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Supplementary Information 11 

Supplementary Methods 12 

Density functional theory (DFT) simulations were carried out through the Vienna Ab Initio 13 
Simulation Package(VASP).1,2 We chose the PBE density functional (ref 3) including dispersion 14 
through the DFT-D2 method,4,5 with our reparametrized C6 coefficients.6 Inner electrons were 15 
represented by PAW pseudopotentials7,8 and the monoelectronic states for the valence electrons 16 
were expanded as plane waves with a kinetic energy cutoff of 450 eV. We employed a 4-layer 17 
thick Au(111) (3×3) supercell, with the two innermost Au layers fixed to mimic the bulk and 3 18 
H2O molecules within the solvation layer. A vacuum thickness of around 8 Å vacuum was included 19 
beyond the outermost H2O molecule. A K+ was inserted within the solvation layer to assess the 20 
“with metal cation” case (see Fig.1a), while no cation was present in the system “without metal 21 
cation” (Fig. 1c). To model the case “with metal cation” but “no excess electron”, we removed one 22 
hydrogen from one H2O molecule (Fig. 1b), leading to a charge balanced cell with one K+ and one 23 
OH–. To compute activation angle α (Fig. 1d,e) and Bader charge q (Fig. 1f,g) of the CO2 unit, we 24 
carried out a ionic optimization of the overall system: Au surface, H2O molecules, cation (if 25 
present), and a CO2 molecule initially adsorbed on the surface and let free to move. Since K+, CO2, 26 
and the explicit solvation layer were placed only on one side of the slab, we applied an additional 27 
dipole correction to remove spurious contributions arising from the asymmetric slab model.9 28 

To assess the role of explicit electrostatic effects on CO2 activation, we applied different intensities 29 
of electric field (ܧሬറୈ) through a dipole correction (refs. 6,10): –0.2 V Å–1, –0.4 V Å–1, –0.6 V Å–30 
1. Considering a potential of zero charge (UPZC) for polycrystalline gold of +0.2 V vs SHE (ref. 31 
13) and an electrical double layer thickness (݀ୈ) of 3 Å,11,12 such electric field intensities 32 
correspond roughly to values of electric potential of –0.4 V vs. SHE, –1.0 V vs. SHE, and –1.6 V 33 
vs. SHE respectively, Supporting Equation 1.  34 ܷ ሺvs. SHEሻ = ܷେ + ሬറୈܧ ∙ ݀ୈ                                                       (1) 35 
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