POLITECNICO DI TORINO
Repository ISTITUZIONALE

Securing 5G: Trusted Execution Environments for Centrally Controlled IPsec Integrity

Original

Securing 5G: Trusted Execution Environments for Centrally Controlled IPsec Integrity / D'Onghia, Grazia; Ciravegna,
Flavio; Bruno, Giacomo; Elorza Forcada, Mattin Antartiko; Pastor, Antonio; Lioy, Antonio. - ELETTRONICO. - (2024), pp.
595-597. (Intervento presentato al convegno 2024 IFIP Networking Conference tenutosi a Thessaloniki (Greece) nel
June 3-6, 2024) [10.23919/ifipnetworking62109.2024.10619852].

Availability:
This version is available at: 11583/2992421 since: 2024-09-13T09:45:37Z

Publisher:
IEEE

Published
DOI:10.23919/ifipnetworking62109.2024.10619852

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

10 November 2024

Securing 5G: Trusted Execution Environments for
Centrally Controlled IPsec Integrity

Grazia D’Onghia
Politecnico di Torino
Dip. Automatica e Informatica
Torino, Italy
grazia.donghia@polito.it

Mattin Antartiko Elorza Forcada
Telefonica CTIO
Telefonica Innovacion Digital
Madrid, Spain
mattinantartiko.elorzaforcada @telefonica.com

Abstract—This demo introduces a novel method to enhance
IoT communication security using a Trusted Execution Envi-
ronment (TEE). Secure IPsec channels between two devices
with x86 and RISC-V platforms are established by employing
a platform equipped with a dedicated hardware Root of
Trust. Enarx on x86 (equipped with Intel SGX) and Keystone
on RISC-V machines serve as TEEs, ensuring integrity and
confidentiality. This demo exhibits a workflow where the IPsec
configuration is received from a centralized controller and is
securely stored and managed within the TEE. By providing a
comprehensive solution for securing IoT communications, the
demonstration highlights the importance of TEEs in ensuring
the integrity and confidentiality of interconnected devices in
modern network infrastructures.

I. INTRODUCTION

The SPIRS project [3] aims to create a secure platform
with dedicated hardware Root of Trust and a versatile proces-
sor core for security services. This platform enables trusted
communication channels required by 5G infrastructures.

The SPIRS platform integrates with networks via the
Trusted Network Environment for Devices (TNED) [4]. The
TNED hosts Network Security Functions (NSFs), offering
interchangeable network and security features. In the SPIRS
context, an NSF comprises:

1. Trusted Application (TA), which runs within a TEE and
manages critical data like keys and certificates;

2. Rich Application (RA), which acts as a non-critical and
untrusted process proxy between the TA and the external
world.

This work was supported by the SPIRS (Secure Platform for ICT
Systems Rooted at the Silicon Manufacturing Process) project with Grant
Agreement No. 952622 under the European Union’s Horizon 2020 research
and innovation programme. This work has also received funding from the
SERICS (PE00000014) project under the NRRP MUR program funded by
the European Union - NextGenerationEU.

The initial stage of this work was implemented by Hugo Ramén Pascual
(ORCID: 0000-0002-3034-8150), while working for Telefénica CTIO.

ISBN 978-3-903176-63-8 ©2024 IFIP

Flavio Ciravegna
Politecnico di Torino
Dip. Automatica e Informatica
Torino, Italy
flavio.ciravegna@polito.it

Antonio Pastor
Telefonica CTIO
Telefonica Innovacion Digital
Madrid, Spain
antonio.pastorperales @telefonica.com

Giacomo Bruno
Politecnico di Torino
Dip. Automatica e Informatica
Torino, Italy
giacomo.bruno @polito.it

Antonio Lioy
Politecnico di Torino
Dip. Automatica e Informatica
Torino, Italy
antonio.lioy @polito.it

One of the TNED NSFs is the Centrally Controlled IPsec
(CCIPS), which is the focus of the demo.

A. Trusted Execution Environments (TEEs)

A TEE is an isolated execution area not accessible to
the operating system, which is assumed to be untrusted.
This prevents attackers from intercepting or tampering with
the data during transmission. The isolation between trusted
and untrusted areas provided by TEEs ensures that sensitive
operations and data, like those involved in IPsec commu-
nication (cryptographic keys and secure key management),
are protected from malware and other security threats in the
non-secure world.

The SPIRS project uses Enarx [2], which leverages the
Intel Software Guard Extension (SGX), and the Keystone
Framework [5], which operates on RISC-V architectures.
In this way, interoperability between TEEs on different
architectures is demonstrated.

B. Threat Model

This context requires several assets to be protected: cryp-
tographic keys, Security Association Database (SAD) and
Security Policy Database (SPD) entries, the data transmitted
over IPsec channels, and the Device Identity. The potential
attacks can be network-based (such as Man-in-the-Middle),
kernel attacks (such as privilege escalation), or physical
attacks (such as hardware tampering).

C. Centrally Controlled IPsec

Beyond the traditional point-to-point IPsec configuration,
CCIPS offers a centralized architectural approach for control-
ling IPsec endpoints. This system, based on the IPsec engine
in IKE-less mode (without requiring IKE protocol [10]),
consists of a centralized E2E manager (Controller) and two
or more agents.

BN
IPsac ccIPs
i oonf Controller
CCIPS Agent

Rich Application Trusted Application

>/ Netopeer «— Sysrepo TEE
CCIPS m;%
e C"U NSF Handler
Policy &
PF_KEY API Verification

Kernel 4 «

Platform - Hardware Root of Trust

Fig. 1. Architecture of the CCIPS Agent

II. DESIGN

The IPsec channel deployment is managed by two actors:
the CCIPS Controller and the CCIPS Agent.

The CCIPS Controller is the core element of the system,
and oversees requests from the Operation Administration
and Management (OAM) component. It is responsible for
the security settings of the IPsec tunnel within the network
device, exchanged using the IKE-less data model. These
settings include Agent identification, encryption, integrity,
and initialization vectors associated with the IPsec protocol.

By adopting a NETCONF [7] interface, the CCIPS Con-
troller implements the defined I2NSF Controller functionality
and data model [1]. In this way, it configures and maintains
the various IPsec parameters in each Agent and gathers
pertinent data regarding the connectivity status.

Meanwhile, the CCIPS Agent is a network device that acts
as one endpoint of the IPsec tunnel, which is based on the
IPsec configuration received from the Controller. Moreover,
it implements the NSF and is divided in two sections: the
RA, which oversees all non-essential procedures deemed
unsupported by the TEE, and the TA, which runs in the TEE
and performs integrity verification.

The IPsec tunnel is implemented into the kernel through
the PF_KEY Management API, which handles entries in the
Security Association Database (SAD) and Security Policy
Database (SPD). As shown in Figure 1, a trusted version of
the SAD and SPD is stored in the TA before the installation
into the kernel. Therefore, the integrity of the IPsec tunnel
can be protected through a periodic verification of the entries
by the TA. When requested by the Controller, the RA
retrieves the entries from the kernel and forwards them
to the TA for integrity verification. If the received entries
do not match the ones installed in the TA, it means that
the integrity of the IPsec tunnel has been compromised.
Therefore, the Agent generates a critical event and forwards

it to the Controller. However, the management of a failed
verification process is out of the scope of this demo.

1) Enarx TA: Enarx enables running applications securely
inside a TEE, without rebuilding the program or relying
on many dependencies. This is achieved by offering a We-
bAssembly process-based runtime executed on Intel SGX. As
a result, the need for trust relationships when programs are
executed is reduced and problems like cross-compilation and
disparate attestation methods between hardware suppliers are
abstracted away.

2) Keystone TA: Keystone is a framework for building
secure enclaves on RISC-V architectures. It offers memory
isolation and cryptographic operations, enabling the develop-
ment of applications with strong security guarantees.

The SPIRS TEE SDK is a template for developing appli-
cations using the Keystone framework. It wraps the Keystone
SDK providing the Global Platform APIs [6] to the applica-
tion developer.

The RA runs in QEMU (which implements a RISC-
V toolchain) and when it launches the TA (enclave) the
execution stops and the control is sent to the enclave.

III. DEMO IMPLEMENTATION

The demo demonstrates the establishment of a secure
IPsec tunnel between two CCIPS Agents, showing even the
installation of a Security Association Database (SAD) entry
and the re-keying process.

The architecture of the demo consists of three nodes:
the CCIPS Controller, the CCIPS Agent with Enarx TA
running inside a Docker container, and the CCIPS Agent with
Keystone TA running inside QEMU. The SAD installation,
depicted in Figure 2, is divided into two main phases:
Key Generation (steps 1-6 in Figure 2) and IPsec Tunnel
Configuration (steps 7-29).

A. Key generation

After being launched, the TAs generate the keypairs (steps
1-2), used by the Controller to encrypt sensitive IPsec mate-
rial such as the encryption and integrity keys of the Security
Association. Afterwards, upon the Controller’s request (steps
3-5), the public keys and their associated certificate (for non-
repudiation) are sent to the Controller (steps 4-6), while the
private keys are stored inside the TAs.

B. IPsec tunnel configuration

When launching the application, the CCIPS Agents estab-
lish a session with Sysrepo [8], an open-source data store
for YANG configuration modules, as shown in Figure 1.
Then, the Agent subscribes to the changes of the SAD/SPD-
related XPATH, which are received from the Controller by
Netopeer2 [9], a NETCONF server.

To configure the IPsec tunnel, the Controller has to send
two SAD entries, one for each direction of the tunnel.

Firstly, the Controller generates the SAD configurations
(step 7) and encrypts them with the public keys received
from the two Agents during the Key Generation phase (step
8). This configuration is in XML format, and the encrypted

CCIPS Agent
(Keystone)

CCIPS Agent
(Enarx)

CCIPS
Controller
s

{ey Generati

5 1. keypair
H generation
3. Ask for Keystone o

public key

2. keypair
generation :

6. Enarx public key

+ 4. Keystone public key

5. Ask for Enarx publi key‘

2 CCIPS Configuration
: 7.Generate SAD - 5 :

:l eniry config
: |8. Cipher with
P Keystone ke

* 9. Establish SSH
:l session !:
10. Initialize NETCONF:

session :

11, Send SAD enry

12. Forward to TA
config

5 3. Decrypt with
. rivate key

H . Install SAD
5 : entry in

+ 15. Forward decrypted Trusted DB

: s :

D to
: 6. Install SAD
: . ntry in Kemel
+17. Deployment 3
 (confirmation : : .
: 3 19-29; Same CCIPS Configuration with Enarx

Fig. 2. Workflow for the SAD installation.

data consists of the encryption and integrity keys of the SAD
entry.

Afterwards, the CCIPS Controller requests to install a
SAD entry with the <edit-config> operation of the
NETCONF protocol. This message is received by Sysrepo
through the Netopeer2 server, thus notifying the CCIPS
Agent with sad_entry_change_cb that there has been
a modification in the Sysrepo datastore.

The SAD configuration is then forwarded to the TA (step
12), which decrypts with its private key the sensitive material
(step 13) and stores the entry in the trusted database (step
14). Finally, the configuration is returned to the RA (step 15),
which installs the SA in the kernel (step 16). If the entry is
correctly installed, the confirmation is forwarded back to the
Controller (step 17).

C. Re-keying Process

Once the SAD entry has been installed successfully, the
re-keying process (shown in Figure 3) starts after a specific
timeout. In the I2NSF IKE-less case, the nodes request the
re-keying process before the entries’ expiration (steps 1-2).
Firstly, the Controller receives the notification from one of
the Agents that a SAD entry is about to expire (step 3) and
identifies which pair of Agents have the corresponding SAD
entry installed in the kernel. Afterwards, a new set of SAD
entries is generated (step 5) and sent to the corresponding
Agents (step 6). At this point, the CCIPS Handler application
proceeds as before, decrypting the cryptographic material
(step 7) and installing the received entries firstly into the
TEE and then into the kernel (step 8). Finally, the Controller
asks to remove the old SAD from both Agents (steps 9-15).

CCIPS
Controller

CCIPS Agent
(Keystone)

* |1. Soft threshold
expires

© |2. Generate SADB_EXPIRE :
notification :

CCIPS Agent
(Enarx)

3. Send NETCONF notification

4. Find agents
associated with
expired SAD

* | 5. Generate new
E SAD entry (then

6. Send new SAD entry encrypted)

: 7. Decrypt sensitive
material and install new
i SAD

* 8. Entry installed

9. Send new SAD entry

LJ 10. Decrypt

. sensitive material

11. Entry installed ‘and install new SAD

12. Remove old SAD entry

13. Entry removed

*14. Remove old SAD entry *
—_—

* 15. Eniry removed

Fig. 3. Re-keying process

IV. CONCLUSION AND FUTURE WORK

This demo is an initial implementation of the TNED
developed for the SPIRS platform in a 5G network infrastruc-
ture. The increasing daily demand for IoT devices, coupled
with the intensified need for ubiquitous interconnectivity,
introduces additional complexities to system security. This
experiment leverages integrity protection among heteroge-
neous IoT devices through TEEs, thus preventing attacks
against the kernel and operating system. Future works con-
cern improvements of this application from different points
of view: firstly, it should be completely integrated in the
SPIRS system and further evaluation about the isolation
boundaries of the TAs should be performed. Finally, an
additional investigation about the scalability of this solution
is crucial for a comprehensive contribution to the industrial
world.

REFERENCES

[1] R. Marin-Lopez, G. Lopez-Millan, and F. Pereniguez-Garcia, “A
YANG Data Model for IPsec Flow Protection Based on Software-
Defined Networking (SDN),” RFC 9061, Jul. 2021.

[2] “Enarx,” https://enarx.dev/.

[3] “Secure Platform for ICT Systems Rooted at the Silicon Manufacturing
Process (SPIRS),” https://www.spirs-project.eu/.

[4] A.Pastor, H. Ramon, D. R. Lépez, A. Cabrera, D. Arroyo, S. Galan, M.
Liebsch, G. Yilma, S. Briongos, D. Margaria, A. Vesco, R. Guzzoni,
A.Lioy, S.Sisinni, “TNED proof-of-concept,” 2023.

[S] Dayeol Lee and David Kohlbrenner and Shweta Shinde and Krste
Asanovic and Dawn Song, “Keystone: An Open Framework for Archi-
tecting Trusted Execution Environments,” 15th European Conference
on Computer Systems, 2020.

[6] Global Platform, “TEE Client API Specification vI1.0,”
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_
API_Specification- V1.0.pdf

[71 R. Enns, M. Bjorklund, A. Bierman and J. Schonwilder, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011.

[8] “Sysrepo: YANG-based configuration and operational state data store
for Unix/Linux applications,” https://github.com/sysrepo.

[9] “Netopeer2,” https://github.com/CESNET/netopeer2.

[10] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet
Key Exchange Protocol Version 2 (IKEv2),” RFC 7296, Oct. 2014.

