
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Engineering Grover Adaptive Search: Exploring the Degrees of Freedom for Efficient QUBO Solving / Giuffrida, L.;
Volpe, D.; Cirillo, G. A.; Zamboni, M.; Turvani, G.. - In: IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN
CIRCUITS AND SYSTEMS. - ISSN 2156-3365. - STAMPA. - 12:3(2022), pp. 614-623. [10.1109/JETCAS.2022.3202566]

Original

Engineering Grover Adaptive Search: Exploring the Degrees of Freedom for Efficient QUBO Solving

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JETCAS.2022.3202566

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971802 since: 2022-09-28T06:12:43Z

IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 1

Engineering Grover Adaptive Search: Exploring the
Degrees of Freedom for Efficient QUBO Solving

Luigi Giuffrida, Deborah Volpe, Graduate Student Member, IEEE, Giovanni Amedeo Cirillo, Graduate Student
Member, IEEE, Maurizio Zamboni, and Giovanna Turvani

Abstract—Quantum computers have the potential to solve
Quadratic Unconstrained Binary Optimization (QUBO) prob-
lems with lower computational complexity than classical ones.
Considering the current limitations of quantum hardware, the
joint use of classical and quantum paradigms could exploit both
advantages. Quantum routines can make some complex tasks for
classical computers feasible. For example, in the Grover Adaptive
Search (GAS) procedure, the problem cost function is classically
shifted iteratively, whenever a negative value is found through
the quantum Grover Search (GS) algorithm, until the minimum
is achieved. This quantum-classical approach is characterized by
many degrees of freedom, e.g. the number of GS iterations in
each call and the stop condition of the algorithm, which should
be appropriately tuned for an effective and fast convergence to
the optimal solution. The availability of software routines could
permit the best management of the GAS parameters.
This work proposes new mechanisms for GAS parameters
management and compares them with the existing ones, like one
available in the Qiskit framework. The proposed mechanisms can
automatically arrange the parameters according to the algorithm
evolution and their previous experience, thus ensuring a more
frequent and faster achievement of the optimal solution.
Even though these strategies can be further improved, the results
are encouraging. The analysis is done to identify the best policy
for different problems. It lays the foundation for designing an
automatic toolchain for QUBO solving, which can obtain the best
possible implementation of the GAS algorithm for each submitted
problem.

Index Terms—Grover Search, Grover Adaptive Search, Hy-
brid Quantum-Classical Algorithms, Optimization Problems,
Quadratic Unconstrained Binary Optimization, Cost Function,
Quantum Dictionary.

I. INTRODUCTION

COMBINATORIAL optimization (CO) problems aim to find
an input configuration that minimizes a cost function. They
are relevant in many real-world applications, such as resource
allocation in industrial environments.
The optimal solution can always be found with a brute-
force approach, i.e. by testing all possible input variables
combinations, but the time required increases exponentially
with them, thus making the scalability of this mechanism
unfeasible. Deterministic exploration of the solutions space,

The authors are with the Department of Electronics and
Telecommunications of Politecnico di Torino, Torino, 10129, Italy
(e-mail: luigi.giuffrida@studenti.polito.it; deborah.volpe@polito.it;
giovanni cirillo@polito.it;

maurizio.zamboni@polito.it; giovanna.turvani@polito.it.)
Copyright (c) 2022 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org .

e.g. based on the gradient computation, can also be exploited.
However, this is unsuitable for some optimization problems,
such as multimodal ones and can require a significant amount
of time to achieve convergence. Because of their limitations
and the unfeasibility of brute-force exploration, heuristic ap-
proaches are commonly employed to find optimal or sub-
optimal solutions for large-scale problems. Although many
new classic approaches have been proposed in recent years,
they are not always satisfactory in terms of execution time or
accuracy. Therefore, the exploitation of quantum computers
was proposed to obtain a speed-up by exploiting its intrinsic
parallel computational capabilities due to superposition and
entanglement principles [1], [2].
The most feasible formulation for solving CO problems with
quantum computers is the Quadratic Unconstrained Bi-
nary Optimization (QUBO) one, presented in Section II-A.
Quantum hardware fabrication is in the middle of the so-
called Noisy Intermediate-Scale Quantum (NISQ) era, which
is characterized by the availability of general-purpose quantum
computers, based on the so-called circuit model paradigm,
with a limited number of qubits subjected to non-ideality
phenomena, thus limiting the scalability of the executable al-
gorithms. However, the Yole [3] report on quantum technology
shows how the circuit-model quantum computers are expected
to scale rapidly in the following years. For this reason, even
though hardware fabrication has not yet achieved complete
maturity, the evaluation of circuit-model-based QUBO solvers
can already be done.
A further possibility is to use jointly classical and quantum
computers to make the best of both paradigms. In consolidated
hybrid quantum-classical algorithms, quantum routines are
exploited for accelerating some specific tasks critical or unfea-
sible for classical computers. A quantum processing unit, in
this context, can be seen as a hardware accelerator, particularly
effective in solving a specific task. One of the most relevant
algorithms in this context is the Grover Adaptive Search
(GAS) [4], whose analysis and improvement are the target
of this work. It exploits the Grover Search (GS) algorithm
for finding a negative value of the optimization problem cost
function, which is mapped onto a quantum circuit. Then the
function is classically shifted by an amount equal to the last
negative sample measured; this sequence is repeated until the
minimum is found.
This work is going to propose new approaches for man-
aging the GAS degrees of freedom — i.e. the number of
GS rotations in each call and the mechanism for stopping
the algorithm, able to automatically change the parameters

mailto:luigi.giuffrida@studenti.polito.it
mailto:deborah.volpe@polito.it
mailto:giovanni_cirillo@polito.it
mailto:maurizio.zamboni@polito.it
mailto:giovanna.turvani@polito.it
mailto:pubs-permissions@ieee.org

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 2

Configurations00...0 11...1

Grover
rotations

stop
condition

UPDATE THE COST FUNCTION

GAS PARAMETER UPDATE

Fig. 1: Grover Adaptive search closed-loop. At each classical iteration, the software routine maps the updated cost function
onto the quantum circuit, generates the Grover circuit with the optimal length, i.e. the number of iterations, and checks the
stop condition according to a strategy depending on the characteristics of the problem cost function.

according to the algorithm evolution and previous experience
— and to compare them with the existing ones, to prove
their effectiveness and efficiency in solving different types of
QUBO problems. The purpose is to identify the best strategies
combination for each considered problem type, which is
fundamental for the algorithm effectiveness, strictly depending
on the capability to well-identify them for the case of interest.
The performed analysis is particularly of interest to the design
automation community because it lays the fundamentals for
implementing in the future an automatic toolchain for QUBO
solving with quantum computers, which — as shown in
Figure 1 — can design and realize the GAS algorithm, with
its quantum (circuit design) and classical (stop condition) con-
stituting parts, in the most effective way for every considered
problem. This work is perspective, considering what has
already been said about hardware limitations.
The article is organized as follows. Section II reports theoret-
ical foundations; in particular, the QUBO formulation and the
GAS behaviour are explained. Section III reports the proposed
strategies for degrees of freedom management. In Section IV,
simulation and results discussion are presented. Finally, in
Section V, conclusions are drawn, and future perspectives are
illustrated.

II. THEORETICAL FOUNDATIONS

A. QUBO formalism

Quadratic Unconstrained Binary Optimization (QUBO) is
a mathematical formulation able to represent an exceptional
variety of CO problems [5]. Quadratic refers to the highest
power applied on the involved variables, which can assume
only 0 and 1 values (thus Binary). Unconstrained means that
no constraints are applied, and Optimization is related to the
fact that this model is used to minimize the obtained objective
function, which is written as:

Obj(c, ai, bij , xi) = c+
∑
i

xi · ai +
∑
i<j

bij · xixj , (1)

where xi ∈ [0, 1] is a binary variable, xixj is a coupler that
allows two variables to influence each other, ai is a weight
or bias associated with a single variable and bij is a strength
which controls the influence of variables i and j.
Despite what the name would suggest, problems with con-
strained solution space can also be represented as QUBO by
introducing quadratic penalty to the objective functions:

minimize y = f(x) + λg(x) , (2)

where λ is a positive penalty weight assigned to the constraint
quadratic function g(x). In this way, the constraint is evaluated
during the standard execution of the optimizer, assigning
a higher value to the solution x that does not satisfy the
constraint. Therefore, the choice of λ is critical: a too high
value makes the cost function too flat for evaluating the
effective quality of a feasible solution than the others, while a
too low value makes the constraints negligible, thus allowing
the acceptance of unfeasible solutions.
QUBO formulation can be assisted by Python libraries, such as
qubovert [6], which is used for benchmark problem formula-
tion in this paper. It is characterized by routines for automatic
insertion of some relevant constraints in the problem function
and the possibility to interface the defined QUBO problems
with different QUBO solvers.

1) Relevant Examples: Some relevant optimization prob-
lems representable with QUBO formulation, employed as
benchmarks in this article, are described in the following.
The goal of max-cut problems [5] (Figure 2a) is to partition

a graph into two complementary subsets S and S, maximizing
the sum of weights over all the edges across the two vertices
subsets. Its QUBO formulation involves a binary variable for
each node, whose value is 1 or 0, depending on the subset to
which the node belongs. The quantity xj+xi−2xjxi identifies
whether the edge (i, j) is in the cut. In particular, it is equal
to 1 when one among xi and xj equals 1, so when edge (i, j)
is effectively in the cut. Summing the contributions of each
edge, the following QUBO formulation can be obtained:

Maximize y =
∑

(i,j)∈E

wi,j · (xj + xi − 2 · xj · xi) , (3)

where wi,j is the weight of the edge that connects the i-
th and the j-th node. Max-cut problems are characterized
by symmetric energy profiles; in fact, a solution and its
complement (e.g. [0,1,1,0,1] and [1,0,0,1,0]) have the same
energy because the obtained two sub-sets are interchangeable.
In the case of knapsack [7] problem (Figure 2b), the target is
defining, for a set of objects xi characterized by weight wi,
the best sub-set to be put into a bag, ensuring that the total
weight does not exceed a threshold W :

0 <

dim(X)∑
i=1

wixi ≤W , (4)

and maximizing the number of favorite objects (the preference
of each object is expressed through a weight pi).
The reported inequality constraint can be represented in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 3

0 1

24

3

3

3
3

2

2

1

(a) Five-node max-cut.

3 kg

1.5 kg

0.5 kg

1.8 kg

0.1 kg

(b) Knapsack. (c) Garden Optimization

days

nurses

n0

n1

d0 d1 d2 d3

(d) Nurse scheduling

Fig. 2: Examples of QUBO problems.

QUBO formulation by using auxiliary variables whose number
depends on W , as explained in [5].
The cost function can be finally written as:

fknapsack(x) = finequality(x)−
∑
i

pixi . (5)

Another important CO problem family is that of well-
positioning problems, such as the garden optimization [8],
whose target is to find an optimal placement of n plants in
n pots (Figure 2c). The associated QUBO problem involves
n2 variables xij for each plant-pot pair, assuming value 1 if
the j plant is in the pot i. A valid placement has to satisfy
some requirements. First of all, each pot has to be filled with
exactly one plant:

∀i :
n∑

j=1

xij = 1 . (6)

Then, all available plants must be placed in the garden:

∀j :
n∑

i=1

xij = 1 . (7)

In the end, tall plants shall not shadow smaller ones:

∀i, j : (i mod 2− sj)
2xi,j = 0, (8)

where sj ∈ [0, 1] is a binary flag assuming value 0(1) if the
jth plant is tall(small), forcing it in even(odd) rows.
The figure of merit for placement optimization is the affinity
among plant species. Indeed, some species can be placed close
to each other, while others cannot.
The final cost function can be written as:

fgarden(x) = −
n∑

i,i′=1

Jii′

(
1 +

n∑
j,j′=1

xijCjj′xi′j′

)
+

+ λ1

n∑
i=1

(
1−

n∑
j=1

xij

)2

+ λ2

n∑
j=1

(
1−

n∑
i=1

xij

)2

+

+ λ3

n∑
i=1

n∑
j=1

(i rem 2− sj)
2xij , (9)

where Jii′ and Cjj′ are the terms of the adjacent J and
companions C matrices, respectively. Jii′ is equal to 1 if pots
i and i′ are adjacent, while Cjj′ is equal to -1 when there
is a friendly relationship among plants j and j′ plants, and
equal to 0 and 1 in case of neutral and antagonist relationships

respectively.
Finally, the timetabling problems, like nurse scheduling
optimization [9], are described. The target is to find the
optimal schedule for nurses working in a hospital over a
fixed timetable of shifts (Figure 2d). Given N nurses and D
working days, the associated QUBO model involves N · D
variables, one for each nurse-day pair, which equals 1 if the
nth nurse works on the dth day. Three constraints characterize
this problem. The first one is called hard shift constraint
and requires that the schedule has to assure in each day d a
nurse effort

∑N
n=1E(n)xn,d sufficient to satisfy the associated

workload W (d):

∀d :

N∑
n=1

E(n)xn,d =W (d) . (10)

The second one is called hard nurse constraint, which ensures
that no nurse works for two consecutive days. A positive
correlation constant a is used to penalize the schedule in which
the nth nurse works on two consecutive days:

fnurse(x) =
N∑

n=1

D−1∑
d=1

a · xn,d · xn,d+1 . (11)

The last one, which is called the soft nurse constraint, assures
that all nurses should work approximately the same number
of days F = D/N :

∀n :

D∑
d=1

xn,d = F . (12)

The final cost function can be written as:

fnurse(x) =
N∑

n=1

D−1∑
d=1

axn,dxn,d+1+λ1

N∑
n=1

(D∑
d=1

xn,d−F
)2

+

+ λ2

D∑
d=1

(N∑
n=1

E(n)xn,d −W (d)

)2

. (13)

All the previously described CO problems are employed as
benchmarks for the proposed Grover-based QUBO solvers,
and the results for these are reported in Section IV.

B. Grover Adaptive Search

A CO problem, written as a cost function f(x):

minimize f(x), (14)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 4

Fig. 3: Example of the iterations of the described algorithm: the cost function is shifted twice and, after the second shift, its
lowest value is equal to 0.

Fig. 4: Flowchart of the GAS algorithm, with focus on GS circuit.

can be solved with the following sequential approximation
method:

1) Set to zero the iteration index i and the last sampled
value variable yi.

2) Shift the cost function f(x) of yi vertically.
3) Increase i.
4) Randomly sample a value yi from the image of f(x)

such that yi < 0.
5) Assume yi as a new optimal value since a negative value

of the shifted cost function is consistently lower than the
previously imposed offset yi−1.

6) Repeat from 2 until no more negative values are sam-
pled. In this way, the combination of the variables with
f(x) = 0 is the solution to the optimization problem.

A meaningful example of this approach is reported in Figure
3, where it is possible to observe how the minimum can
be found by repeating the sample-and-shift procedure. In
order to properly exploit the described procedure, an efficient
mechanism for sampling negative values is required. Grover
Search (GS) routine, which is particularly efficient compared
to its classical counterpart in finding a particular item in an
unordered set (described in detail in Appendix A), represents
the best choice for this task. If this quantum algorithm is
exploited, the global optimization problem solver is called
Grover Adaptive Search (GAS) [10], and its complete
flowchart is reported in Figure 4.
The cost function can be described properly for the GS
routine by encoding it onto a quantum state in terms of
the key-value pairs of a quantum dictionary, which is the
quantum counterpart of a classical dictionary and is described
in detail in Appendix B. In this context, it is sufficient to

say that keys and values correspond to the cost function
domain (i.e. combinations of binary variables x) and image
(f(x), described according to the binary two’s complement
representation for signed integers), respectively.
Another critical point of the presented procedure is
determining if there are still negative values to be sampled
or not. In the GAS case, a characteristic feature of GS
can be exploited for this purpose: when no item meets the
conditions of the GS, any possible configuration can be
sampled according to a uniform probability distribution. This
occurs when only non-negative function values are available,
so GAS can be stopped when this condition is achieved
since the optimal value has already been obtained. However,
this is not the only situation in which a positive value can
be obtained. Indeed, it can occur when a wrong number of
Grover rotations is chosen. Consequently, a good possibility is
to count the number of consecutive measured positive samples
and to stop the algorithm when this overcomes a certain
threshold t, after which the condition of optimal solution
achievement can be reasonably trusted. The optimization of t
is discussed in Section II-C.

C. GAS degrees of freedom
Given the number of iterations of the Grover algorithm r ∈ N,
its optimal value for measuring one desired item depends on
the fraction of labelled states over the whole search domain.
The probabilities of measuring labelled or non-labelled states
depend on the chosen r:

γ ({x}) =

{
gr(p)

l if x ∈M
1−gr(p)
N−l if x ∈ S \M

, (15)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 5

Fig. 5: Dependence of gr on r, for four different p values. Since r must be a natural number, dots mark the effective gr.

where l is the number of labelled states, N is the number of
elements in the searching domain, p = l

N is the fraction of
labelled states in the domain, M is the set of target states, and
S is the total searching domain. The function gr(p) is given
by:

gr(p) = sin2 [(2r + 1) arcsin
√
p] . (16)

Figure 5 shows the relationship between gr and r for four
different p values. It is possible to observe how the period of
gr decreases by increasing p, even if this does not necessarily
imply that a solution can be found with the Grover algorithm
in fewer iterations. Indeed, only integer values of r, marked
by dots, can be effectively employed for GS. As it is possible
to notice, the GS is more effective when the searched items
are less than half of the possible solutions. An unfortunate
case is when the targets are exactly half of the solution space
because gr is constantly equal to 0.5, giving each item in the
solution space the same probability of being sampled.
In the GAS context, M contains negative cost function values
at each iteration. Its dimension, thus the percentage of target
state p, cannot be known, and they change whenever the cost
function is translated. For this reason, the choice of r is critical,
and some strategies to choose it are required.
From Equation 15, it is also possible to notice that a positive
sample can be obtained in two cases: no negative values
remain, or the number of Grover rotations r is not well-
selected. Therefore, to correctly stop the Grover algorithm, it
is necessary to develop an effective mechanism to distinguish
these two situations. As mentioned in Section II-B, the most
common solution is to count the number of consecutive
positive samples until a certain threshold t is reached.
For all the mentioned reasons, the number of Grover rotations
at each algorithm call and the stop condition mechanism are
the most crucial degrees of freedom of the GAS algorithm for
its effective execution.

III. EXPLORED TECHNIQUES FOR MANAGING GAS
DEGREES OF FREEDOM

As described in Section II-C, optimizing the algorithm degrees
of freedom is crucial. In particular, the number of Grover
rotations r has to be estimated at each GS call because the
percentage of cost function negative values changes after each

translation. Moreover, the stop condition threshold t has to be
chosen to find a compromise between short total execution
time and satisfactory GAS success probability.
This section presents existing and new mechanisms for man-
aging the degrees of freedom. Furthermore, to permit a con-
sistent results comparison, corresponding software methods
have been added to the GroverOptimizer class in Qiskit
[11] (codes are available in https://github.com/DeborahVolpe/
Grover-Adaptive-Search.git).

A. Grover iteration

Regarding the number of Grover rotations, the target is to
determine the lowest value, ensuring a satisfactory probability
of measuring the existing negative values.
Three strategies are presented: the first two are already
available in state-of-the-art, while the last one is presented
here for the first time. They are detailed in the following:

• Random (RND) approach [12], in which r is randomly
sampled from an interval of possible values. This is
initialized to [0, 1], whenever the cost function is shifted
(i.e. a negative value is measured), and is increased at
every positive value sampled. The main idea behind this
approach is to randomly explore gr(p) (Equation 16) until
a value of r, permitting to obtain a negative value, is
found. This is the mechanism already present in the Qiskit
(QSKT) implementation, where the upper bound of the
interval is saturated.

• Fixed pattern (PAT) proposed in [13], where r at each
GS call is read by a list of pre-computed values, which are
obtained by making some assumptions on the distribution
of values in the image of the cost functions. However, this
seems ineffective when there is a great deal of repetition
in objective values, as shown in [14].

• Linear (LIN) approach, where r is set to 0 when a
negative sample is obtained and is linearly increased
whenever a positive one is measured. This mechanism,
like the random one, explores gr(p) (Equation 16) until
a negative value is met.

Both random and linear strategies have been implemented with
(noSat) and without the following saturation (sat) mechanism:

mnew = min
{
mold + 1, 2nkey/2

}
, (17)

https://github.com/DeborahVolpe/Grover-Adaptive-Search.git
https://github.com/DeborahVolpe/Grover-Adaptive-Search.git

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 6

where nkey is the number of binary variables of the problem
of interest and mnew and mold depend on the strategy. In the
linear one, mnew and mold are the new and previous r, while in
the random strategy mnew and mold are the new and previous
upper limits of the interval in which r is chosen randomly.

B. Stop policy

As previously explained, the common strategy for stopping
GAS is to count the number of successive positive numbers
until a threshold t is reached. However, choosing the best t
is crucial for a compromise between GAS success probability
and execution time. In the state-of-the-art, this value is usually
fixed for the whole execution, but it does not consider the
evolution of the cost function during the GAS execution.
Sampling a positive value at the beginning of the algorithm
could imply a bad choice of r rather than a total presence of
positive values, while at the end of GAS, the situation is dual.
For these reasons, dynamic mechanisms for varying t are
proposed in this work:

• Linear (LIN), where the t is linearly decreased, starting
from a reasonably high value tmax, whenever a negative
value of the cost function is measured. The t update
equation is:

tnew =

⌈
− tmax

tmin

nS
v

+ tmax

⌉
, (18)

where tmin and tmax are the minimum and maximum
values of t, nS is a counter of the executed classical
iterations (i.e. of negative values sampled), and v is a
control parameter of the linear scaling slope.

• Logarithmic (LOG), analogous to the previous one and
employing a logarithmic decrease of t according to:

tnew =

⌈
log10(1.1)(tmax − tmin)

log10(1.1 + nS/v)
+ (tmin − 1)

⌉
, (19)

• Adaptive (ADPT), which permits to modify t according
to the previous experience. In particular, when a negative
value is measured after many consecutive positives close
to t (currently > 4

5 t, but tunable), a too low threshold
could be expected, so t must be increased by a fraction of
t (currently 20%); on the other hand, a negative sample
after few positives (currently < 1

5 t, but tunable) could
imply a too high value for t, which can be reduced
(currently 20%) to speed-up the execution.

In all cases, to avoid too low or negative values of t, this is
saturated to the lowest expected value tmin.

IV. RESULTS

In this section, the most significant results — more precisely
the most complex problem solved for each family — are
reported and commented to understand the main observed
trends in solving different QUBO problems. All the obtained
results not reported in the following are available in the
supplementary information file, with the same format (in terms
of plots and tables) of those shown in the following.
All tests are performed by using for the quantum part the
QasmSimulator available in Qiskit, which runs locally, and by

using as execution platform a single-process Intel(R) Xeon(R)
Gold 6134 CPU @ 3.20GHz opta-core, Model 85 [15] with a
memory of 10296102+ KiB. The size of considered problems
is limited by the number of simulable qubits on the available
platform.
Table I reports, for each combination of strategies for man-
aging GAS parameters, the statistical results obtained by
repeating the test ten or one hundred times, according to
the complexity of the benchmark problem. In particular, the
probability of success (POS) — i.e. the probability of ob-
taining the optimal solution — the average number of total
Grover rotations per GAS execution R =

∑
GS calls r , and the

average number of classical iterations (C) are reported, to
compare the results obtained with the different mechanisms
both in terms of the effective capability of reaching the
minimum of the cost function and of time required. The last
two metrics give an idea of the computational complexity of
a GAS-based QUBO solver. R reports the average value of
oracle and diffusion operators in a complete GAS execution,
thus permitting us to understand the total amount of quantum
computation required for obtaining a solution. At the same
time, C corresponds to the total number of the complete GAS
iterations, each constituted by a GS quantum circuit execution
and the following classical post-processing mechanism (Figure
4). For example, many total Grover rotations and classical
iterations imply a long execution time. Qiskit implementation
results are reported on top because they are considered the
reference for comparisons. In order to more easily understand
which is the best compromise between success probability
and execution time, the obtained results are also graphically
reported in Figures 6a, 6b, 6c and 6d. These report, for each
strategy, the cumulative distributions obtained by executing
GAS multiple times, divided by R. In order to facilitate
the understanding of plots, two rules must be considered.
According to the first one, the probability of obtaining the
optimal value (or a value close to it) with a specific strategy
is higher when its corresponding cumulative distribution is
more concentrated on the left of the plot, where the lowest
values of the cost function are located. According to the
second one, the more the distribution is shifted up, lower
is the total execution time, because the multiplicative factor
1 1
R is higher. In other words, the cumulative distribution is a

useful method for detecting the most accurate strategies and
the scaling factor 1

R permits the distinction of two eventual
strategies with analogous distributions in terms of the expected
execution time for obtaining a solution. Moreover, to make
more accessible the comparison with Qiskit, the region of the
plot below its cumulative is coloured with the same colour.
From the reported results, it is possible to notice how the best
strategies combination strictly depends on the considered type
of problem, thus from the shape of its cost function. Indeed,
pattern strategy seems to be not particularly effective in the
case of the objective function with many value repetitions, like
max-cut, but works quite well with the other tested problems,
whose cost function shape is heterogeneous, coherently with
the results reported in [14].
Linear and random strategies for choosing r provide a high
success probability in all considered problems, while it could

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 7

TABLE I: Statistical results concerning the effectiveness of each strategy combination. In particular, the probability of success
(POS), the average number of total Grover rotations (R) and average number of classical iterations (C) in a GAS execution
are reported. The reported data are obtained by solving, with each strategies combinations, ten times an eight-node max-cut
(wi,j = rand(range(0, 2))) and a four-object knapsack (seven-variable, considering those auxiliary, pi = rand(range(1,3)),
wi = rand(range(1,3)) and W = rand(range(3,5))) problems and one hundred times a four-variable garden (λ1 = 10, λ2 = 10,
λ3 = 5 and Cjj′ taken from from [8]) and a four-variable nurse problems (N = 2, D = 2, W (d) = 1, E(n) = 1, a = 3.5,
F = 1, λ1 = 0.3 and λ2 = 1.3).

Adopted Max-cut with Knapsack with Garden with Nurse with
strategy 8 variables 7 variables 4 variables 4 variables

r t POS R C POS R C POS R C POS R C
QSKT – 1.00 35.00 22.80 0.00 78.50 57.60 1.00 10.31 12.65 0.65 7.22 12.39

ADPT 0.70 12.30 13.30 0.30 14.00 16.40 0.93 4.53 8.34 0.69 3.00 7.35
RND LIN 0.40 4.00 8.50 0.30 4.10 8.20 0.82 3.26 7.02 0.71 2.31 6.70
sat LOG 1.00 16.40 15.90 0.00 36.90 32.10 0.96 8.50 11.05 0.68 5.63 10.47

FIX 1.00 25.00 19.40 0.20 69.50 51.70 1.00 15.94 13.11 0.59 9.10 13.73
RND ADPT 0.80 11.20 12.70 0.50 11.20 14.00 0.89 4.57 8.49 0.67 3.46 7.67
noSat LIN 0.20 4.30 8.50 0.10 9.20 11.00 0.89 3.12 7.08 0.74 2.16 6.65

LOG 1.00 19.00 16.80 0.40 42.40 36.10 0.98 10.53 11.08 0.7 4.93 9.87
FIX 1.00 52.40 17.60 0.20 80.60 47.30 0.99 23.69 12.27 0.48 22.18 16.36

LIN ADPT 0.90 13.20 11.70 0.20 19.40 15.90 0.98 5.77 7.52 0.62 6.28 8.22
sat LIN 0.40 7.00 8.40 0.30 7.60 9.30 0.93 5.73 7.01 0.67 4.45 7.29

LOG 1.00 33.70 15.90 0.00 56.40 34.10 1.00 17.65 10.70 0.62 11.78 12.28
FIX 1.00 49.70 15.60 0.20 80.20 46.50 1.00 31.00 12.63 0.50 23.50 17.45

LIN ADPT 0.80 6.10 9.20 0.10 13.80 14.40 0.99 7.04 7.67 0.71 4.73 7.72
noSat LIN 0.80 7.30 9.00 0.20 8.50 9.20 0.97 6.30 7.10 0.73 3.78 7.15

LOG 1.00 32.30 16.10 0.10 69.30 42.10 1.00 19.38 10.80 0.60 12.38 12.03

PAT

FIX 0.90 30.60 20.10 0.40 63.50 26.10 0.99 8.07 12.61 0.66 15.13 26.10
ADPT 0.60 8.60 12.70 0.10 10.70 14.50 0.98 2.86 8.35 0.60 1.77 14.50
LIN 0.30 4.30 9.30 0.20 3.40 9.00 0.89 2.19 7.33 0.58 1.25 9.00
LOG 0.70 11.70 14.50 0.30 55.00 24.30 0.99 5.57 11.12 0.72 4.52 24.30

become very high with the fixed threshold strategy.
The proposed mechanisms for dynamically modifying t are
effective because they significantly reduce R without unduly
affecting the success probability. Also, in this case, the best
trend variation of t depends on the problem, but on average,
the logarithmic decrease and the adaptive policy results are
the most effective.

V. CONCLUSION

This work proposed new strategies for managing GAS degrees
of freedom and compared them with those in state-of-the-art
solving QUBO problems. The results show how the proposed
mechanism for dynamically modifying t permits a significant
reduction of R, i.e. the execution time, without excessively
degrading the success probability. However, coherently with
expectation, the best strategy combination is strongly corre-
lated with the cost function of the problem. For example, the
pattern strategy for updating r is particularly effective with
nurse scheduling problems, characterized by few repetitions
in the objective function, but ineffective with max-cut ones,
where at least two repetitions of each value of the cost image
are present. In any case, the obtained results can be considered
reasonable and encouraging.
In order to further improve the GAS algorithm, other strategies
for managing all its degrees of freedom should be explored
in the future. For example, the stop condition mechanism
could be improved by performing a final Grover search with
a different oracle when the threshold t is met. This could
label non-negative values when more than half of the solution
space is of this type. In fact, as explained in Section II-C, if

states to be labeled are more than half of the solution space,
Grover search amplifies the probability of non-labeled states,
which can be sampled with a high probability for low r > 0
(see in Figure 5 the trend of the dual curves associated with
p = {0.1; 0.9} for 0 ≤ r ≤ 2). Another possibility, along
the lines of the previous one, could be to employ an oracle
labelling negative and null values. This could be employed
when the absolute minimum, whose value is 0 at the end of
GAS, has been achieved or is very close.
The choice of the optimal r in each iteration could also be
further improved by performing statistical analysis on the GAS
algorithm’s behaviour with different optimization problems.
This way, a specific pattern could be proposed based on
statistics and previous experience. Moreover, this could be
more effective if some pre-conditioning of the cost function
strategies is done to begin the algorithm in a condition where
negative values are less than half of the solution space.
Even though the current status of the work is preliminary,
the analysis performed to understand that the best setup for
GAS effectiveness strictly depends on the problem to be
solved and that an automatic toolchain can assist in prop-
erly configuring the QUBO solving procedure. Existing the
relationship between the cost function profile and the GAS
setup, a possible approach for the preliminary selection of all
GAS features can be related to the coefficients of the QUBO
matrix. For example, these can be exploited for identifying
an initial offset of the cost function, obtaining a good initial
ratio between positive and negative samples, and choosing
the features of a QUBO problem classifier, which indicates
the best GAS solver. Moreover, in the long-term perspective,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 8

Higher success probability
Lo

w
er

 ti
m

e
re

qu
ire

d

Worse than qiskit

Better than qiskit

(a) Eight-node max-cut

Higher success probability

Lo
w

er
 ti

m
e

re
qu

ire
d

Worse than qiskit

Better than qiskit

(b) Seven-variable knapsack
Higher success probability

Lo
w

er
 ti

m
e

re
qu

ire
d

Worse than qiskit

Better than qiskit

(c) Four-variable garden optimization

Higher success probability

Lo
w

er
 ti

m
e

re
qu

ire
d

Worse than qiskit

Better than qiskit

(d) Four-variable nurse scheduling

Fig. 6: Cumulative distributions of the values obtained at the end of GAS, divided by the average total number of Grover
rotations R. The complete statistical data for the considered problems are reported in Table I.

this toolchain could be expanded to support other quantum
or quantum-inspired solvers tailored for each QUBO family,
hoping that researchers can employ it to solve optimization
problems having a social or industrial utility.

APPENDIX A
GROVER SEARCH ALGORITHM

Grover Search (GS) algorithm is a quantum routine for search-
ing items in an unordered database, introducing a quadratic
speed-up compared with its classical counterpart [16]. Its main
idea consists in labelling the states encoding the solution of
the search problem and then amplifying their measurement
probability.
The conceptual scheme of GS is reported in the dashed box
of Figure 4. In its typical formulation, given a database D and
assuming an initial state |0⟩⊗n (with n total number of qubits),
a unitary operator A for obtaining a uniform superposition of
the states encoding d ∈ D is applied:

|ψ⟩ = A |0⟩⊗n
=

∑
d∈D

1√
dim(D)

|d⟩ . (20)

Then, as reported in Equation 21, the Grover operator G is
applied r times to the state |ψ⟩ to perform the labelling and
amplification of target states:

|ψf ⟩ = (DO)r |ψ⟩ = (G)r |ψ⟩ , (21)

where O and D are the unitary oracle and diffusion operators.
The former flips the sign of the probability amplitude of target
states, while the latter inverts all the amplitudes of the states
around their average to amplify those of the target states. The
complexity of GS increase as a O(

√
N
l), where N possible

states and l is the number of labeled states, as reported in [17].
In the GAS algorithm application, the unitary operator A is the
quantum dictionary discussed in Section B. Moreover, since
cost function values are written in two’s complement represen-
tation, the oracle for labelling negative values can be obtained
by applying a Z gate on the MSB of the qubits value register.
Finally, D is constructed as D = A ·CnZ|0⟩⊗n ·A†, where A†

is the adjoint of A and CnZ|0⟩⊗n is a multi-controlled-Z gate,
flipping the sign of the probability amplitude of |0⟩⊗n.

APPENDIX B
QUANTUM DICTIONARY

The quantum dictionary is a quantum circuit presented in
[18], which encodes, equivalently to its classical counterpart,
a key-value-pair data structure, such as a function, into a quan-
tum state. It is implemented through two entangled quantum
registers, one for the keys (|k⟩ on n qubits) and the other for
values (|v⟩) on m qubits). Entanglement plays the role of a
pointer in classical computation and assures correlation among
each key and its corresponding value.
Different encoding operators can be used for defining a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 9

|k⟩n H • • •
|v⟩m H • • • QFT †

|a⟩ H U(Ry) ... Ry(θ) ... U(Ry)
†

(a) Implementation with the ancilla qubit, U(R) prepares the state
of the ancilla qubit, Ry(θ) is an element of the encoding operator.

|k⟩n H • • •

|v⟩m H ... R(θ) ... QFT †

(b) Implementation without the ancilla qubit, R(θ) is an element
of the encoding operator.

Fig. 7: Circuits for quantum dictionary.

quantum dictionary. A popular approach derives from the
Quantum Phase Estimation (QPE) [18] algorithm, in which
a quantum state encodes the eigenvalue of an operator through
its geometric series. At the circuital level, this approach can
be implemented in two functionally equivalent ways, i.e. both
approaches intrinsically produce the same final state, with keys
associated with the combination of binary variables and values
encoding those of the cost function, according to the two’s
complement representation.
The first approach exploits the unitary matrix Ry(θ) [19];
in particular, it requires an additional qubit over the n + m
required for the two registers, whose phase encodes the
function values. In Figure 7a, the conceptual quantum circuit
scheme is reported. The initialization step requires applying
a set of Hadamard gates on all qubits to create a uniform
superposition. Moreover, an additional sequence of single-
qubit gates U(Ry) is applied on the ancilla qubit to ensure
that its state corresponds to an eigenvector of Ry(θ). Then,
a sequence of controlled-Ry(θ) gates is applied to the ancilla
qubit to describe the function values in a qubit phase geometric
series, which can be finally converted into a single binary
number on the value qubits through the inverse Quantum
Fourier Transform (QFT†) [20]. Finally, uncomputation is
done on the ancilla qubits to restore state |0⟩. A slightly dif-
ferent approach avoids the ancilla qubit, applying to the value
register (i.e. |v⟩) a series of geometrically-spaced controlled
rotation operators to encode the desired value in the phase of
the state of |v⟩. Also, in this case, it is possible to reconstruct
the values on the computational basis by applying the inverse
QFT on |v⟩ qubits. Figure 7b reports an example circuit
that implements a quantum dictionary with this technique. R
practically corresponds to the U1(θ) gate available in [11].
The second approach was applied to encode the cost function
in the GAS implementation because it involves one qubit less,
thus resulting less memory-intensive.

REFERENCES

[1] E. Zahedinejad and A. Zaribafyan, Combinatorial Optimization on Gate
Model Quantum Computers: A Survey, 2017.

[2] V. S. Denchev et al., What is the Computational Value of Finite-Range
Tunneling?, Phys. Rev. X, vol. 6, no. 3, p. 031015, Aug. 2016.

[3] E. Mounier, Quantum Technologies: Market and Technology Report 2020,
2020 [Online].

[4] C. Durr and P. Hoyer, A Quantum Algorithm for Finding the Minimum,
arXiv, 1996.

[5] F. Glover, G. Kochenberger, and Y. Du, A tutorial on formulating and
using QUBO models, arXiv 1811.11538, 2018.

[6] J. T. Iosue, qubovert Documentation, 2019 [Online].
[7] M. W. Coffey, Adiabatic quantum computing solution of the knapsack

problem, arXiv 1701.05584, 2017.

[8] C. D. Gonzalez Calaza, D. Willsch, and K. Michielsen, Garden op-
timization problems for benchmarking quantum annealers, Quantum
Information Processing, vol. 20, no. 9, pp. 1–22, 2021.

[9] K. Ikeda, Y. Nakamura, and T. S. Humble, Application of quantum
annealing to nurse scheduling problem, Scientifc reports, vol. 9, no. 1,
pp. 1–10, 2019.

[10] D. W. Bulger, W. Baritompa, and G. R. Wood, Implementing Pure Adap-
tive Search with Grover’s Quantum Algorithm, Journal of Optimization
Theory and Applications, vol. 116, pp. 517–529, 2003.

[11] Qiskit Optimization GitHub repository, [Online].
[12] A. Gilliam, S. Woerner, and C. Gonciulea, Grover Adaptive Search for

Constrained Polynomial Binary Optimization, Apr. 2021.
[13] W. P. Baritompa, D. W. Bulger, and G. R. Wood, Grover’s Quantum

Algorithm Applied to Global Optimization, Jan. 2005.
[14] Y. Liu and G. J. Koehler, Using modifcations to Grover’s Search algo-

rithm for quantum global optimization, European Journal of Operational
Research, vol. 207, no. 2, pp. 620–632, 2010.

[15] Intel Xeon Gold 6134 Processor - Product Specifcation. [Online]
[16] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in

a Haystack, Phys. Rev. Lett., vol. 79, no. 2, pp. 325–328, Jul. 1997.
[17] S. Sadana, Grover’s search algorithm for n qubits with optimal number

of iterations, arXiv 2011.04051, 2020.
[18] A. Gilliam et al., Foundational Patterns for Efficient Quantum Comput-

ing, 2021.
[19] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information: 10th Anniversary Edition, Cambridge University Press, 2010
[20] D. Coppersmith, An approximate Fourier transform useful in quantum

factoring, 2002, [Online].

Luigi Giuffrida received the B.Sc. and M.Sc. de-
grees in Electronic Engineering, in 2019 and 2021
respectively, from Politecnico di Torino. During the
M.Sc. thesis he focused mainly on the study of
Grover Adaptive Search and its degrees of freedom
to efficiently solve QUBO problems in a quantum-
classical mixed framework. He will attend the Ph.D.
programme in Electrical, Electronics and Commu-
nications Engineering at Politecnico di Torino in
November 2022. The main focus of his research
activity will be the design of hardware architectures

for complex computation, mainly targeting network processors, hardware for
digital signal processing and neural networks.

Deborah Volpe (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees in Electronic
Engineering – in 2019 and 2021, respectively – from
Politecnico di Torino, where she is now pursuing the
Ph.D. degree in Electrical, Electronics and Commu-
nications Engineering. Her research interests mainly
focus on the emulation of quantum computers on
classical hardware (FPGA, CPU and GPU) and
quantum-compliant approaches for solving QUBO
problems.

 https://doi.org/10.48550/arXiv.1708.05294
 https://doi.org/10.48550/arXiv.1708.05294
 https://doi.org/10.1103/PhysRevX.6.031015
 https://doi.org/10.1103/PhysRevX.6.031015
http://www.yole.fr/2020_press_releases.aspx
https://doi.org/10.48550/arXiv.quant-ph/9607014
https://doi.org/10.48550/arXiv.1811.11538
https://doi.org/10.48550/arXiv.1811.11538
https://qubovert.readthedocs.io/en/stable/
https://doi.org/10.48550/arxiv.1701.05584
https://doi.org/10.48550/arxiv.1701.05584
https://doi.org/10.1007/s11128-021-03226-6
https://doi.org/10.1007/s11128-021-03226-6
https://doi.org/10.48550/arXiv.1904.12139
https://doi.org/10.48550/arXiv.1904.12139
https://doi.org/10.1023/A:1023061218864
https://doi.org/10.1023/A:1023061218864
https://github.com/Qiskit/qiskitoptimization
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.1137/040605072
https://doi.org/10.1137/040605072
https://doi.org/10.1016/j.ejor.2010.05.039
https://doi.org/10.1016/j.ejor.2010.05.039
https://ark.intel.com/content/www/us/en/ark/products/120493/intel-xeon-gold-6134-processor-24-75m-cache-3-20-ghz.html
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.22331/q-2021-04-08-428
https://doi.org/10.48550/ARXIV.2011.04051
https://doi.org/10.48550/ARXIV.2011.04051
https://doi.org/10.48550/arXiv.1907.11513
https://doi.org/10.48550/arXiv.1907.11513
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.48550/ARXIV.QUANT-PH/0201067
https://doi.org/10.48550/ARXIV.QUANT-PH/0201067

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2022 10

Giovanni Amedeo Cirillo (Graduate Student Mem-
ber, IEEE) received the B.Sc. and M.Sc. degrees
in Electronic Engineering and the Ph.D. degree in
Electrical, Electronics and Communications Engi-
neering from Politecnico di Torino in 2016, 2018
and 2022 respectively. He is currently a Digi-
tal Design Engineer in the Analog, MEMS &
Sensors Group R&D team of STMicroelectronics
(Cornaredo, Italy). His research activities are mainly
related to device compact modelling for classical
simulation of quantum computing and quantum-

assisted communication technologies, quantum circuits design and optimiza-
tion, definition of quantum-compliant algorithms for Telecommunications In-
dustry and algorithmic-based design of digital signal processing architectures,
mainly exploiting High-Level Synthesis (HLS) techniques. Between 2019 and
2021, he was the treasurer of the Politecnico di Torino IEEE Student Branch.

Maurizio Zamboni received the Degree in Elec-
tronics Engineering in 1983 and the Ph. D. degree
in 1988 at the Politecnico di Torino. He joined
the Electronics Department, Politecnico di Torino,
in 1983, became Researcher in 1989, Associate
Professor in 1992 and Full Professor of Electronics
in 2005. His research activity started with the study
of multiprocessor architectures, then he worked with
digital IC design concentrating both on architectural
aspects and circuits optimisation. In these years he
got an expertise in the design of special ICs for

Artificial Intelligence, Vision and Telecommunication. His main interests
include now low-power circuits and innovative technologies beyond the
CMOS world such as Nano Magnetic Logic and NanoArrays. From 2018 he
started moving to Quantum Computing issues, contributing to the creation,
at Politecnico of Torino, of a research group very active in many fields of
the QC world, from technologies to emulators/simulators up to AI and ML
applications. Many activities have been carried on from the device modeling
for the promising technologies, up to the development of basic cells models
for Quantum Gate Arrays and the study of applications of QC in the world of
Communications, Security and AI. He is co-author of more than 200 scientific
papers (three invited papers) and three books and holds two patents.

Giovanna Turvani received the M.Sc. degree with
honours (Magna Cum Laude) in Electronic Engi-
neering in 2012 and the Ph.D. degree from the Po-
litecnico di Torino. She was Postdoctoral Research
Associate at the Technical University of Munich
in 2016. She is currently Assistant Professor at
Politecnico di Torino. Her interests include CAD
Tools development for non-CMOS nanocomputing,
architectural design for field-coupled nanocomput-
ing and high-level device modelling for Quantum
Computing and hardware systems for microwave

imaging-based techniques for biomedical applications and for food quality
monitoring. Other expertise includes also the design of IoT low-power systems
based on long-range protocols (LoRa).

	Introduction
	Theoretical foundations
	QUBO formalism
	Relevant Examples

	Grover Adaptive Search
	GAS degrees of freedom

	Explored techniques for managing GAS degrees of freedom
	Grover iteration
	Stop policy

	Results
	Conclusion
	Appendix A: Grover Search algorithm
	Appendix B: Quantum dictionary
	References
	Biographies
	Luigi Giuffrida
	Deborah Volpe
	Giovanni Amedeo Cirillo
	Maurizio Zamboni
	Giovanna Turvani

