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ABSTRACT
Among other variables, smart tyre systems are capable of determin-
ing tyre contact forces. Combining this information with the signals
obtained from conventional vehicle sensors, e.g. inertial measure-
ment units, wheel speed sensors and steering wheel angle sen-
sors, improves the estimation accuracy of the states used by the
vehicle dynamics controllers of production cars. This study assesses
the performance improvement brought by the vertical and longi-
tudinal tyre contact force signals, obtained through smart tyres,
to an unscented Kalman filter (UKF) for vehicle speed and sideslip
angle estimation, based on a nonlinear vehicle dynamics model.
Two UKF designs, excluding and including smart tyre information,
are compared by using experimental data from a purposely sen-
sorised high-performance passenger car, along a comprehensive set
of manoeuvres. The results show average ∼ 60% and ∼ 37% reduc-
tions of the rootmean square values of the normalised vehicle speed
and sideslip angle estimation errors for the filter design receiving the
smart tyre information. In comparison with the more conventional
UKF design without tyre force inputs, the smart tyre based estimator
is also characterisedby significantly enhanced robustness andadapt-
ability to typical variations of vehicle and tyre parameters, such as the
tyre-road friction coefficient.
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1. Introduction

The operation of modern integrated vehicle dynamics controllers is enabled by the infor-
mation on vehicle states. State estimators play a crucial role in providing the information
on vehicle variables that are not easily measurable, among which the most important
ones are the sideslip angle, typically considered at the centre of gravity, and vehicle speed.
An accurate estimation of these variables is needed throughout the variety of possible
driving conditions, ranging fromnormal to limit driving scenarios, including quasi-steady-
state and transient operation as well as concurrent longitudinal and lateral accelerations.

The literature highlights that simple estimation solutions have significant limitations in
specific scenarios. For example, in terms of vehicle speed estimation, Song et al. [1] show
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that: (i) a vehicle speed estimation algorithm based on a single-wheel model is not effective
whenever the wheel is braked or driven; and (ii) the integration of the measured longi-
tudinal acceleration over time leads to significant errors in low-speed and wheel locking
conditions. The estimation challenge becomes significantly more complex when sideslip
angle estimation is considered. To cope with the variety of handling scenarios, many stud-
ies from the recent literature adopt state estimation algorithms based on Kalman filters
incorporating vehicle dynamics models at various levels of accuracy. For example, in [2,3]
a 2-degree-of-freedom (2-DOF) linear bicycle model is adopted, with lateral axle forces
linearly dependent on slip angles, which poses issues when the vehicle operates outside
the linear cornering response region. The same model is used by van Aalst et al. [4], who,
however, add cornering stiffness adaptation, modelled as process noise, to cope with tyre
nonlinearities. Similarly, in [5] Li et al. propose an adaptive algorithm based on a propor-
tional integral controller to obtain the cornering stiffness of the bicycle model used for
sideslip angle estimation in quasi-steady-state cornering, within a fusion system frame-
work including a kinematic estimator as well. To appropriately consider the effect of the
load transfers during high excitation and emergency driving scenarios, Li et al. [6] embed a
double-track nonlinear model into an extended Kalman filter (EKF), which implies model
linearisation at each time step. Doumiati et al. [7] simplify the 4-wheel nonlinear vehi-
cle model by neglecting the wheel dynamics and by modelling the longitudinal forces as
process noise. However, references [8–10] include the wheel dynamics and longitudinal
force formulations in the internal model of the filter, for acceptable performance at the
limit of handling. These studies use 7-DOF vehicle models, considering longitudinal, lat-
eral and yaw dynamics as well as wheel dynamics, coupled with unscented Kalman filter
(UKF) technology, which removes the burden associated with the linearisation phase of
EKFs. UKFs have recently become widely adopted in automotive research, see [8–10],
for their superior robustness with respect to sampling rates and approximation errors,
achieved with similar level of computational effort with respect to the corresponding EKF
implementations [11].

Although vehicle and/or tyre parameters are usually considered time-invariant, which
reduces the complexity of the state estimator and its computational burden, some state-of-
the-art estimators deal with parametric uncertainties by adding another parallel estimator
of the main vehicle parameters, or by jointly estimating vehicle states and parameters. For
instance, in Wenzel et al. [12] the estimation of the key vehicle states via a Kalman filter is
improved by the parallel update of vehicle mass, yaw mass moment of inertia and longitu-
dinal position of the centre of gravity, implemented through a second Kalman filter. The
studies in [8–10,13,14] improve their estimator performance through the online update of
the peak tyre-road friction coefficient and/or cornering stiffness.

Kalman filters based on dynamic vehicle models are the most common solution for
vehicle state estimation; however, they still present significant limitations in coping with
the variety of operating conditions of real vehicles. As a consequence, significant research
effort is being devoted to the development of advanced solutions, including: (a) adaptive
model-based Kalman filters, e.g. varying the filter covariances as functions of the vehicle
states [6]; and (b) fusion systems, integrating different state estimators and sensors, e.g. see
the combination of kinematic and vehicle model-based estimations in [5].

In this context, the introduction of tyre sensing systems, see [15,16], offers the possibil-
ity of making the tyre an active component of the estimation algorithm, by adding a direct
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feedback contribution that enhances state estimation robustness with respect to the inac-
curacies of the tyre force models. These solutions open promising perspectives in terms of
vehicle state estimation and control system development, see [17–20]. In particular, with
respect to state estimation, the pioneering study in [17] proposes an EKF based on a single-
trackmodel, under the assumption that the smart tyre system provides the total lateral axle
force, which is used as sensor feedback in the measurement equation, while the longitu-
dinal and vertical tyre forces are not considered. In absence of a vehicle prototype with
smart tyres at the time of that preliminary study, the resulting estimator performance was
assessed through vehicle dynamics simulations, under reasonable assumptions for the vir-
tual emulation of the smart tyre system. A further limitation of that initial research is the
fact that the currently available smart tyre systems, such as the one used in this study, can-
not provide reliable and sufficiently accurate lateral tyre force information yet, which is the
only smart tyre output considered in [17], while they have reached good estimation capa-
bility in terms of vertical tyre loads and longitudinal tyre forces, which, however, are not
used in the filter in [17].

Similarly to smart tyres, load sensing bearing (LSB) technology can enhance vehicle state
estimator performance. In the very relevant experimental study in [21], Nam et al. use the
lateral forces from sensorised hubs and a recursive least square (RLS) algorithm to estimate
vehicle sideslip angle. The considered single-track vehicle model is linear with constant
cornering stiffness, and neglects the slip ratios as well as the interaction between longi-
tudinal and lateral tyre forces. In [22] Nam et al. use the nonlinear version of the model
in [21] in the computation of the longitudinal and lateral components of the tyre forces
in the vehicle reference system, but still keep a linear tyre model, with an RLS algorithm
estimating the axle cornering stiffness from the lateral forces at the wheel hubs. The lat-
eral forces and cornering stiffness are included in the measurement vector of an EKF. The
LSB based Kalman filter in [23] uses a 2-DOF linear double-track model, in which the
longitudinal and lateral tyre forces are considered as inputs from the bearing systems, i.e.
they are not included in the measurement equation. This formulation requires high sensor
accuracy, which is improved by a specific algorithm that estimates the offsets in the LSB
system. Moreover, as the LSB measurement noise cannot be modelled as a white noise, the
process noise of the estimator requires an additional term, which is derived by means of
simulations, inwhich themeasurement error is studied in the time and frequency domains.

In summary, the literature shows evident research opportunities on: (i) the implemen-
tation of experimentally validated model-based estimators of vehicle speed and sideslip
angle, using information from real smart tyres, rather than fictitious smart tyre signals gen-
erated by simulationmodels; and (ii) state estimators usingmeasured forces, either through
smart tyres or load sensing wheel hub bearings, which are based on advanced nonlinear
vehicle dynamics models, i.e. incorporating longitudinal, lateral, yaw and wheel dynamics
as well as tyre nonlinearities for combined cornering and braking/traction conditions.

This paper aims to cover the identified gap by further developing the activity outlined
in [24]; more specifically, the novel contributions are:

• The adoption of state-of-the-art smart tyre technologies developed byPirelli, namely the
CyberTM Tyre system, for the design of a smart tyre based UKF, i.e. the so-called UKF-
CT of McLaren Automotive, which includes the smart tyre signals of the longitudinal
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tyre force and normal load as feedback contribution in the measurement update of the
filter algorithm;

• The experimental evaluation of the estimation performance of vehicle speed, sideslip
angle and peak tyre-road friction factor of the UKF-CT and its equivalent version
excluding the smart tyre inputs (called UKF in the remainder), in different tyre-road
friction conditions, during normal and extreme handling manoeuvres on a McLaren
570S vehicle prototype. For fairness of comparison, an optimisation routine carries out
the automated calibration of the main estimator parameters;

• The sensitivity analysis of the UKF estimation performance with respect to vehicle and
tyre parameter variations, with and without the inputs from the smart tyre system.

The remainder is organised as follows: Section 2 is an overview on the considered smart
tyre system and vehicle prototype; Section 3 presents the state estimator architecture and
the experimental validation of its internal vehicle model; Section 4 describes the adopted
UKF tuning routine, and shows the comparison between the UKF–CT and UKF in terms
of performance and robustness; finally, Section 5 summarises the main conclusions.

2. The case study smart tyre system and demonstrator vehicle

From a vehicle dynamics perspective, tyres are in the most privileged position as they
are the only component that is in contact with the road surface. Sensing systems directly
located in the tyre are a promising technology to obtain useful information for vehicle
dynamics control and/or state estimation. Accordingly, the CyberTM Tyre project of Pirelli
Tyre S.p.A. is developing an innovative tyre sensing system that is able to: (i) measure the
relevant variables through a tri-axial accelerometer embedded in the inner liner of the tyre
carcass; (ii) condition the collected signals during the tyre rolling motion; and (iii) trans-
mit them to a receiver located on the vehicle. The outputs of the specific smart tyre system
are: (a) the vertical and longitudinal tyre forces, detected once per wheel rotation, which
represent the smart tyre outputs used in this study; (b) a flag variable that provides indica-
tion of incipient hydroplaning, see [25]; and (c) indication of the installed tyre model, i.e.
the so-called tyre ID function, which allows automated re-tuning of the tyre parameters
included in the vehicle state estimators and controllers when the tyres are replaced with a
different model. The algorithms for the generation of the variables in (a)–(c), developed
through indoor calibration tests in controlled environment, are beyond the scope of this
paper, and are described in [26].

In the practical implementation, the smart tyre system outputs have a non-negligible
time delay, consisting of three contributions: (i) a variable time delay component, which
is inversely proportional to the wheel speed, and corresponds to the time needed by the
smart tyre sensor to provide a meaningful measurement to the sensor processing unit;
(ii) a constant elaboration time delay (∼4–5ms); and (iii) a variable time delay compo-
nent dependent on the CAN bus refresh time. These delays are present in all experimental
measurements discussed in the remainder.

Smart tyre systems can be used as a tool to enhance both the vehicle development pro-
cess and vehicle dynamics performance. In the block diagram in Figure 1, the upper level
covers the typical vehicle dynamics development steps, including the definition of the pas-
sive vehicle behaviour, and the design of vehicle dynamics control systems. The smart
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Figure 1. Enhanced vehicle development process through the CyberTM Tyre features.

Figure 2. (a) SensorisedMcLaren 570S prototype; and (b) handling circuit of the IDIADAproving ground
(https://www.applusidiada.com, last accessed on 1/3/2021).

tyre features are in the lower level of the diagram, and enable informed vehicle devel-
opment and operation. For instance, the vertical and longitudinal tyre forces are useful
inputs for suspension kinematics and compliance evaluation during real driving in the
vehicle testing phase, including verification of the anti-dive/-lift/-squat and bump stop
characteristics. Nonetheless, the main benefit of smart tyre systems is the enhancement
of the high-level vehicle control strategies, including state estimators, agility and stabil-
ity controllers, wheel slip controllers, active and semi-active suspension controllers, and
individual wheel steering controllers.

The study of this paper focuses on the assessment of the vehicle speed and sideslip angle
estimation benefits of the case study smart tyre system, which has been integrated with the
state estimation system developed by McLaren Automotive and the University of Surrey.
The analysis is based on a selection of experimental results obtained from the installation
of Pirelli P Zero Corsa tyres (with different sizes on the front and rear axles), sensorised
through CyberTM Tyre technology, on the rear-wheel-drive McLaren 570S prototype in
Figure 2(a), which was driven along the handling circuit of the IDIADA proving ground
(Spain, see Figure 2(b)). Themain vehicle parameters are reported in Table 1. In addition to
the smart tyre system and the conventional on-board sensors, the test vehicle was equipped
with an OxTS RT unit [27] and a 6D inertial measurement unit (IMU-AB12 [28]), which
provide accurate measurements of the vehicle body acceleration and speed components
for state estimation validation.

https://www.applusidiada.com
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Table 1. Main vehicle parameters.

Symbol Description and unit Value

HCoG Centre of gravity (CoG)
height (m)

0.440

l Wheelbase (m) 2.670
lF Front semi-wheelbase, i.e.

distance from front axle to
CoG (m)

1.535

MICE,max Maximum engine torque
(Nm@rpm)

620 @5500÷6500

m Vehicle mass (kg) 1708
Pmax Maximum power (kW @rpm) 441 @7500
tF Front track width (m) 1.689
tR Rear track width (m) 1.630

Figure 3. Comparison between the vertical and longitudinal forces on the rear right wheel, respectively
FzRR and FxRR, measured by a dynamometric hub and generated by the CyberTM Tyre system along a
portion of the handling circuit in Figure 2(b).

Figure 3 shows an example of estimation performance of the smart tyre system installed
on the case study vehicle, in terms of normal and longitudinal forces, respectively FzRR and
FxRR, on the rear right vehicle corner during an experimental test in the handling circuit
in Figure 2(b), involving significant longitudinal and lateral accelerations. The comparison
between the forcesmeasured by a commercial RoadDyn dynamometric hub and the corre-
sponding values from the CyberTM Tyre system highlights the accuracy of the latter. This is
confirmed by Figure 4, in which the colour scale reports the magnitude of the force errors
as functions of the longitudinal and lateral acceleration levels (the so-called ‘g-g diagram’)
during a lap on the handling track.

3. State estimator design

This section describes the vehicle model embedded in the proposed UKF, its experimental
validation, and the UKF algorithms for state and parameter estimation.

3.1. Internal vehiclemodel formulation

Anonlinear dynamic 7-degree-of-freedom (7-DOF) double-trackmodel is chosen as inter-
nal vehiclemodel for the twoUKF implementations. Themodel considers the longitudinal,
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Figure 4. Absolute values (expressed in N) of the vertical (a) and longitudinal (b) force estimation errors
between the CyberTM Tyre system and a RoadDyn dynamometric hub along a portion of the handling
circuit in Figure 2(b).

lateral and yaw dynamics, as well as the rotational wheel dynamics. The main assumptions
are:

• Themotion is planar, and thus the road bank and inclination angles are neglected, which
does not represent a limitation in most conditions, given the robustness of the resulting
estimator;

• The heave and pitch dynamics are disregarded;
• The rear drivetrain torques and the braking torques on each corner are known in a first

approximation, and are obtained frommessages that are already commonly available on
the CAN (controller area network) bus of the specific vehicle. For example, the braking
torque values are estimated from the tandem master cylinder pressure message.

Figure 5 shows the vehicle schematic, with positive directions of themain vectors and vari-
ables, according to the ISO convention [29]. In the following formulations, the subscript i,
with i = F,R, indicates the axle, whereas the subscript j, with j = L,R, indicates the vehicle
side. In the figure, V is the vehicle speed, having longitudinal and lateral components vx
and vy; β is the sideslip angle; Fxij and Fyij are the longitudinal and lateral tyre forces; δFj is
the steering angle of the front wheels; ψ̇ is the vehicle yaw rate; ti is the track width; li is the
longitudinal distance between the centre of gravity, CoG, and the axle i; and �yCoG is the
lateral position of the CoG with respect to the plane of symmetry of the vehicle. In addi-
tion to the steering angles, the model inputs are represented by the engine and individual
braking torque values,MICE andMBij.

The longitudinal force balance equation is:

ax = v̇x − ψ̇vy = 1
m

⎧⎨
⎩

∑
j=L,R

[FxFj cos δFj − FyFj sin δFj] +
∑
j=L,R

FxRj − Fdrag

⎫⎬
⎭ (1)

where ax is the longitudinal acceleration; m is the vehicle mass; and Fdrag is the aerody-
namic drag force. The lateral force balance equation is:

ay = v̇y + ψ̇vx = 1
m

⎧⎨
⎩

∑
j=L,R

[FxFj sin δFj + FyFj cos δFj] +
∑
j=L,R

FyRj

⎫⎬
⎭ (2)
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Figure 5. Top view of the vehicle with main parameters and variables.

where ay is the lateral acceleration. The yaw moment balance equation is:

ψ̈ = 1
Jz

{
lF

∑
j=L,R

[FxFj sin δFj + FyFj cos δFj] +
[
tF
2

−�yCoG
]
[FyFL sin δFL − FxFL cos δFL]

−
[
tF
2

+�yCoG
]
[FyFR sin δFR − FxFR cos δFR]

−
[
tF
2

−�yCoG
]
FxRL +

[
tR
2

+�yCoG
]
FxRR

− lR
∑
j=L,R

FyRj +
∑
i=F,R

∑
j=L,R

Mzij

}
(3)

where Jz is the yaw mass moment of inertia, and Mzij is the self-aligning moment of the
tyres. The vehicle speed and sideslip angle are given by:

V =
√
v2x + v2y (4)

β = tan−1
(
vy
vx

)
(5)

In (5) and the remainder, the notation ‘( )’ indicates the argument of a function. The
dynamics of each wheel are described by a moment balance equation, which, for the rear
wheels, is:

JweqRjω̇Rj = 0.5MICEitrηtr − MBRj − FxRjRlRj − MyRj (6)

where JweqRj is the equivalent mass moment of inertia of the wheel, including the con-
tribution of the powertrain components; ω̇Rj is the angular wheel acceleration; itr is the
transmission gear ratio; and ηtr is the transmission efficiency.

The Pacejka Magic Formula (version 2002, see [30]) calculates the rolling radius, laden
radius, rolling resistance, longitudinal force, lateral force, and aligningmoment of the tyres,
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namely Reij, Rlij,Myij, Fxij, Fyij, andMzij, as functions of the tyre slip angle αij, longitudinal
slip ratio σxij, vertical load Fzij, and camber angle γij, which is expressed as a function of
the longitudinal load transfer and roll angle φ, given by the following approximated static
formulation:

φ = m[HCoG − HRA,CoG]
KφF + KφR

[ay cosφ + mg sinφ] (7)

where Kφi is the roll stiffness of the considered axle; HCoG is the centre of gravity height;
andHRA,CoG is the roll axis height at the longitudinal coordinate of the centre of gravity. To
ensure stable operation of the tyre model also in low-speed conditions, the conventional
formulations of the longitudinal and lateral slips, σxij and αij, are modified according to the
stability analysis in [31,32]:

σxij = ωijReij − vxij
max(|vxij|, ηlngvx,lng,marg)

(8)

αij = tan−1

⎛
⎝ V sinβ ± ψ̇ lF

max
(
ηlatvx,lat,marg ,

∣∣∣V cosβ ∓ ψ̇tF
2

∣∣∣)
⎞
⎠ − δFj (9)

where vxij is the longitudinal component of the peripheral wheel speed; ωij is the angu-
lar wheel speed; vx,lng,marg and vx,lat,marg are the marginal speeds, namely the minimum
speed values preventing longitudinal and lateral slip singularities; and ηlng and ηlat are
positive safety coefficients. This formulation facilitates the removal of tyre slip and force
oscillations, which can lead to numerical instability and may affect the state estimator
performance. This phenomenon ismore evidentwith high time steps of the numerical inte-
gration process; the authors of [31,32] define the minimum marginal speed as a function
of the simulation time step. Moreover, as the marginal speed depends on the longitudi-
nal slip stiffness and cornering stiffness of the considered tyres, in this study, differently
from [31,32], it has been varied according to the stiffness values resulting from the Magic
Formula. As this study is focused on the sideslip angle estimation enhancement associated
with smart tyre systems, tyre relaxation was not considered essential for the implementa-
tion of the filters, given the already satisfactory results, also in consideration of the trade-off
between computational efficiency and filter performance. However, the inclusion of tyre
relaxation could be a relevant future development, especially to enhance the estimation
performance during events characterised by significantly high dynamics at the wheel level,
e.g. during the intervention of the anti-lock braking or traction control systems.

The computation of the vertical tyre loads on each corner, Fzij, includes consideration
of the longitudinal and lateral load transfers and aerodynamic downforce contributions:

FzFj = 0.5tF ∓�yCoG
tF

[
lRmg
lF + lR

+ Fdf%
100

Fdf ,F
]

−�Fxz ∓�FyzF

FzRj = 0.5tR ∓�yCoG
tR

{
lFmg
lF + lR

+
[
1 − Fdf%

100

]
Fdf

}
+�Fxz ∓�FyzR (10)

where g is the gravitational acceleration; Fdf is the total aerodynamic downforce; and Fdf%
is the front-to-total aerodynamic downforce distribution. The longitudinal load transfer
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caused by acceleration and braking,�Fxz , is given by:

�Fxz = 1
2
HCoGmax
lF + lR

(11)

The front and rear lateral load transfers,�FyzF and�FyzR, are evaluated through steady-state
equations, considering the lateral acceleration and anti-roll moment distribution between
the front and rear axles:

�FyzF = ay
tF

{
m
lR
l
HRC,F + Mφ%

100

[
mHCoG − m

lR
l
HRC,F − m

lF
l
HRC,R

]}

�FyzR = ay
tR

{
m
lF
l
HRC,R +

[
1 − Mφ%

100

] [
mHCoG − m

lR
l
HRC,F − m

lF
l
HRC,R

]}
(12)

where Mφ% is the front-to-total anti-roll moment distribution; and HRC,F and HRC,R are
the roll centre heights of the front and rear suspensions.

3.2. Experimental validation of the internal vehiclemodel

The experimental validation of the internal model was achieved by comparing the model
outputs with measured data from the case study vehicle, along a set of manoeuvres cov-
ering a wide range of longitudinal and lateral accelerations, in steady-state and transient
conditions. As suggested in [33], the selected manoeuvres are: (i) swift acceleration up to
9m/s2 followed by hard braking up to ∼−15m/s2 in straight line, with the vehicle reach-
ing a top speed of 110 km/h. This manoeuvre is abbreviated as SA+HB. The significant
acceleration values are made possible by the high-performance characteristics of the case
study vehicle; (ii) slow ramp steer (SRS) at the approximately constant speed of 150 km/h,
with a steering wheel rate of 20 deg/s and a maximum steering wheel angle magnitude of
140 deg (iii) sine chirp (SC) steering test at 150 km/h, with a steering wheel angle ampli-
tude of 20 deg applied at a maximum frequency of 0.6Hz; and (iv) step steer (SS) test from
an initial speed of 100 km/h, with a final steering wheel angle of 100 deg.

In the validation, the model input variables are δFj, MICE and MBij; the model output
variables are ax, ay, ψ̇ and V for all manoeuvres, whereas β and φ are evaluated only
during the lateral dynamics tests, i.e. tests (ii)–(iv), due to the low reliability of the corre-
sponding measurements during straight line manoeuvres. Figure 6 summarises the model
validation results through bisector diagrams comparing themeasurements andmodel out-
puts, in terms of sideslip angle, yaw rate, lateral acceleration, roll angle, vehicle speed, and
longitudinal acceleration. The target, indicated as ‘Tgt’ in the figure, is to keep the points
of the plots as close as possible to the quadrant bisector, which is the ideal condition in
which the model outputs perfectly match the measurements. The marginal overestimation
ofmost of the variables is related to the inevitable simplifications in the tyremodel and sus-
pension elasto-kinematic behaviour within the internal model of the filter, in the context
of a trade-off between model fidelity and computational requirements. The model sim-
plifications tend to increase the level of cornering response of the simulated vehicle with
respect to the real one for given vehicle speed and steering input. The underestimation of
the longitudinal deceleration during hard braking conditions is caused by the fact that in
the specific test the anti-lock braking system (ABS) was activated on the real vehicle. The
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Figure 6. Bisector diagrams for plant model validation.

internal model of the filter running in open loop is not equipped with the ABS, and there-
fore – to prevent wheel locking during the model validation phase, and in absence of the
knowledge of the individual wheel caliper pressure profile during the ABS activation on
the real vehicle – the tandemmaster cylinder pressure used in the model had to be kept at
a marginally lower level than in the experiments in the hard braking phases, which gen-
erated a lower deceleration value. Despite the minor performance differences between the
model and the real plant, based on the extensive set of tests the internal model of the filters
can be considered a reliable tool for predicting the response of the real vehicle.

3.3. Parameter estimation

Model based state estimates are strongly dependent on the varying vehicle parameters,
e.g. mass and centre of gravity position, and tyre parameters, including the tyre-road fric-
tion coefficient μ. In particular, tyre parameter accuracy is fundamental in determining
the contact forces. In [34], parameter estimation is accomplished by extending the plant
model in the time update of the filter with an additional state-space equation with a new
variable, i.e. the estimated parameter, which is described by a randomwalkmodel (RWM),
a stationary process only driven by the corresponding process noise.

In this study, similarly to [17], the estimated parameter is the peak tyre-road friction
factor,μmax, which is integrated in the PacejkaMagic Formula 2002 as a scaling parameter
ofDxij andDyij, namely the peak factors on the wheel ij in pure longitudinal and lateral slip
conditions, which are expressed as in [30]:

Dxij = Fzij[pDx1 + pDx2dfzij][1 − pDx3γ 2
xij]λμxμmax

Dyij = Fzij[pDy1 + pDy2dfzij][1 − pDy3γ 2
yij]λμyμmax

(13)
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where dfzij is the normalised vertical load of the wheel ij; pDxn and pDyn, with n = 1, . . . ,3,
are the shape factors in pure slip conditions; the terms γxij and γyij are linear functions of
the camber angle of the respective wheel; λμx and λμy are the scale factors of the friction
coefficient in pure longitudinal and lateral slip conditions, set to 0.94. The dynamics of
the peak tyre-road friction factor are described by μ̇max = 0, which, in discretised form,
becomes:

μmax,k = μmax,k−1 + wμmax ,k−1 (14)

where k is the discretisation step, and wμmax ,k−1 is the associated process noise. In the pro-
posed filters, the purpose of the μmax estimation is to enhance the estimation of the main
filter outputs, e.g. vehicle speed, sideslip angle, and lateral tyre forces, rather than achiev-
ing an accurate friction estimation. In this respect, μmax constitutes an additional degree
of freedom, which increases the vehicle model robustness by scaling the tyre-road friction
coefficient in the Pacejka tyre model formulation [8,9,14].

3.4. Unscented Kalman filter implementation

UKFs ([34]) are based on an iterative process that consists of two main steps: (i) a time
update, in which the set of nonlinear equations describing the n states of the plant model
are subject to forward Euler explicit integration to compute the a-priori state vector, x−;
and (ii) a measurement update, in which the error between the predicted measurement
and real data, i.e. e−y , is fed back to correct the estimation based on the internal model
equations [35].

Within the UKF algorithm, the nonlinear model used in step (i) is arranged as:{
xk = f (xk−1, uk,wk−1)

yk = h(xk, uk, vk)
(15)

where f describes the systemdynamics; h is the observationmodel; xk ∈ R
n is the state vec-

tor at the time step k, assumed to have Gaussian probability distribution Pk ∈ R
n; uk ∈ R

r

and yk ∈ R
m are the input and output vectors; and the random variables wk−1 ∈ R

n and
vk ∈ R

m are the process and measurement noise vectors. The noise vectors are assumed to
be white and uncorrelated with zero-mean Gaussian probability distributions defined by
the covariance matrices Q ∈ R

n×n and R ∈ R
m×m. As the noise components are uncor-

related, the covariance matrices are diagonal. Ideally, Q and R should change at each
iteration because the uncertainties related to the process and sensors might vary. How-
ever, unlike Pk, Q and R are kept constant to reduce the computational load, and aid the
estimation of the error covariance Pk and the Kalman gain Kk to quickly converge and sta-
bilise [35]. To avoid neglecting any odd-moment information, in the computation of Kk
the UKF algorithm uses an augmented state vector, xaug , with size N = 2n + m, and the
corresponding augmented error system covariance matrix, Paug , see [8,11]:

xaug = {xk−1 wk−1 vk}T ; Paug =
⎡
⎣Pk−1 0 0

0 Q 0
0 0 R

⎤
⎦ (16)
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Figure 7. Schematic of the UKF algorithm for vehicle state estimation.

The measurement update in step (ii) is described by:

x+
k = x−

k + Kke−y,k = x−
k + Kk[yk − yUKF/UKF−CT] (17)

where x+
k is the a-posteriori estimate, i.e. the final output from the filter; x−

k is the a-priori
estimate, i.e. the output from the internalmodel; andKk is calculated according to the steps
described in [36], here omitted given the vehicle focus of this paper. Figure 7 shows the
schematic of theUKF-CT implementation, whosemain goal is to obtain the values ofβ and
V , on top of other relevant variables, such as the individual lateral tyre forces, slip angles,
and slip ratios. The state and input vectors resemble the experimentally validated design
adopted by Antonov et al. [8]. The output vector includes variables commonly available on
the controller area network (CAN) of the vehicle. Moreover, due to the availability of the
estimated Fxij and Fzij from the smart tyre system, the vector y is augmented accordingly.
Hence, the resulting vectors are:

x = {
vx vy ψ̇ ωij μmax

}
u = {

δFj MICE MBij
}

yUKF = {
ax ay ψ̇ ωij

}
yUKF−CT = {

yUKF Fzij Fxij
}

(18)

where the subscripts UKF and UKF-CT, used here and in the remainder, refer to the esti-
mators excluding and including the smart tyre system estimates. The angular wheel speeds
allow an accurate estimation of vehicle speed in most driving scenarios; the additional
measurement of ax, not included the implementation in [8], helps preventing performance
degradation in conditions of significant longitudinal tyre slip.

In the filter implementation phase, themeasurement noise covarianceR, i.e. the variance
of the sensors, was determined through the a-priori analysis of sample measurements [35],
whilst the matrix Q, which considers model uncertainties, was obtained through the opti-
misation routine in Section 4. To reduce the number of tuning parameters, the initial error
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system covariance matrix, Pk|k=0, is set to be equal to the process noise covariance matrix,
i.e. Pk|k=0 = Q, as in [10]. The additional parameters are αUT , a constant defining the
spread of the sigma points, which is set to 1 in the proposed implementations; βUT , a con-
stant related to the type of probability distribution, equal to 2 for Gaussian distribution;
and κUT , a scaling parameter, set to 3 − N, as recommended by [8,34,36].

3.5. Ancillary algorithms for updatingmass andmass distribution

Outside the UKF-CT, an algorithm using the tyre load measurements from the smart tyre
system readjusts the total vehicle mass and mass distribution for the filter and the other
vehicle controllers, when pre-defined conditions are satisfied for a certain amount of time.
For instance, whenever the car travels along an approximately straight line at constant
speed, the vertical load signals on each corner, Fzij, are averaged along time. Once the
system has considered a total number of samples, Ns,update, corresponding to the desired
time intervalTupdate = Ns,updatets (Tupdate =5 s in the specific implementation of this paper,
where ts is the sampling time of the data acquisitions) in the selected driving condition, the
updated average mass for the corner ij is given to the UKF-CT and the vehicle controllers,
according to:

mij,new = 1
Ns,update

Ns,update∑
p=1

Fzij,p
g

(19)

Hence, the total mass of the car, m, as well as the longitudinal and lateral positions of
the centre of gravity, defined by lR and �yCoG, are periodically updated according to the
following formulations:

mnew =
∑
i=F,R

∑
j=L,R

mij

lR,new = mRL,new + mRR,new

mnew
l

�yCoG,new =
[
mFL,new + mRL,new

mnew
− 1

2

]
t

(20)

where the subscript ‘new’ indicates the updated parameters, and t is the average trackwidth.

4. Results and discussion

Although the unscented Kalman filter algorithm implies the processing overhead of com-
puting multiple sigma points at each iteration, the state estimators in Section 3 were
implemented in real-time on the dSpace MicroAutobox II DS1401 rapid control proto-
typing unit installed on the demonstrator vehicle in Figure 2(a), with a time step of 20ms.
The signals used for the operation of the filters are already available on the CAN bus of the
baseline configuration of the vehicle, whilst the additional measurements from the OxTS
RT unit and 6D IMU are employed to evaluate the estimation performance. The involved
car maker is currently assessing the implementation of the considered estimators also on
available automotive control hardware for production vehicles.
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4.1. Optimisation based tuning routine

During the study it was empirically verified that the proposed filters are stable for a wide
range of settings of Q, and that reasonable nominal settings obtained through brute force
trial-and-error tuning can provide good performance, which is rather close to the optimal
one. However, in the specific activity, to present the capability of the filters at their best and
for fairness of comparison, an optimisation routine was implemented to find the optimal
values of the elements on the diagonal of the covariance matrix Q of the UKF and UKF-
CT, along a comprehensive set of experimental trainingmanoeuvres.Due to the complexity
and significant nonlinearities, a multi-objective genetic algorithm was selected, using six
objective functions, based on the normalised rootmean square error (NRMSE) between: (i)
the experimental data from the OxTS RT unit, the 6D IMU, and the CyberTM Tyre system,
here used as a development tool for both the UKF and UKF-CT; and (ii) the estimation
outputs, obtained by feeding the filters with the required CAN bus signals during the same
training manoeuvres. The optimisation problem is defined by:

min
argQ

Jb s.t. Qh ∈ [Qh,min,Qh,max]

Jb = NRMSE(b) =
√

1
Ns

Ns∑
p=1

[
ew,b,p
bnorm

]2
with b = β , ax, FxRL, FxRR, FzFL, FzRR

(21)

where the notation Jb indicates the objective functions, accounting for the estimation accu-
racy of sideslip angle, longitudinal acceleration, longitudinal forces on the rear driving axle,
and vertical tyre loads on opposite vehicle corners, as indicated by the index b; Ns is the
number of samples in the considered time history; ew,b,p is the weighted estimation error
of the sample p; andQh,min andQh,max define the range of variation of each element,Qh, of
Q. Depending on the objective function, the normalisation values, bnorm, are 20 deg for the
sideslip angle, 12m/s2 for the longitudinal acceleration, 6800N for the longitudinal tyre
force on the driving axle, and 3800 N and 4750 N for the vertical tyre loads on the front
and rear axles. ew,b,p is defined as:

ew,b,p =

⎧⎪⎪⎨
⎪⎪⎩
b̂p − bp if |b̂p − bp| < ethr1

W1[b̂p − bp] if ethr1 ≤ |b̂p − bp| < ethr2

W2[b̂p − bp] if |b̂p − bp| ≥ ethr2

(22)

where bp is the measured value of the considered variable; b̂p is the estimated value; ethr1
and ethr2 are predefined |b̂p − bp| thresholds; and the scaling factors W1 and W2, with
W2 � W1 > 1, amplify the error to penalise excessive |b̂p − bp| values in the computation
of Jb. The variety of cost functions in (21) allows to obtain a filter tuning that is useful also
for estimating vertical and tangential tyre forces, e.g. for effective individual wheel slip
control and vehicle stability control. In the optimisation, the state vector is initialised as:

x0 = {
0.98VCAN 0 0 0.98ωFL,CAN 0.98ωFR,CAN 0.98ωRL,CAN 0.98ωRR,CAN μmax,0,rnd

}
(23)

where the initial vehicle speed and angular wheel speeds are set to 98% of their values
acquired on the vehicle CAN bus, to ensure that the filter is capable of converging to the
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respective actual values. β and ψ̇ are set to 0, as the vehicle trajectories are usually straight
in the initial section of the training manoeuvres. An initial random peak tyre-road friction
factor value, i.e. μmax,0,rnd ∈ [0.6–1.1], is selected for each iteration; thus, the optimisation
tends to improve the convergence features of the estimator from multiple initial friction
conditions.

The values of the six functions in (21) allow to build amulti-dimensional Pareto frontier.
The selected optimum refers to the set of covariances identifying the closest point of the
Pareto frontier to the origin of the coordinate system. The optimal covariances computed
for the selected driving scenarios were used for the results in the following sections.

4.2. Experimental state estimation results and filter comparison in nominal
conditions

The experimental comparison of the UKF and UKF-CT covers the following manoeuvres:
(i) a slow ramp steer (SRS) at ∼100 km/h, corresponding to quasi-steady-state cornering
conditions. The steering wheel input is applied at a rate of ∼25 deg/s, and is stopped when
the steering wheel angle reaches ∼200 deg, after which it is kept constant. Finally, at the
end of themanoeuvre, the steering input is abruptly reduced; (ii) a series of lane changes in
high speed conditions (HSLC), i.e. executed between 140 and 175 km/h; (iii) an open-loop
step steer (SS), see ISO 7401 [37], with a steering wheel angle amplitude of 100 deg, from
an initial speed of 100 km/h, followed by a final abrupt counter-steering action reaching
a final steering wheel angle value of −100 deg (iv) a combined longitudinal and lateral
dynamics manoeuvre with power-on (maximum longitudinal acceleration of 6m/s2) and
final hard braking (maximum deceleration of 8m/s2) during a turn, with a maximum lat-
eral acceleration of 8m/s2 (CPO); (v) a handling circuit lap (Figure 2(b)) on dry tarmac
(DryH); and (vi) a handling circuit lap in wet tarmac conditions (WetH). For tests (i)–(v),
the actual value of μmax on the specific proving ground can be considered ∼1, while for
test (vi) the realμmax ranges from 0.4 to 0.7. To verify their robustness, in all tests the filters
were run with both initial conditions μmax,0 = 1 and μmax,0 = 0.7, which were imposed
at the beginning of the relevant section of the manoeuvre.

Figure 8 summarises the results for the UKF and UKF-CT for μmax,0 = 1. For both
filters the samples tend to be located in proximity of the bisectors, indicated as ‘Tgt’,
with a generally visible improvement for the UKF-CT, especially in terms of sideslip angle
estimation, while vehicle speed estimation appears very good in both cases.

Key performance indicators (KPIs) are introduced to objectively assess the vehicle speed
and sideslip angle estimation performance, namely:

• The root mean square value of the estimation error (expressed in percentage), nor-
malised with respect to the maximum value of the variable (bmax in (24), see also the
values in Table 2) along the considered set of manoeuvres, which highlights the overall
estimation performance:

NRMSE% = 100

√√√√√ 1
Ns

Ns∑
p=1

[
b̂p − bp
bmax

]2

(24)
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Figure 8. Bisector diagrams for the evaluation of the overall estimation performance of the UKF and
UKF-CT along the considered manoeuvres, forμmax,0 = 1.

• The normalised maximum absolute value of the estimation error, emax, which evaluates
the worst-case estimation performance:

emax = 100
max |b̂p − bp|

|bmax| (25)
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• The normalised standard deviation of the error, σ std, which assesses whether the dis-
persion of the estimated data is limited to a certain time window or it extends along the
whole manoeuvre:

σ std = 100

√√√√√ 1
Ns

Ns∑
p=1

[eb,p − ēb,p
bmax

]2
(26)

where eb,p = b̂p − bp and ēb,p are the error (without any weighting) and its mean value.

Figure 9 reports the NRMSE% values of V and β , for both initial conditions of the peak
tyre-road friction factor. The benefit of the UKF-CT is evident in 22 cases out of 24, as
it brings an average reduction of the NRMSE% of V by 46% and 73%, and an average
decrease of the NRMSE% of β by 49% and 26%, respectively for μmax,0 = 1 and μmax,0 =
0.7, in comparison with the UKF. Particularly significant are the sideslip angle estimation
improvements for the slow ramp steer and step steer tests, in which the NRMSE% is more
than halved by the UKF-CT for both friction initialisation values. The UKF-CT addresses
the weaknesses of the UKF, for which theNRMSE% of β reaches the critical value of 42.7%
in the slow ramp steer test from the incorrect initial friction factor. In fact, in quasi-steady-
state conditions, the filter without the smart tyre system struggles converging to the actual
tyre-road friction condition. Table 2 includes the emax and σ std values for all cases, and
generally confirms the analysis of Figure 9, with 39% and 59% reductions of the maxi-
mum estimation error on vehicle speed, and 33% and 12% reductions of the maximum
error on sideslip angle, brought on average by the UKF-CT with respect to the UKF, for
the two initialisation values of the tyre-road friction condition. The major decrease – in
excess of 30% in all cases – in the standard deviation values of the estimation errors of
the UKF-CT shows the significantly more consistent performance of the smart tyre based
estimator.

Figures 10–12 highlight the UKF-CT benefits in the most critical test cases. Figure 10
refers to the slow ramp steer with μmax,0 = 0.7, while the real peak friction factor on
the specific dry tarmac is ∼1, i.e. the aim of the test is to assess the filter behaviour in
quasi-steady-state conditions, with incorrect initialisation of the friction parameter. The
speed estimation is comparable for the two filters, with the exception of the time window
between 9 s and 11 s, when the vehicle operates at the limit of handling. This differ-
ence relates to the fast convergence of the UKF-CT to the actual value of μmax, without
oscillations. On the contrary, as discussed for Table 2, the random walk model of the
UKF is slower in initiating the appropriate significant increase of μ̂max. This delay brings
a major overshoot in the |β| estimation, which is followed by a sideslip angle magni-
tude underestimation when the RWM of the UKF overestimates the friction factor, see
the time window between 10 s and 13 s, before finally approaching the correct friction
value.

In the UKF tuning, optimised through the genetic algorithm, as the tyre force feedback
is missing, the RWM is more aggressive, i.e. it has significantly higher covariance related
to μmax than in the optimal tuning of the UKF-CT. Nevertheless, this rather reactive tun-
ing of the UKF is not sufficient to achieve good performance in the specific conditions, as
mentioned by the literature. In fact, according to Grip et al. [38], during long steady-state
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Figure 9. Performance comparison between UKF and UKF-CT in terms of NRMSE% values of V and β .

Table 2. KPI values for the UKF andUKF-CT, andmaximumabsolute values of vehicle speed and sideslip
angle along the six manoeuvres.

emaxUKF emaxUKF−CT σ std
UKF σ std

UKF−CT emaxUKF emaxUKF−CT σ std
UKF σ std

UKF−CT

[%] [%] [%] [%] [%] [%] [%] [%]
State μmax,0 Slow ramp steer State High speed lane change

V 1.00 0.70 0.72 0.27 0.19 V 0.69 0.46 0.21 0.12
Vmax = 105 km/h 0.70 2.58 1.16 0.80 0.23 Vmax = 170 km/h 0.75 0.46 0.26 0.12
β 1.00 53.47 24.80 15.51 5.87 β 30.25 20.48 12.48 7.11
|βmax | =2.4° 0.70 126.27 47.45 42.47 19.65 |βmax | =4.0° 47.22 28.13 13.93 7.37

Step steer Combined power-on
V 1.00 1.97 0.77 0.35 0.18 V 4.06 0.55 1.77 0.15
Vmax = 103 km/h 0.70 5.05 1.25 1.97 0.30 Vmax = 127 km/h 4.13 0.56 2.19 0.19
β 1.00 62.94 21.68 14.62 5.38 β 38.75 32.08 8.93 6.98
|βmax | =10.0° 0.70 64.54 21.38 28.93 9.20 |βmax | =3.5° 36.12 50.08 11.24 13.36

Dry handling circuit Wet handling circuit
V 1.00 2.95 1.23 0.91 0.22 V 9.68 9.97 1.59 0.72
Vmax = 140 km/h 0.70 3.04 1.24 0.97 0.24 Vmax = 105 km/h 6.53 3.92 1.39 0.39
β 1.00 47.88 38.98 17.38 11.32 β 34.12 24.17 9.09 3.72
|βmax | =1.8° 0.70 43.67 64.59 13.14 14.26 |βmax | =20.0° 22.51 24.16 5.93 3.45

manoeuvres friction estimation via RWM is difficult to achieve because of the lack of exci-
tation, and the suggestion is to automatically force μ̂max to an appropriate value during
these scenarios. However, the important novel conclusion of the analysis of Figure 10 is
that the vertical load and tyre force contributions from the smart tyre system are sufficient
to prevent the typical tyre-road friction estimation issues and the subsequent sideslip angle
estimation inaccuracies of estimators based on vehicle dynamicsmodels, without requiring
any form of additional complex rule based algorithm or adaptation mechanism.
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Figure 10. UKF and UKF-CT estimation results during a slow ramp steer in dry tarmac conditions, with
μmax,0 = 0.7. The notation ‘Meas.’ indicates themeasurements from the on-board sensors for estimator
validation.

Figure 11 refers to a section of the handling circuit with wet tarmac, with μmax,0 pur-
posely set to 1 despite the actualμmax varies in the 0.4–0.7 range, which represents a major
initial error in the expected tyre-road friction condition. In this extreme handling sce-
nario, the tyremodel approximations lead to inaccuracies that increase process uncertainty.
The vehicle speed estimation of the UKF loses reliability in high slip ratio conditions, cor-
responding to peak values of |σxij| > 0.2, occurring in multiple time windows (18–20 s;
23–24 s; 26–28 s; 30–38 s; after 46 s), when the vehicle is subject to hard braking or swift
accelerations. In these scenarios the UKF speed estimate presents spikes caused by the loss
of relevance of the angular wheel speed measurements, and the need to increase reliance
on the acceleration sensors. To cope with these criticalities, examples from the previous
literature implemented complex adaptive strategies to vary the filter covariances depend-
ing on the expected reliability of the process model or sensors, deduced from the driving
conditions [6]. However, in the UKF-CT the presence of the Fxij inputs from the smart
tyres effectively aids the estimator to cope with high slip ratio conditions, as confirmed
by the figure and the low values of σ std of V in Table 2. The utilisation of the smart tyre
system permits to safely keep the filter calibration (i.e. the covariances) constant, since
also μ̂max promptly converges to the correct value, and the β estimation KPIs are close



3714 V. MAZZILLI ET AL.

Figure 11. UKF and UKF-CT estimation results during a handling circuit lap in wet tarmac conditions,
withμmax,0 = 1.0.

to those obtained from correctly initialised friction conditions (which are not shown, but
were assessed during the study), or from μmax,0 = 0.7, see Table 2.

Finally, Figure 12 shows a step steep on dry tarmac, with μmax,0 = 1. In these extreme
limit and post-limit handling conditions, the experimental validation of vehicle dynam-
ics model based filters, such as the UKF of this study, tends to be particularly problematic
(see theUKF performance in the 4–6 s timewindow in Figure 12), because of the inevitable
modelmismatches, uncertainties anddisturbances, which exert significant influence on the
internal vehicle model response, thus compromising the estimation performance. Some
authors, such as Piyabongkarn et al. [39], cope with extreme transients by merging the
dynamicmodel based estimationwith the output of kinematicmodels or estimators, which
are independent from vehicle and tyre parameters as they only rely on the IMU out-
puts, and can provide good estimation during transients, but have poor performance in
quasi-steady conditions, because of the inevitable sensor measurement errors and offsets.
However, also in the considered extreme step steer, good performance is achieved through
the introduction of the force contributions of the smart tyre systemof theUKF-CT,without
the need for fusion based or adaptive algorithms. The KPIs in Table 2 and Figure 9 con-
firm that the UKF-CT outperforms the UKF in this test also in the case with μmax,0 =
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Figure 12. UKF and UKF-CT estimation results during a step steer in dry tarmac conditions, with
μmax,0 = 1.0.

0.7, due to the better convergence properties of the RWM assisted by the tyre force
feedback.

4.3. Robustness analysis

Model based state estimators often use internal vehicle models with time-invariant param-
eters, referred to nominal conditions, and thus neglect phenomena like the variations of:
(i) vehicle mass, e.g. caused by the number of passengers, payload, and fuel; (ii) position
of the centre of gravity; and (iii) tyre parameters, e.g. provoked by tyre replacements or
wear.

The tyre ID function of the considered smart tyre system provides the information on
the installed tyre model, which already represents significant progress with respect to a
conventional solution, as the tyre parameters of the state estimator can be updated based
on the installed tyres. Moreover, as discussed in Section 3, see (19)-(20), the availability of
the tyre contact forces from the smart tyre system allows periodic updates of the vehicle
mass as well as the longitudinal and lateral positions of the centre of gravity. Even more
importantly, the continuous tyre force information provided to the UKF-CT intrinsically
increases its robustness.
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Figure 13. Sensitivity analysis of the UKF and UKF-CT withμmax,0 =1.

This section evaluates the UKF and UKF-CT performance along the SRS manoeuvre,
under the assumption of vehicle and tyre parameter uncertainties. Given the availability of
experimental measurements from the real vehicle demonstrator, and the obvious difficulty
in systematically changing the test vehicle parameters, the robustness analysis is performed
by varying individual parameters of the internal vehicle model of the filters, and by com-
paring the estimation outputs with the experimental measurements in nominal vehicle
conditions.

In particular, the involved parameters are: (i) the total vehicle mass, m, which is varied
from−20% to+20% with respect to its nominal value; (ii) the longitudinal position of the
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centre of gravity, expressed through the normalised coordinate xCoG = 100�lR/l, which
is varied from −6% to +6%, where�lR is the difference between the rear semi-wheelbase
in the internal model and its value on the vehicle prototype; and (iii) the scaling factors of
the tyre cornering stiffness in the Pacejka Magic Formula, λky, which are simultaneously
varied for all tyres from −10% to +10% with respect to their nominal values.

Figure 13 reports the results for the UKF and UKF-CT in terms of NRMSE% and emax

of vehicle speed and sideslip angle. In general, the speed estimation results of the two fil-
ters are comparable, even if the UKF shows higher sensitivity to the variation of mass,
which is detected by the UKF–CT in the initial section of the manoeuvre. With respect to
β , the vehicle mass variations do not affect the sideslip angle estimation performance of
either filter, while only the UKF is sensitive to the variation of the longitudinal position of
the centre of gravity, which is recognised by the UKF-CT through the automated update
function in (20), and both filters are sensitive to cornering stiffness variations. The clear
outcome of the analysis is that the UKF-CT is consistently better in estimating β than the
UKF, and bringsmore than halvedNRMSE% and emax values for any considered parameter
variation.

5. Conclusions

The paper dealt with a novel estimator, i.e. the UKF-CT, of the key dynamic states for vehi-
cle dynamics control. The main feature of the UKF-CT, based on a nonlinear double-track
vehicle model with wheel dynamics, is the inclusion in the measurement vector of the lon-
gitudinal and vertical tyre forces generated by a smart tyre system. The performance of the
UKF-CT was compared with that of a state-of-the-art estimator, i.e. a UKF using the same
vehicle model as the UKF–CT but excluding the smart tyre system inputs, along a compre-
hensive set of handling manoeuvres with different tyre-road friction conditions, carried
out with a McLaren 570S vehicle prototype including smart tyres. For fairness of compar-
ison, the estimators were tuned through a genetic algorithm based optimisation routine,
using the smart tyre outputs for the calibration of the process covariance matrices of both
filters.

The experimental results show that the smart tyre force feedback bringsmajor improve-
ments in terms of: (i) convergence of the estimated tyre-road friction factor to its correct
value, which allows reliable sideslip angle and vehicle speed estimation also when the fil-
ter is initialised with significant errors with respect to the actual friction conditions; and
(ii) state estimation performance during extreme transient manoeuvres at the limit and
beyond the limit of handling, in which the filter without smart tyre information shows
the typical limitations of state estimators based on vehicle dynamics models. In terms of
performance indicators, the UKF-CT brings an average reduction of the normalised root
mean square estimation error (NRMSE%) of vehicle speed by 46% and 73%, and an aver-
age decrease of the NRMSE% of β by 49% and 26%, for the two considered initialisation
values of the tyre-road friction condition, in comparison with the UKF without smart tyre
inputs. Similarly, for the same tests and two initial conditions of the tyre-road friction fac-
tor, the average reduction of the maximum vehicle speed estimation error enabled by the
smart tyre system amounts to 39% and 59%, while the maximum sideslip angle estimation
error decreases by 33% and 12%. The sensitivity analysis to investigate the influence of the
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vehicle and tyre parameters on the estimation performance confirmed the superiority and
robustness of the UKF–CT, especially in terms of sideslip angle estimation.

The important conclusion is that for the considered vehicle the UKF-CT provides an
overall reliable and robust performance for a wide range of manoeuvres, covering sub-
limit, limit and post-limit handling, hard acceleration and braking while cornering, quasi-
steady-state and transient conditions, without requiring the adoption of complex process
covariance adaptation algorithms, which would be required by the UKF.
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