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Automating the Generation of Programs
Maximizing the Repeatable Constant Switching
Activity in Microprocessor Units via MaxSAT

Nikolaos I. Deligiannis†, Tobias Faller∗, Riccardo Cantoro†, Tobias Paxian∗,
Bernd Becker∗, Matteo Sonza Reorda†

Abstract—Throughout device testing, one key parameter to be
considered is the switching activity (SWA) of the circuit under
test (CUT). To avoid unwanted scenarios due to excessive power
consumption during test, in most cases the SWA of the CUTs
must be retained to a minimal value when the test stimulus is
applied. However, there are specific cases where the opposite,
namely the SWA maximization within the CUT, or a certain
sub-module of it, can be proven beneficial. For example, during
dynamic Burn-In testing we aim at maximizing the internal stress
by applying suitable stimuli. This can be done in a functional
manner by following the Software-Based Self-Test paradigm.
However, generating such suitable programs represents a costly
and arduous task for the test engineers. We consider the case
where the CUT is a pipelined processor core and we aim to
maximize the SWA of certain core sub-modules. We present a
comprehensive methodology based on formal methods, able to
automatically generate the best two-instruction stress-inducing
sequence for the targeted processor module. The generated stimu-
lus is composed of a short, arbitrarily-long repeatable sequence of
a pair of assembly instructions, thus guaranteeing the maximum
possible constant switching activity. The proposed method was
applied to the OpenRISC 1200 and the RI5CY (PULP) processor
cores demonstrating its effectiveness when compared to other
methods. We show that the time for generating the best repeatable
instruction sequence is limited in most cases, while the generated
sequence can always achieve a significantly higher repeatable and
constant SWA than other solutions.

Index Terms—Switching Activity Maximization, Formal Meth-
ods, Microprocessor, Burn-In, Stress Test

I. INTRODUCTION

With the continuous technological growth characterizing our
times, semiconductor companies and manufacturers are in an
ever-growing need for robust and reliable circuits. The test
engineers are tasked with the non-trivial identification and
development of the appropriate test procedures able to meet the
imposed reliability standards while also maintaining a viable
cost. The whole set of test steps that is usually employed by
the semiconductor industry at the end of the manufacturing
process may include Burn-In test (BI) [1]. In the domain of
safety-critical applications, where the safety evaluation process
and criteria have to obey the respective standards (e.g., ISO
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26262 for automotive, DO 254 for avionics, IEC 62304 for
medical equipment), BI testing is always present.

During BI the device under test (DUT) is operating at
high temperature, power and frequency conditions as it is
subject to different type s of external and internal stress in
order to artificially age it. In this way any weak component
evolves into an observable defect that can be detected (and the
corresponding device thrown away). BI testing contributes to
the reliability of the final product since it is the prime coun-
termeasure against the phenomenon better known as Infant
Mortality [2], where a significant amount of defective products
is observed in their early operational life stages due to latent
defects. Another testing method that is typically employed by
the semiconductor industry during the devices’ development
cycle is Highly Accelerated Life Testing (HALT) [3]. HALT
is not a standard pass-or-fail testing method but a test-to-fail
method (i.e., the product is tested until failure). In this way,
crucial information about the weaknesses and the limitations
of the devices’ can be derived in a short period of time and
taken into consideration by the respective device designers
[4]. In other words, all defects are analyzed until the root
cause of the failure is found. It is a stress-test procedure
that, similar to BI, uses environmental/external (e.g, extreme
temperatures, rapid thermal transitions, repetitive shock vibra-
tions) and operational/internal (e.g., stress inducing stimulus)
stress to expose such weak points (if any) in a product’s design.
Furthermore, another stress inducing stress test procedure that
is commonly employed by semiconductor manufacturers is
High-Temperature Operation Life (HTOL) testing [5]. The
goal of HTOL testing (also called Extended BI-testing in
the literature) is to determine the intrinsic reliability of the
devices under test (namely, to age the device such that a short
experiment will allow the lifetime of the IC to be predicted). In
order for the DUTs to age in such a manner, they are stressed at
an elevated temperature, high voltage and dynamic operation
for a predefined period of time. Although the test duration
time is typically defined by the test engineers, an industry
good practice calls for 1,000 hours of test time.

In all of the aforementioned stress test procedures, stress
inducing stimuli can be proven beneficial for a more efficient
stressing, and thus aging, of the DUTs. However, up until
recently, the most commonly applied BI procedure was static
BI, during which the DUTs are stressed at a fixed and
elevated temperature for an extended period of time without
any application of functional stimulus during the test. A major
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drawback of this approach is that nets of the circuit are
not exercised [1]. Furthermore, as the devices’ feature size
continues to scale down and their structural and architectural
complexity increases, so does the complexity and the cost of
the BI test, making it unaffordable. Moreover, tuning the key
parameters, such as the test duration, temperature and voltage,
is becoming more and more difficult. In fact, for each new
technology a non-negligible time period is required in order
for the technology to mature and for the appropriate BI-test
parameters to be identified (e.g., temperature and voltage),
while at the same time, process variations introduce a notable
amount of uncertainty. Any error or miss-tuning of the BI
parameters can have catastrophic consequences since under
the wrong conditions, the test can damage the DUTs and thus,
result in a yield loss. For example, the rise of the junction
temperature of the devices during BI testing can result in
an increase in the leakage currents, which can cause thermal
runaway. Regarding the test application time, all these forms
of accelerated aging methods are very time consuming since
their duration can be in the order of tens or hundreds of hours
(especially for new technologies) and thus, they can become
a bottleneck for the whole manufacturing process.

D.C.

Dynamic BI

D.C.

Test-In BI

D.C.

Monitored BI

Static BI

D.C.

Fig. 1. Types of Burn-In testing

To amend these obstacles, BI is evolving into new forms [6]
where the stress is generated and induced to the DUTs with
less dangerous and more controllable actions by also resorting
to internal stress [7]. In specific, as depicted in Fig. 1, there are
several types of BI that rely on the application of internal stress
on the DUTs spanning from simple stimuli application to the
DUT inputs (Dynamic BI) up to output capturing (Monitored
BI) and full evaluation of the DUT responses (Test-In BI). It
has been proven that this approach can drastically reduce the
test application times without affecting the reliability and the
quality of the test [8]. If the DUTs are equipped with Design
for Testability (DfT) infrastructures (e.g., scan chains), internal
stress can be easily generated by relying on them. While
this is true, in such an approach the DUTs would operate
in test mode and thus, they would age in a way that would
be different than in operational mode. Hence, this approach to
the problem can possibly introduce unnecessary test escapes or
even overstress the DUTs and potentially cause yield loss. On
the other hand, by using functional stimuli to stress the DUTs,
it is not possible to cause damage on the devices unless there
exists a fatal design flaw since the circuits are executing code
in a manner they are destined to do so. Furthermore, it has been

shown [9], that creating proper temperature gradients between
different parts in a circuit (or cores in a SoC) may enable
the detection of defects that could hardly be targeted in other
ways. Evidently, we can conclude that it is important to devise
strategies able to generate purely functional test stimuli that
maximize the switching activity (SWA) while the DUT works
in normal mode [10, 11].

Inducing stress in DUTs in an internal manner, i.e., maxi-
mizing the switching activity either in the whole circuit or in
some parts of it, can be also proven beneficial in other test
steps and not solely in BI-testing. It has been observed that
with the increasing of temperature, the delays on circuits also
increase, so that high temperature aggravates the impact of
delay defects in the circuits, easing their detection. Although
this is a known problem, the most common approach to
alleviate this issue is based on the generation of stimuli based
on DfT infrastructures. Thus, as mentioned earlier the tests
may include non-functional patterns that are not representative
during an operational scenario. In [12], the researchers propose
a temperature-aware software-based self-test (SBST) method
in order to self-heat processors to a high temperature range
and then to effectively test for delay faults in the circuit.
Similarly, in [13] an instruction-based self-test approach is
presented based on integer linear programming, in order to
test a processor circuit for delay faults after increasing its
temperature to the maximum operational levels. More recently,
the adoption of System Level Test (SLT) to detect defects that
could escape all the traditional test steps enables the search
for functional stimuli able to produce particularly stressful
conditions. Once again, this is possible by maximizing the
internal gate switching activity and/or by creating temperature
gradients between different modules within the DUT [14, 15].

In this paper we define the problem of repeatable constant
SWA maximization, focusing on the case where the DUT is
a fully pipelined processor. We propose an algorithm based
on formal methods that automatically generates repeatable
pairs of stress-inducing assembly instructions. These pairs are
characterized by the property that they leave the processor in
the same state they started from, hence being repeatable. More-
over, they induce at each clock cycle a constant amount of
stress. The proposed method requires the gate-level description
of the processor along with the respective technology library
and a list of constraints. The generated pairs of instructions
can be used to construct a test program by concatenating an
arbitrarily long number of pairs. The resulting test program
is guaranteed to induce the highest possible switching activity
within a targeted processor module in a constant (hence, each
instruction when executed forces the same number of nets
to perform a logic switch) and repeatable manner (hence,
for an arbitrarily long time period). With respect to other
solutions, the generated sequences of stress-inducing assembly
instructions are not only repeatable but guarantee that the in-
duced constant switching in the processor unit is the maximum
possible (unlike for example in [16]). Hence, we can use the
generated sequences to construct test programs in order to
force the DUT temperature always in a controlled manner and
can be used e.g., to achieve accelerated aging of the devices
during BI-testing. We consider the general case where the
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mission profile is not known by the manufacturer. Later in the
text, we discuss the case where a mission profile is available
and how this affects the stimuli generation process. Note that
this may differ with respect to other approaches where the
goal of the stress program application is to toggle each net
of the DUT at least once [17]. Also, switching every net of
the DUT at least once is a goal that is already considered
(in an implicit manner) in the general case of generating
software test libraries for stuck-at faults. Furthermore, in
industry, it is standard during BI-testing to incorporate a test
program composed of a variety of different routines each for
a specific purpose of the stress test. Hence, since the rou-
tines are typically interleaved with one-another our approach
can be proven beneficial since such a stress sequence could
cover a considerable amount of internal circuit net switching.
Also, modern BI-testing routines are often composed of the
application of both external and internal stress. By generating
functional sequences that are able to stress the DUT in a
constant and repeatable manner the tuning of the external
stress parameters (e.g., the temperature), becomes an easier
task for the test engineers since a stable thermal gradient is
enforced via the application of such sequences to the DUT.

With respect to our previous work [11], in this paper we
provide a comprehensive and in-depth explanation about the
practical motivations for the stress test and the importance
of functional stimuli being available in the test procedures.
We also presented various use-cases in-line with the industry
standards that can benefit from such test routines. We provide
an extensive comparison with the state-of-the-art and with
related works in the area, while underlining the differences
with our proposed method. We define more accurately the
problem and greater emphasis is given on the explanation of
our approach and the employed stress metric. Also, more ex-
perimental results are included regarding additional functional
units that we used as stress targets (e.g., the load and store
unit) as well as another processor of the RISC-V family.

The rest of the paper is organized as follows; in Section
II we provide some background by elaborating on previous
works in the area of the SWA maximization in ICs. In Section
III we present our proposed method. In Section IV we report
about the experimental setup and the results we gathered.
Lastly, in section V we draw some conclusions.

II. RELATED WORKS

In this section, we discuss previous works around the subject
of the SWA maximization in two categories distinguishing
between combinational and sequential circuits.

A. Combinational Circuits

The reliability of integrated circuits is strongly linked with
the problem of the identification of the maximum current
consumption during the devices’ testing phases. The research
community has studied the problem extensively in the past.
For instance, in [18] the authors address the problem of the
maximum current estimation in MOS ICs. They state that
unrestricted voltage drops in the circuits power and ground
lines can lead a system to dysfunction and cause a degradation

in the switching speed. Such current estimates play a crucial
role in the accurate timing analysis of the circuit and can
further be used to enhance the reliability of the circuit’s power
and ground buses. In [18] the authors also propose a heuristic
approach that can be applied to small combinational IC
blocks in order to identify their maximum static and transient
current by dividing the circuit into groups of combinational
interconnections of logic gates and acting on each group
independently. In [19], the authors approach the same problem,
namely the estimation of the maximum current in CMOS ICs,
by modeling it as an optimization problem. In that sense, they
search for stimuli (i.e., test patterns) that maximize the circuit’s
current value waveform. They further state that identification
of such estimates plays a vital role in the reliability and the
performance of the circuits since such knowledge can be used
to enhance the circuit’s design, rendering it resilient towards
soft errors and overheating scenarios. In [20] the authors
propose algorithms for probabilistically estimating the average
switching activity in combinational circuits of moderate size.
They link the switching activity of a circuit with estimates that
concern the circuits power and heat dissipation.

The authors of [21], further highlight the importance that
accurate power consumption estimates have for the perfor-
mance and the reliability of VLSI chips. More importantly,
they state that in order to obtain such accurate estimates, one
has to identify a pair of two consecutive input patterns (test
vectors) which induces as many logical switches within the
device as possible. That is, to maximize the circuit’s switching
capacitance. Moreover, they state that the complexity of such
an exhaustive search for the identification of the appropriate
pattern pair on a combinational circuit with n primary inputs
is O(4n). Their approach in order to compute such power
estimates is based on an automatic test generation technique,
while also a Monte-Carlo methodology is described. Although
the proposed method is effective, it is applied to relatively
small-sized combinational circuits. Likewise, in [22], the au-
thors approach the problem of power dissipation in combina-
tional CMOS ICs by relying on formal methods. They model
the circuit power dissipation as a Boolean function of the
circuit’s primary inputs. They as well link the power estimation
problem to the identification of the appropriate pair of two
consecutive test vectors that maximizes the gate switching of
the device. Their solution allows a reduction of the problem
to a weighted max-satisfiability (MaxSAT) problem. But, once
again, the method was applied to small combinational circuits
due to the high complexity imposed in order to obtain the
objective function of the circuit and to optimize it.

Overall, the maximization of the SWA of a circuit can be
proven beneficial from a designer’s perspective, since it allows
for the extraction of important information that enables the
enhancement of the overall reliability of the devices by fine-
tuning certain design parameters. However, the SWA maxi-
mization can be advantageous in the context of device testing
as well. During the multiple test steps that are adopted during
the device manufacturing, it may happen that faults do not
manifest themselves during testing and escape the whole set
of test steps. These latent defects are the prime suspects behind
the Infant Mortality behavior which is resolved via BI. In
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[23] the authors present a probabilistic approach (i.e., random
excitation of internal nodes) to generate input patterns that
maximize the SWA of a combinational block to further achieve
the maximization of power dissipation during BI testing. In
[24] the author relies on a genetic algorithm to develop a
method for the maximization of a combinational circuit’s SWA
in order to also maximize the circuit’s heat dissipation during
BI testing.

Having acknowledged the importance and the benefits that
stem from the SWA maximization on ICs and the acquisition
of switching information of a circuit in general, the researchers
focused deeper into the SWA maximization problem and
proposed various methodologies to effectively solve it. In [25]
the authors present a technique to extract estimates about the
maximum switching activity of a combinational circuit’s nets
while also considering delays within the circuit. Although
the method is applied solely to combinational circuits the
authors claim that such an approach can be also employed
in sequential circuits by isolating the combinational blocks
and applying the method in a divide-and-conquer fashion. In
[26] a methodology based on ATPG tools is presented in
order to identify the pair of test vectors that maximize the
weighted switching activity of a combinational IC. This is
achieved by modifying the gate-level description of the circuit
appropriately and then by generating vectors while targeting a
selected set of faults on the modified netlist while considering
a variable delay. In [27] the authors present a simulation-based
approach for the identification of the appropriate combination
of two test vectors for combinational ICs that maximize the
switching activity and thus the power consumption of the
circuit. Although highly effective, the generated pairs of test-
vectors for a combinational IC block with large number of
inputs cannot be proven to be the absolute best due to the
exhaustive simulations that are needed for an exponentially
growing number of vectors. In [28], another approach based on
formal methods is presented targeting combinational circuits.
The authors present an integer linear-programming approach
that utilizes SAT solvers as an underlying technology in
order to effectively compute the maximum weighted switching
activity of combinational ICs that can be used to derive
information about the circuits’ power dissipation.

In general, the subject of the SWA maximization on com-
binational circuits has been extensively studied in the past.
A variety of solutions have been proposed although they are
typically applied to moderate sized circuits.

B. Sequential Circuits

Regarding sequential circuits, and specifically processors (or
processor cores), the authors of [29] propose a method based
on formal methods for the generation of patterns that maximize
the SWA on various parts of the processor in a uniform manner
by isolating the functional units of the core and encoding
them in Conjunctive Normal Forms (CNFs). By considering
each unit separately they define in a flexible manner simpler
functional constraints (i.e., transitions maximization) per unit
and evaluate the satisfiability of each formula separately. This
enables the construction of functional stimuli that can be used

during BI to assist the aging process of various parts of the
circuit.

In [10] the authors present a methodology based on evo-
lutionary techniques, that builds stressful assembly programs
for a target processor by extracting characteristics (i.e., code
segments) that were found to be causing high switching
activity when executed. These segments in turn are used to
compose a final stress program that gets refined during the
evolution process and is able to induce high stress within the
functional units of the core. In [16] we present another method
based on evolutionary techniques, which is able to generate
from the ground-up (i.e., without dependencies to pre-existing
code) assembly programs that induce high stress amounts
within specific units of the processor in a repeatable manner.
Although experimental results prove the effectiveness of the
method, there is no guarantee that the generated programs are
the best possible ones.

In [30] the authors, while targeting a 32-bit processor
intended for mission-critical usage, present a comprehensive
methodology and propose metrics for the comparison and
the evaluation of stress procedures that are applied to the
circuit during BI. The processor, is used in two variants in
their case study. On the one hand, the core is equipped with
DfT infrastructures (e.g., scan) while on the other hand it
is not. Their experimental results demonstrate that while the
processor with scan is being stressed, a uniform elevation of
its temperature is observed inside the various modules. On
the other hand, when functional stimuli (i.e., stress programs)
are applied at-speed to the processor, a much higher thermal
activity is observed in the respective processor unit. The
authors conclude that a purely functional code applied at-
speed to the DUT has a notably better performance in terms of
induced stress and thus, render it more suitable than DfT-based
approaches such as scan.

To summarize, the SWA maximization problem has been
approached with a variety of methodologies in the past both
for combinational and sequential circuits. In the present paper,
while covering the case where the DUTs are sub-modules of
a pipelined microprocessor, we aim to generate stimuli that
maximize the repeatable constant switching activity within
the targeted module of the core. In this case, the generated
functional stimuli correspond to assembly programs. We pro-
pose an algorithm that optimally solves the problem by relying
on formal methods. As mentioned in Section I, the generated
sequences of instructions are guaranteed to be the best in terms
of induced switching activity.

III. PROPOSED METHOD

Problem Definition

Various methodologies have been proposed in the past for
the maximization of the SWA focusing primarily on combina-
tional circuits and assuming the full control of their inputs i.e.,
the value of every input can be freely selected. Our goal is to
propose an algorithm that given the gate-level description of
a pipelined processor as input, generates functional stimuli to
effectively stress any module within it. More precisely, we aim
to identify a pair of two instructions (or vectors) (I1, I2) that
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are able to maximize the repeatable constant switching activity
of a certain processor module (i.e., the processor module for
which the test engineer is required to generate stress stimulus)
when executed in sequence. Specifically, the sequence induces
the maximum possible constant switching activity within the
module. This means that each instruction of the two-vector pair
is able to maximize the number of logical switches performed
from the nets of the targeted module from High to Low (HL)
and from Low to High (LH) manner when they are applied
in sequence. Low corresponds to the logic value 0 and High
to the logic value 1. More specifically, that means that if the
application of I1 forces n nets to toggle, then I2 forces the
same n nets to make the inverse transition.

Note that we wish to be able to maximize the constant
switching activity i.e., induce the same stress amounts in
the processor unit for an arbitrary long time period (in
clock cycles); hence we require the generated sequence of
instructions to be a repeatable one. Let’s assume that for a
specific processor module T the optimal sequence s̃ of two
instructions has been found. We further assume that the whole
processor has been initialized properly, either via the activation
of its RESET signal or via the execution of a synchronization
sequence. The initialization step is vital, since the underlying
solver is ignorant about the architectural constraints of the
pipeline (e.g., a boot address must be set before starting the
execution of code in the program counter bits). Thus, if the
initialization step is not done, in an attempt to satisfy the
formula the solver may end up with an assignment, which
although satisfies the CNF, forces the processor to a non-
functional state. Hence, after the initialization phase, the core
is driven to a well defined and legal functional state sa. The
first of the two stress inducing instructions of the sequence
s̃, drives the processor to a new state sb. Lastly, the second
instruction drives the processor to the same initial state sa in
order for the generated sequence s̃ to be a repeatable one.
By satisfying the aforementioned equivalence that guarantees
a repeatable sequence to be generated, we can maintain a
maximum gate switching activity within the processor module
T for an arbitrarily long period of time. This sequence of state
transitions for the processor can be interpreted as a finite state
machine as depicted below in Fig. 2.

RESET

sinit sa

sb

I

1

I

2

Fig. 2. FSM representation of the SWA maximization process for a processor
module

Assuming that the optimal stress-inducing pair of instruc-
tions (s̃) has been generated, it can be used to stress the
processor module T (e.g., to create a hot-spot within the core)
in a constant manner. This can be achieved by repeating the
sequence s̃ for as many times as required (e.g., s̃, s̃, s̃, ..., s̃).
After the repetition of the generated pair of instructions for
a sufficiently large number of times, an unconditional jump

instruction can be issued to transfer the code execution back
to the start of the stress segment. The loop can be forcibly
stopped e.g., by issuing an interrupt call.

Stress Evaluation

In order to measure the effectiveness of the generated
instruction sequences in terms of stress induced to the target
processor module we use the average induced stress percent
metric. Given that the generic target processor module T
consists of m nets and the generated sequence s̃n is composed
of n instructions, we calculate the average induced stress
percentage as:

stress% =

∑m
i=1[HL(i) + LH(i)]

n×m
× 100 (1)

The numerator of the fraction represents the total amount
of HL and LH transitions that were performed by every
net out of the m existing in the target processor module
T. The denominator of the fraction represents the maximum
achievable value, corresponding to the case where every net of
the module makes a transition (either from HL or LH) when
every instruction of the sequence s̃n is executed. For example,
assuming a sequence of 2 instructions, then the maximum
achievable value would be 2 ×m, where the first instruction
forces all nets to switch and the second instruction forces
the same m nets to perform the inverse transitions. When
considering a pipelined processor, in a first phase we assume
that every instruction of the sequence is executed by the target
module over 1 clock cycle, unless it is stated otherwise. We
will relax this assumption later. Obviously, the denominator
value of the fraction should be interpreted as a theoretical
maximum, which can never be achieved in practice, e.g., due
to the presence of uncontrollable lines within the module T
[31]. Most importantly, it is clearly not given that all nets can
be toggled in the same clock period in a functional manner.

For example, let us consider the two combinational circuits
depicted below in Figure 3: a 1-bit Full-Adder (FA) at the top
and a 3-bit message odd parity checker below. Further, let’s
assume that they are initialized in such a manner that all nets
hold the logic value 0. For the case of the FA one optimal
sequence that maximizes the consecutive gate switching is
s̃FA := <I1,I2> = <101,000>. This sequence forces 3 out of
5 nets to toggle and there exists no pair of vectors that when
applied to the FA circuit’s inputs can force a higher number of
HL and LH transitions than 3. On the other hand, considering
the parity checker, there exists a sequence that forces all nets
to toggle e.g., s̃oddparity := <I1,I2> = <010,000>.

Previously, we have generalized the problem for the genera-
tion of a stress inducing sequence composed of N instructions.
Let us now consider a processor module T and a sequence of
N=2 instructions s̃ = (I1, I2) and assume that it induces the
maximum possible repeatable and constant SWA within the
processor module T (SWAmax

s̃→T ) when executed, i.e.,

sa
I1−−→

clk↑
sb

I2−−→
clk↑

sa (2)

The term SWAmax
s̃→T can be broken down as the sum of

SWI1→I2 that represents the total number of nets switching



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS , VOL. X, NO. Y, MM YYYY 6

i

ii

iii

iv

v

i

ii

iii

iv

v

i

ii

i

ii

1
0

1

0
0

0

0

1
0

0

0
0

Fig. 3. 1-bit full adder (top) and 3-bit odd parity checker (bottom) maximum
switching for sequences s̃FA and s̃oddparity , respectively

when I2 is executed after I1 plus the number SWI2→I1 , which
in turn represents the total number of nets switching when I1
is executed after I2. Since the sequence s̃ is repeatable and
induces a constant SWA (as mentioned earlier), a symmetric
switching is implied, i.e., if the first transition forces a certain
net of the module to switch, then the second transition will
force the same net to switch again (as depicted also in Fig. 3).
Thus it holds that SWI1→I2 = SWI2→I1 . In other words,
maximizing the SWA can be translated to finding the right pair
of instructions that induces the highest possible constant gate
switching when SWI2 is processed after SWI1 (or vice-versa).
The sequence s̃ that maximizes the SWA can be repeated
for a generic number of times N, yielding a total of 2 × N
instructions (e.g., N = 2 : I1, I2, I1, I2).

Run-time Analysis

The identification of the instruction pair that leads to the
repeatable constant maximization of the SWA of a processor
module is a non trivial task, with an intricacy that depends on
the size and characteristics of the sub-module we are targeting.

For example, let us consider as a target the 32-bit adder
of the processor’s arithmetic and logic unit. In this case, the
search space of the problem can be shrunk significantly, since
we know beforehand which instructions have to be considered
in the search, namely, the add instructions of the processor’s
ISA. Thus, the problem can be reduced to the identification
of the appropriate pairs of operands that maximize the SWA
of the adder unit.

On the other hand, assuming that the stress target is the
processor’s instruction decode unit then the algorithm should
not only consider potential operands like in the case of the
32-bit adder, but a combination of instructions and operands
in order to generate a stress effective instruction sequence. In
fact, the search space should include the majority of the set
of instructions supported by the processor’s ISA. So, for the
case of the decoding unit, the task is harder since the search
space is considerably larger than in the case of the adder.

For example, assuming that there is only one integer ad-
dition assembly instruction in the ISA (to simplify) then the
search space (Sadder) can be described as a set given by the

cartesian product:

Sadder = Sinstruction1
× Sinstruction2

Sinstruction1
= IN−bit

Sinstruction2
= IN−bit

where IN−bit is the set of all N-bit integers (e.g., if the
processor supports 32-bits registers then this would be the set
of all 32-bit integers). In the case of the decoder being the
stress target, then the search space (Sdecoder) can be described
as a set given by the cartesian product:

Sdecoder = Sinstruction1
× Sinstruction2

Sinstruction1
= SISA × Sop

Sinstruction2
= SISA × Sop

where SISA is the set of all instructions supported in the
processor’s ISA and Sop is the set of all operands that are
supported by every instruction of the ISA. It is clear that the
size of the set Sdecoder is much greater than the size of the
set Sadder.

Thus, as mentioned earlier, one can safely assume that the
scalability of the method depends on the complexity of the
targeted processor module. Also, the structure of the targeted
module has an impact on the overall run-time of the method.
This point will be addressed later in the paper.

Formal Methods Approach

Our approach to optimally solve the problem is based
on formal methods. Specifically, we model the problem as
a weighted maximum satisfiability (MaxSAT) problem. The
reason for this selection is the fact that the problem of the
maximization of the SWA of a processor’s module can be
seen as an optimization problem. The core idea is to enforce
constraints that encode differences (transitions) between two
consecutive clock cycles and thus, maximize the SWA over
those two cycles. Then, the corresponding MaxSAT solver
evaluates these constraints in order to determine the satisfia-
bility of the CNF formula. Lastly, if the formula is satisfiable
we extract the two input vectors that stress the maximum by
examining the assignment found by the solver.

It is known that the problem of ATPG can be reduced to a
SAT problem [32]. Based on the same principles, the first step
towards the reduction of the SWA maximization problem to
the SAT domain is to obtain the Boolean formula of the circuit
in a CNF. This is achieved by first unrolling the circuit in time.
During circuit unrolling the circuit is duplicated for a specified
amount of times and then the circuit instances are appended to
each other. More precisely, the pseudo primary inputs (PPIs) of
the nth instance of the circuit are driven by the pseudo primary
outputs (PPOs) of the n-1th instance of the circuit and so on.
Every instance of the circuit in the unrolled format represents
a state of the processor and corresponds to a clock cycle.
These instances are called timeframes (TFs). Specifically, in
our case, we steer clear of the large complexity imposed by
the traditional sequential ATPG methods by knowing a priori
the unrolling depth of the processor circuit, which is typically
a small value. After circuit unrolling, the circuit is encoded
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Fig. 4. MaxSAT Model

and its CNF formula is obtained via symbolic simulation in
combination with the Tseitin transformation [33].

One crucial parameter to the accuracy and the effectiveness
of the method is the unrolling depth, i.e., the total number of
times the circuit has to be replicated. As shown in Fig. 4
(which can be correlated with Fig. 2) the unrolling depth
is the sum of the initialization phase timeframes plus the
maximization phase timeframes. We have previously explained
that we begin from a valid and well defined initial state
i.e, there are no Don’t Care values in the pipeline and the
processor state is a functional one. In our case, we assert the
processor RESET signal and unroll the circuit for the minimum
number of times that is required for the effects of the signal to
take effect and propagate to the whole pipeline. This number
is architecture specific, i.e., for a different processor a different
number of initialization timeframes may be required and this
information can be derived either from the specification of the
architecture (if available) or by inspecting the RTL description
of the DUT. Following the initialization phase, we must define
the duration of the maximization phase i.e., the 3 states that
we have previously mentioned in Eq. (2). For most of the
processor units the duration (in terms of clock cycles) for each
instruction is 1 clock cycle. Yet, there are specific cases (e.g.,
for the multiplication unit) where the instruction remains active
for more than 1 clock cycle. Specifically, the exact number of
timeframes required for the maximization phase can be derived
from the Eq. (3) below:

TFmax = (2× duration) + 1 (3)

As mentioned earlier, the parameter duration is architecture
specific and represents the number of clock cycles that the
instruction requires to be executed in the module of the
pipeline that we intend to stress. Hence, we need twice the
duty cycle duration of the module in order to fully account
for the states sa and sb, respectively. Lastly, we need 1 extra
timeframe in order to force the equivalence of the resulting
state after the execution of the second instruction of the
sequence with the initial state, i.e., sc ≡ sa.

Up until this point, we have enforced the constraint for the
activation of the RESET signal in the very first timeframe of
the unrolled circuit. In general, the constraints are encoded
as clauses and are appended to the circuits CNF formula.

In the MaxSAT terminology 2 types of clauses exist. The so
called hard clauses, which must all be satisfied in order for
the CNF to be evaluated as satisfiable and the soft clauses,
whose satisfiability does not affect the satisfiability of the CNF
formula. Each soft clause is also correlated with an integer
weight value and so, the goal of the MaxSAT solver is to find
an assignment that satisfies all the hard clauses of the CNF
formula while maximizing the sum of weights for the satisfied
soft clauses at the same time. In our work, we use a uniform
weight distribution and thus, each soft clause is associated
with the same integer value as a weight.

In Figure 4 we have an abstract representation of the
proposed MaxSAT model. The initialization phase consists of
the encoding of a hard clause on the core’s RESET signal
that corresponds to the signal activation. For every one of
the following timeframes, clauses are inserted for the RESET
signal in order to render it inactive and thus, to prohibit the
solver to use it for the sensitization of lines in the targeted
module. Although it is true that the activation of the RESET
signal in certain cases can cause a significant amount of
concurrent transitions, such behavior is abnormal and thus it
must be prohibited in order to enforce a functional scenario
within the pipeline. Moreover, we have previously introduced
the idea of repeatable instruction sequences that maximize the
constant SWA of a given module. In order to guarantee the
repeatability, every net of the module must have the same value
in TFsa and in TFsc . For this reason, every literal that encodes
a net of the targeted processor module during TFsa (ls

a

neti ),
along with every literal that encodes a net of the targeted
module during TFsc (ls

c

neti ) are linked together by inserting
the following logic implications as hard clauses to the CNF
formula, which guarantee their equivalence during these two
states:

ωhard : ls
a

neti ←→ ls
c

neti ≡ (¬lsaneti ∨ ls
c

neti) ∧ (¬lscneti ∨ ls
a

neti)

Hence, given that the solver finds a satisfying assignment
for the CNF formula, it is guaranteed that all of the nets of the
module will hold exactly the same logic values during TFsa

and TFsc and thus, the generated sequence is indeed repeat-
able. Besides the states’ equivalence we also have to encode
the corresponding switching of the module’s nets between the
timeframes TFsa and TFsc . This switching corresponds to soft
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clauses i.e., we request from the solver to satisfy as many
switching transitions as possible. For every net i of the targeted
processor module we encode a XOR gate on the CNF as hard
clauses, whose inputs are the corresponding literals for the
net i in TFsa and TFsb , respectively. In order for the switching
requirement to take effect we further encode soft clauses (l⊕diffi )
that corresponds to the output of the XOR gate and require it
to be 1 as shown below:

ωhard : (¬ls
a

neti ∨ ¬l
sb

neti ∨ l⊕diffi) ∧

(ls
a

neti ∨ ls
b

neti ∨ l⊕diffi) ∧

(ls
a

neti ∨ ¬l
sb

neti ∨ ¬l
⊕
diffi) ∧

(¬ls
a

neti ∨ ls
b

neti ∨ ¬l
⊕
diffi) ∧

ωsoft : (l⊕diffi)


ls

a

neti ⊕ ls
b

neti in CNF

The first four clauses correspond to the Tseitin transfor-
mation of the XOR (ls

a

neti ⊕ ls
b

neti = l⊕diffi ) gate in order to be
represented as a CNF. The very last unit clause requests that
the output of the XOR gate must be evaluated as 1. Thus, if
satisfied it corresponds to a difference between the two literals
that encode net i in TFsa and in TFsb i.e., the corresponding
net performed a HL or a LH transition. Due to the state
equivalence enforced by the aforementioned hard clauses, it
is redundant to enforce another set of switching constraints
for the target module’s nets between TFsb and TFsc since it
is already implied due to the equivalences enforced for TFsc

and TFsa .
Assuming that the solver managed to satisfy the CNF,

we can now extract the input vectors in the corresponding
timeframes and compose the stress inducing sequence. In
order to do so, we need to identify the literals that are used
to encode the PIs of the module and extract the 0/1 logic
values from the found model. For instance, considering the FA
circuit of Fig. 3, we can extract the first vector v1 := <1,1,0>

from the first timeframe and the second vector v2 := <0,0,0>

from the second timeframe by examining the assignments
of the corresponding input literals. In the general case, we
can further extract and disassemble the N-bit instructions
from the respective pipeline instruction register and use it
in combination with the previously decoded vectors in order
to compose an assembly program that effectively stresses the
target processor module. In the general case, one can always
use as a probing point the instruction bus of the processor and
disassemble the N literals back to N-bit instructions (while
always respecting the bit order).

Validity Checking

The constraints presented up until now, are the base con-
straints that can be generalized and applied no matter the
targeted processor module. They are the core constraints
that guarantee the SWA maximization and the repeatability
attribute of the generated instruction sequence. But in almost
all cases, further constraints have to be devised in order to
circumscribe the search space in a more accurate manner.
Most importantly, it has to be guaranteed that there are no
violations within the pipeline (e.g., the generation of an illegal

DUT

VCM
PI1

PIn

PPI1

PPIn

PO1

POn

PPO1

PPOn

Fig. 5. Interaction of Validity Checker Module with the Device Under Test

instruction, a load or a store from the instruction memory,
the generation of a misaligned address, etc.) in order for
the generated sequences of instructions to represent valid and
reachable states.

For these reasons, we employ the idea of a validity checking
module (VCM). The VCM, as depicted in Fig. 5, is able to
enforce constraints on the circuit under stress and has full
access to its inputs (PIs/PPIs), outputs (POs/PPOs) and nets. It
can be implemented either by directly acting on the encoded
circuit’s CNF, in terms of propositional logic, or it can be
described in a hardware description language, synthesized and
parsed along with the gate-level description of the processor
[34]. Similar approaches have been also presented in the past
[35, 36]. In our case all the VCMs, for every processor
module considered as a stress target, were implemented in
propositional logic, similarly to what is shown in Figure 6.
They are primarily used in order to enforce valid instructions
to be generated by the solver, to prohibit misaligned effective
address generation, to prohibit the generation of exceptions
and to disable the interrupts for the core. The constraints
specifying allowed instructions are created manually from
the processor’s specification. Furthermore, the use of the
VCM renders the consideration of a mission profile feasible
during the stimuli generation process (given that the latter is
available). In the context of processor testing, this may mean
that a specific sub-set of instructions of the ISA are considered
only; the VCM can be used to prevent the usage of the rest of
the instructions and only allow the mission profile-mandated
ones during the stimuli generation process.

Optimization: Literal D-Chaining

In this subsection we present an optimization that was
introduced to the algorithm in order to improve the run-time
of the method by “assisting” the solver to converge faster to
the solution.

During the generation of the switching constraints (soft
clauses), extra clauses are being added for each gate in the
CNF that link the switching of the gate’s inputs with it’s output
as shown in Figure 7. Specifically, we add backward impli-
cation D-chains [37] for every net of the targeted processor
module. For example, let us assume a gate of the targeted
module that consists of n inputs, with their respective literals
being d1, d2, ..., dn. By adding the following implication:

dout → (d1 ∨ d2,∨... ∨ dn)
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auto reset = GetDriver(reset_pin);
auto if_miss = GetDriver(if_miss_pin);
auto id_inst = GetDrivers(id_inst_pins);

// Reset and fetch miss constraints
// from 0 to max_tf timeframes.
AddConstraint(reset, 0, ONE);
for (int tf { 1 }; tf < tf_max; tf++)
{
AddConstraint(GetLiteral(reset, tf), ZERO);
AddConstraint(GetLiteral(if_miss, tf), ZERO);

}

// Constraining decoded instructions
// from decode start to max_tf timeframes.
for (int tf { tf_start }; tf < tf_max; tf++)
{
vector<Literal> instructions {
MatchLiterals(id_inst, tf, // Inst. 1
"XXXXXXXXXXXXXXXXXXXX XXXXX 0110111"),

MatchLiterals(id_inst, tf, // Inst. 2
"XXXXXXXXXXXXXXXXXXXX XXXXX 0010111"),

MatchLiterals(id_inst, tf, // Inst. 3
"XXXXXXX XXXXX XXXXX 000 XXXXX 1100011"),

// ... (for the rest of instructions)
};
AddConstraint(AnyOf(instructions), ONE);
}

Fig. 6. Simplified excerpt of the C++ VCM

a
b

a
b

i i

da

db

di

Fig. 7. Difference literals added to an AND-Gate

we state that the respective gate’s output can only toggle if at
least one of the inputs also toggles. Although the generation
of the D-chains requires extra effort by extending the CNF
formula, it has been shown to drastically reduce the solver
runtime complexity.

Algorithm summary

Figure 8 depicts the proposed algorithm in a compact
pseudo-code format. The algorithm takes as input a triplet,
namely the synthesized, gate-level description of the processor,
the targeted processor module (i.e., the unit we aim to generate
stressful stimuli for), and lastly the unrolling depth. The
unrolling depth parameter may vary and strongly depends on
the targeted processor but also on the specific module within
the processor, as we have previously explained in the text.
For example, assuming that the targeted processor module
requires 2 clock cycles for the RESET signal propagation and
2 clock cycles to finish the processing of an instruction, then
the unrolling depth for this use case shall be TFrst+TFmax =
2 + (2× 2) + 1 = 7 timeframes in total.

input : A triplet (G,M ,ud) where
G is the gate-level description of the processor
T is the target module we intend to stress
ud is the unrolling depth i.e.,
the number of timeframes to be used

output : Two instructions I1, I2 maximizing the SWA of T
1 CNF ← UnrollAndEncodeCircuit(G,ud)

// Initialization of the Whole Processor
2 ActivateResetAt(CNF, TF 0)

// Maximization Clauses and State Equivalence
3 foreach net ni ∈ T do
4 AddDifferences (CNF, ni, TFsa , TFsbmax

, weight)

5 AddImplications(CNF, ni, TFsa , TFscmax
)

6 AddImplications(CNF, ni, TFscmax
, TFsa)

7 AddD-Chains (CNF, ni)
8 end

// VCM Implementation for the Target Module
9 ConstraintsFromVCM(CNF,T)

10 MaxSolve(CNF)

// Extract Operands and Disassemble them to Instructions
11 I1 ← ExtractOperandsFrom(CNF, T , TFsa)
12 I2 ← ExtractOperandsFrom(CNF, T , TFsbmax

)

13 return I1, I2

Fig. 8. Instruction sequence generation routine

IV. EXPERIMENTAL SETUP AND RESULTS

Phaeton [35] is used as an underlying framework to model
the SWA maximization problem considered in this paper. Orig-
inally, Phaeton was designed to identify sensitizable paths and
generate test pairs to exercise these paths using SAT-solving.
Phaeton supports a large number of models and sensitization
conditions and provides a generic interface that can be used
by different applications. Due to a number of elaborated
speed-up techniques, Phaeton scales to industrial circuits,
as demonstrated in experimental evaluations on numerous
differing applications [38]. We implemented a prototypical tool
inside the Phaeton framework (accounting for approximately
2,000 lines of C++ code) for the algorithm described in Fig. 8.

The experiments were performed on a machine using an In-
tel i9-9900 processor running at 3,10GHz. For every sequence
generated for the targeted modules within the considered
processor cores, a logic simulation environment was set up
using QuestaSIM by Mentor Graphics. Specifically, during
the simulation of the generated stress inducing sequences,
the targeted processor module was isolated and a toggling
check was performed for every clock cycle. The reported
results from every processor module were then aggregated
and post-processed in order to calculate the stress induced via
Equation (1).

The first processor that we used is OpenRISC 1200
(OR1200) [39]. OR1200 is a 32-bit scalar RISC processor
using the Harvard micro-architecture. It is mainly intended for
embedded, portable and networking applications. The proces-
sor’s RT-Level Verilog description was synthesized using the
Silvaco 45nm Open Cell Library [40] using Design Compiler
by Synopsys.

The second processor we considered is the RISC-V (RV)
processor RI5CY [41]. RI5CY is a 4-stage in-order 32-bit
RISC-V processor core. The ISA of RI5CY was extended
to support multiple additional instructions including hardware
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TABLE I
EXPERIMENTAL RESULTS

Processor
Stress Program

Generation Approach
Average Induced Stress CPU Generation Time

Adder Decoding Unit Load Store Unit Adder Decoding Unit Load Store Unit

OR1200 Formal Techniques (MaxSAT) 82% 91% 65% 3sec 15min 8sec

Stuck-At Test Program 24% 44% 57% -

RI5CY Formal Techniques (MaxSAT) 76% 36% 34% 5sec 14min 7sec

Stuck-At Test Program 73% 30% 32% -

loops, post-increment load and store instructions and addi-
tional ALU instructions that are not part of the standard RV
ISA. RI5CY has become a popular core for a huge variety of
applications and especially for IoT designs. The processor’s
RT-Level SystemVerilog description was once again synthe-
sized using the Silvaco 45nm Open Cell Library using Design
Compiler by Synopsys.

For both cores, the units that we targeted to generate stress
inducing stimuli for are:

(i) the 32-bit Adder of the processors’ ALU
(ii) the Instruction Decode unit

(iii) the Load and Store unit.

In order to have a mean of comparison with our results, we
use for both cores hand-written test programs that reach a
high stuck-at fault coverage. These test programs are cross-
compiled and simulated in the same manner as the generated
sequences are and their effects on the targeted processor units
in terms of induced switching activity are investigated clock
cycle per clock cycle. The results are then post-processed in
pairs of two consecutive instructions in order to effectively
compare with the instruction pair of the MaxSAT-generated
sequences. The highest stress inducing pairs are considered in
the comparison presented in Table I.

Experimental results show that for both processor cases, for
all considered functional units, the proposed method generated
sequences that outperform the respective segments found in the
functional stuck-at test program. Most importantly, there is a
notable difference in the case of the Decoding Unit and the
Load and Store Unit of the RI5CY core. One can see that in
fact the maximum sustainable switching activity is lower than
that of the respective units in the OR1200 processor. Although,
one cannot directly compare between two completely different
(structurally) circuits this deviation is fully justified by the
complexity imposed by the respective units in the case of the
RI5CY processor. It is safe to assume (as can be seen also
in Fig. 3) that as the complexity of the module increases, the
number of possible concurrent logical switches within a circuit
decreases i.e., they are related in an inversely proportional
manner. Regarding the two units, in the case of the RI5CY
processor it is true, that they cover a significantly larger set
of instructions than these of the OR1200 processor. Lastly,
it can be seen that there exists no clock cycle, during the
application of the stuck-at test program on the RI5CY core,
in which a higher number of concurrent toggling was found
than the number of concurrent toggling induced by any of the
generated instructions.

Comparing with Other Methods

TABLE II
SUPPLEMENTARY COMPARISONS

Generation
Approach

Average Induced Stress
Adder Multiplier Decoding Unit Load Store Unit

MaxSAT 82% 62% 91% 65%
Evo 61% 55% 63% 58%
Test Program 24% 6% 44% 57%

In order to provide the reader with a further comparison, we
have also developed stress programs for the OR1200 processor
(considering the same modules) via µgp [42], which is an
evolutionary optimizer that was initially developed to produce
assembly programs maximizing a given fitness function for a
variety of processors. The implemented evolutionary algorithm
is similar to the one described in [16]. We also considered
the special case of the 32-bit multiplier unit. The results are
reported in Table II below.

We can clearly see that although the evolutionary-based
stress program generation yields sequences of instructions
that are better in terms of induced stress in the considered
processor units than the test programs, they are sub-optimal
solutions and thus, the proposed method outperforms them in
all cases. For the case of the 32-bit multiplier though, the
required CPU time was quite large (approximately 85 hours),
and considerably greater than for the rest of the considered
units. It is well known that the arithmetic multiplier circuits
represent an arduous task for formal methods [43, 44]. In order
to overcome the complexity imposed by the multiplier circuit,
a heuristic sampling approach was employed. Specifically,
instead of generating a switching constraint for every net of
the multiplier unit (as dictated by the algorithm presented in
Figure 8), we sampled a portion of high fan-out nets of the
circuit and enforced switching constraints only on them. This
implies that since the circuit has not been fully considered
(in terms of nets being constrained for maximization), the
generated solution is still a sub-optimal one, although better
than the one produced with other approaches.

V. CONCLUSIONS

In many IC test scenarios the SWA of the CUT must be kept
to a minimum to avoid potentially unwanted and catastrophic
conditions such as overheating and over-stressing of the DUTs.
However, there are specific cases in which the maximization of
the SWA of the DUTs (or of certain sub-modules) is required,
and represents a major challenge. For instance, during BI test
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the repeatable constant SWA maximization of the CUT via
functional stimuli can assist in the maximization of the overall
stress and thus, to screen out early failures in a more efficient
manner.

In this paper, we propose an algorithm based on formal
methods, able to effectively tackle the case of the SWA
maximization when the DUT is a fully pipelined processor and
we aim to optimally maximize the repeatable constant SWA
of certain sub-modules of the core by generating appropriate
assembly programs. We have shown that under the two-
instruction sequence assumption, our method generates the
optimal sequence in terms of induced repeatable and constant
switching activity to the targeted processor module.

Further work is currently being done to consider different
and more sophisticated stress metrics (e.g., taking into account
the layout of the circuit).
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