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Abstract

In manufacturing, complexity is considered a key aspect that should be managed from the early phases of product and system
design to improve performance, including productivity, efficiency, quality, and costs. The identification of suitable methods to
assess complexity has always been of interest to researchers and practitioners. As complexity is affected by several aspects of
different nature, it can be assessed from objective or subjective viewpoints or a combination of both. To assess experienced
complexity, the analysis relies on the subjective evaluations given by practitioners, usually expressed on nominal or ordinal
scales. However, methods found in the literature often violate the properties of the scales, potentially leading to bias in the
results. This paper proposes a methodology based on the analysis of categorical data using the multi expert-multi criteria
decision making method. A number of criteria are adopted to assess assembly complexity and, from subjective evaluations
of operators, product assembly complexity is assessed at an individual level and then, aggregating results, at a global level.
A comparison between experienced complexity and an objective assessment of complexity is also performed, highlighting
similarities and differences. The assessment of experienced complexity is much more straightforward and less demanding
than objective assessments. However, this study showed that it is preferable to use objective assessments for highly complex
products as individuals do not discriminate between different complexity levels. An experimental campaign is conducted
regarding a manual assembly of ball-and-stick products to show the applicability of the methodology and discuss the results.

Keywords Product complexity - Manual assembly - Categorical data - Quality

1 Introduction different sources of complexity is essential for companies to

achieve their competitiveness goals.

Complexity of manufacturing products and systems has
long been a subject of great interest by both researchers and
practitioners. Recent studies have shown that complexity is
one of the main factors impacting operator and manufactur-
ing process performance, including assembly time, quality
defects, and production costs (Ameri et al. 2008; Falck and
Rosenqvist 2014; Alkan et al. 2018). In addition, complex-
ity in assembly processes is not only related to performance
and KPIs but also to the design of the workspace and equip-
ment needed on the factory floor (Alkan et al. 2016; Sinha
and Suh 2018). For this reason, assessing and managing the
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In the literature, complexity is defined and analyzed from
several perspectives and, accordingly, methods to estimate
complexity are manifold, as will be detailed in the follow-
ing Sect. 2. Typically, assembly complexity involves objec-
tive and subjective perspectives. Objective aspects include
product complexity and sequence complexity, whilst sub-
jective aspects involve personal factors (training, creativity,
experience, etc.) and operation and management strategy (Li
and Wieringa 2000). Although objective assessment allows
the assessment of actual sources of complexity, subjective
complexity provides a more holistic view and offers a more
situation-oriented understanding of the effects of complexity
(Bystrom and Barfield 1999).

The relationship between objective and subjective com-
plexity has been the subject of several studies, and has been
analyzed both quantitatively and qualitatively (Li and Wier-
inga 2000; Mattsson 2013; Alkan 2019). The present study
aims to define a relationship between operator-experienced
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complexity and objective complexity, estimated using the
structural model first proposed by Sinha et al. (2012), adopt-
ing the multi expert-multi criteria decision making method
(Yager 1993). The methodology allows obtaining, starting
from some assembly criteria, (1) an individual complexity
assessment (at the level of the individual operator) and (2) an
overall assessment of product complexity (aggregating the
individual assessments). Unlike previous models proposed
in the literature, the proposed approach differs in that it uses
appropriate methods to analyze and manage categorical
data (i.e. the evaluations provided by operators/practition-
ers). Indeed, very often, operations not admitted by ordi-
nal/nominal scales, such as ratios between categorical data,
are performed, thus violating scale properties, leading to a
distortion in the results (Stevens 1946; Franceschini et al.
2004). This approach is applied to a manual assembly of
products and related structural and experienced complexity
are compared. In detail, the following Research Questions
(RQs) are addressed:

e RQI: Is there a statistically significant association
between individual experienced complexity and objec-
tive complexity?

e RQ2: Does the variability of individual experienced com-
plexity values remain constant as the objective complex-
ity of products changes?

e RQ3: Is there a statistically significant association
between overall experienced complexity and objective
complexity?

e RQ4: On average, does each change in objective com-
plexity result in a change in operators' perceived com-
plexity?

The method used in the present study is easier to apply,
immediate and less expensive than models that objectively
assess complexity. Indeed, it does not require any parameter
estimates and complex calculations, but instead involves col-
lecting data and analysing the subjective evaluations pro-
vided by operators. The results emerging from this study
show that this method is preferable for low and medium
complexity levels, while it is less accurate than objective
assessment for highly complex product since individu-
als struggle to discriminate between increasing levels of
complexity.

The remainder of the paper is organized into five sections.
Section 2 summarizes the main definitions of product com-
plexity and approaches used to assess complexity. In Sect. 3,
the methodology proposed to assess experienced assembly
complexity is presented. Section 4 illustrates a case study
concerning the practical application of the proposed meth-
odology in a manual assembly process. Section 5 illustrates
experimental results and discussions. Finally, Sect. 6 con-
cludes the paper.

@ Springer

2 Theoretical background

This section reviews existing scientific definitions of prod-
uct complexity from different perspectives and summa-
rizes the main approaches used to assess complexity of
manufacturing systems/products adopted by practitioners
and researchers.

2.1 Defining product complexity

Several articles and reviews already exist addressing
methods to assess and manage complexity in manu-
facturing (Simon 1991, 1996; De Toni et al. 2001;
ElMaraghy and Urbanic 2004; Samy and ElMaraghy
2010; ElMaraghy et al. 2012; Liu and Li 2012; Efthy-
miou et al. 2016; Alkan et al. 2018). Herbert Simon
(1996) defined complexity as the main problem of han-
dling systems: “Roughly, by a complex system I mean
one made up of a large number of parts that interacts in a
non-simple way. In such systems the whole is more than
the sum of the parts, not in an ultimate, metaphysical
sense but in the important pragmatic sense that, given
the properties of the parts and the laws of their inter-
action, it is not a trivial matter to infer the properties
of the whole”. In the scientific literature, complexity
is defined and modelled by authors both from a broad
and a narrow standpoint. From the narrow sense, com-
plexity is defined by the quantity, relationship, and vari-
ety of process elements. On the other hand, from the
broader sense, any instinctive characteristic can be part
of complexity. Three following perspectives of product
complexity can be identified according to Liu and Li
(2012): (1) structuralist, (2) resource requirement and
(3) interaction. In the structuralist perspective, the com-
plexity of a task is defined by its structure, e.g. it can
be defined as a function of the number of task elements
and the relationships between them. A complex task may
have many task elements, and the task elements may be
interconnected with each other. Models belonging to
this perspective analyze systems through characteristics
such as size, variety of components, architecture, and
the amount and clarity of information, see e.g. Wood
(1986), Rothrock et al. (2005), Ham et al. (2012) and
Alkan and Harrison (2019). In the second perspective,
the resource requirement, task complexity refers to the
use of resources by operators, or other similar concepts
in Human Information Processing (HIP), such as visual,
auditory, cognitive, and psychomotor resources, knowl-
edge, skills, and even time. The definition is based on the
idea that task performers consume more resources the
more complex the process becomes (Park 2009; Bedny
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et al. 2012; Wickens and McCarley 2019). Such resources
are attributable to the human sphere and relate to the
understanding and processing of information. However,
in addition to the knowledge and the visual, auditory and
manual skills of the task performers, it is impossible to
disregard the intrinsic attributes of the process which,
growing in number, variety and uncertainty, increase the
cognitive effort required. Finally, in the interaction per-
spective, task complexity is defined as a product of the
interaction between the task and the characteristics of
the task performer (e.g. idiosyncratic needs, prior knowl-
edge and experience). Thus, according to the definition
of complexity within this perspective, the same sys-
tem, objectively complex, can be perceived differently.
Researchers supporting this research line are concerned
with subjective task complexity from the perspective of
the task performers (Brown and Miller 2000; Greitzer
2005). According to this view, task complexity is a rela-
tive concept (Gonzalez et al. 2005).

Table 1 summarizes the main definitions of task com-
plexity, as reported in the review of Liu and Li (2012), by
categorizing them into the three perspectives, i.e. structur-
alist, interaction and resource requirement.

2.2 Methods for assessing assembly complexity

In the scientific literature, several methods have been
adopted to assess product complexity in manufacturing.
Most of these methods link product complexity, particu-
larly in assembly processes, to the physical attributes of
the products to be assembled or the process sequence for
the assembly. In contrast, although manual assembly is a
widespread preference, especially in high-wage countries,
research on human cognition and information processing
has not received sufficient attention from both industry and
academia (Zaeh et al. 2009). Thus, the variables that influ-
ence the complexity of assembly tasks, and accordingly the
associated performance, are not fully understood. In Table 2,
the most common methods adopted by practitioners and
researchers to assess the complexity of production systems/
products are summarized, highlighting their benefits and
limitations.

Table 2 highlights the many different methods developed
in the literature for assessing the complexity of systems and
products. From such an analysis, distinctive features emerge
that are accordingly used by researchers to evaluate and
manage complexity, also referred to as symptoms (Alkan

Table 1 Main definitions of task complexity subdivided into the three perspectives of complexity [adapted from Liu and Li (2012)]

Task complexity definitions

Perspective

Number of elements

Number of information cues; information load; availability of information

Number of goals
Number of acts/meta-operations/procedures/sub-tasks
Number of outcomes/products/outcome characteristics

Number of solutions/paths/path-goal connections; path-goal multiplicity

Number of alternatives and attributes in each alternative
Variety/diversity of task elements
Input rate; rate of change of information cues

Relationship/connectivity/redundancy/conflict between task components

Concurrency between tasks
Ambiguity; clarity; specification; structuredness
Dynamic; variability; random events
Inconsistency; mismatch; compatibility
Presentation heterogeneity
Repetitiveness; novelty; non-routine
Reliability/validity of information cues
Time pressure

Uncertainty

Uncertainty

Difficulty

Structuralist

Interaction

A priori determinability; unpredictability; confidence; analyzability; interpretability

Familiarity
Cognitive/physical demands
Amount of knowledge

Resource requirement
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Table 2 (continued)

Cons

Pros

Objective/subjective complexity

assessment

Description

Methods

These approaches provide limited

The main advantage of heuristic

Objective assessment

Heuristic-based methods attempt to

Heuristics-based methods

insight into the complexity of the

methods is the ease of application
in real-world industrial systems

provide an industrially intelligible
picture of complexity based on the
structure of the production sys-

production system and are incapable
of analyzing intricate structural

and data collection. Furthermore,

patterns (Samy and EIMaraghy
2010). In addition, the applicabil-

the strength is to allow comparison
of design alternatives in the early
phases of the life cycle to detect

potential critical issues

tem (Windt et al. 2008; Samy and

ElMaraghy 2012; ElMaraghy et al.

2014)

ity of heuristic approaches across
different systems and applications

is often limited since these metrics
are strictly dependent on the specific
industry domain or application for
which they are designed

et al. 2018). These features may be categorized into four
categories: (1) nonlinear behaviours of systems, which are
linked to unstable dynamic phenomena, (2) uncertainties
in the operational flow, (3) system physical situation (i.e.
variety, quantity and information content of system elements
and their interrelations), and (4) indicators of human percep-
tions. Furthermore, by analysing pros and cons of meth-
ods, it emerges that few studies have addressed the practical
viability by companies, how they can be linked to specific
industrial needs and how they can be related to the different
phases of a production system engineering life cycle.

Determining both the available engineering data at a
given life cycle stage and the appropriate complexity assess-
ment method is challenging for companies to codify within
rules or best practices, as this remains unclear and gener-
ates uncertainty during method selection. Consequently, the
appropriate assessment method should be selected based on
the available data, often aligned to a design/engineering
phase. In Table 2, as it will be described in Sect. 2.3, both
objective and subjective methods for assessing complexity
are included. It is important to note that completely objective
approaches to measuring complexity are not always feasi-
ble. Consequently, approaches such as surveys and question-
naires, while susceptible to the subjectivity of respondents,
still offer valuable information if following a systematic
approach. Therefore, this paper aims to formulate a rigorous
approach to assessing complexity using a subjective perspec-
tive, which is then compared with a purely objective method
to highlight its benefits and criticalities.

2.3 Objective versus subjective assessment
of complexity

Task and product complexity have been interpreted by
researchers and practitioners from both objective and subjec-
tive standpoints (Liu and Li 2012), as shown in Table 2. In
the objective viewpoint, task complexity is directly related
to task characteristics and is independent of task performers
(Wood 1986). Conversely, the subjective interpretation con-
siders task complexity as a combined property of task and
task performer characteristics (Bystrom and Jarvelin 1995;
Vakkari 1999). Subjective complexity is also referred to in
the literature as experienced, perceived, or psychological
complexity. When the complexity of the task exceeds the
performer's ability, the performer will perceive the complex-
ity of the task. Thus, complexity sometimes becomes a "state
of mind," which influences how the task performer executes
the task (Liu and Li 2012; Mattsson 2013).

Referring to the three perspectives mentioned in Sect. 2.1
(see Table 1), in the structuralist and resource requirement
perspectives, complexity is typically described as an objec-
tive characteristic of the process, while complexity is rather
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defined as a subjective experience in the interactionist
perspective.

Objective and subjective assessments of complexity have
their strengths and weaknesses, which have been discussed
or empirically analyzed by many researchers (Bystrom and
Jarvelin 1995; Maynard and Hakel 1997; Alkan 2019). The
objective assessment is generally relatively specific, while
the subjective one is relatively global (Schwab and Cum-
mings 1976; Baccarini 1996; Bystrom 1999). Typically,
authors argue that objective assessment provides a solid
and rigorous basis for concise and standardized formulation,
albeit it is difficult to be applied in complex and dynamic
real-world situations. On the contrary, subjective assessment
provides a more situation-bound understanding of the effect
of task complexity and has practical implications because
of availability; however, it mixes the effects of task, task
performer and environment, resulting in a loss of generaliza-
tion across tasks.

Although objective and subjective complexity seem to
have unavoidable shortcomings and appear incompatible
with each other, they are interdependent and complemen-
tary. First, there is a causal connection between them. The
subjective complexity of the task depends on the objective
complexity of the task, which is emphasized by several stud-
ies (Li and Wieringa 2000; Topi et al. 2005; Alkan 2019).
Second, the formulation of subjective complexity should
validate the objective assessment of complexity. Thus, an
artificial division between objective and subjective complex-
ity will result in an inconclusive and incomplete knowledge
base (Cummings et al. 2010). Only by considering the objec-
tive and subjective complexity together, a greater under-
standing of the task and the relationship between the task
and the task performer can be obtained.

At this point, the structural model for objective assess-
ment of complexity (Sinha et al. 2012) is described in
Sect. 2.3.1, while a detailed debate on the tension between
subjective and objective complexity, which deepens the
above discussion, is presented in Sect. 2.3.2.

2.3.1 Structural complexity model

In the scientific literature regarding product assembly com-
plexity, a model addressing the assessment of complexity from
an objective standpoint was firstly proposed by Sinha et al.
(2012), and then used in several studies (Alkan et al. 2017,
Alkan 2019; Verna et al. 2021a, b, 2022a). In such a model,
the molecular orbital theory developed by Huckel (1932) is
applied to the engineering domain to analyze the complexity
of cyber-physical systems. The analogy behind the model is
between the configuration energy of molecular systems and the
complexity of engineering systems. In detail, in Huckel model,
the configuration energy of atomic orbitals is expressed as a
function of (1) self-energy of individual atoms in isolation,
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(2) interaction energy between interconnecting atoms, and (3)
effects of the topology of molecular system (Hiickel 1932). In
this context, the configuration energy delineates the distinctive
ability of the interacting system to react to its environment,
and higher values exhibit increasing effort needed to develop/
manage the system. Similarly, a cyber-physical system can be
represented by several components that are connected in dif-
ferent ways: each component can be thought of as an atom, and
the interfaces between them as inter-atomic interactions, i.e.
chemical bonds (Sinha et al. 2012). In this framework, product
complexity can be associated with the intrinsic structure of the
system and, thus, the individual entities in the system, their
linkages, and the architectural structure of the system (Sinha
2014). This model was then adopted and validated in a num-
ber of subsequent studies to quantify complexity of industrial
products, e.g., pressure recording devices, printing systems
and wrapping machines (Sinha 2014; Alkan et al. 2017; Alkan
and Harrison 2019; Verna et al. 2021b).

Assembly complexity is defined as (Sinha 2014; Alkan
2019):

C=C +GC,-Cs. (1)

The three components of the structural complexity, C;, C,
and Cj, are described below.

C, is defined as the handling complexity, and is the sum of
complexities of individual product parts. It is calculated as
shown in Eq. (2):

N
Ci=D1 ®)
p=1

where N is the total number of product parts and y,, is the
handling complexity of part p. The parameter y, denotes
the technical/ergonomic difficulty/effort associated with
managing and interacting with the product part in an iso-
lated condition, without requiring information about the
system architecture. It is measured by the degree to which
the part has physical characteristics that lead to difficulties
or problems during its handling in manual and automated
assembly operations. In previous studies, y, was estimated
using different approaches, including a function of standard
handling time (Alkan 2019) and an exponential function to
derive a score from constituting elements of a part (Alkan
and Harrison 2019), the so-called Lucas Method to derive a
normalized handling index (Alkan et al. 2017).

C, represents the complexity of connections (or liaisons). It
is the sum of the complexities of pair-wise connections exist-
ing in the product structure, as follows:

N-1
=)
p=1

N

(ppr . apr7 (3)
p+1
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where @, is the complexity in achieving a connection
between parts p and r, and a,, is the (p, r)th entry of the
binary adjacency matrix AM of the product. AM is a sym-
metric matrix of size NxN where each element designates
the existence of an assembly liaison between two compo-
nents. In detail, a,, can assume two values as follows:

a,,

(C)

__J 1 if there is a connection between p and r
~ | 0 otherwise

The complexity ¢, can be assessed by the standard com-
pletion time of the connection in isolated conditions (Alkan
2019), by a fraction of the connected component complexi-
ties depending on the nature of the connectivity (Alkan and
Harrison 2019), or by the normalized fitting index from the
Lucas Method (Alkan et al. 2017). Note that in Eq. (3), the
connection between parts is considered only once.

Finally, C; is the topological complexity and represents
the complexity related to the architectural pattern of the
assembled product. It can be obtained from the matrix
energy Ey,, of the adjacency matrix, which is designated by
the sum of the corresponding singular values 5, (Nikiforov
2007; Sinha 2014), as follows:

- & 5)

EAM
G=N "N

where E,,, stands for graph energy (or matrix energy) and N
stands for the number of parts (i.e. the number of nodes). As
the adjacency matrix AM is a symmetric matrix of size Ny N
with the diagonal elements being all zeros, the singular val-
ues correspond to the absolute eigenvalues of the adjacency
matrix (Li et al. 2012; Sinha 2014).

Matrix energy regimes for graphs with a given number
of nodes can be divided into (1) hyperenergetic regime,
(2) hypoenergetic regime and (3) intermediate or transi-
tion regime. The hyperenergetic regime is defined by graph
energy greater than or equal to that of a fully connected
graph, i.e. E,;, > 2(N — 1), and the hypoenergetic regime
is defined as E,;; < N. Consequently, the intermediate
regime is defined as N < E,;, < 2(N — 1). Hence, in terms
of topological complexity metric, the regimes are defined as
hyperenergetic when C; > 2(1 — 1/N), hypoenergetic when
C; < 1, and intermediate regime when1 < C; < 2(1 — 1/N).
Note that for hyperenergetic regimes, C; can be approxi-
mated to 2 when N is sufficiently large. Translating the graph
structures to system architectural patterns, hyperenergetic
regimes are associated with distributed architectures, hypo-
energetic regimes with centralized architectures, and inter-
mediate regimes with hierarchical, or layered, architecture.
Accordingly, C; increases as the system topology shifts from
centralized to more distributed architectures (Sinha 2014).
Examples of real systems characterized by distributed archi-
tectures are printing systems and aircraft-geared turbofan

engines (Sinha 2014), while laptops have more centralised
architectures as most components are connected to their base
panel.

Therefore, C; represents the intricateness of structural
dependency among assembly and requires knowledge of the
complete architecture of the system and, in this sense, con-
trary to the previous terms C; and C,, denotes a global effect
whose influence could be perceived during the system inte-
gration phase (Sinha 2014). Therefore, the term C, - C; in
Eq. (1) can be referred to as a general indicator of the system
integration effort that allows distinguishing product archi-
tectures with similar parts and connections complexities.

2.3.2 Tension between objective and subjective
assessment of complexity

As mentioned at the beginning of Sect. 2.3, objective and
subjective assessments of complexity have elements in com-
mon while differing greatly in others. For these reasons, it
can be argued that a tension exists between the two complex-
ity paradigms, which has been explored and discussed in
previous studies (Li and Wieringa 2000; EIMaraghy et al.
2012; Alkan et al. 2018).

In detail, the main differences that exist between objec-
tive and subjective complexity are that objective complexity
is more standardized, while subjective complexity is situa-
tion-dependent, and objective complexity is rather specific,
while subjective complexity can be considered more global.
In addition, the two paradigms seem incompatible, but it is
challenging to consider them together, not independently of
each other. In Fig. 1, the conceptual framework for manual
assembly complexity is represented. In this framework,
both objective and subjective aspects are included. Objec-
tive aspects may be categorized into product complexity and
sequence complexity, while subjective aspects belonging
to human operators into personal factors (e.g. willingness,
training, expertise, etc.) and operation and management
strategy (Rouse and Rouse 1979; Li and Wieringa 2000;
Alkan 2019).

As shown in Fig. 1, the objective perspective clearly links
complexity to the characteristics of the process without tak-
ing into account the characteristics of performers. From this
viewpoint, complexity is merely a process characteristic that
can be measured. Contrarily, complexity is seen from a sub-
jective standpoint as a union of performance and process
features.

According to Liu and Li (2012), a performer begins to
regard a process as complex when its intricacy exceeds
his physical and/or mental capabilities. A human opera-
tor's perception of complexity during a manual assembly
operation is defined similarly by Li and Wieringa (2000) as

@ Springer



Research in Engineering Design

a reflection of: (1) objective complexity made up of prod-
uct- and sequence-related complexities; (2) personal char-
acteristics like training, experience, creativity, and personal
characteristics such as education, training, creativity, level of
engagement, personal attributes, etc., and (3) the operation
strategy developed through his own experience. According
to Bystrom and Barfield (1999), a purely objective perspec-
tive of complexity is to be preferred since it allows an assess-
ment of all actual sources and elements of complexity. On
the other hand, some authors argue that a purely objective
evaluation is hardly applicable to real industrial contexts
such as manufacturing plants (Shibata 2002; Liu and Li
2012; Verna et al. 2022b). Indeed, proponents of subjective
complexity believe that subjective complexity offers a more
situation-oriented understanding of the effects of complex-
ity and provides a more comprehensive vision (Bystrom
and Barfield 1999). Notwithstanding, it is more difficult to
identify and analyze the effects of all the factors that may
influence complexity.

Figuring out which approach, objective or subjective or a
mix of the two, to use in assessing complexity is not a trivial
issue. Often this choice is dictated by production-driving
factors. For example, if engineers want to determine the
complexity of a product in the early stages of design, thus
in the absence of a prototype, subjective approaches are not
applicable. Conversely, if a general method that can apply
to different types of production is needed, then objective
approaches fail as they are designed for specific applications.

The tension between objective and subjective complexity
has been addressed in several studies, often at the qualitative
level (Li and Wieringa 2000; Mattsson 2013). The relation
between the two perspectives was addressed quantitatively
by Alkan (2019). The study results showed a superlinear
relation described by a sigmoid function between subjec-
tive and objective product complexity. In detail, after a stag-
nation point, perceived complexity reaches saturation and
thus products with increasing objective complexities can no
longer be distinguished by operators. The study points out
that behind the relationship between subjective and objec-
tive complexity also lies the issue that subjective complex-
ity assessment may underestimate the actual complexity
that can be described by objective complexity. Likewise,
there could be situations in which the evaluation of subjec-
tive complexity may overestimate the objective complexity.
Despite this initial effort in modelling a relationship between
objective and subjective complexity, the method proposed
by Alkan (2019) does not properly manage and analyze data
on operators' perceived complexities. Indeed, perceived
complexity values defined using a five-levels ordinal scale
[Green (1), Green—Yellow (2), Yellow (3), Yellow—Red (4),
Red (5)] are then normalized between 0 and 1 for developing
a non-linear regression model with objective complexity.
Thus, information initially provided on the ordinal scale is
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arbitrarily interpreted and utilized on a quantitative scale
with different properties from the first one. In other words,
the original ordinal scale is transformed into a new cardinal
scale characterized by metric and integer number compo-
sition properties. This arbitrary “promotion” of the scale
properties brings about a series of problems in the perceived
complexity interpretation. In more detail, the data number-
ing involves the definition of the perceived complexity on a
formally broader scale than the original one, which gener-
ates a fictitious increase in its resolution. The numbering,
acknowledging “metrological properties” higher than actu-
ally possessed by collected information, can therefore cause
a “distortion” effect, which can partially or entirely distort
the contents (Franceschini and Rossetto 2002, 2007).

In light of these remarks, the present study aims to further
investigate the relationship between experienced assembly
complexity and product complexity by proposing a new
methodology to assess subjective complexity appropriately
handling ordinal data gathered from interviews with opera-
tors. This approach may contribute to a better understanding
of cause-and-effect relationships between the two different
complexity perspectives. The comparison between experi-
enced and objective assessment of complexity, highlighting
similarities and differences, may also allow guidelines to
be given to practitioners on when it is preferable to use one
paradigm rather than the other for complexity assessment.

3 Method to assess experienced assembly
complexity

As mentioned in Sect. 2, experienced (or perceived) assem-
bly complexity is strictly related to the operator's capabil-
ity to understand, manage and carry out the assembly to be
performed. As a consequence, it is different from objective
complexity, which is instead an intrinsic property of the sys-
tem (Alkan et al. 2018). In light of this, a product, or more
in general, an engineering system, can be perceived as more
complex than its actual complexity by an operator without
technological knowledge, experience and/or adequate equip-
ment (EIMaraghy et al. 2012). Experienced assembly com-
plexity may be affected by multiple factors, including the
objective complexity of the system, the operator's training,
experience, creativity, degree of involvement, and distinctive
individual traits (Li and Wieringa 2000).

In this study, experienced assembly complexity is
assessed at two different levels as follows: (1) individual
operators’ level and (2) global level, by averaging individual
operators’ assessments.

An overall scheme of the methodology proposed in this
study is illustrated in Fig. 2.
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Fig. 1 Conceptual framework
for manual assembly complexity / \ / \
(Li and Wieringa 2000; Alkan Operation and )
2019)
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In the proposed methodology, it is deliberately chosen not
to include cognitive-related aspects of the operators and their
ability to handle a certain level of complexity (e.g., skills,
training level, cultural and organisational factors, knowledge
and willingness) to make the method as general as possible
and applicable in different production contexts. Neverthe-
less, these cognitive-related aspects open research questions
that need to be addressed in future research.

3.1 Assessment at individual operators’ level

Regarding the first level, individual experienced assem-
bly complexity is assessed through subjective evaluations
of operators regarding a number i=1, ..., 16 of criteria,
assigned on an ordinal scale ranging from 1 to 5. The criteria
used to distinguish manual assembly operations in terms of
complexity are taken from the study of Falck et al. (2017a),
in which the authors aimed at demonstrating that proactive
criteria assessment enables the prevention of costly assem-
bly errors and the creation of sustainable and cost-efficient
assembly conditions even in the early stages of production
(Falck et al. 2017a). The list of 16 criteria and the corre-
sponding interpretation is given in Table 3. Such criteria
are slightly modified from the list proposed by Falck et al.
(2017a) to better suit the case study that will be described
in the next Sect. 4.

It should be noted that although some criteria seem simi-
lar, e.g. criteria 1 and 9, they differ substantially. Criterion
1 concerns whether the operator can look for better ways
to speed up assembly or avoid problems during operations.
Indeed, to save time and avoid mistakes, operators may be
inclined to invent and use their strategies to perform tasks.
On the other hand, criterion 9, refers to the order in which
each step of the assembly process is performed. It should
also be noted that the complexity criteria presented in this
paper are not necessarily a full list of all existing criteria, but
they are a comprehensive set of criteria intended to provide

an overall assessment of the experienced complexity of indi-
viduals, as it was demonstrated in different manufacturing
sectors (Falck et al. 2016, 2017b) and will be experimentally
demonstrated in Sect. 4.

Once the criteria have been formulated, the procedure
requires that each operator k assigns, for a specific product
J, an importance to each criterion i, i.e. Iijk, depending on
how relevant he considers the specific criterion to be for low
product complexity. In addition to importance, each opera-
tor k was asked to express a degree of accordance with each
criterion / in relation to the assembled product j, i.e. V. In
both cases, five-level ordinal scales were used, which are
summarized in Table 4. The importance of each criterion /;;,
has therefore a different meaning from the degree of accord-
ance V;; for a given scale level, although they are expressed
on an ordinal scale with the same levels to ensure uniformity
in operators' responses. As an example, for an operator £,
a specific criterion may be deemed negligible for a simple
assembly (such as criterion 14 regarding the intuitiveness
of assembly), and therefore assigned L,—Negligible for ;.
However, the same operator may fully agree that the product
can be assembled without instructions, and thus assigning
Ls—Totally agree for V.

Ordinal scales, often linguistic, differ from cardinal
scales as the concept of distance is not defined and their
sole property is ordering (Agresti 2003). Although numeri-
cal conversion of verbal information simplifies subsequent
analyses, it gives rise to two very significant problems: (1)
numerical coding implies the introduction of a distance
between the levels of the scale, and (2) the choice of a spe-
cific numerical coding over another may result in a change
in the results obtained. Since a specific encoding may result
in a misrepresentation of the original information, a correct
approach could rely exclusively on the properties of ordinal
scales. For this reason, the proposed approach avoids going
through an artificial conversion into cardinal scales and
improperly using synthesis operators for measuring position
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and dispersion, i.e. arithmetic mean and standard deviation,
respectively (Franceschini et al. 2005, 2007).

Then, the evaluations on the importance and accordance
degree of the 16 criteria provided by operators are combined
to provide a first estimation of the experienced product com-
plexity at the level of individual evaluator. In order to deal
with linguistic ordinal scales, Yager’s multi expert-multi cri-
teria decision making (ME-MCDM) method is adopted as
synthesis approach (Yager 1993). Such a method was origi-
nally developed to integrate expert opinions expressed on
linguistic scales, often vague and difficult to estimate (Yager
1995; Noor-E-Alam et al. 2011). The fields of application
are various, ranging from service design to evaluation of
risk priorities in manufacturing (Franceschini and Galetto
2001; Barravecchia et al. 2018). This method is adopted
in the proposed approach to combine weighted partial
accordance degrees assessed on the 16 complexity criteria.
Authors decided to use such a method, instead of alternative
approaches, e.g. Analytic Hierarchy Process (Saaty 2008),
because in the early design phases, the process engineer is
usually unable to provide evaluations on a ratio scale. On
the other hand, an artificial promotion of data, originally
given on ordinal scales, into ratings given on ratio scales
could lead to a distortion of the final results (Stevens 1946;
Franceschini et al. 2004).

The method addresses the general problem of aggregating
individual operator evaluations to obtain an overall synthetic
linguistic value (Yager 1993). It involves maximum, mini-
mum and negation operators to combine linguistic informa-
tion provided for non-equally important criteria. The under-
lying logic of Yager’'s ME-MCDM method is that, while
low-importance criteria should marginally affect the overall
aggregated value, highly important criteria should signifi-
cantly contribute to the definition of the aggregated evalua-
tion. In the proposed approach, the aggregated evaluation of

Fig.2 Schematic of the meth-
odology for assessing experi- -

a certain product j expressed by the operator k (Ej) can then
be calculated, by adopting a fuzzy logic, as follows:

Ej = Min; [Max{Neg 73 ), Vi } ©

being Neg(L,) = L,_,,, the negation of L, with L, the xth
level of the scale and ¢ the number of scale levels, i.e. 5 in
this case. For instance, Neg(Ls) = L, and Neg(L,) = L,.

The aggregated evaluations obtained by Eq. (6) are values
expressed on a five-scale level, where the lowest level rep-
resents high complexity and the highest level corresponds
to low complexity, as the criteria listed in Table 3 are low-
complexity criteria. Accordingly, to derive the final indicator
of the individual experienced complexity of a certain prod-
uct j expressed by the operator k (IEC;,), where the lowest
level of the scale corresponds to low complexity, a negation
of the scale is performed, according to Eq. (7):

IEC; =1 —E; +1. 7

Table 5 reports the five-level ordinal scale of resulting
individual experienced complexity.

Thus, following the proposed aggregation method, given
a certain product j, if an operator k were to assign all crite-
ria the level Ls—"“Indispensable” for importance and Ls—
“Totally agree” for agreement, then the individual experi-
enced complexity /EC; would be L,—"“Low”, considering
the product extremely simple and believing that all criteria
are essential for a simple assembly. Conversely, if the opera-
tor assigned Ls—*“Indispensable” for all criteria importance
and L,—"“Totally disagree” for agreement degrees, then his
individual experienced complexity would be Ls—*“High”,
since he considers the product extremely complex and
believes that all criteria are essential for a simple assem-
bly. A different case would be if the operator assigned
L,—"Totally disagree” for agreement degrees but deemed

Assessment of experienced assembly complexity

enced complexity of assembly

.
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all criteria negligible, thus providing L,—*“Negligible” for
importance. In such a case, the procedure leads to obtain
L,—“Low” for the individual experienced complexity.

Figure 3 illustrates an operational scheme of the proposed
procedure for a generic product j. In the scheme, for the sake
of simplicity, only two operators are considered, namely A
and B. For each product j, low-assembly complexity cri-
teria are contained in the middle of the scheme, the upper
part of the scheme reports the importance of assembly low-
complexity criteria (/;5), the degrees of accordance with the
criteria ( Vijk) are in the bottom part, while an assessment of
the individual experienced complexity (IEC;, ) can be found
in the right part of the scheme.

To exemplify the proposed methodology, a pedagogi-
cal example is proposed in “Pedagogical example to derive
product experienced complexity at level of individual opera-
tor” section of the “Appendix”.

3.2 Assessment at global level

Regarding the second level of the analysis, aimed at obtain-
ing an overall value of experienced complexity of a product
Jj (EC;) from the individual assessments, a sort of averaging
of judgments is performed, without violating the properties
of the ordinal scale. This synthetic measure of overall opera-
tor opinion allows designers to make decisions based on an
“average” rating. Thus, the global experienced complexity
is proposed as a practical indicator to synthesize individual
values, although the authors are aware that any synthesis,
useful and practical as it may be, inevitably results in the
loss of part of the initial information (Franceschini et al.
2019). In detail, the operator Ordered Weighted Average
(OWA), firstly introduced by Yager and Filev (Yager 1993;
Filev and Yager 1994), is used, as defined below:

OWA = Max]_, [Min{Q(k), b, }]. )

where

Table4 Scale levels and semantic meanings for the assessment of
product low-complexity criteria importance (/;;) and accordance
degree with the criteria (Vi)

ik

Scale level Importance Scale level Accordance degree
L, Negligible L, Totally disagree

L, Preferable L, Disagree

Ly Important Ly Relatively agree
Ly Very important L, Agree

Ly Indispensable Ls Totally agree
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o O(k)=Lyy(k=1,2,...,n) is the average linguistic
quantifier (the weights of the OWA operator), with
Fk) = Int{l + [kﬂ] }

Ly is the f{k)th level of the linguistic scale (for exam-
ple, Ly = Ly if flk) = 1).
Int(a) is a function that gives the integer closest to a.
t is the number of scale levels (5 in this case).
n is the sample size.
b, is the kth element of the sample previously ordered in
decreasing order (i.e. the JEC; values in this case).

This operator is an emulator of the arithmetic mean which
can take values only in the set of levels of the original ordi-
nal scale, thus avoiding the problems of numerical codifica-
tion of ordinal scale levels. Accordingly, from individual
experienced complexity evaluations (/ECy), an overall
evaluation is derived, for each product j, by implementing
Eq. (8):

EC; = Max]_, [Min{Q(k), IEC; }| 2

A pedagogical example is provided in “Pedagogical
example to derive product experienced complexity at global
level” section of the “Appendix” to illustrate and clarify how
the experienced complexity at global level can be obtained
by OWA operator.

3.3 Analysis of experienced complexity
at individual operators and global levels

In this section, the methodologies adopted to analyze the
experienced complexity values at level of individual opera-
tor and global level, i.e. aggregating individual operators’
values, are described. In detail, the obtained values of com-
plexity derived as discussed in the previous Sects. 3.1 and
3.2 can be compared with objective assessment of product
complexity, using the structural complexity model described
in Sect. 2.3.1.

Regarding the first level of the analysis, the relationship
between objective assessment of complexity and individual
experienced complexity of products can be modeled using
Ordinal Logistic Regression (OLR), as experienced com-
plexity is an ordinal response defined using a linguistic scale
(McCullagh 1980). OLR, also called ordinal logit or pro-
portional odds model, is an ordinal regression model that
only applies to data that meet the proportional odds assump-
tion. Furthermore, the coefficients in the linear combination
are not estimated using ordinary least squares, but rather
by maximum likelihood, computed by using iteratively
reweighted least squares (McCullagh 1980). To analyze
and interpret the key results of the OLR, two steps should
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Table 5 Scale levels and

. . Scale level  Individual
semantic meanings .for the experienced
asses;ment of 1nd1v1d‘ual complexity
experienced complexity (IECy)

L, Low

L, Medium-low
Ly Medium

L, Medium-high
Ls High

be followed, as described below (Agresti 2003; Powers and
Xie 2008).

1. Analyze the association between the response (individ-
ual experienced complexity) and the term (structural
complexity)

If the p-value for the term is lower than the sig-
nificance level selected, the association between the
response and the term is statistically significant. Fur-
thermore, OLR estimates a coefficient for each term
in the model. The constant coefficients, in combina-
tion with the coefficients for the term, form a series of
binary regression equations. The first equation estimates
the probability of the first event occurring. The second
equation estimates the probability that the first or second
event will occur, and so on. The coefficients are useful
for determining whether a change in the predictor vari-
able makes any of the events more or less likely. Positive
coefficients make the first event and the events that are
closer to it more likely as the predictor increases. Nega-
tive coefficients make the last event and the events closer
to it more likely as the predictor increases.

In OLR, odd ratios are also provided. The odds ratio
compares the odds of two events. The odds of an event

Fig.3 Operational scheme

are the probability that the event occurs divided by the
probability that the event does not occur. For continuous
predictors, odds ratios that are greater than 1 indicate
that the first event and the events closer to the first event
are more likely as the predictor increases. Odds ratios
that are less than 1 indicate that the last event and the
events that are closer to it are more likely as the predic-
tor increases.
2. Determine how well the model fits the data

A model obtained by ordinal logistic regression fits
the data well if the p-values for the Goodness-of-Fit
Tests are greater than the significance level. This condi-
tion indicates that there is insufficient evidence to state
that the model does not fit the data adequately. In addi-
tion, the measures of association should be examined.
Higher values reveal a better predictive capacity. In par-
ticular, the Somers’ D, Goodman and Kruskal indices
vary between — 1 and 1. Kendall's index generally ranges
between —2/3 and 2/3. Values close to 0, in all cases,
reveal that the model does not have predictive ability.

In addition to OLR, also the methods described below
for analyzing data at global level may be used.

Regarding the second level of the analysis, the rela-
tionship between objective assessment of complexity and
experienced complexity at global level of products can
be analyzed by means of Analysis of Variance (ANOVA)
and measures of association suitable for categorical data.
OLR cannot be used because no replicates are present.
When only a continuous predictor is used in the analysis,
the one-way ANOVA may be performed by flipping the
model, so that the predictor variable is the experienced
complexity, while the outcome variable is the continuous
variable, i.e. objective complexity (Agresti 2003; Powers
and Xie 2008). Furthermore, nonparametric measures of

OPERATOR
of the proposed approach to = | |
derive individual experienced k=A %
complexity of a product j & I
(IEC;;) by two operators (k=A, (B & ijk
B) from importance of assembly - S | [
low-complexity criteria (/)
and accordance degree with the =
. . — N o < ~ —_
criteria (V) z z z > > -
S S S = S S
=~ & I~ [~ ~ I~
3] s3] [$3] m jS3) m
= = = & g 5
& I~ I~ & I~ I~
1S) ®) ©) 1S) o ©) INDIVIDUAL
EXPERIENCED
OPERATOR COMPLEXITY
; [ |
k=A E - IEC jA
=¥
53 Vijk
k=B ga IEC
il I
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association may be used to assess the strength and direc-
tion of the association that exists between the continuous
and the ordinal variable, e.g. Spearman rank-order correla-
tion coefficient and Kendall’s coefficient of rank correla-
tion (Agresti 2003).

4 Experimental case study

In this section, an experimental case study is considered
in which the proposed methodology to assess experienced
assembly complexity is applied, and then the obtained results
are compared with an objective assessment of complexity.

In the experimentation, assembled products used to assess
experienced complexity and then compare it with objective
complexity based on structural paradigm are molecular
structures assembled using balls and sticks. In the scientific
literature, such molecular structures are widely recognized
as reference objects to emulate the corresponding real cyber-
physical products by using atoms as product's constituent
parts and bonds as connections (Sinha 2014; Alkan et al.
2017; Alkan 2019; Alkan and Harrison 2019). Connections
emulated by bonds can be of different types, such as physi-
cal/mechanical connections, material/fluid flow, energy flow,
and information/control signal flow (Sinha 2014). Ball-and-
stick structure assembly is mainly a construction activity,
entailing the elaboration of visual and/or geometric infor-
mation and the ability to assemble a certain structure. Thus,
choosing such structures is dictated by both (1) minimizing
the confounding effects that would occur in real productions,
such as dynamic and organizational issues of engineering
systems, and (2) performing experimental tests by isolating
and controlling the effects of product complexity.

Twelve different ball-and-stick structures (see Fig. 4 and
Table 6) with different levels of product structural complex-
ity were selected and built using some molecular modeling
kits (Orbit™ by 3B Scientific®) based on clear 2D and 3D
work instructions.

The assembly experiments were scheduled for 8 days,
involving in total 52 assembly operators. In detail, on each
day, at most 7 operators were involved in product assembly,
supported by a quality controller who monitored the work.
The assembly operators were students of the course “Qual-
ity Engineering” in the 2nd year of the Master of Science in
Management Engineering program at Politecnico di Torino
(Italy), with no previous experience in industrial assembly.
Each operator had to assemble all 12 molecular structures,
randomly assigned. The molecule assembly operations did
not follow a particular assembly sequence to minimize the
effects of sequence complexity. The models consisted of dif-
ferent atoms (i.e. balls) and bonds (i.e. sticks), in the quanti-
ties specified in Table 6. As for atoms, five different types
were involved: carbon (grey), hydrogen (white), nitrogen

@ Springer

(blue), oxygen (red), and sulfur (yellow). As for connections,
two types of chemical bonds were included, namely sin-
gle covalent bonds made using rigid connectors and double
covalent bonds made using flexible connectors. Each type of
atom and connector was placed in a specific box (see Fig. 5),
where the operator selected the corresponding part following
the 2D and 3D assembly instructions provided.

5 Results and discussion

For each of the molecular structures, the structural complex-
ity C was calculated, according to the model proposed in
Sect. 2.3.1. Part and connection complexities were estimated
from the average time acquired from preliminary experi-
ments performed by the operators by randomizing the tasks
to minimize learning effects. In detail, the average handling
time, i.e. the time to locate the box, move the arm to pick
position, pick the relevant atom and return the arm to work
position, was used to estimate part complexity y,, see Eq. 2.
The average completion time of a connection between a
pair of atoms in isolated conditions was used to estimate
connection complexity ¢,,, see Eq. 3. Such a time includes
the handling of the connector and atoms, and the joining
process, i.e. (a) locating the connection holes, (b) orienting
and positioning the atoms and bond, (c¢) connecting the bond
to both atoms, (d) arranging the connection, and (e) a final
inspection. Each operator took three measurements of times,
resulting in an average handling time of individual atoms
of 2.80 s, an average connection time using a rigid connec-
tor of 8.95 s and using a flexible connector of 9.75 s. After
normalizing average times based on the longest time, the
following complexities were derived: y, = 0.29, ¢, = 0.92
for rigid connections and ¢,,. = 1.00 for flexible connections.
Thus, according to Egs. (1), (2), (3) and (5), respectively,
complexities of parts, complexity of connections, topologi-
cal complexity and overall structural complexity for each
structure were obtained, as listed in Table 6.

Before the operators carried out the assembly of the 12
structures throughout the workday, some preliminary infor-
mation was given, and some simple assemblies of struc-
tures (other than those being experimentally tested) were
proposed. Then, the 52 operators were asked to fill in one-
time the importances related to each of the 16 criteria listed
in Table 3 (I;;) according to the evaluation scale provided in
Table 4. After the assembly of each structure, the operator
had to assess the degree of agreement with respect to each
criterion (V;;) according to the scale levels listed in Table 4.
Thus, in total, 52 importance evaluations for each criterion
were obtained, and 52 degrees of agreement were collected
for each criterion related to each of the 12 structures. In
Table 7, an extract of the evaluations provided by operators
for structure ID 1 is shown.



Research in Engineering Design

To evaluate if the 16 criteria selected for the analysis
compose a suitable set to assess complexity, a correlation
analysis was performed, using Spearman's coefficient since
the agreements are expressed on ordinal scale. In the cor-
relation table, provided in Table 8 in “Additional results on
the experimental case study” section of the “Appendix”, all
the correlation coefficients are positive, indicating a positive
relationship between the criteria, since are all formulated
to assess low complexity. Such a result confirms that the
assessments were given consistently. All correlation coef-
ficients are between 0.447 (between criterion 1 and 9) and
0.815 (between criterion 7 and 15), and there are no cor-
relations very close to 1, which would justify the elimina-
tion of some criteria as redundant. Also, using the Principal
Component Analysis (PCA), which aims at determining the

Fig.4 Ball-and-sticks molecular structures used in the experiments
(ID 1-ID 12), detailed in Table 6

minimum number of principal components that account
for most of the variation in the data (Johnson and Wichern
2014), it is obtained that all the criteria are equally important
to represent experiencSed complexity and that all are neces-
sary to explain the variation in the data. See for more details
Figs. 6 and 7 in “Additional results on the experimental case
study” section of the “Appendix”.

The evaluations are then aggregated by Egs. (6) and (7)
to obtain the individual experienced complexity at level of
individual evaluator k, for a certain product j (IECj). For
instance, for the assessment provided in Table 7, the values
obtained are L; (medium product experienced complexity)
for operator A and L, (low product experienced complexity)
for operator B (Table 8).

Individual experienced complexity levels are analyzed
using OLR, as described in Sect. 3.3. In Table 9, the logistic
regression table is reported.

As shown in Table 9, there is a statistically significant
association between the experienced complexity and the
objective complexity since the p-value associated with the
predictor is less than the significance level of 5%, and also
since the p-value for the test that all slopes are zero is less
than 0.05 (i.e. <0.0005). Thus, changes in product complex-
ity are associated with changes in the probabilities that the
different individual experienced complexity perceived by
operators occur. Since structural complexity is a continuous
predictor, the odds ratio of 0.97 indicates that as C increases,
the last event and those close to it, i.e. high levels of indi-
vidual experienced complexity, become more likely. The
negative coefficient associated with the structural complex-
ity confirms this result since the last event and those close
to it are more likely as individual experienced complexity
increases. In addition, the p-value of goodness-of-fit tests is

Table 6 Structural characteristics and complexity of the molecular structures used in the experiments (calculated according to the model

described in Sect. 2.3.1)

1D Molecular formula Number of Number of ~Single bonds Double bonds Ey C, C, (0 C
atoms bonds

1 C,H, 6 5 4 1 6.00 1.66 4.82 1.00 6.48
2 C,H,,NO,S 20 19 18 1 20.95 5.54 18.18 1.05 24.58
3 C,H;NOg 44 49 42 7 52.41 12.18 47.09 1.19 68.27
4 C,sH;,NO, 67 68 62 6 75.85 18.54 65.19 1.13 92.34
5 C33H,605 84 85 76 9 89.79 23.25 81.55 1.07 110.42
6 CyoH, 1 N;Oq 86 88 78 10 97.74 23.80 84.46 1.14 119.80
7 C;,H 5N¢O5S, 98 101 88 13 111.46 27.12 97.01 1.14 137.45
8 Cy6 H,0O 117 117 106 11 123.29 32.38 112.19 1.05 150.61
9 C4;H5NOy, 113 119 103 16 130.25 31.28 114.33 1.15 163.05
10 Cso HyN,Oy, 128 133 119 14 145.73 3543 127.60 1.14 180.70
11 C43HgeN,01,S, 135 137 123 14 151.33 37.36 131.42 1.12 184.68
12 C44He,O0yy 132 135 126 9 151.58 36.53 129.28 1.15 184.99

@ Springer
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greater than (.05, not providing evidence that the model is
inadequate.

Considering the measures of association reported in
Table 10, high values of Somers' D, Goodman—Kruskal
gamma, and Kendall's tau-a indicate that the model has good
predictive ability.

Thus, in responding to the first research question RQ1
(reported in Sect. 1), the following finding is obtained:

Finding 1 A statistically significant association exists
between individual experienced complexity and objective
complexity.

This finding is in line with the previous study proposed by
Alkan (2019), in which a sigmoid function between product
complexity and perceived complexity was derived.

PC with assembly
instructions

Fig.5 Assembly workstation

Furthermore, a one-way ANOVA is performed. In the
interval plot illustrated in Fig. 6, it is evident that the means
of objective complexity calculated for each level of experi-
enced complexity are statistically different, since the 95%
confidence intervals for the means do not overlap. Also,
using the Tukey Method, all differences between means are
statistically significant at 95% confidence level. Moreover,
the Spearman rank-order correlation coefficient is 0.663 with
a p-value < 0.0005.

It has to be noted from Fig. 6 that variability in results
appears to be low for structures with low and high struc-
tural complexity, while for molecular structures with inter-
mediate structural complexity, human perception of product
complexity varies greatly. Accordingly, in relation to the
research question RQ2 (as per Sect. 1), the following find-
ing is identified:

Finding 2 The variability in individual experienced com-
plexity values does not remain constant as the objective
complexity of the products varies as it is lower for low and
high objective complexities and higher for intermediate
complexities.

This novel finding, not analyzed in previous studies, is not
trivial. These differences in the experienced complexity of
structures with intermediate complexity are plausibly caused
by several factors that distinguish operators, including their
skills, training, cultural factors, etc. Therefore, further inves-
tigation will need to be conducted by including in the analy-
sis variables related to cognitive aspects of individuals.

According to Eq. (9), all the obtained experienced com-
plexity at level of individual operator are aggregated using
the OWA operator to derive an overall assessment of com-
plexity of each molecular structure. Results are illustrated
in Fig. 7, where global experienced complexity is related to
objective complexity of structures (see Table 6). Note that
in the last point (i.e., C=181 and EC=L,), two molecular
structures (ID 11 and ID 12) are conflated.

Table 7 Evaluations on Criterion

product low-complexity criteria
importance (I;) and agreement 1 2 3 4

degree (V) obtained by

two operators (A and B) for

the structure ID 1 and final
experienced complexity at level
of individual evaluator

Importance

Operator A L, Ls Ly L,
Operator B L, Ls L, Ls
Agreement degree

Operator A Ls Ls Ly Ls
Operator B Ls Ls Ly Ls
Experienced complexity
Operator A L,

Operator B L,

@ Springer
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As shown in Fig. 7, as structural (objective) complex-
ity increases, overall experienced complexity also tends to
increase. However, from structure ID 5, operators attribute,
on average, the medium-high level of complexity to all
molecular structures, perceiving them to be equally complex.
This result is reasonable as beyond a certain level the human
operator cannot distinguish different levels of complexity.
The threshold at which levels of objective complexity are
indistinguishable by individuals may vary across individuals
since it is linked to the operator’s ability to understand and
manage the assembly operation under consideration. Thus,
cognitive-related factors such as cultural and organizational
factors, level of experience, skills and knowledge of opera-
tors, may result in shifts at the threshold. These cognitive
aspects and their effect on that threshold need to be further
investigated in future research.

Results at global level are analyzed using one-way
ANOVA and measures of association. The ANOVA table is
provided in Table 11.

From the ANOVA, since p-value is less than the sig-
nificance level of 5%, the null hypothesis that all means
of structural complexity for the three values of overall
experienced complexity are equal is rejected. To deter-
mine whether the mean difference between specific pairs
of groups is statistically significant the Tukey Method
is adopted (Montgomery et al. 2009). From such a test,
it is highlighted that two groups can be distinguished: a
first group containing experienced complexity at level L,,
and a second group containing levels L, and L,. In detail,
the difference between means of objective complexity of
structures with assigned experienced complexity L; and
L, is not statistically different at 95% confidence level. On
the contrary, the means of objective complexities with L,
and L,, and L, and L; levels of experienced complexity
are significantly different. Accordingly, for less complex

180
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Fig.6 Interval plot of structural complexity (C) versus individual
experienced complexity (IEC) representing mean value and 95% con-
fidence interval of each level of IEC
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Fig.7 Overall experienced complexity (EC) versus structural com-
plexity (C) for the 12 molecular structures used in the experiments

structures (with C less than 95), there is no significant
difference from the perspective of experienced complex-
ity since operators, on average, are unable to distinguish
between low-medium (L,) and medium (L;) complexity.
On the other hand, operators, on average, distinguish
well between molecules with medium-low (L,) and
medium-high (L,) complexity, and between those with
medium (L;) and medium-high (L,) complexity. It should
be highlighted that overall experienced complexity with
levels L, and L5 are not obtained since the OWA operator
tends to flatten the results, not assigning the minimum and
maximum levels of the scale unless (almost) all individual
evaluations agree (Franceschini et al. 2004). Finally, the
Spearman rank-order correlation coefficient is 0.832 with
a p-value of 0.001.

In light of these results, the following findings answer,
respectively, to the research questions RQ3 and RQ4
(reported in Sect. 1):

Finding 3 A statistically significant association exists
between global experienced complexity and objective
complexity.

Finding4 On average, variations in objective complexity do
not result in a change in perceived complexity by operators:

(a) After a certain threshold, operators do not distinguish
between different levels of objective complexity;

(b) No significant difference is evidenced between struc-
tures with experienced medium-low complexity and
medium complexity.

Finding 3 reflects what has been obtained in previ-
ous studies relating subjective and objective complexity
(Alkan 2019), as mentioned above in Finding 1. Also
Finding 4(a) finds evidence in previous studies, where it

@ Springer
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Table 8 Logistic regression

> Predictor Coef SE Coef p-value Odds ratio 95% confidence
table (Powers and Xie 2008) interval
Lower Upper

Const (1) —0.038 0.192 0.842

Const (2) 1.090 0.185 <0.0005

Const (3) 2.890 0.222 <0.0005

Const (4) 5.338 0.286 <0.0005

C —0.033 0.002 <0.0005 0.968 0.964 0.971

Table9 Measures of association between individual experienced
complexity and predicted probabilities (Powers and Xie 2008)

Pairs Number Percent Summary measures

Concordant 109,453  77.0 Somers’ D 0.62
Discordant 21,614 15.2 Goodman—Kruskal Gamma 0.67
Ties 11,083 7.8 Kendall’s Tau-a 0.45
Total 142,150 100.0

was observed that assemblers start to perceive the assem-
bly operations as complex when the product complex-
ity reaches a stagnation point (Alkan 2019). As future
work, this threshold (or stagnation point) will need to be
modelled in a multidimensional way considering aspects
ranging from personal to operations management strate-
gies. Finally, Finding 4(b) represents a novelty compared
to previous studies and highlights that further investiga-
tion is needed to explain such differences in individuals'
perceptions.

6 Conclusions

Complexity in manufacturing plays a pivotal role since if
not correctly managed may reduce company performance
in terms of productivity, efficiency, costs and quality.
Manufacturing complexity involves many aspects,
including objective features, e.g. product complexity and
sequence complexity, and subjective features, e.g. opera-
tor factors and operation/management strategy. Models
adopted in the literature and by practitioners to assess

manufacturing complexity are manifold and may consider
only some or all aspects of complexity.

Subjective assessments of complexity are based on the
analysis of operators’ evaluations, which are typically
defined on nominal/ordinal scales. Accordingly, the scale
in which experienced complexity is defined is typically
an ordinal scale (e.g., typical levels are low complexity,
medium complexity, high complexity, etc.). On the other
hand, objective assessment of complexity relies on prod-
uct/process characteristics, such as the number of parts
and connections, assembly sequence, etc.

Identifying a relationship between experienced com-
plexity and objective complexity may be of great assis-
tance to production and design engineers to enhance the
production process and related performance measures.
Although in the literature some attempts to model the
relationship between the different perspectives (objective
and subjective) have been made, methods often violate
the properties of the ordinal scales, potentially leading to
distortion in the results.

The present paper proposes a structured methodology to
assess the experienced complexity of a manual assembly
starting from 16 assembly complexity criteria. Evaluation
of the importance and agreement degrees on such criteria
are aggregated using the multi expert-multi criteria deci-
sion making method. As a result, experienced complexity
is obtained from two different levels: (1) at the level of
individual operator, and (2) at an overall level, aggregat-
ing all individual complexity assessments. The proposed
approach and related data analysis only rely on the use
of synthesis operators and statistical tools suitable for
categorical data, representing a novelty with respect to

Table 10 ANOVA table for

. . Source Degrees of Sum of squares Contribution (%) Adj SS p-value
overall experienced complexity freedom (SS)
Overall experienced 2 31,011 79.39 15,505.7 0.001
complexity
Error 9 8049 20.61 894.4
Total 11 39,061 100.00
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Table 11 Simple example of

. : Criterion 1 Criterion 2 Criterion 3
calculation of experienced
complex'ity for a generic Importance (/) Ls L, Ly
product,j by operator £, Accordance degree (V) L, L, L

considering 3 low-complexity
criteria (i=1, 2, 3) Max{Neg(I,_-]-k), Vifk}
Ej [by Eq. (6)]

IECj [by Eq. (7)]

Max [L,, L,]=L,
Min (L,, Ly, Ls)=L,
L, (medium-high complexity)

Max [L,, L]=L, Max [Ls, Ls] =Ls

methods assessing experienced complexity used in previ-
ous studies.

Results obtained in an experimental campaign in which
assembly of molecular structures was performed showed
that a statistically significant association exists between
the individual experienced complexity and the objective
complexity (answer to RQ1), and that as structural com-
plexity increases, high levels of individual experienced
complexity become more likely. This result is in line with
previous studies conducted in the field in which a sigmoid
function relationship was derived between perceived and
objective complexity (Alkan 2019). On the other hand,
the results propose new and original insights with regard
to the variability of individual data. Indeed, at individual
level, variability in experience complexity appears to be
low for structures with low and high structural complex-
ity, while is more pronounced for molecular structures
with intermediate structural complexity (answer to RQ2).
These results may be attributed to differences in the ability
of operators to handle a certain level of complexity and
cognitive aspects (e.g., training, knowledge, cultural and
organizational factors), which need to be investigated in
future works. At global level, results showed that a sta-
tistically significant association exists between the over-
all experienced complexity and the objective complexity
(answer to RQ3). Moreover, in response to RQ4, it was
observed that, from a certain level of structural complex-
ity, operators no longer perceive differences in complex-
ity, in line with the results obtained in previous works
(Alkan 2019). Instead, the original results that emerge by
analyzing the global complexity values are that there is no
significant difference between structures with experienced
medium-low complexity and medium complexity. Differ-
ences in the perception of different levels of complexity
and the threshold at which levels of objective complexity
are indistinguishable for individuals are related to cogni-
tive factors, such as cultural and organizational factors,
level of experience, skills and knowledge of practitioners.
Consequently, these aspects require further consideration
in future research.

Engineers may adopt such results to understand expe-
rienced complexity in real production environments to
minimize experienced complexity and the point at which
the operator fails to discriminate between different levels of

complexity to ensure alignment between experienced and
objective complexity. To this aim, future works will have to
investigate whether operator assistance systems and meth-
ods, such as augmented reality applications and collabora-
tive systems using cobots could be used to reduce the sub-
jects' perception of complexity. Preliminary studies in this
direction have been proposed by Gervasi et al. (2022), but
require further investigation. In addition, discerning expe-
rienced complexity from actual product complexity may
affect the design and analysis of assembly operations and
may increase the accuracy of predictions of performance
measures such as costs, defects, productivity, and learning
effects.

Assessing product complexity using questionnaires and
evaluations provided by operators is undoubtedly much more
straightforward and less costly than objectively assessing
complexity, as in the case of the structural complexity model.
However, this study showed that using experienced complex-
ity to assess product complexity is appropriate for products
with low and medium complexity, but not for high levels of
complexity. Indeed, moving towards very complex products,
it would be more appropriate to use complexity models based
exclusively on objective data, as the operator cannot discern
between different complexity levels.

Finally, the authors will apply the proposed approach to a
real production environment and test if the obtained results can
be extended to industrial products. Real-world assembly opera-
tions may require more cognitive and planning effort than ball-
and-stick molecular assembly. Accordingly, the same level of
product complexity may be experienced as even more complex
by the operator. Thus, it is even more crucial that high levels
of product complexity should be identified and minimized in
the real world to reduce the experience complexity.

Appendix

Pedagogical example to derive product experienced
complexity at level of individual operator

Consider a generic product j and a generic operator k. For the
sake of simplicity, only three low-complexity criteria are con-
sidered, i.e. criteria 1, 2 and 3. Table 12 reports the evaluations
on the importance and degree of accordance provided by the
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L5 Weights

Sample elements

Ly

Ly

Levels of the scale

L= I T
0 5 10
Number of operators

Fig.8 Graphical representation of the overall experienced complexity
calculation by the OWA operator. Adapted from Franceschini et al.
(2005)

operator, respectively /;; and V. In the table, the results of
the steps described in Sect. 3.1 are reported, as well as the final
value of experience complexity at level of individual operator.
In such an example, the product is classified as medium-high
complex.

Pedagogical example to derive product experienced
complexity at global level

Consider a generic product j, the scale with =5 levels, namely
L, L,, Ly, L, and Ls, i.e. the levels of the scale of experienced
complexity given in Table 5, and a sample of size of n=10

operators, whose elements, previously ordered in decreasing
order, are {Ls, Ls, L5, Ly, Ly, L3, L3, L3, L, L }.
The weights of the OWA operator are as follows:

o=Ly;
02)=00)=Ly;
O0H=005)=0(6)=Ls;
0(N=0@®)=Ly;
009)=0(10)=Ls.

The following result is obtained, by implementing Eq. (9):

OWA = Max[Min{L,, Ls },Min{L,, Ls },Min{L,, Ls },
Min{Ly, L, },Min{Ly, L, },Min{Ly, Ly },Min{L,,L; },
Min{L,,L;},Min{Ls, L, },Min{Ls,L, }| = L.

Thus, according to Eq. (9), the experienced complexity at
general level of the product (EC]) is Ly The OWA calcula-
tion can be represented graphically by the intersection of the
‘ascending stair’ (OWA weights) and the ‘descending stair’
(ordered sample elements), as shown in Fig. 8 (Franceschini
et al. 2005).

Additional results on the experimental case study

See Table 12 and Figs. 9 and 10.

Table 12 Spearman rank-order correlation coefficients between the agreement assessments of the 16 complexity criteria of manual assembly,

described in Table 3

Vi V2 V3 V4 V5 V6 V7 V8

\& V10 V11 V12 Vi3 V14 V15 V16

\%!

V2 0.620

V3 0.649 0.706

V4  0.639 0.713 0.776

V5 0.636 0.648 0.774 0.777

V6  0.619 0.698 0.760 0.780 0.683

V7 0598 0.657 0.734 0.777 0.740 0.763

V8  0.603 0.629 0.726 0.763 0.738 0.684 0.716

V9 0477 0581 0.627 0.664 0.632 0.620 0.598 0.700

V10 0.595 0.670 0.750 0.735 0.706 0.672 0.675 0.750 0.643

V11 0.563 0.609 0.698 0.728 0.651 0.684 0.648 0.768 0.643 0.753

V12 0.636 0.719 0.741 0.761 0.688 0.732 0.683 0.718 0.596 0.777 0.749

V13 0.602 0.640 0.719 0.706 0.718 0.729 0.736 0.714 0.620 0.689 0.677 0.694

V14 0.630 0.650 0.701 0.746 0.684 0.742 0.705 0.730 0.622 0.740 0.725 0.732 0.696

V15 0.610 0.631 0.701 0.765 0.739 0.730 0.815 0.750 0.678 0.694 0.694 0.686 0.796 0.744
V16 0.615 0.699 0.739 0.765 0.678 0.736 0.730 0.703 0.625 0.729 0.718 0.751 0.696 0.749 0.732

@ Springer



Research in Engineering Design

Eigenvalue

.
0 S8 e o o o o o o o e o o o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Component Number

Fig.9 Scree plot displaying the number of the principal component
versus its corresponding eigenvalue (Johnson and Wichern 2014)
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Fig. 10 Loading plot showing the coefficient of each variable for the
first two components (Johnson and Wichern 2014)
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