.g., automotive and robotics),
the expected life-time of GPUs is over 10 years. As in these
domains reliability is a major concern, the analysis of the impact
of permanent faults (e.g., due to aging) needs to be paramount.
Crucially, while the impact of transient faults on GPUs running
CNNs has been widely studied, an accurate evaluation of the
impact of permanent faults is still lacking. Performing this
evaluation is a challenge, due to the complexity of GPU devices
and of the software implementing a CNN. In this work, we
propose a methodology that combines the accuracy of gate-level
fault simulation with the speed and flexibility of software fault
injection to evaluate the effects of hardware permanent faults
affecting a GPU. First, we profile the executed low-level GPU
instructions during the CNN execution. Then, using extensive
gate-level fault injection campaigns, we provide an accurate
analysis of the effects of permanent faults on the internal modules
executing the targeted instructions. Finally, these effects are
propagated in the application using a fast software-based fault
injection. The method allows for the first time to estimate the
percentage of permanent faults leading the CNN to produce
wrong results (i.e., changing the result of its work). The feasibility
of the method, which allows to flexibly trade-off accuracy with
the required computational effort, is shown using LeNet running
on a Ampere Nvidia GPU as a case-study. The method reduces
the computational effort for the evaluation in several orders of
magnitude.

Index Terms—Convolutional Neural Networks (CNNs), Graph-
ics Processing Units (GPUs), Permanent faults

I. INTRODUCTION

Modern GPUs are known to be highly susceptible to tran-
sient faults. The sensitivity of GPUs and parallel applications,
including Convolutional Neural Networks (CNNs), to radiation
and other sources of transient faults has been widely studied
through beam experiments [1], software fault injection [2], [3],
and microarchitectural fault simulation [4], [5]. These faults
can cause the output corruption of a running application and
lead to catastrophic consequences in safety-critical domains.

Recently, GPUs have been adopted in applications (such
as automotive, robotics, aerospace, and health care) in which
the device life expectation is in the order of 5 to 10 years.
This life expectation is much longer than the typical 1-2

years for GPUs used in gaming, mining, or high performance
computing applications and poses novel challenges in the
GPUs reliability evaluation. In fact aging, degradation, and
wear-out effects must now be considered, as they can lead to
permanent hardware faults in the GPUs, which may produce
unacceptable critical effects when the GPU is used in a safety-
critical domain.

Unfortunately, there are very limited research results avail-
able to estimate how frequently a permanent fault affecting
a GPU which runs a CNN may produce a critical failure
(e.g., a failure that produces a misclassification if the CNN is
used as a classifier). The probability of a (permanent) fault to
produce a critical failure depends not only on the architecture
of the underlying GPU, but also on the characteristics of
the software implementing the CNN. An exhaustive gate-
level fault simulation is impractical for this purpose due to
the unacceptably high computational requirements. In fact,
the parallel nature of GPU architecture, the huge number
of possible faults due to the number of gates (millions of
them for a GPU core), and the complexity of the software
implementation and architecture of the CNN (≈3M weights
and ≈9K neurons for LeNet5) make the permanent fault effect
evaluation extremely challenging. Therefore, a novel accurate
and efficient approach is required. What we propose is to
combine the speed of high-level software fault injection with
the detailed analysis supported by gate-level fault simulation.

In this paper, we propose a combined fault injection frame-
work that enables a detailed and efficient evaluation of the
effects of permanent faults in GPUs executing CNNs. To track
the effect of a permanent fault, our framework combines the
fault injection in two different abstraction levels (hardware and
software). The low-level microarchitectural hardware effect of
a permanent fault is determined using an open-source model
of the hardware of an Nvidia GPU (FlexGripPlus [6]) and then
propagated in a real GPU device at the software level. This
approach reduces the prohibitively high execution times of
low-level microarchitectural hardware simulations for complex
algorithms, such as those for managing CNNs by several
orders of magnitude, while still allowing an accurate and
detailed permanent fault analysis. For example, considering an



RT-level GPU model, one fault campaign requires about eight
days to evaluate a 32X32 matrix multiplication (MxM). Thus,
the complete evaluation of a CNN, such as LeNet5, which
incorporates hundreds of MxM operations plus further max-
pooling and activation operations, would require unfeasible
simulation times (> 10,000 days!).

In principle, the proposed framework can be used to perform
a permanent fault analysis in all GPU resources. In this paper
we show the feasibility of the method by focusing on the
effects of faults affecting the two main functional units, i.e.,
the Floating Point Unit (FPU) and the Integer core (INT). Our
approach is based on four main steps: i) software profiling, ii)
gate-level fault injection, iii) software-level fault propagation,
and iv) fault classification.

We first profile the CNN application in software, identifying
the information about each instruction that uses a target func-
tional unit (i.e., input values, output result, and opcode). This
software profiling step resorts to a binary instrumentation tool
based on NVBit [7], which traces (at run time) also the parallel
operational configurations for software (thread ID, warp ID,
Block ID) and hardware (lane ID, and SM ID) parameters.

In the second step, we simulate each permanent fault in a
functional unit (FPU or INT) resorting to a low-level microar-
chitectural fault simulator, tracking its effects on the outputs
of the unit during the execution of each single instruction.

The third step propagates the permanent fault effects
through the CNN application. For this purpose, we run the
application in a real GPU, injecting the effects of the fault at
the end of the execution of each instruction using a specific
hardware core (i.e., CUDA core). Finally, the error effect is
classified and the critical effects are traced-back to identify
the source structure that has produced them.

As a case study, we choose the LeNet CNN, composed of 32
parallel kernels, to evaluate the impact of permanent hardware
faults in the functional units at the application level. The ex-
perimental results show that hardware faults in the FPU cause
a significant percentage of critical effects in the CNN (≈10%
for the FADD, ≈5.4% for FMUL, and ≈15.5% for FFMA
instructions). Moreover, results allow us to state that hardware
permanent faults in the Integer core of a GPU can collapse the
operation of the hardware accelerator (this happens in ≈97.5%
of the faults related to the IADD3 instruction). The proposed
framework required about 54 hours for the error propagation
experiments targeting one instruction with a set of fault error
syndromes, thus reducing by several orders of magnitude the
required time for the evaluation of a CNN, when compared
with a fully microarchitectural characterization.

To the best of our knowledge, our method is the first
allowing to evaluate the impact on the application level of
low-level microarchitectural permanent hardware faults in a
GPU when running a CNN.

The reminder of the paper is organized as follows: Sec-
tion II presents background and related work on GPUs re-
liability analysis. Section III introduces the proposed two-
levels method. Section IV describes the implementation of
the proposed approach for CNNs. Section V presents and
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Fig. 1. A general scheme of the internal organization of a GPU.

discusses the experimental results, while Section VI draws
conclusions and introduces future works.

II. BACKGROUND AND RELATED WORK

A. Organization of a GPU

GPUs are special-purpose processors designed to exploit
hardware parallelism and provide a high throughput in the
execution of applications. Currently, modern GPU designs are
mainly composed with a set of homogeneous cores organized
in a hierarchical fashion, including Graphics Processing Clus-
ters (GPCs), Texture Processing Clusters (TPCs), and Stream-
ing Multiprocessors (SMs), or SIMD Engines, see Figure 1.

The SMs are the principal execution unit in a modern GPU
and are partitioned into 2 to 4 Parallel Processing Blocks
(PPBs). Each SM includes one task scheduler controller to
distribute the task (Blocks) among the PPBs cores. In detail,
each PPB handles a set of parallel functional units (known
as Streaming Processors or SPs, or ’CUDA cores’), and a
register file. Internal schedulers, in the PPB, distribute groups
of threads (warps) among the available SPs. Each SP includes
Floating-Point Units (FP32/FP64) and Integer cores (INT).

B. System abstraction layers and fault propagation

Modern electronic systems, such as GPUs, are composed of
stacked hardware and several software abstraction layers. In
detail, the hardware layers implement the functionalities of an
Instruction Set Architecture (ISA) physically. This implemen-
tation is defined by the microarchitecture that describes the
building blocks of the device from high to low level. On the
software side, the applications implement algorithms through
assembly language to interact with the hardware according to
the ISA’s specifications.

A fault at the hardware level might produce issues in
upper layers or be masked without producing any observable
effect. When the fault occurs it may be propagate through the
hardware structures affecting also the operation of software
layers and generate critical system failures (see Figure 2).
Although some faults might be masked in the different layers
of the system, other faults can reach the system’s software
layer and produce system failures [8].
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Fig. 2. System abstraction layers and fault propagation effects.

C. Dynamic binary instrumentation tool

To profile the execution of the software in the GPU hard-
ware and to inject faults in the code execution we take
advantage of NVIDIA’s NVBit and NVBitFI.

NVBit is a dynamic binary instrumentation tool framework
developed for NVIDIA GPUs [7]. This framework offers
APIs that cooperate with the CUDA driver APIs to perform
instruction’s inspection and inject arbitrary CUDA functions
to kernels before launching them. A new instrumentation tool
can exploit the use of customized CUDA/C/C++ functions
(controlled by the NVBit APIs) to incorporate special func-
tionalities into a pre-compiled binary application regardless of
libraries integrated in the application (e.g., cuBlas or cuDNN).

NVBitFI is an instrumentation tool based on the NVBit
framework. This tool has been specially designed to perform
reliability evaluation of any application developed for NVIDIA
GPUs [3]. NVBitFI employs the Hardware Injection through
Program Transformation (HIPT) technique to mimic hardware
faults using error injection through instrumentation functions
designed to modify the results of the issued SASS instructions.
The tool operates in different phases. First, the target kernel
is intercepted by the callback APIs before the GPU issues
it. Then, the inspection and instrumentation APIs are used to
insert the error function after the target instructions. Finally,
the new version of the kernel is executed in the GPU device
to propagate the desired error to the application’s output.
NVBitFI mainly offers support to evaluate the reliability
of GPUs under transient faults model with a minimal and
simplistic approach for modeling permanent faults. Therefore,
the adoption of multi-abstraction level methodologies offers a
solid way to create a more realistic scenario by combining the
accuracy of low-level evaluations with the speed of software
error propagation. Despite the fact that NVBitFI mechanism
targets only NVIDIA GPUs, it could be scaled into other
GPU vendors considering the guidelines and equivalent tools
described in [3].

D. Related works

The implicit parallelism and programming flexibility of
GPUs make them the preferred platforms to accelerate various
codes, especially CNN, in safety-critical applications. In this

domain, reliability is one of the most important constraints.
It has already been shown that complex and big devices as
GPUs suffer from a very high transient fault error rate, that
could jeopardize the device reliability [1]–[4], [9].

The GPUs employed in gaming, high performance com-
puting, and mining systems are typically replaced after a few
years. As GPUs are included in automotive or robotic applica-
tions, their operative life is expected to be much longer, in the
range from 5 to 10 years. Unfortunately, after the certified life
period, a GPU may start suffering from fatigue or degradation
(aging or wear-out) of its internal components, such as internal
cores (SMs) and memories. Permanent hardware faults could
then arise and affect the operation of a running application.

Aging-related reliability issues have already been widely
studied in CPUs [10], [11], and more recently in hardware
accelerators [12], [13]. The related research focused on iden-
tifying methods to evaluate the most sensitive locations in the
processors affected by permanent faults, in order to develop
mitigation or fault handling solutions. In CPUs, the approaches
to evaluate the effect of permanent faults consider architectural
simulation, software fault injection [14], and microarchitec-
tural simulation and emulation. These methods are applicable
only for small and medium designs and could require the
combination of different strategies when dealing with large
CPU designs [15]. In most cases, combining one or two
strategies is enough to identify the main fault effects.

An evaluation of permanent fault effects in GPUs is still
missing and a framework to track permanent fault propagation
in a parallel code is still lacking. Unlike traditional CPUs,
GPUs are complex accelerators; they include hardware support
for thousands (or even millions) of threads, need complex pro-
gramming environments, and the amount of possible fault sites
is huge. The permanent fault effects evaluation for GPUs is,
then, particularly challenging, and the evaluation approaches
already available for CPUs are impractical for GPUs. The
technical complexity of controlling several parallel threads,
executed on different SMs alone, makes the propagation of
permanent faults on a given unit much more complex than in
a normal CPU.

Previous works [16], [17] have shown that architectural
fault simulators are necessary to evaluate the effect of per-
manent faults effects in a computing device. Unlike transient
faults, a permanent fault evaluation needs to identify the
input vectors that activate the fault. A software fault injector
that modifies the output of an operation cannot perform this
task. Unfortunately, technical limitations in the simulators
(poor representation of fault models and fault effects) and
the required computational effort limit the exploration and
evaluation of complex applications, such as CNNs.

For our paper we took inspiration from the use of multi-level
frameworks that combines microarchitectural simulation and
physical emulation [18], or software fault injection [19]. The
latter approach has been successfully used in CPUs. In [20],
the authors exploit context switching between RT-level and
Gate-level abstractions to combine high fault simulation speed
and accuracy in CPUs. However, these techniques can hardly
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Fig. 3. A general scheme of the proposed multi-level method to evaluate permanent faults in GPUs. The application profiling identifies the instructions (and
their inputs) that are mapped to a target hardware module. The gate-level simulation performs the permanent fault injection, identifying the inputs that activate
each fault and reporting its effects on the output. Then, a software fault injection propagates fault effects for all the instructions executed on the target unit.

used in dense NN applications. Other work [21] proposed an
hybrid fault injector approach integrating software-application
and RT-level abstractions boosted with pipeline-type stages to
accelerate the evaluation of NNs in CPUs. For GPUs, some
works [2], [22] proposed multi-level approaches combining
high-level architectural simulation and error propagation in
real GPUs with the purpose of evaluating transient fault effects
[23]. Nevertheless, the adoption of this multi-level philosophy
for the evaluation of permanent faults has not fully explored
in GPUs. It is worth noting that, even in CPUs, the permanent
fault evaluation can be so complex that most studies limit the
evaluation to memories [24]. We aim at going a step further
for GPUs and focus on faults in the functional units.

While our work takes inspiration from the two-level fault
injection concept, none of the previous works address the
evaluation of permanent fault effects in GPUs. The proposed
framework selects the software instructions mapped on a
specific hardware unit and identifies the inputs that activate
the fault. Then, the permanent fault effects are injected and
propagated, in software, in a real GPU executing a code, e.g.,
a CNN. To the best of our knowledge this is the first work
proposing a multi-level framework to evaluate permanent fault
effects in GPUs.

III. PROPOSED METHODOLOGY

In this section, we describe the proposed methodology to
evaluate the effects of hardware permanent faults in the func-
tional units of a GPU when executing parallel applications.
The proposed method is based on the combination of a two-
levels abstraction approach (gate-level microarchitectural fault
simulation and software-based fault injection). The method
allows to evaluate the effects of permanent faults even in
complex application such as CNNs.

A. Main Idea

The evaluation of permanent hardware faults effects is a
highly time consuming task. This is because the effect of the
fault can be measured only through low-level simulations (i.e.,
at gate-level) that, normally, require a huge amount of time
to be completed. This is exacerbated in parallel and dense
devices such as GPUs. Running a whole application in low-
level simulators for GPUs is actually unfeasible.

Our idea to overcome these limitations is to first identify,
through software profiling, the machine instructions (and their
inputs/output) that compose the kernels of a CNN. Then, this
information is used to perform gate-level micro-architectural
simulations (exclusively on the functional unit of the GPU
performing a targeted instruction) with the purpose of eval-
uating the impact of permanent faults and their propagation
to the output of the operation. We inject a permanent fault
(Stuck-at 0/1) in each site of a functional unit and execute an
individual instruction (i.e., FFMA) to operate all the inputs
provided by the software profile. This procedure allows the
identification of all inputs that activate a fault and the effect
in the outputs of an instruction. Finally, we propagate, in
software, the corrupted outputs during the execution of the
code in a real GPU (targeting the analyzed instructions, only)
to represent the propagation of permanent faults.

The proposed method, as depicted in Figure 3 and detailed
in the following, is composed of four steps: i) Software profil-
ing and target identification, ii) Gate-level micro-architectural
fault injection, iii) Software-level fault propagation, and iv)
Classification.

B. Software profiling and target identification

This step aims at collecting and tracing all the executed
instructions from the kernels of a CNN in the GPU. The main
target is to use the collected information to identify the relation
between the executed instructions and the functional units of
the GPU (e.g., FADD and FFMA in the FPU, and IADD in the
INT core), so identifying the set of instruction in the CNN to
evaluate. Moreover, the software profiling provides fine-grain
and detailed information concerning the execution of each
instruction. This information includes the distribution of each
instruction among the resources of the GPU. These resources
are described in terms of software parameters (Blocks, Warps,
and Threads) and hardware (Streaming multiprocessor cores
or SMs, and CUDA cores or Lanes), so providing virtual (soft-
ware) and physical (hardware) identification of each executed
instruction in the system. Both sets of parameters (software
and hardware) are later use to propagate any fault effect in
the software-level fault propagation.

The software profiling step provides a complete report
(Golden profile report) of the application executed on a real
device and includes all executed instructions in the GPU. The



report incorporates (for each instruction), the input operands
(from the register file or memories), the software configuration
parameters (thread ID, warp ID, and Block ID), and the
hardware core used (lane ID, and SM ID).

From the Golden profile report, we extract a sub-set of
instructions and their information (e.g., IADD, or FFMA) as
main candidates for evaluation in the gate-level fault injection
campaigns. Then, the profile report (containing only the sub-
set of instruction for evaluation) is divided into two reports:
1) the ’Patterns Report’ and 2) the ’Intermediate Report’, as
depicted in Figure 3. The Patterns Report contains only the
input operands and the mnemonic of the instruction for the
gate-level microarchitectural fault simulation. In contrast, the
intermediate report holds the complementary information for
each instruction, which is later used in the software-level fault
propagation step to localize targets for error injection. It is
worth noting that redundant inputs from the same instruction
are not included in the patterns report.

C. Gate-level microarchitectural fault simulation

The accurate study of hardware fault effects on the output
of an instruction (i.e., IADD or FFMA) is the main targets
of the gate-level fault simulation step. We focus on atomic
instructions as we will then propagate in software (at applica-
tion level) the observed effects. For this purpose, rather than
simulating a fault in a given instruction in the complete micro-
architecture of a GPU, the proposed method only focuses
on the gate-level microarchitectural fault simulation of the
specific functional unit. Since these units are part of the data-
path and are directly connected to the memory hierarchy in
the GPU (register file and memories), the specific gate-level
fault simulation propagates any permanent fault impact from
the functional units exactly as a complete micro-architectural
simulation. In other words, emulating the whole GPU would
just increase the simulation time while not improving accuracy.

A fault-free execution of the targeted instruction is per-
formed at the microarchitectural level. We have crafted the
GPU model with a complete RT-level description of just the
target functional unit of the GPU to provide the instruction
golden operation (i.e., fault free data). This mixed description
of the GPU model (RT and gate-level) provides the accuracy
of the gate-level execution inside the functional unit with a
reduced simulation time removing the details of the other units,
unused in the evaluation. In this step, the input operands from
the patterns report are used to obtain the golden outputs of the
instruction, which are then stored as a complete report (’wave
report’) and later used in the fault simulation campaigns.
Moreover, this report is also employed in the procedures of
comparison and classification of fault effects.

A set of gate-level fault injection campaigns are performed
exclusively at the functional unit, using the wave report. This
campaigns provide a fine-grain control of all possible faults
in the unit, providing exhaustive or focused fault injection
configurations (i.e., subsets of faults in flip-flops, or ports).

The fault injection campaign starts with the placement of
one permanent hardware fault (stuck-at) inside the functional

unit. In addition, one group of input operands from the wave
report is applied in sequence for simulation (i.e. the values of
R1 and R2 in IADD R3, R1, R2). Then, the obtained outputs are
stored for later analysis. Finally, the fault simulation restarts
with the placement of a new permanent fault and the injection
of all groups of input operands. This procedure is repeated for
all targeted faults in a functional unit.

A post-processing step identifies the propagated fault effects
from the collected results by comparing the collected results
against the golden ones from the wave report. In case of a
mismatch, the result is stored as propagated faulty results.
Otherwise, the results, free of fault effects, are discarded.

When the fault injection is completed, the identified faulty
results (those containing any fault effect from a permanent
fault) are merged with the information stored in the interme-
diate report. This ’merged report’ (see Figure 3) is useful to
identify at the software level the locations and the instruction
effect by the propagation of a permanent hardware fault,
since this report contains the identification of the permanent
fault in the unit, input operands, the golden output result, the
faulty result, the mnemonic of the instruction and the parallel
configuration parameters.

D. Software-based fault propagation

In this step the collected hardware fault effects are propa-
gated as instruction errors in the software application. For this
purpose, the code of the application is instrumented (off-line)
with flexible functions to inject and propagate the effects of
permanent hardware faults across a CNN application as errors
in the instructions (fault syndrome). We use a real GPU to
reduce the evaluation time of the complete CNN application.
Algorithm 1 outlines the proposed method to propagate error
effects at the instruction-level through the CNN.

As first step, the merged report is divided according to the
identified hardware faults during the gate-level experiments.
Thus, the software-based fault injection propagates (each time)
the equivalent micro-architectural fault effects in a given in-
struction (as an instruction error) affected by a hardware fault.
The propagation (of instruction errors as an equivalent fault
effect) is based on ’Fault Syndromes’, which are build from
the bit-wise comparison between the golden and faulty values
from the gate-level fault simulation. Each Fault Syndrome
contains the output effect of a hardware fault affecting an
instruction, so the error effects are propagated across the
application during the software-based fault injection.

Since a given instruction (i.e., FADD) can be used several
times in the CNN, we propagate the fault effect each time
the instruction is executed on an specific functional unit in
the GPU (combination of SM, PPB and Lane) resorting to
’Syndrome Tables’, which are a collection of fault syndromes
and allow the injection of specific error effects. Each input
pattern applied to the evaluated functional unit can excite
one permanent fault differently; thus, one fault may produce
multiple error syndromes during the execution of a CNN.

One syndromes’ table is available during the execution of
the CNN to support the code instrumentation and to allow the



propagation of error effects. Then, the selection and propaga-
tion of a syndrome (from the table) follows three steps during
the run-time application on the GPU: i) retrieval of the fault
syndrome (Load syndrome), ii) execution of the instruction,
iii) propagation of the error syndrome (Apply syndrome), see
Figure 3. First, in the retrieval step, a matching procedure
searches the specific instruction and identifies, from the syn-
drome table, the feasible syndrome representing the fault
effect. Two parameters (inputs and instruction-type) are used to
search inside the syndrome table. Then, during the propagation
step, the output value of the instruction is processed with the
fault syndrome to produce the error effect. Finally, the error is
injected by replacing the original output value with the affected
one and the CNN resumes.

It is worth noting that propagating permanent fault effects
as instruction errors is a challenging task, since the effect of a
permanent fault must remain active across the application, but
only for those instructions executed on an affected hardware
unit (i.e., combination of a given SM, PPB, and Lane).
For this purpose, the syndrome tables are used as a highly
flexible mechanisms to inject error effects from the gate-level
results. These tables contain all possible fault effects from
an instruction, so it is possible to use the two conditional
functions (load syndrome and apply syndrome) to inject and
evaluate fault effects (on the GPU’s structures) when a target
instruction is found. Moreover, the mechanism of tables of
syndromes can be used for any number of instructions and
it is independent of the application, so it is possible to scale
their use in the evaluation of other applications.

Algorithm 1 Propagation algorithm of instruction error effects
Input: Syndrome table for fault Fi; Faulty location in the GPU (SM,
PPB, and Lane); Target opcode instruction OPt

Output: Fault classification for Fi (DUE, SDC, Masked)
1: load syndrome table for Fi

2: for each kernel Ki in the CNN model do
3: for each instruction Ij in Ki do
4: Inspection(Ij)
5: if Ij matches the target OPt then
6: Insert instrumentation function before Ij
7: Insert instrumentation function after Ij
8: end if
9: end for

10: Just-In-Time compilation
11: Launch the GPU execution of the instrumented kernel
12: end for
13: Assign failure classification category to Fi

E. Classification

The final step of our methodology is the identification of
the effects of the propagated errors in the application output.

The output reports from the software-based propagation
experiments are analyzed in search of critical effects in the
CNN (i.e., misclassification). For this purpose, the output
results are classified as: Detected Unrecoverable Error (or
DUE) and Silent Data Corruption (or SDC) errors. DUEs
are produced when the operation of the GPU is hanged and

the CNN does not produce any output value or classification.
SDCs are determined when at least one mismatch is found in
the outputs. In detail, there are two types of SDCs: i) safe
SDCs and ii) critical SDCs. In the first case (safe SDC), the
propagation effect of the permanent hardware faults causes
a mismatch in the output results of the CNN. However,
the error effect is not enough to produce an error in the
classification. In the second case, a critical SDC is identified
when the propagation of the fault effects produces changes in
the classification by the CNN.

IV. IMPLEMENTATION

In this Section we described the environment we crafted to
implement the proposed methodology.

A. Environment

A new environment integrates one software profiling tool
based on the (NVbit) mechanism, two commercial simula-
tors (ModelSim and Tetramax), and a new software-based
fault injector for Syndromes Propagation of Permanent Faults
(NVSPPF) based on (NVbit) operation to implement and
validate the proposed method.

A profiling tool extracts the input and output values, and
the parallel operational configuration parameters from all in-
structions in the kernels of a CNN. Then, a general controller,
described in a scripting language, manages the interaction
between the two simulators. The first logic framework (Mod-
elSim) handles the mixed description (RT and gate-level) of
FlexGripPlus [6] and it is used for the fault-free simulation
of the functional units (at gate level) with the identified
operands of a given instruction. The second simulator frame-
work (Tetramax) performs fault injection campaigns on the
functional unit (at gate level). In this framework, two external
memories [25] speedup the fault simulation by linking them
to the functional units and evaluating several input patterns
with a single permanent hardware fault (stuck-at) at a time.
The 15nm open-cell technology library [26] was used to
synthesize the FlexGripPlus model for the gate-level fault
injection campaigns on the functional units.

The results of the gate-level simulation provide syndrome
tables after a transformation process, one per propagated
hardware fault. Each entry of the table contains: i) the input
operand values of the target instruction, ii) the error syndrome
produced by the fault in the hardware unit, and iii) the
mnemonic of the instruction.

Finally, NVSPPF handles the syndrome tables and propa-
gate errors from specific hardware location in the GPU (based
on algorithm 1). In practice, the framework applies suitable
error syndromes to each instance of the target instruction in
the application’s source code, so propagating the effect of
a permanent fault on the CNN. In this case, the framework
considers the propagation of one hardware fault at a time (one
syndromes’ table file) per CNN inference and then generates
its classification as DUE, SDC or Masked.

The framework’s operation is divided into two main parts:
i) kernel inspection and instrumentation, and ii) at-speed error



propagation. In the first step, the syndrome table for a fault
is loaded into the GPU’s global memory, so all error syn-
dromes are available during the run-time operation of a CNN.
Then, the framework identifies in each kernel the targeted
instructions and modifies (off-line) its source code as stated
before in section III-D. The inspection and instrumentation
stage (highlighted in gray in the Algorithm 1) is issued by the
host (CPU) before the kernel submission in the GPU.

The at-speed error propagation flow is performed in the
GPU by executing the instrumented kernels, which can only
affect targeted instructions from a specific core. Then, the final
inference result is used to classify a given fault according to
its failure severity impact in the CNN outcome.

B. Limitations

The proposed method owns three major limitations in the
characterization of permanent fault effects on a CNN.

The first limitation relies on the fact that we employ an
open-source low-level (RT- and gate-level) GPU (FlexGrip-
Plus) to characterize the impact of hardware faults. Unfortu-
nately, this model may include simplistic hardware descrip-
tions compared to modern GPUs. However, FlexGripPlus is
one of the few low-level micro-architectural models, including
open and detailed descriptions of the functional units.

The dynamic operation of the scheduling controllers in a
GPU, which are in charge of managing and dispatching the
blocks of a program among the cores, may also limit the
accuracy of our technique. The dynamic operation of the con-
trollers complicates the effective propagation of error effects
across the instructions of a CNN. Moreover, the scheduling
policies adopted by such controllers in GPUs are not fully
detailed and released. Several experiments confirmed that,
each time the CNN is executed, the scheduler controllers
dispatch the blocks of a program on the available SMs, but
not always on the same cores. Thus, some instructions are
not permanently assigned to fixed hardware Lanes and SMs.
Our approach uses syndromes’ tables (with the error effects
of all instructions) to face the limitation and allow for any
instruction’s searching and matching process regardless the
scheduler intervention. Hence, it is possible to inject and
propagate accurate errors on different units without changes
in the framework. Unfortunately, the addition of a complete
syndromes’ table also increases the simulation time of the error
propagation campaigns. However, the adopted syndromes’
table strategy bypasses the dynamic scheduling operation in
the controllers. In fact, the syndromes’ table strategy can be
used as a mechanism to allow the selection of the best trade-off
between accuracy and simulation time.

Finally, the cumulative error propagation effect, only present
during the software-based fault propagation, is observed when
two or more errors are injected into the software (using
the syndromes’ tables), and the error effects corrupt other
instructions. Thus, corrupted values in the instructions might
produce different error effects not found in the table. In this
case, we face this limitation by skipping the injection of the
error in the program.

V. EXPERIMENTAL RESULTS

As a case study to validate the proposed permanent fault
evaluation methodology we selected the six-layers LeNet
CNN [27] built over the Darknet framework [28]. To perform
the evaluation of the permanent fault effects on a real GPU, we
used the RTX 3060Ti GPU board equipped with an NVIDIA
Ampere GPU architecture. This GPU profiles the CNN and
handles the software-based fault injector (NVSPPF) for the
error propagation. We used the RT and gate-level descriptions
of the FlexGripPlus GPU model and its functional units for
the gate-level fault injection campaigns.

A. Software Profiling

A preliminary software profiling of the LeNet CNN pro-
vided the total instruction count revealing that the more
than 65.9% of the executed instructions (11,536,325 out of
17,505,804) use either the Floating-point unit (FP32) or the
Integer core (INT). In particular, around 45.88% of the total
instructions use the Floating-point unit and 20.01% uses the
Integer core (INT). The remaining 34.1% instructions are
memory movement, control-flow, and miscellaneous instruc-
tion. Since our goal is to understand the impact of permanent
faults in the computing elements, in the experiments we target
the evaluation of permanent fault effects in the FPUs and
INT cores. Our methodology can be directly applied to the
remaining instructions.

In the complete profiling step of the framework we extract
those instructions (65.9% of the total) that employ the FP32s
(FADD, FMUL, and FFMA) and INT cores (IADD3, IMAD).
For each of these instructions we also kept track of its input,
as described in Section V-C.

B. Gate-level micro-architecture fault injection results

Every kernel in the CNN was analyzed and a fault campaign
was performed for each kernel that contains at least one of the
targeted instructions. 141 fault campaigns out of 160 possible
gate-level fault injections on the FlexGripPlus GPU model
were performed on the 32 kernels of the CNN. For each
kernel we focused on the FPU and INT units and evaluated
the instructions listed in the CNN profiling (FADD, FMUL,
FFMA, IADD3, and IMAD). Each fault campaign was also
divided in up to 25 parts to speedup, through multi-threading,
the fault simulations. We ran the experiments on a server
powered by an Intel Xeon CPU running at 2.5 GHz, equipped
with 12 cores and 256 GB of RAM.

We injected permanent stuck-at faults in all sites (gate-level
cells and flip-flops) of the gate-level model of the FP32 and
INT cores (22,044 faults). To identify the inputs that activate
each fault and observe the fault effect on the instruction output,
we run each instruction with all the input values identified in
the profiling phase for each of these fault sites. On average, we
tested 1,485,126 input vectors per instruction. That is, more
than 1.54x1010 effects of permanent faults per input vectors
are evaluated in the FP32 and INT cores per instruction.

First, we evaluated the effects of the permanent faults on
each atomic instruction. Table I reports the SDC fault rate.



TABLE I
FAULT RATE AND PERCENTAGE OF INPUT PATTERNS EXCITING A

PERMANENT FAULT IN THE FP32 AND INT CORES.

Instruction SDCs fault rate
(%)

Input patterns exciting
permanent faults (%)

FADD 9.84 7.24
FFMA 18.72 20.0
FMUL 13.82 10.42
IADD3 4.76 27.1
IMAD 8.46 10.8

This table also reports the percentage of input patterns that
excites and propagates faults (on the primary outputs of a unit)
for each evaluated instruction.

From the experimental results, we can observe that each
evaluated instruction is affected differently by permanent
hardware faults. A small percentage of permanent faults (from
9.8% to 18.7%) is propagated to the primary outputs of the
FP32 unit and corrupts the result of the floating-point (FP)
instructions. A surprisingly lower percentage of permanent
faults in the INT core (about 4.7% to 8.4%) were activated
and propagated across the unit.

The percentage of input patterns (instruction’s operands
from the CNN profiling) activating at least one permanent fault
is small for the INT core (IADD with 27.1%, and IMAD with
10.8%). The fault rate in both instructions (IADD and IMAD)
shows that input patterns recurrently activate a limited group
of faults inside the core. Thus, some internal structures of the
units are not activated by the input patterns. Furthermore, the
percentage of patterns activating faults inside the FP32 core
(FADD with 7.24% , FMUL with 10.42%, and FFMA with
the 20.0%) implies that each set of patterns per instruction
excites different regions of the FP core. These relatively low
fault rates (see Table I) depend on the input patterns from the
CNN and the operational capabilities of a functional unit.

The input patterns include two special subsets: i) those
identical, and ii) the partially identical. The identical patterns
share the same values of input operands and are easily re-
moved for the evaluation. However, the second group (partially
ones) include partially shared operands (i.e., only one or two
operands are identical). However, these cannot be discarded,
since the missing input patterns are different among them.
Thus, this group of patterns is prone to activate an exclusive
set of faults inside a unit. Finally, both functional units (FP32
and INT) are used to operate several instructions, so all faults
cannot be excited by a limited number of instructions.

An analysis of the output results shows that about 90% of
the fault effects caused the corruption of just one bit (single
bit flip) in the output results of the FADD, FFMA and FMUL
instructions. In this case, bits in the exponent of the result
showed a higher probability of fault propagation (>25%) in
comparison to those in the mantissa. Interestingly, the lower
bits in the mantissa are also prone to propagate effect of a
permanent fault to the primary outputs of the unit. This is
probably happening since most CNN’s operands are in range
from -1.0 to 1.0. For the INT core, one bit in the output
was mainly affected in most of the cases (75.88%). Interest-

TABLE II
MAIN FEATURES OF THE ERROR SYNDROMES GENERATED BY

PERMANENT FAULTS ON THE EVALUATED INSTRUCTIONS.

Instruction Propagated
gate-level faults

Error syndromes
(size of syndrome tables)
Min Max

IMAD 1,563 4 913,752
IADD3 880 4 599,355
FADD 352 1 86,583
FMUL 494 23 15,741
FFMA 637 1 143,591

ingly, there is not a clear tendency of the most commonly
affected locations in the outputs. In most of the cases, any
of the affected bit sites of the output is located among the
least significant 23 bits of the result. This suggest that the
permanent fault effects in GPUs are not trivial and should
be accurately studied. Our gate-level results can be employed
to model error effects into higher abstraction levels, allowing
a more accurate fault injection and error propagation in the
applications running o GPUs.

C. Software-based fault error propagation results

We use the observed errors from the gate-level fault cam-
paigns to build a set of syndromes’ tables (for each hardware
fault and each evaluated instruction). These syndromes are
the permanent fault effects that need to be propagated by
those software instructions in the kernels of a CNN. In the
experiments, all kernels in the CNN were evaluated on the
software injection framework using the syndromes’ tables.

Each syndromes’ table includes only the set of error syn-
dromes generated by a specific hardware fault. Thus, we apply
and propagate in software, in the CNN’s instructions, the
equivalent effect of a hardware fault. Since each hardware fault
has a different effect on the executed instruction, each table
is composed of a different number of error syndromes. This
error propagation approach allows evaluating the individual
impact of each hardware fault on the CNN’s instructions and
contributes to identifying the hardware faults that are most
likely to modify the CNN results.

Table II reports the number of propagated faults and the
number of syndromes generated per instructions. Interestingly,
the number of propagated faults affecting the INT instructions
is about twice the number of the FP ones. From the microar-
chitectural results in Table I, we observed that a percentage of
hardware faults caused identical error effects in the outputs of
the instructions independently of the applied input operands
(0.36% for FADD, 71.65% for FMUL, 31.39% for FFMA,
45.56% for IADD, and 50.41% in IMAD). Furthermore, these
identical output effects caused a few error syndromes (from
1 to 23 in Table II). However, other subsets of hardware
faults, produced up to 599,355 syndromes. This variation in
the number of error syndromes indicates that permanent faults
in a functional units (INT or FP32) can produce either identical
error effects, or specific errors (syndromes) depending on the
input operands of an instruction in the CNN.

For the software error propagation experiments, we evalu-
ated three CUDA cores (SPs) inside two representative execu-
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Fig. 4. Average results of the error propagation of permanent fault effects on
the instructions of a CNN. Error bars show the maximum and the minimum
changes in the error classification among the evaluated CUDA cores (caused
by the operation of the scheduling controllers).

tion cores in the GPU (SM0 and SM37). We decided to limit
the study to these two SM cores since the GPU architecture
is highly homogeneous and an exhaustive evaluation of the
error propagation in each CUDA core (4,864 cores in 38 SMs
for Ampere) would be unfeasible due to the long simulation
time to propagate error syndromes, especially for those faults
producing a considerable amount of error syndromes. The two
targeted SMs (0 and 37) were selected after several profiling
trials on the CNN and the Ampere GPU. These trials show that
the GPU’s SM usage is unbalanced. In particular, SM0 exe-
cutes more threads than other SMs, whereas SM37 executes
a minimal set of the threads. The unbalanced use of the SMs
relies on two reasons: block occupancy, and block distribution,
which affects the dynamic dispatching policy in the schedulers
and causes the unbalanced behavior. For SM0, we randomly
choose the SP7 and SP8 inside PPB1, and for SM37, the
SP8 inside PPB3. The error propagation experiments were
performed on the targeted instruction (IMAD, IADD3, FADD,
FFMA, and FMUL).

Figure 4 reports the average fault rate results for the
evaluated instructions of the CNN in the three CUDA cores
according to the proposed classification in Section III-E. More-
over, the error bars shows the maximum and minimum values
obtained in the evaluated cores. Some faults are classified
as ’potentially propagated’, which differs from the Masked
ones since, during the run-time error propagation, the input
operands do not create right conditions to generate syndromes
and propagate error effects. However, those faults in other
cores of the GPU could potentially be activated and propagated
through the CNN. The model of thread execution in the GPU
elucidates this behavior since all parallel cores (CUDA cores
in the SMs) work together, performing calculations related to
different threads. Therefore, the thread execution model also
interacts with the error propagation by distributing different
threads (instructions and input operands) among the CUDA
cores of an SM, which are mainly defined by a scheduling
policy, so potentially missing the injection and propagation of
error effects on an specific CUDA core. In any case, those
’potentially propagated’ errors could generate SDC or DUE

TABLE III
EXECUTION PERFORMANCE OF THE IMPLEMENTED METHOD FOR

PERMANENT FAULT EVALUATION OF CNNS.

Step Time (h.)
Profiling (0.5− 2)

Target Selection (2.7x10−3 − 4)
Gate-level Microarchitectural Simulation (1.5− 1, 180.0)

Software-based error propagation (2.1− 207.4)
Classification (0.1− 0.5)

effects in the CNN when evaluated in other cores.
The results show that INT instructions are highly vulnerable

to permanent fault effects and mainly collapsed the operation
of the CNN and the GPU (from 81.8% to 97.5% of faults
lead to a DUE). This high sensitivity should not surprise since
INT instructions are mainly used in the CNN to calculate
thread identifiers and memory addresses. Thus, errors in these
instructions are likely to produce failures, such as memory
misalignment or illegal access, which then halt the execution
of the kernel in the CNN and the GPU. This means that the
implementation of a CNN (for a GPU) plays an important role
in terms of CNN’s vulnerability to permanent fault effects and
its criticality to internal cores, such as it was observed for the
instructions in the INT cores.

Most propagated faults on the FP instructions (82.4% in
FADD, 81.8% in FMUL, and 65.7% in FFMA) caused mini-
mal changes (Safe SDC or Masked) in the output of the CNN.
However, some errors (from 2.0% to 15.5%) can jeopardize the
application and change the output classification of the CNN.
Since the FP instructions mainly process inputs, weights, and
bias values from a CNN, most errors directly affect the CNN’s
classification. These experimental results demonstrates that
permanent faults in a FPU can produce important error effects
in the classification of a CNN (more than 15%), so these faults
can be more critical, in comparison with other error effects,
such as those produced by single bit-flip transient faults [23].

Interestingly, the dynamic dispatching policy in the schedul-
ing controller seems to affect the error propagation results
for the three evaluated CUDA cores in two SMs in the GPU
(see error bars in Figure 4). These results indicate that the
scheduling policy in the controllers can affect (or benefit) the
propagation of permanent hardware effects from a functional
units to a CNN. The results in most used (and the most affected
by faults) core in the GPU (SM0) provided higher percentage
of error effects (SDCs and DUEs), in comparison to the core
less used (SM37), which takes advantage of the dispatching
policy and propagates a lower percentage of errors to the CNN.

Finally, Table III reports the performance of the method.
Two factors determine the time costs in the gate-level fault
simulations (up to 1,180 hours): i) the number of faults
(determined by the gate-level structure of the unit and the
used technology library), and ii) the number of input patterns
(directly connected with the CNN and the number of processed
instructions). Furthermore, the software error propagation time
(about 207 hours) depends on: i) the number of syndromes per
table (generated during the gate-level evaluation and dependent
on the number of input patterns), and ii) the number of



syndrome’s tables (strictly related to the number of faults
activated by a given input pattern in a unit during the gate-
level evaluation). Since, the software error propagation step
requires time for searching errors in the tables, the larger the
number of syndromes per table, the longer its simulation time.
Thus, the proposed method can be easily adjusted (e.g., by
modifying the number of patterns per faults, and the size of
the syndrome table) to trade-off accuracy with computational
effort, so allowing to scale even to more complex CNNs.

Despite the long simulation times, our multi-level method
of permanent faults evaluation can reduce by several orders
of magnitude in comparison to fully microarchitectural ap-
proaches the time required to evaluate dense applications, such
as CNNs. Our method maintains the same accuracy of the
microarchitectural fault analysis at the instruction level by
propagating error effects at the output of each operation.

VI. CONCLUSIONS AND FUTURE WORK

This work introduced a methodology to evaluate the impact
of permanent faults in CNNs running on GPUs. This method
is based on the multi-level concept and combines the accuracy
of gate-level microarchitectural simulation with the speed of
software fault injection to characterize the effects of permanent
faults in CNN applications.

Thanks to the efficient combination of gate-level and soft-
ware fault injection, this is the first work to quantitatively
assess the impact of permanent faults in the functional units
of a GPU on the operations performed by a CNN. The
proposed method can reduce by several orders of magni-
tude the required computational time in comparison with
fully microarchitectural evaluations. Our results show that the
CNN’s implementation for GPUs plays an important role in
the vulnerability to permanent faults affecting the functional
units. Finally, results demonstrate that permanent fault effects
in functional units can be critical and affect the execution of
a CNN in up to 15.5% of the cases and collapse the operation
of the device in up to 97.5% of the cases.

As future works, we plan to evaluate the effect of different
types of permanent faults on functional units (e.g., considering
delay faults as well) and in other units of the GPU. We are also
working at defining other solutions able to provide different
trade-off in terms of accuracy and speed, thus matching the
different requirements in terms of reliability existing in the
different design steps.
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