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Abstract

Motivated by the applications in leader-follower multi-agent dynamics, a class of optimal control prob-
lems is investigated, where the goal is to influence the behavior of a given population through another 
controlled one interacting with the first. The evolution of the systems obeys a non-linear Fokker–Planck-
type equation as diffusive terms accounting for randomness in the evolution are taken into account. A 
well-posedness theory under very low regularity of the control vector fields is developed, as well as a rig-
orous mean-field limit of a stochastic particle approximation.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

Many evolutionary models in population dynamics are usually formulated in the form of a 
Fokker–Planck-type equation for the time-dependent population density μt

∂tμt + div(vμt ) − σ�μt = 0 (1.1)

coupling a transport dynamics (encoded by the divergence term and driven by the velocity 
field vt ) with a diffusion term (encoded by the laplacian). The probabilistic counterpart of such 
equation is the stochastic differential equation

dX(t) = v(t,X(t))dt + √
2σ dW(t), (1.2)

where X is a random variable and W denotes the Brownian motion, which can be interpreted as 
the Lagrangian formulation of the Eulerian problem (1.1).

In many interesting situations, the vector field v(t, x) =: vμt (t, x) may itself depend on the 
population density μt in a rather general way. A standard situation is, for instance,

v(t, x) = (K ∗ μt)(t, x) + f (t, x), (1.3)

where f (t, x) is an external velocity field and K(t, x) is a self-interaction kernel. This gives both 
a non-linear and non-local character to equation (1.1). In many models, velocity terms of the 
kind (1.3) account for elementary attraction and repulsion forces between the members of the 
population.

If we neglect the diffusion term in (1.1), the corresponding evolution of μt obeys a transport-
like dynamics driven by a non-local continuity equation. For this kind of dynamics, a general 
class of optimal control problems has been addressed in [12], where the goal is to modify the 
behavior of the population μt through the interaction with a selected population of leaders, whose 
density is νt . There, two scenarios with increasing complexity were explored:

• the evolution of νt is determined by the optimization of a cost functional J (μ, ν) and μ

and ν are coupled by a velocity field of the form
v(t, x) = (K ∗ μt)(t, x) + (H ∗ νt )(t, x), (1.4)
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(see [12, Problem 1]);
• the evolution of νt obeys itself a non-local continuity equation driven by a velocity 

field w(t, x) + u(t, x), where w has the structure as in (1.4) (in particular, it contains no 
diffusive term) and the control term u(t, x) optimizes a control cost J (μ, ν, u) (see [12, 
Problem 2]).

For both problems above, general conditions on the control cost J and on the class of admissible 
controls were introduced in order to provide well posedness. We remark, in particular, that in the 
context of [12, Problem 2] the admissible control u(t, ·) must satisfy a Lipschitz condition with 
prescribed Lipschitz constant L.

The aim of the present paper is to extend the results of [12] in two directions which are, in our 
opinion, interesting both from the point of view of modeling and of mathematical analysis.

First of all, for the dynamics of the population μt , we consider equation (1.1) with the pres-
ence of the diffusive term. This term is actually reminiscent of the agent-based interpretation 
of equation (1.1), which can be seen as an effective limit model for a particle dynamics with a 
very large number of agents [24,25,27]. In this approximation, the inevitable loss in accuracy 
is taken into account by adding some white noise to the system. Furthermore, such a term may 
also express the fact that individuals of the population μt can exhibit some random behavior, 
despite being driven by interactions with other agents or with the leaders. When coming to our 
analogue to [12, Problem 2], we find instead natural to postulate that the action of the leaders is 
completely determined by a policy-maker through the control vector field u without inserting a 
diffusive term in the dynamics.

The precise formulation of the two control problems we propose is given in Sections 3 and 4, 
respectively. In particular, Problem 2 (see (4.5)) is the generalization of the optimal control prob-
lem analyzed in [8] for a discrete fixed number m of leaders (see also [30,45] for related problems 
in piracy control and maritime crime prevention). Instead, in our formulation, this restriction is 
lifted and an effective macroscopic model also for νt is considered.

The second novelty of our approach is that in Problem 2 we allow for a large class of admis-
sible controls with very low regularity, namely the vector fields we consider are of the form

u(t, x) = f (t, x)g(μt ) ,

where the function f is only of class L∞ in both space and time. The presence of the term g(μt )

is an additional modeling possibility allowing the policy maker to tune the control action on 
the actual state of the system. The above class of control vector fields is, in principle, the one 
considered in [1,8,28,29,37,45]. In [8,45], however, well posedness of the optimal control prob-
lems was considerably simplified by the assumption that the leaders’ population remain discrete, 
while in [29] the controls are simply assumed to be Lipschitz-continuous in space and a vanishing 
viscosity approach is used, connecting the stochastic diffusive system to its deterministic coun-
terpart. In our setting, we have instead to resort to the superposition principle [5, Theorem 5.2], 
[6, Chapter 8], [7], as it will be clear from the proof of Theorem 4.6 below. This tool has already 
proven to be crucial in connection with the problems considered in [1,21,28,37], where however 
no diffusive terms were present in the state equations. In our setting its use has therefore to be 
combined with some a priori estimates for equation (1.1) which are recovered by looking at its 
stochastic Lagrangian counterpart (1.2) and employing some fixed point argument.

We stress that our control problem has a different formulation from that of mean-field games, 

introduced in [39,42]. While, there, the decentralized control rules are embedded inside the dy-
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namics of μ, in our setting a control mass ν interacts with the original population with the aim of 
influencing its behavior. For mean-field games in the context of Fokker–Planck-type equations, 
we refer the reader to [22,23,52].

In the last two sections of the paper, we specifically focus on the rigorous derivation of Prob-
lem 2 (see (4.5)) as the deterministic variational limit of a stochastic optimal control problem 
associated with a particle dynamics with additive noise. In doing so, we adapt to our setting 
�-convergence techniques combined with the derivation of kinetic equations as the mean-field 
limit of agent-based systems [40]. The latter is a rather effective tool to overcome the curse of 
dimensionality for systems with a very large number of agents. Indeed, kinetic approximations 
of multi-agent systems and mean-field optimal control problems, mostly in the deterministic 
setting, have been proposed in recent literature in connection with a huge number of possible ap-
plications, ranging from models for opinion formation [33,54], wealth distribution [32,34,46], 
traffic or pedestrian flows [2,31,49,50,55], herding problems [1,2,9,20,43,51,57], consensus-
based optimization [17,26,36,56] (see also [18,28,41,47,48] for rigorous derivations and further 
applications and [13–16,19] for optimality conditions). In the context of multi-agent systems 
with stochastic noise, but without control, we also refer the reader to [11], while mean-field 
control problems with diffusion terms have been recently considered in [3,27].

The particle approximation of problem (4.5) is introduced in Section 5.1, where we couple a 
system of M agents (followers) driven by a stochastic dynamics as in (1.2) with the evolution 
of m selected and controlled agents (leaders). Although the leaders’ evolution is formally deter-
ministic, the coupling with the followers’ evolution (which is affected by additive noise) gives a 
stochastic character to the whole system. A cost functional associated with the system, taking into 
account its expected behavior, is introduced in (5.2). The derivation of the state equation (4.1)
as the mean-field limit of the particle system (5.1), as it is usual in the stochastic setting, goes 
through some propagation-of-chaos estimates, which we develop in Section 5.2. In particular, we 
prove that the initially coupled positions of the agents become independent in the limit as M be-
comes larger and larger uniformly with respect to m (see Theorem 5.7 and Remark 5.8). In other 
words, the limit behavior of the particle system can be described by M copies of the SDE/ODE 
system in (5.18), where the coupling only takes place through the law of the random variable X. 
In the limit as M, m → ∞, we eventually recover the PDE system (4.1).

As a conclusive step, in Section 6, we recover the deterministic mean-field optimal control 
problem (4.5) as the �-limit of the stochastic optimal control problem (5.3). A major difficulty 
has to be overcome in the �-lim sup inequality. We remark, indeed, that the sole integrability of 
the control field f is not enough to guarantee the existence of a flow map for system (5.1). Hence, 
the construction of a recovery sequence for problem (4.5) has to combine the usual discretiza-
tion arguments with the use of the superposition principle in order to detect suitable discrete 
trajectories converging to the mean-field evolution associated with the given control.

While the present paper is devoted to the well-posedness of a class of mean-field optimal 
control problems with diffusion terms coming from stochastic noise, further interesting steps 
concerning the numerical approximation of solutions through discrete-in-time schemes (in the 
spirit of [4]), as well as the derivation of first-order optimality conditions, will be the subject of 
future research.

2. Preliminaries and notation

For d ∈N and T > 0 we denote by Mb([0, T ] ×Rd; Rd) the space of vector-valued bounded 

Radon measures on [0, T ] ×Rd . For a metric space (E, dE), the symbol P(E) stands for the set 
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of probability measures on E. For p ∈ [1, +∞), we denote by Pp(E) the set of probability 
measures μ on E with finite p-moment

mp(μ) :=
ˆ

E

d
p
E(x, x0)dμ(x),

where x0 ∈ E is a given point. We further denote by Wp the p-Wasserstein distance on Pp(E). 
Given f : E → F a measurable function and μ ∈P(E), the push forward of μ through f is the 
probability measure in P(F ) defined by (f#μ)(B) := μ(f −1(B)), for every measurable subset 
B ⊆ F . If f is, additionally, a Lipschitz function, then the following inequality holds true:

W1(f#μ,f#ν) ≤ Lip(f )W1(μ, ν), (2.1)

for every μ, ν ∈ P(E), where Lip(f ) > 0 is the Lipschitz constant of f .
Along the paper we shall suppose, without loss of generality, that all the involved random 

variables are supported on a fixed filtered probability space (�, F , Ft , P ). We denote by E the 
expectation operator and we use the symbol M(�; E) to indicate the space of E-valued ran-
dom variables. For X ∈ M(�; E), we set Law(X) := (X)#P ∈ P(E) the push forward of P
through X. We will denote by W an additive white noise.

For every t ∈ [0, T ] we denote by evt : C([0, T ]; Rd) → Rd the evaluation map at time t , 
defined as evt (γ ) := γ (t) for every γ ∈ C([0, T ]; Rd).

We recall that for every μ ∈ P(C([0, T ]; Rd)), setting μt := (evt )#μ, it holds that mp(μt ) ≤
mp(μ) for every t ∈ [0, T ]. The curve t 	→ μt will be often denoted by μ alone. The same symbol 
will be used for the (positive) measure μt ⊗ dt ∈ Mb([0, T ] ×Rd).

Theorem 2.1 ([38]). Let p > 1, μ ∈Pp(Rd), and Xi be a sequence of i.i.d. random variable with 
distribution μ. For M ∈ N , let μM := 1

M

∑M
i=1 δXi

. Then there exists a constant C = C(d, p) > 0
such that, for every M ,

E
(
W1(μ,μM)

) ≤ Cmp(μ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M− 1

2 + M
− p−1

p if d = 1 and p �= 2,

M− 1
2 log(1 + M) + M

− p−1
p if d = 2 and p �= 2,

M− 1
d + M

− p−1
p if d ≥ 3 and p �= d

d−1 .

We recall the notion of pathwise solution to a stochastic differential equation that will be used 
throughout the paper.

Definition 2.2. We say that X ∈ M(�; C([0, T ]; Rd)) is a pathwise (or strong) solution to the 
stochastic differential equation{

dX(t) = v(t,X(t))dt + √
2σ dW(t),

X(0) = X0,
for a given initial datum X0 ∈ Lp(�; Rd) and Brownian motion W , if there holds

5
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X(t) = X0 +
tˆ

0

v(τ,X(τ))dτ + √
2σW(t) for P -a.e. ω ∈ � and for every t ∈ [0, T ].

The explicit dependence on the stochastic variable ω ∈ � has been omitted above, as will be 
done throughout the paper when no ambiguity arises.

We point out that if X1, X2 ∈M(�; C([0, T ]; Rd)), μi = Law(Xi) ∈ P(C([0, T ]; Rd)), and 
μi

t = (evt )#μ
i for i = 1, 2, we have the following elementary inequalities, which stem out of the 

definition of W1:

W1(μ
1,μ2) ≤ E

(
sup

t∈[0,T ]
|X1(t) − X2(t)|

)
, (2.2)

W1(μ
1
t ,μ

2
t ) ≤ E

(|X1(t) − X2(t)|) . (2.3)

Finally, we say that a function ρ ∈ L1(Rd) has finite entropy if ρ > 0 and

ˆ

Rd

ρ(x) ln(ρ(x))dx < +∞ .

3. A model problem

We introduce a model control problem for the dynamics of a population with density μ steered 
by means of another population of controllers with density ν. To this aim, for L, R > 0 and 
q ∈ (1, +∞] we define the class of admissible measure-valued curves

A(q,L,R) := C([0, T ];P1(R
d)) × {ν ∈ LipL([0, T ];P1(R

d)) : mq(νt ) ≤ R for t ∈ [0, T ]} .

(3.1)
We fix a velocity field v : Rd ×P1(Rd) ×P1(Rd) → Rd such that the following Lipschitz con-
dition is satisfied: there exists a constant Lv > 0 such that

|v(x1,μ1, ν1) − v(x2,μ2, ν2)| ≤ Lv(|x1 − x2| +W1(μ1,μ2) +W1(ν1, ν2)) , (v-Lip)

for every (x1, μ1, ν1), (x2, μ2, ν2) ∈ Rd × P1(Rd) × P1(Rd). We notice that condition (v-Lip)
implies that there exists a constant Mv > 0 such that

|v(x,μ, ν)| ≤ Mv(1 + |x| + m1(μ) + m1(ν)) . (3.2)

From now on, we use the notation vμ,ν(x) = v(x, μ, ν).

On the set A(q, L, R) we want to solve the following control problem:

6
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Problem 1

min
(μ,ν)∈A(q,L,R)

J (μ, ν) , (3.3)

subject to

{
∂tμt − σ�μt = −div(vμt ,νt μt ) ,

μ0 = μ0 ,
(3.4)

for a given cost functional J : C([0, T ]; P1(Rd)) × C([0, T ]; P1(Rd)) → R ∪ {+∞} which 
is lower-semicontinuous with respect to the convergence in C([0, T ]; P1(Rd)) × C([0, T ];
P1(Rd)). Notice that this is the exact analogue of Problem 1 in [12], up to the addition of a 
diffusive term coming from stochastic noise for the dynamics of μ.

Remark 3.1. We mention that, in view of Theorem 3.5 below, the state equation (3.4) completely 
determines μt as a function of νt , so that (3.3) is indeed a minimization problem in the variable ν

alone. This being said, we prefer to keep the notation J (μ, ν) in accordance with [12].

In order to show existence of solutions to (3.3)–(3.4), it is convenient to first study the well-
posedness of the PDE (3.4) when ν ∈ LipL([0, T ]; P1(Rd)) is fixed. To simplify the notation, 
for t ∈ [0, T ], x ∈Rd , and μ ∈P1(Rd), we set

ṽμ(t, x) := vμ,νt (x) . (3.5)

In what follows, we show that (3.4) is equivalent to the SDE

⎧⎪⎪⎨⎪⎪⎩
dX(t) = ṽμt (t,X(t))dt + √

2σ dW(t) ,

X(0) = X0 , Law(X0) = μ0 ,

μ = Law(X) , μt = (evt )#μ .

(3.6)

To this purpose, we start by showing, in the next theorem, existence and uniqueness of solutions 
to (3.6), together with some estimates (notice that only continuity of the measure ν is required). 
We point out that the estimate (3.8) below will ensure the continuity of the solution t 	→ μt

to (3.4), and therefore grants its membership to the set A(q, L, R). From now on, we let p > 1.

Theorem 3.2. Let v : [0, T ] × P1(Rd) × P1(Rd) → Rd satisfy (v-Lip), let ν ∈ C([0, T ];
P1(Rd)), let ṽ be defined as in (3.5), and let X0 ∈ Lp(�; Rd). Then, the SDE (3.6) with ini-
tial condition X0 admits a unique solution. Moreover, there exists C = C(p, T , Mv) > 0 such 
that

mp(μ) ≤ C

(
1 + mp(μ0) +

T̂

m
p

1 (ντ )dτ +
(

p
)p

E(|W(T )|p)

)
, (3.7)
0
p − 1

7
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W1(μt ,μs) ≤ C

tˆ

s

m1(ντ )dτ + C|t − s| 1
4 (3.8)

+ C|t − s|
(

1 + mp(μ0)
1
p +

( T̂

0

m
p

1 (ντ )dτ

) 1
p +E(|W(T )|p)

1
p

)
.

Proof. The existence and uniqueness of the solution follows by an adaptation of the Banach 
fixed point argument of [8, Theorem 3.1], which in turn only relies on the Lipschitz continuity 
of the velocity field v (see (v)) and on the fact that ν ∈ C([0, T ]; P1(Rd)).

We now estimate the p-moment of μ. For t ∈ [0, T ] and ω ∈ �, by (3.2) we have that

|X(t)| ≤ |X0| +
tˆ

0

|ṽμt (τ,X(τ))|dτ + √
2σ |W(t)| (3.9)

≤ |X0| + Mv

tˆ

0

(1 + |X(τ)| + m1(ντ ) + m1(μτ ))dτ + √
2σ |W(t)| .

Taking the p-power of (3.9) and applying Grönwall inequality we get that (here C is a positive 
constant depending on p, T , σ , and Mv which may vary from line to line)

|X(t)|p ≤ C

(
1 + |X0|p +

tˆ

0

(m
p

1 (ντ ) + m
p

1 (μτ ))dτ + |W(t)|p
)

eMvt (3.10)

≤ C

(
1 + |X0|p +

tˆ

0

(m
p

1 (ντ ) + mp(μτ ))dτ + |W(t)|p
)

eMvt .

Averaging (3.10) over � and applying again Grönwall inequality and the Doob’s maximal in-
equality [53] we obtain for every t ∈ [0, T ]

mp(μt ) ≤ CeMvt

(
1 + mp(μ0) +

tˆ

0

m
p
1 (ντ )dτ +

(
p

p − 1

)p

E(|W(T )|p)

)
e

C
Mv

eMvt

≤ CeMvT

(
1 + mp(μ0) +

T̂

0

m
p
1 (ντ )dτ +

(
p

p − 1

)p

E(|W(T )|p)

)
e

C
Mv

eMvT

.

(3.11)
Inserting (3.11) into (3.10) we may continue with

8
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|X(t)|p ≤ C

(
1 + |X0|p + mp(μ0) +

T̂

0

m
p
1 (ντ )dτ + |W(t)|p +

(
p

p − 1

)p

E(|W(T )|p)

)
.

(3.12)

Taking the supremum over t ∈ [0, T ] in (3.12) and applying once again Grönwall and Doob’s 
maximal inequality we infer that

mp(μ) ≤ E
(

sup
t∈[0,T ]

|X(t)|p
)

≤ C

(
1 + mp(μ0) +

T̂

0

m
p
1 (ντ )dτ +

(
p

p − 1

)p

E(|W(T )|p)

)
,

which is exactly (3.7).
It remains to prove (3.8). Let us fix s < t ∈ [0, T ] and ω ∈ �. Then, by (3.2), it holds

|X(t) − X(s)| ≤
tˆ

s

|ṽμτ (τ,X(τ))|dτ + |W(t) − W(s)| (3.13)

≤ Mv

tˆ

s

(1 + |X(τ)| + m1(μτ ) + m1(ντ ))dτ + |W(t) − W(s)| .

By Hölder inequality we have that m1(μt ) ≤ mp(μt )
1
p . Hence, in view of (3.7) we may continue 

in (3.13) with

|X(t) − X(s)| ≤ C

tˆ

s

(
1 + |X(τ)| + m1(ντ )

)
dτ + |W(t) − W(s)| (3.14)

+ C|t − s|
(

mp(μ0)
1
p +

( T̂

0

m
p
1 (ντ )dτ

) 1
p +

(
p

p − 1

)
E(|W(T )|p)

1
p

)
.

Averaging (3.14) over �, applying Hölder inequality for the noise term, and using (2.3) and (3.7), 
we get

W1(μt ,μs) ≤ E(|X(t) − X(s)|)

≤ C

tˆ

s

(
m1(μτ ) + m1(ντ )

)
dτ +E(|W(t) − W(s)|) (3.15)

+ C|t − s|
(

1 + mp(μ0)
1
p +

( T̂

m
p

1 (ντ )dτ

) 1
p +E(|W(T )|p)

1
p

)
.

0

9
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≤ C

tˆ

s

m1(ντ )dτ +E(|W(t) − W(s)|2) 1
2

+ C|t − s|
(

1 + mp(μ0)
1
p +

( T̂

0

m
p

1 (ντ )dτ

) 1
p +E(|W(T )|p)

1
p

)
.

Finally, by standard estimates of the Brownian motion (see, e.g., [35]) we deduce that

W1(μt ,μs) ≤ C

tˆ

s

m1(ντ )dτ + C|t − s| 1
4

+ C|t − s|
(

1 + mp(μ0)
1
p +

( T̂

0

m
p

1 (ντ )dτ

) 1
p +E(|W(T )|p)

1
p

)
.

This concludes the proof of (3.8) and of the theorem. �
We now show a continuity property of solutions to equation (3.6) when varying ν.

Proposition 3.3. Let v : [0, T ] ×P1(Rd) ×P1(Rd) → Rd satisfy (v-Lip), let X0 ∈ Lp(�; Rd), 
and let ν1, ν2 ∈ C([0, T ]; P1(Rd)). Moreover, let X1, X2 ∈ M(�; C([0, T ]; Rd)) be the corre-
sponding solutions to (3.6) with μi = Law(Xi) and velocities ṽμi

t
= vμi

t ,ν
i
t

for i = 1, 2. Then, 
there exists C = C(v, T ) > 0 such that for every t ∈ [0, T ]

E
(|X1(t) − X2(t)|) ≤ C

T̂

0

W1(ν
1
t , ν2

t )dt , (3.16)

|X1(t) − X2(t)| ≤ C

T̂

0

W1(ν
1
t , ν2

t )dt for P -a.e. ω ∈ �. (3.17)

Proof. By (v) we estimate for P -a.e. ω ∈ � and every t ∈ [0, T ]

|X1(t) − X2(t)| ≤
tˆ

0

|vμ1
τ ,ν1

τ
(X1(τ )) − vμ2

t ,ν
2
t
(X2(τ ))|dτ (3.18)

≤ Lv

tˆ

0

(|X1(τ ) − X2(τ )| +W1(μ
1
τ ,μ

2
τ ) +W1(ν

1
τ , ν2

τ )
)
dτ .
Applying Grönwall estimate to (3.18) we infer that for P -a.e. ω ∈ � and every t ∈ [0, T ]

10
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|X1(t) − X2(t)| ≤ eLvT

tˆ

0

(
W1(μ

1
τ ,μ

2
τ ) +W1(ν

1
τ , ν2

τ )
)
dτ (3.19)

≤
tˆ

0

(
E

(
|X1(τ ) − X2(τ )|

)
+W1(ν

1
τ , ν2

τ )
)

dτ .

Integrating (3.19) over � and applying Grönwall inequality we get (3.16); substituting (3.16)
into (3.19) we conclude for (3.17). �

As a corollary of Proposition 3.3 we have the following.

Corollary 3.4. Let v : [0, T ] × P1(Rd) × P1(Rd) → Rd satisfy (v-Lip), let X0 ∈ Lp(�; Rd), 
and let νk, ν ∈ C([0, T ]; P1(Rd)) be such that νk → ν in C([0, T ]; P1(Rd)). Let moreover 
Xk, X ∈ M(�; C([0, T ]; Rd)) be the corresponding solutions to (3.6) with μk = Law(Xk)

and μ = Law(X) and velocities ṽμk
t
= vμk

t ,ν
k
t
, ṽμt = vμt ,νt , respectively. Then,

lim
k→∞ sup

t∈[0,T ]
E

(|Xk(t) − X(t)|) = 0 , (3.20)

lim
k→∞ W1(μ

k,μ) = 0 . (3.21)

Proof. For fixed k ∈ N , rewrite (3.16) for X1 = Xk , ν1 = νk and X2 = X, ν2 = ν. Then, taking 
the limit as k → ∞ and relying on the uniform convergence of νk to ν in P(Rd), we get (3.20). 
As for the convergence in (3.21), we consider (3.17) for X1 = Xk and X2 = X; take the supre-
mum over [0, T ] and integrate over � and use (2.2) to obtain

W1(μ
k,μ) ≤ E

(
sup

t∈[0,T ]
|Xk(t) − X(t)|

)
≤ C

T̂

0

W1(ν
k
t , νt )dt . (3.22)

Passing to the limit as k → ∞ in (3.22) we get (3.21). �
We now show that, for a given ν ∈ C([0, T ]; P1(Rd)) and under suitable assumptions on the 

initial datum μ0, the PDE (3.4) has a unique solution, which is the one generated by the law of 
the unique stochastic process X that solves the SDE (3.6).

Theorem 3.5. Let v : [0, T ] × P1(Rd) × P1(Rd) → Rd satisfy (v-Lip), let ν ∈ C([0, T ];
P1(Rd)), and let ṽ be defined as in (3.5). Let μ0 ∈ P2(Rd) be of the form μ0 = ρ0 dx

for ρ0 ∈ L1(Rd) with finite entropy. For X0 ∈ L2(�; Rd) such that Law(X0) = μ0, let X be 
the unique solution to (3.6) with initial condition X0. Then, the corresponding μt is the unique 
solution to {

∂tμt − σ�μt = −div(ṽμt (t)μt ) ,
(3.23)
μ0 = μ0 .

11
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Proof. In view of Theorem 3.2 and Itô’s formula, μt is a solution to (3.23). For the readers’ 
convenience, we recall the standard argument. For ϕ ∈ C∞

c (Rd), we apply Itô’s formula [44, 
Theorem 4.2.1] and we obtain that

dϕ(X(t)) = 〈∇ϕ(X(t)),dX(t)〉 + σ�ϕ(X(t))dt.

Using (3.6), we get

dϕ(X(t)) = ∇ϕ(X(t)) · ṽμt (t,X(t)) + 〈∇ϕ(X(t)),
√

2σ dW(t)
〉 + σ�ϕ(X(t))dt.

Integrating the above expression in Itô’s sense we have

ϕ(X(t)) =ϕ(X0) +
tˆ

0

∇ϕ(X(τ)) · ṽμτ (τ,X(τ))dτ

+ √
2σ

tˆ

0

∇ϕ(X(τ))dW(τ) +
tˆ

0

σ�ϕ(X(τ))dτ.

Since E
(´ t

0 ∇ϕ(X(τ)) dW(τ)
)

= 0 by [44, Theorem 3.2.1], taking the expected value we get

ˆ

Rd

ϕ(x)dμt(x) =
ˆ

Rd

ϕ(x)dμ0(x) +
tˆ

0

ˆ

Rd

[∇ϕ(x) · ṽμτ (τ, x) + σ�ϕ(x)
]

dμτ (x)dτ

as required. Let μ̂ ∈ C([0, T ]; P1(Rd)) be another solution to (3.23). Setting v̂(t, x) := ṽμ̂t
(t, x), 

by (3.2) we have that

|v̂(t, x)| = |vμ̂t ,νt
(t, x)| ≤ Mv(1 + m1(νt ) + m1(μ̂t ) + |x|) . (3.24)

By continuity of μ̂ and ν, we have that m1(νt ) and m1(μ̂t ) are uniformly bounded in [0, T ]. Thus, 
we deduce from (3.24) that v̂ has sublinear growth. Hence, v̂(t, x) satisfies the assumptions of [8, 
Lemma 3.6] (see also [10, Theorem 3.3]), which implies that μ̂ is the unique solution to{

∂tμt − σ�μt = −div(v̂(t)μt ) ,

μ0 = μ0 .
(3.25)

Let us consider X̂ the unique pathwise solution (see [44, Theorem 5.2.1]) to the SDE{
dY(t) = v̂(t, Y (t))dt + √

2σ dW(t) ,

Y (0) = X0

(3.26)

and let μ̂ := Law(X̂). The PDE (3.25) is the Fokker–Planck equation associated with (3.26), 

hence it has (evt )#μ̂ as a solution. By uniqueness of the solution to (3.25), we get that μ̂t =

12
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(evt )#μ̂, so that X̂ is actually a solution to (3.6). By Theorem 3.2, we conclude that X = X̂, 
which in particular implies that μt = μ̂t for all t ∈ [0, T ], as desired. �

We are now in a position to show existence of solutions to the minimum problem (3.3)–(3.4).

Theorem 3.6. Let L, R > 0 and q ∈ (1, +∞] be fixed, and let μ0 ∈ P2(Rd) be such that μ0 =
Law(X0) = ρ0 dx for some X0 ∈ L2(�; Rd) and ρ0 ∈ L1(Rd) with finite entropy. Moreover, 
assume that the cost functional J : C([0, T ]; P1(Rd)) × C([0, T ]; P1(Rd)) → R ∪ {+∞} is 
lower-semicontinuous with respect to the convergence in C([0, T ]; P1(Rd)). Then, the minimum 
problem (3.3)–(3.4) admits solution.

Proof. We apply the Direct Method. Let (μk, νk) ∈ A(q, R, L) be a minimizing sequence 
for (3.3)–(3.4). In view of Theorem 3.5, we can write μk = Law(Xk) for every k ∈ N , where 
Xk solves the SDE ⎧⎪⎨⎪⎩

dX(t) = vμt ,ν
k
t
(X(t))dt + √

2σ dW(t) ,

X(0) = X0 ,

μ = Law(X), μt = (evt )#μ .

By assumption we have a uniform bound on mq(ν
k
t ) for k ∈ N and t ∈ [0, T ], with q ∈ (1, +∞], 

which implies that the measures νk
t all belong to a fixed compact subset of P1(Rd). Moreover, νk

is equi-Lipschitz continuous. By Ascoli–Arzelá Theorem, there exists ν ∈ LipL([0, T ]; P1(Rd))

such that, up to a subsequence, νk → ν in C([0, T ]; P1(Rd)). It follows from Corollary 3.4 that 
μk → μ in P1

(
C([0, T ]; Rd)

)
. In particular, by (2.1), μk → μ in C([0, T ]; P1(Rd)) and

J (μ, ν) ≤ lim inf
k→∞ J (μk, νk) . (3.27)

To conclude that (μ, ν) is a minimizer, we are left to show that (3.4) is satisfied. To this 
purpose, we exploit Theorem 3.5 again and consider the solutions Xk to the SDE (3.6) with 
ṽμk

t
(t, ·) = vμk

t ,ν
k
t
(·) and initial condition X0. In particular, we have that μk = Law(Xk). Let us 

further consider the unique solution X̃ to⎧⎪⎨⎪⎩
dX̃(t) = vμ̃t ,νt (X̃(t))dt + √

2σ dW(t) ,

X(0) = X0 ,

μ̃ = Law(X̃) , μ̃t = (evt )#μ̃ .

(3.28)

Proposition 3.4 implies that μk → μ̃ in P1
(
C([0, T ]; Rd)

)
, hence μk

t → μ̃t in P1(Rd), uni-
formly in [0, T ]. Thus, the curves μ and μ̃ coincide. By Theorem 3.5 we have that (μ, ν)

solves (3.4). This concludes the proof of the theorem. �
4. Optimal control problem for a two-population dynamics

In this section, we present a prototypical example of a mean-field optimal control problem of 
the form (3.3)–(3.4) for the case of agents divided into two populations, leaders and followers. 

The population of followers is driven by a nonlinear Fokker–Planck equation taking into account 

13
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noise effects on the behavior of the agents, whereas the controlled population (that of the leaders) 
has a deterministic behavior driven by a non-local continuity equation, in which the control vector 
field appears as an additional drift term. The evolution of these two populations is described by a 
pair (μ, ν) ∈ (

C([0, T ]; P1(Rd))
)2, where μ is the density of the uncontrolled population subject 

to the additive noise and ν is the density of the controlled one. This is a more refined variant of 
Problem 1, where the population μ is indirectly controlled through the action of the policy maker 
on the selected population ν; this action is encoded by adding a suitable drift term in the evolution 
equation for ν.

We fix μ0 ∈P2(Rd) of the form ρ0 dx for a suitable ρ0 ∈ L1(Rd) with finite entropy. We also 
fix q ∈ (1, +∞] and ν0 ∈ Pq(Rd). Finally, let K ⊆ Rd be a compact convex set with 0 ∈ K ; for 
given �, � > 0, we define

G := {g ∈ C(P1(R
d)) : g is �-Lipschitz and �-bounded} .

In our optimal control problem, the curve ν considered in (3.4) will be replaced by the solu-
tion of a controlled continuity equation. We assume that the control takes a multiplicative form; 
indeed, given f ∈ L∞([0, T ] ×Rd ; K) and g ∈ G, the state equation for the pair (μ, ν) reads⎧⎪⎨⎪⎩

∂tμt − σ�μt = −div(vμt ,νt μt ) ,

∂t νt + div
(
(wμt ,νt + f (t, ·)g(μt ))νt

) = 0 ,

μ0 = μ0 , ν0 = ν0 ,

(4.1)

for velocity fields v, w satisfying (v-Lip). For given initial data (μ0, ν0) ∈ P2(Rd) × Pq(Rd), 
we define the set

S(μ0, ν0)

:=
{
(μ, ν, ζ, g) ∈ (

C([0, T ];P1(R
d))

)2 ×Mb([0, T ] ×Rd ;Rd) × G : (4.2)

ζ � g(μt )ν and (μ, ν) solves (4.1) with f = dζ

d(g(μt )ν)
∈ L1

ν([0, T ] ×Rd ;K)

}
,

where L1
ν([0, T ] ×Rd ; K) is the space of integrable functions with respect to the measure ν. For 

(μ, ν, ζ, g) ∈ S(μ0, ν0), we define the cost functional

E(μ,ν, ζ, g) :=
T̂

0

L(μt , νt )dt + �(ζ,g) , (4.3)

where

�(ζ,g) := min

{ T̂

0

ˆ

Rd

φ(f (t, y), g(μt ))dνt (y)dt : f ∈ L1
ν([0, T ] ×Rd ;K), ζ = fg(μt )ν

}
.

(4.4)

In (4.3) and (4.4) we consider a uniformly continuous Lagrangian cost

14
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L : C([0, T ];P1(R
d)) × C([0, T ];P1(R

d)) ×Mb([0, T ] ×Rd;Rd) × G → [0,+∞)

and a control cost φ : Rd ×R → [0, +∞) such that

(φ1) φ is continuous;
(φ2) φ(·, ξ) is convex and has superlinear growth uniformly with respect to ξ ∈R;
(φ3) φ(0, ξ) = 0 for every ξ ∈R.

The optimal control problem reads as follows:

Problem 2

min
{
E(μ,ν, ζ, g) : (μ, ν, ζ, g) ∈ S(μ0, ν0)} . (4.5)

Remark 4.1. In stating the optimal control problem above, it is understood that the minimum is 
equal to +∞ if S(μ0, ν0) = ∅. Actually, the results on the particle approximation that we are 
going to establish in Sections 5 and 6 entail, as a byproduct, that S(μ0, ν0) �= ∅ for every pair 
(μ0, ν0) considered here.

We also remark that, differently from Problem 1, optimization occurs here simultaneously in 
all variables since, for given ζ and g, (4.1) has no unique solution.

In the following remark, we discuss the relation of Problem 2 with some previous contribution 
on the subject.

Remark 4.2. We point out that Problem 2 is the natural generalization of the mean-field optimal 
control problem analyzed in [8] where, however, the leaders’ population was constrained to be 
discrete with a fixed number m of individuals. The multiplicative structure of the control can, 
in particular, also account for a purely offline control problem (when g is constant) or for a 
purely feedback control problem (when f is constant). Notice that, if σ = 0 and g is constant, 
we retrieve the control Problem 2 studied in [12]. Besides the addition of noise terms, another 
relevant improvement with respect to [12, Problem 2] is that we can allow for very low regularity 
of the vector field f appearing in (4.1).

The justification of the definition (4.4) of � as a minimum and not as an infimum is postponed 
to Lemma 4.5, which also implies the lower semicontinuity of the cost functional E. Instead, we 
start by providing some estimates on the moments m2(μt ) and mq(νt ) for t ∈ [0, T ], and on the 
modulus of continuity of the curve t 	→ (μt , νt ) solution to (4.1).

Lemma 4.3. Let (μ0, ν0) ∈ P2(Rd) × Pq(Rd) be such that μ0 = ρ0 dx = Law(X0) for some 
ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). Then there exists 0 < r =
r(T , �, �, μ0, ν0, K) such that for every (μ, ν, ζ, g) ∈ S(μ0, ν0) there holds
m2(μt ) + m1(νt ) ≤ r for every t ∈ [0, T ]. (4.6)

15



S. Almi, M. Morandotti and F. Solombrino Journal of Differential Equations 373 (2023) 1–47
Moreover, there exists 0 < L = L(T , �, �, μ0, ν0, K) such that the curve t 	→ μt be-
longs to C0,1/4([0, T ]; P1(Rd)) with Hölder constant L and the curve t 	→ νt belongs to 
LipL([0, T ]; P1(Rd)).

Proof. We denote by C a generic positive constant depending on T , �, �, μ0, ν0, and K , and 
which may vary from line to line.

Since μ, ν ∈ C([0, T ]; P1(Rd)), there exists C̃ > 0 such that m1(μt ), m1(νt ) ≤ C̃ for every 
t ∈ [0, T ]. By definition of K and since w satisfies (3.2), we have that

T̂

0

ˆ

Rd

|wμt ,νt (y) + f (t, y)g(μt )|dνt dt

≤
T̂

0

ˆ

Rd

(
Mw

(
1 + m1(μt ) + m1(νt )

) + C
)

dνt dt (4.7)

≤ Mw(T + 2C̃) + CT .

Hence, we are in a position to apply the superposition principle (see, e.g., [5, Theorem 5.2]
and [6, Section 8.2]) to the curve t 	→ νt solving the continuity equation{

∂tνt + div(bt νt ) = 0 ,

ν0 = ν0 ,

with velocity field bt (y) := wμt ,νt (y) + f (t, y)g(μt ). In particular, there exists η ∈ P(C([0, T ];
Rd)) supported on solutions to the Cauchy problem{

γ̇ (t) = bt (γ (t)) = wμt ,νt (γ (t)) + f (t, γ (t))g(μt ) ,

γ (0) ∈ spt(ν0)
(4.8)

and such that νt = (evt )#η. For every γ ∈ C([0, T ]; Rd) solution to (4.8), we may estimate, as in 
(4.7),

|γ (t)| ≤ |γ (0)| +
tˆ

0

(
Mw(1 + m1(μτ ) + m1(ντ ) + |γ (τ)|) + C

)
dτ .

By Grönwall inequality, we infer that for η-a.e. γ there holds

|γ (t)| ≤ C

(
|γ (0)| +

tˆ

0

(
1 + m1(μτ ) + m1(ντ )

)
dτ

)
. (4.9)
Integrating (4.9) over C([0, T ]; Rd) with respect to η we get that
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m1(νt ) ≤ C

(
m1(ν0) +

tˆ

0

(
1 + m1(μτ ) + m1(ντ )

)
dτ

)
. (4.10)

Applying Grönwall inequality again, we deduce from (4.10) that

m1(νt ) ≤ C

(
1 + m1(ν0) +

tˆ

0

m1(μτ )dτ

)
. (4.11)

In order to estimate m2(μt ), we make use of Theorem 3.2 with p = 2 and Theorem 3.5, which 
yield, together with (4.11), that for every t ∈ [0, T ]

m2(μt ) ≤ C

(
1 + m2(μ0) +

tˆ

0

m2
1(ντ )dτ + 4E(|W(T )|2)

)

≤ C

(
1 + m2(μ0) + m2

1(ν0) +
tˆ

0

m2
1(μτ )dτ + 4E(|W(T )|2)

)

≤ C

(
1 + m2(μ0) + m2

1(ν0) +
tˆ

0

m2(μτ )dτ + 4E(|W(T )|2)
)

.

Applying Grönwall inequality we deduce that

m2(μt ) ≤ C
(

1 + m2(μ0) + m2
1(ν0) + 4E(|W(T )|2)

)
for t ∈ [0, T ]. (4.12)

Combining (4.11) and (4.12), by Hölder inequality we obtain for t ∈ [0, T ]

m1(νt ) ≤ C
(

1 + m1(ν0) + (
m2(μ0) + 4E(|W(T )|2)) 1

2
)
. (4.13)

Putting (4.12) and (4.13) together yields (4.6).
By (3.8) we have that t 	→ μt is Hölder continuous with exponent 1/4 and constant L > 0 only 

depending on T , r , Mv , and Mw . It remains to prove that, up to a redefinition of L, the map t 	→ νt

is L-Lipschitz continuous. To this aim, we estimate for η-a.e. γ and for every s < t ∈ [0, T ]

|γ (t) − γ (s)| ≤
tˆ

s

(|wμτ ,ντ (γ (τ ))| + |g(μτ )f (τ, γ (τ ))|)dτ (4.14)

≤
tˆ

s

(
Mw(1 + m1(μτ ) + m1(ντ ) + |γ (τ)|) + C

)
dτ .
In view of the definition of the Wasserstein distance W1, inequality (4.14) implies that
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W1(νt , νs) ≤
ˆ

C([0,T ];Rd )

|γ (t) − γ (s)|dη(γ )

≤ C

tˆ

s

ˆ

C([0,T ];Rd )

(
1 + m1(μτ ) + m1(ντ ) + |γ (τ)|)dη(γ )dτ

≤ C

tˆ

s

(
1 + m1(μτ ) + m1(ντ ) + |γ (τ)|)dτ .

Then, we infer from (4.6) that t 	→ νt is Lipschitz continuous. �
Estimate (4.6) can be improved into an estimate on the q-th moment of νt .

Lemma 4.4. Let (μ0, ν0) ∈ P2(Rd) × Pq(Rd) be such that μ0 = ρ0 dx = Law(X0) for some 
ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). Then there exists 0 < R =
R(T , �, �, μ0, ν0, K) such that for every (μ, ν, ζ, g) ∈ S(μ0, ν0) there holds

m2(μt ) + mq(νt ) ≤ R for every t ∈ [0, T ]. (4.15)

Proof. It is enough to notice that by (3.2), (4.29), and Hölder inequality, we can estimate

|wμt ,μt (y)| ≤ Mw(1 + |y| + √
m2(μt ) + m1(νt )) ≤ Mw

(
1 + √

r
) + Mw(|y| + m1(νt )).

By applying [37, Proposition 5.3] to the field wμt ,νt (y) with A = Mw(1 + √
r), B = Mw , and 

θ(|y|) = |y|q , we infer (4.15). �
In order to establish existence of solutions to (4.5), we now discuss the lower semicontinuity 

of the control cost functional � along converging sequences in S(μ0, ν0). The result follows by 
a non-autonomous extension of [6, Lemma 9.4.3]. We remark that the following lemma justifies 
the definition of � in (4.4).

Lemma 4.5. Let (μ0, ν0) ∈ P2(Rd) × Pq(Rd) be such that μ0 = ρ0 dx = Law(X0) for some 
ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). Let νk

0 ∈Pq(Rd) be such that νk
0 →

ν0 narrow in P(Rd) as k → ∞ and supk∈N mq(νk
0) < +∞. Moreover, let (μk, νk, ζ k, gk) ∈

S(μ0, ν
k
0) and f k ∈ L1

νk ([0, T ] ×Rd; K) satisfy ζ k = f kgk(μk
t )ν

k and

sup
k∈N

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt < +∞ . (4.16)

Then there exists (μ, ν, ζ, g) ∈ S(μ0, ν0) such that, up to a (not relabeled) subsequence, μk →
μ and νk → ν in C([0, T ]; P1(Rd)), ζ k → ζ weakly∗ in Mb([0, T ] × Rd; Rd), and gk → g

locally uniformly in C(P1(Rd)). Furthermore, there exists f ∈ L1
ν([0, T ] × Rd ; K) such that 
ζ = fg(μt )ν and

18
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T̂

0

ˆ

Rd

φ(f (t, y), g(μt ))dνt (y)dt ≤ lim inf
k→∞

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt . (4.17)

Proof. Up to a subsequence (which we are not going to relabel), we may assume that the lim inf
in (4.17) is a limit. By Lemmas 4.3 and 4.4, there exist L, R > 0 such that, for every k ∈ N , 
νk ∈ LipL([0, T ]; P1(Rd)), μk ∈ C0,1/4([0, T ]; P1(Rd)) with Hölder constant L, and

sup
k∈N

t∈[0,T ]

(
m2(μ

k
t ) + mq(νk

t )
) ≤ R.

In particular, μk and νk are sequences of equi-continuous curves with values in a compact subset 
of P1(Rd). By Ascoli–Arzelá Theorem, there exist μ, ν ∈ C([0, T ]; P1(Rd)) such that, up to 
a subsequence, μk → μ and νk → ν in C([0, T ]; P1(Rd)). Similarly, the sequence gk is equi-
Lipschitz and equi-bounded, and therefore admits a subsequence (not relabeled) converging on 
compact subsets of P1(Rd) to a limit g ∈ G. Finally, ζ k is bounded in Mb([0, T ] × Rd; Rd). 
Thus, there exists ζ ∈ Mb([0, T ] ×Rd ; Rd) such that, up to a subsequence, ζ k → ζ weakly∗ in 
Mb([0, T ] ×Rd; Rd).

Without loss of generality, we may assume that f k(t, ·) = 0 whenever gk(μk
t ) = 0 for all 

t ∈ [0, T ]. We recall that f k takes values in the compact set K and that gk, g are �-bounded 
and �-Lipschitz. Let us further set θk := f kνk . It is clear that θk � νk and that f k = dθk

dνk νk-

a.e. in [0, T ] ×Rd . Hence, we may write

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt =
ˆ

[0,T ]×Rd

φ

(
dθk

dνk
(t, y), gk(μk

t )

)
dνk(t, y) . (4.18)

By the bounds on f k and νk , we have that θk weakly∗ converges, up to a not relabeled subse-
quence, to some measure θ ∈Mb([0, T ] ×Rd; Rd).

Let us denote by ωφ a modulus of continuity of φ on the compact set K ×[−�, �]. For J ∈ N

and j = 0, . . . , J let us set tj := jT
J

. Then, by (4.18) and by the �-Lipschitz continuity of gk we 
have that

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt (4.19)

≥
J∑

j=1

ˆ

[tj−1,tj ]×Rd

φ

(
dθk

dνk
(t, y), gk(μk

tj−1
)

)
dνk(t, y) − T

J

J∑
j=1

ωφ

(
�W1(μ

k
tj−1

,μk
tj
)
)
.

Arguing as in (4.19) we continue with

T̂ ˆ
φ(f k(t, y), gk(μk

t ))dνk
t (y)dt (4.20)
0 Rd
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≥
J∑

j=1

ˆ

[tj−1,tj ]×Rd

φ

(
dθk

dνk
(t, y), g(μtj−1)

)
dνk(t, y) − T

J

J∑
j=1

ωφ

(
�W1(μ

k
tj−1

,μk
tj
)
)

− T

J

J∑
j=1

ωφ

(|gk(μk
tj−1

) − g(μtj−1)|
)
.

Let us fix ε > 0. Since μk and μ are equi-uniformly continuous in [0, T ], there exists J ∈ N
such that for every J ≥ J , every j = 1, . . . , J , and every k ∈ N

ωφ

(
�W1(μtj−1 ,μtj )

)
, ωφ

(
�W1(μ

k
tj−1

,μk
tj
)
) ≤ ε

T
. (4.21)

Combining (4.20) and (4.21) we deduce that for J ≥ J and k ∈ N

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt (4.22)

≥
J∑

j=1

ˆ

[tj−1,tj ]×Rd

φ

(
dθk

dνk
(t, y), g(μtj−1)

)
dνk(t, y) − T

J

J∑
j=1

ωφ

(|gk(μk
tj−1

) − g(μtj−1)|
) − ε

Thanks to assumptions (φ1) and (φ2), to each term in the sum on the right-hand side of (4.22)
we can apply [6, Lemma 9.4.3] (see also [1, Proposition 5]). Thus, for j = 1, . . . , J we infer 
that the limit measure θ is such that its restriction θj := θ ([tj−1, tj ] × Rd) satisfies θj �
ν ([tj−1, tj ] ×Rd) and

ˆ

[tj−1,tj ]×Rd

φ

(
dθj

dν
(t, y), g(μtj−1)

)
dν(t, y) (4.23)

≤ lim inf
k→∞

ˆ

[tj−1,tj ]×Rd

φ

(
dθk

dνk
(t, y), g(μtj−1)

)
dνk(t, y) .

This implies that θ � ν in [0, T ] ×Rd . Moreover, since K is compact and convex, setting f :=
dθ
dν

, we have that f ∈ K for ν-a.e. (t, y) ∈ [0, T ] × Rd . Hence, summing up (4.23) over j =
1, . . . , J and recalling (4.22) we have that

J∑
j=1

ˆ

[tj−1,tj ]×Rd

φ(f (t, y), g(μtj−1))dν(t, y) (4.24)

≤ lim inf
k→∞

T̂ ˆ
φ(f k(t, y), gk(μk

t ))dνk
t (y)dt + ε .
0 Rd
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Repeating the argument of (4.19) we deduce from (4.24) that

T̂

0

ˆ

Rd

φ(f (t, y), g(μt ))dνt (y)dt ≤ lim inf
k→∞

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt + 2ε .

Hence, we conclude for (4.17) by letting ε → 0. Since ζ k = gk(μk
t )θ

k , gk(μk
t ) → g(μt ) in 

C([0, T ]), and θk weakly∗ converges to θ in Mb([0, T ] × Rd; Rd), we get that ζ = g(μt )θ =
fg(μt )ν � ν.

It remains to show that (μ, ν, ζ, g) ∈ S(μ0, ν0). In particular, we only have to prove that (μ, ν)

solves system (4.1). Since (μk, νk, ζ k, gk) ∈ S(μ0, ν
k
0), in view of the convergences proved 

above and of Corollary 3.4, we obtain that μ is the unique solution to{
∂tμt − σ�μt = −div(vμt ,νt μt ) ,

μ0 = μ0 .
(4.25)

For every test function ϕ ∈ C1
c ([0, T ]; Rd) we have that

ˆ

Rd

ϕ(T , x)dνk
T (x) −

ˆ

Rd

ϕ(0, x)dν0(x) =
T̂

0

ˆ

Rd

∂tϕ(t, x)dνk
t (x)dt (4.26)

+
T̂

0

ˆ

Rd

∇ϕ(t, x) · (wμk
t ,ν

k
t
(t, x) + f k(t, x)gk(μk

t ))dνk
t (x)dt .

By (v-Lip) and by the uniform convergence of νk and μk we deduce that

lim
k→∞

∣∣∣∣
T̂

0

ˆ

Rd

∇ϕ(t, x) · (wμk
t ,ν

k
t
(x) − wμt ,νt (x))

)
dνk

t (x)dt

∣∣∣∣ (4.27)

≤ lim
k→∞ ‖∇ϕ‖∞

T̂

0

(
W1(μt ,μ

k
t ) +W1(νt , ν

k
t )

)
dt = 0 .

Combining (4.26), (4.27), the uniform convergence of μk and νk to μ and ν, respectively, and 
the weak∗ convergence of ζ k = f kgk(μk

t )ν
k to ζ = fg(μt )ν, we infer that ν solves{

∂tνt + div
(
(wμt ,νt + f (t, ·)g(μt ))νt

) = 0 ,

ν0 = ν0 .
(4.28)

Therefore, (4.25) and (4.28) imply that (μ, ν, ζ, f ) ∈ S(μ0, ν0) and the proof is concluded. �

We are now in a position to prove existence of solutions to (4.5).
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Theorem 4.6. Let (μ0, ν0) ∈ P2(Rd) × Pq(Rd) be such that μ0 = ρ0 dx = Law(X0) for some 
ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). Then there exists a solution to (4.5).

Proof. We apply the Direct Method. In view of Remark 4.1, we can assume that S(μ0, ν0) �=
∅. Let (μk, νk, ζ k, gk) ∈ S(μ0, ν0) be a minimizing sequence for (4.5); in particular, we may 
assume that

sup
k∈N

E(μk, νk, ζ k, gk) < +∞ . (4.29)

Applying Lemma 4.5 to each (μk, νk, ζ k, gk) we deduce that for every k ∈ N there exists f k ∈
L1

νk ([0, T ] ×Rd ; K) such that ζ k = f kgk(μk
t )ν

k and

�(ζ k, gk) =
T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt ,

sup
k∈N

�(ζ k, gk) < +∞ .

Again by Lemma 4.5 we have that there exists (μ, ν, ζ, g) ∈ S(μ0, ν0) such that μk → μ

and νk → ν in C([0, T ]; P1(Rd)), ζ k → ζ weakly∗ in Mb([0, T ] × Rd; Rd), and gk → g

locally uniformly in C(P1(Rd)). Furthermore, there exists f ∈ L1
ν([0, T ] × Rd ; K) such that 

ζ = fg(μt )ν and

�(ζ,g) ≤
T̂

0

ˆ

Rd

φ(f (t, y), g(μt ))dνt (y)dt (4.30)

≤ lim inf
k→∞

T̂

0

ˆ

Rd

φ(f k(t, y), gk(μk
t ))dνk

t (y)dt = lim inf
k→∞ �(ζ k, gk) .

By the continuity properties of the Lagrangian L we have that

T̂

0

L(μt , νt )dt = lim
k→∞

T̂

0

L(μk
t , ν

k
t )dt . (4.31)

Finally, from (4.30) and (4.31) we conclude that

E(μ,ν, ζ, g) ≤ lim inf
k→∞ E(μk, νk, ζ k, gk)
Hence, (μ, ν, ζ, g) is a solution to (4.5). �
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5. Finite-particle control problems

In this section, we are going to present a finite-particle approximation of (4.5). In Section 5.1, 
we discuss the setting for the stochastic evolution of two groups of agents, one which is directly 
subject to additive noise and one which is controlled. Although the controls are deterministic, 
the coupling of the dynamics of the two populations induces stochasticity also in the evolution 
of the controlled agents. In Section 5.2, we prove propagation of chaos, yielding a deterministic 
controlled equation.

The convergence of the finite-particle problem to Problem 2 (see (4.5)) will be left to Sec-
tion 6, where it is studied in terms of �-convergence (see Theorem 6.1 and Corollary 6.4 below).

5.1. Particles system approximation

Let us fix M, m ∈ N . Given the initial conditions X0 = (X0,1, . . . , X0,M) ∈ (Lp(�; Rd))M

and y0 := (y0,1, . . . , y0,m) ∈ (Rd)m, the controls u := (u1, . . . , um) ∈ L1([0, T ]; Km), and g ∈
G, we consider the finite-particle system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXi(t) = v
μ

M,m
t ,ν

M,m
t

(Xi(t))dt + √
2σ dW(t) , for i = 1, . . . ,M ,

ẏj (t) = w
μ

M,m
t ,ν

M,m
t

(yj (t)) + uj (t)g(μ
M,m
t ) , for j = 1, . . . ,m,

Xi(0) = X0,i , yj (0) = y0,j ,

μ
M,m
t := 1

M

M∑
i=1

δXi(t) , ν
M,m
t := 1

m

m∑
j=1

δyj (t) .

(5.1)

Notice that, for fixed u and g, the existence of a unique pathwise solution (X, y) to (5.1) is 
a standard result in SDE theory, under the assumption that both v and w satisfy (v-Lip). The 
notion of pathwise solution to (5.1) is given analogously to Definition 2.2, with the obvious 
modifications.

The cost functional associated with (5.1) is defined by

E(X,y,u, g) := E

( T̂

0

L(μ
M,m
t , ν

M,m
t )dt + 1

m

m∑
j=1

tˆ

0

φ
(
uj , g(μ

M,m
t )

)
dt

)
. (5.2)

In the next proposition we state the existence of the finite-particle optimal control problem

min
{
E(X,y,u, g) : (X,y) solves (5.1) with initial condition (X0,y0) (5.3)

and controls u ∈ L1([0, T ];Km), g ∈ G
}
.

Proposition 5.1. Let M, m ∈ N and (X0, y0) ∈ (Lp(�; Rd))M × (Rd)m be fixed. Then there 
exists a solution to (5.3).
The proof of Proposition 5.1 relies on the following convergence result.
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Lemma 5.2. Let M, m ∈ N and (X0, y0) ∈ (Lp(�; Rd))M × (Rd)m be fixed. Let uk, u ∈
L1([0, T ]; Km) and gk, g ∈ G be such that uk ⇀ u weakly∗ in L∞([0, T ]; (Rd)m) and gk → g

locally uniformly in C(P1(Rd)). Moreover, let (Xk, yk) and (X, y) be the corresponding solu-
tions to (5.1). Then,

lim
k→∞ E

(
max

i=1,...,M,
t∈[0,T ]

|Xk
i (t) − Xi(t)| + max

j=1,...,m,
t∈[0,T ]

|yk
j (t) − yj (t)|

)
= 0 . (5.4)

Proof. Along the proof we denote by C a generic positive constant depending on v, w, T , K , 
�, �, X0, and y0, but not on k. Since M and m are fixed, we will drop them to keep the notation 
lighter.

For ω ∈ �, t ∈ [0, T ], and j = 1, . . . , m, we estimate by (v-Lip) and by definition of G and K

|yk
j (t) − yj (t)| ≤

tˆ

0

|wμk
τ ,νk

τ
(yk

j (τ )) − wμτ ,ντ (yj (τ ))|dτ (5.5)

+
∣∣∣∣

tˆ

0

(
uk

j (τ )gk(μk
τ ) − uj (τ )g(μτ )

)
dτ

∣∣∣∣
≤ Lw

tˆ

0

(
W1(μ

k
τ ,μτ ) +W1(ν

k
τ , ντ ) + |yk

j (τ ) − yj (τ )|)dτ

+
∣∣∣∣

tˆ

0

(uk
j (τ ) − uj (τ )) g(μτ )dτ

∣∣∣∣ +
∣∣∣∣

tˆ

0

uk
j (τ )

(
gk(μk

τ ) − gk(μτ )
)
dτ

∣∣∣∣
+

∣∣∣∣
tˆ

0

uk
j (τ )

(
gk(μτ ) − g(μτ )

)
dτ

∣∣∣∣
≤ C

tˆ

0

W1(μ
k
τ ,μτ )dτ + C

tˆ

0

max
j=1,...,m

|yk
j (τ ) − yj (τ )|dτ +Rk

j (t) ,

where we have set

Rk
j (t) :=

∣∣∣∣
tˆ

0

(uk
j (τ ) − uj (τ )) g(μτ )dτ

∣∣∣∣ +
∣∣∣∣

tˆ

0

uk
j (τ )

(
gk(μτ ) − g(μτ )

)
dτ

∣∣∣∣ . (5.6)

Taking the maximum over j = 1, . . . , m in (5.5) and applying Grönwall inequality, we get that

max |yk
j (t) − yj (t)| ≤ C

( tˆ
W1(μ

k
τ ,μτ )dτ +

m∑
Rk

j (t)
)

(5.7)

j=1,...,m

0 j=1
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≤ C
( tˆ

0

max
i=1,...,M

|Xk
i (τ ) − Xi(τ)|dτ +

m∑
j=1

Rk
j (t)

)
.

In a similar way, we now estimate |Xk
i (t) − Xi(t)|:

|Xk
i (t) − Xi(t)| ≤ Lv

tˆ

0

(
W1(μ

k
τ ,μτ ) +W1(ν

k
τ , ντ ) + |Xk

i (τ ) − Xi(τ)|)dτ (5.8)

≤ 2Lv

tˆ

0

(
max

i=1,...,M
|Xk

i (τ ) − Xi(τ)| + max
j=1,...,m

|yk
j (τ ) − yj (τ )|

)
dτ .

Inserting (5.7) into (5.8) and taking the maximum over i = 1, . . . , M we obtain

max
i=1,...,M

|Xk
i (t) − Xi(t)| ≤ C

( tˆ

0

max
i=1,...,M

|Xk
i (τ ) − Xi(τ)|dτ (5.9)

+
tˆ

0

τˆ

0

max
i=1,...,M

|Xk
i (s) − Xi(s)|ds dτ +

m∑
j=1

tˆ

0

Rk
j (τ )dτ

)

≤ C

tˆ

0

max
i=1,...,M

|Xk
i (τ ) − Xi(τ)|dτ + C

m∑
j=1

tˆ

0

Rk
j (τ )dτ .

By Grönwall inequality, we deduce from (5.9) that

max
i=1,...,M,
t∈[0,T ]

|Xk
i (t) − Xi(t)| ≤ C

m∑
j=1

T̂

0

Rk
j (τ )dτ . (5.10)

We notice that Rk
j (t) → 0 as k → ∞ for P -a.e. ω ∈ � and a.e. t ∈ [0, T ]. Indeed, uk

j converges 

weakly∗ to uj for j = 1, . . . , m, g(μt ) is an L∞-function, and gk(μτ ) converges uniformly to 
g(μτ ). Moreover, each Rk

j is equi-Lipschitz continuous in [0, T ], since gk is �-bounded and 

uk
j , uj are uniformly bounded. By Ascoli-Arzelá Theorem, this implies that Rk

j → 0 uniformly 
in [0, T ] for P -a.e. ω ∈ �. By dominated convergence, we further infer that

lim
k→∞ E

(
max

t∈[0,T ]

m∑
j=1

Rk
j (t)

)
= 0 . (5.11)

Combining (5.10) and (5.11) we get that

lim E

(
max |Xk

i (t) − Xi(t)|
)

= 0 . (5.12)

k→∞ i=1,...,M,

t∈[0,T ]
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Finally, combining (5.7), (5.11), and (5.12) we infer that

lim
k→∞ E

(
max

j=1,...,m,
t∈[0,T ]

|yk
j (t) − yj (t)|

)
= 0 .

This concludes the proof of (5.4) and of the lemma. �
We are now in a position to prove Proposition 5.1.

Proof of Proposition 5.1. We proceed by the Direct Method. Since M, m ∈N are fixed, we drop 
them in our notation. Let (uk, gk) ∈ L1([0, T ]; Km) × G with corresponding solutions (Xk, yk)

to (5.1) be a minimizing sequence for (5.3). By definition of K and G, there exists (u, g) ∈
L1([0, T ]; Km) × G such that, up to a subsequence, uk ⇀ u weakly∗ in L∞([0, T ]; (Rd)m) and 
gk → g locally uniformly in C(P1(Rd)). Let (X, y) be the solution to (5.1) with controls (u, g)

and initial datum (X0, y0). In view of Lemma 5.2 we have that, along the same subsequence,

lim
k→∞ E

(
max

i=1,...,M
t∈[0,T ]

|Xk
i (t) − Xi(t)| + max

j=1,...,m,
t∈[0,T ]

|yk
j (t) − yj (t)|

)
= 0 . (5.13)

In particular, (5.13) implies that W1(μ
k
t , μt) → 0 and W1(ν

k
t , νt ) → 0 uniformly in t ∈ [0, T ] as 

k → ∞.
We now prove the lower-semicontinuity of the cost. Let us denote by ωL a concave modulus 

of continuity of L. Then, by Jensen we estimate

∣∣∣∣E( T̂

0

L(μk
t , ν

k
t )dt −

T̂

0

L(μt , νt )dt

)∣∣∣∣ ≤
T̂

0

E
(
ωL

(
W1(μ

k
t ,μt ) +W1(ν

k
t , νt )

))
dt

≤
T̂

0

ωL
(
E

(
W1(μ

k
t ,μt ) +W1(ν

k
t , νt )

))
dt .

In view of (5.13) we have that

lim
k→∞

T̂

0

L(μk
t , ν

k
t )dt =

T̂

0

L(μt , νt )dt . (5.14)

As for the control part of the functional E , we simply rewrite

E

(
1

m

m∑
j=1

T̂

0

φ
(
uk

j (t), g
k(μk

t )
)

dt

)
= E

(
1

m

m∑
j=1

T̂

0

φ
(
uk

j (t), g(μt )
)

dt

)
(5.15)

+E

(
1

m∑ T̂ (
φ
(
uk

j (t), g
k(μk

t )
) − φ

(
uk

j (t), g(μt )
))

dt

)

m

j=1 0
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=: Ik + IIk .

By (φ2) and the weak∗ convergence of uk to u we have that

lim inf
k→∞ Ik ≥E

(
1

m

m∑
j=1

T̂

0

φ
(
uj (t), g(μt )

)
dt

)
. (5.16)

Since uk
t ∈ Km for a.e. t ∈ [0, T ], for every k ∈N , gk, g are �-bounded, and φ is continuous (see 

(φ1)), denoting by ωφ a concave modulus of continuity of φ in the compact set K × [−�, �]
we further have that

|IIk| ≤
T̂

0

E

(
1

m

m∑
j=1

ωφ

(|gk(μk
t ) − g(μt )|

))
dt ≤

T̂

0

1

m

m∑
j=1

E

(
ωφ

(
�W1(μ

k
t ,μt )

))
dt

≤
T̂

0

1

m

m∑
j=1

ωφ

(
�E

(
W1(μ

k
t ,μt )

))
dt .

By the uniform convergence E
(
W1(μ

k
t , μt)

) → 0 in [0, T ], we infer that

lim
k→∞ IIk = 0 . (5.17)

Thus, combining (5.15)–(5.17) we finally obtain

lim inf
k→∞ E(Xk,yk,uk, gk) ≥ E(X,y,u, g) .

This concludes the proof of existence of solutions to (5.3). �
5.2. Auxiliary estimates

This section is devoted to an intermediate step towards the mean-field limit of problem (5.3). 
Namely, we analyze here the propagation of chaos for system (3.4) and the corresponding con-
vergence of the cost functional E .

Let us fix y0 = (y0,1, . . . , y0,m) ∈ (Rd)m, X0 ∈ Lp(�; Rd), u ∈ L1([0, T ]; Km), and g ∈ G
and consider the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪

dX(t) = vμm
t ,νm

t
(X(t))dt + √

2σ dW(t) ,

ẏj (t) = wμm
t ,νm

t
(yj (t)) + uj (t)g(μm

t ) , j = 1, . . . ,m ,

X(0) = X0 , yj (0) = y0,j ,

μm = Law(X) , μm
t = (evt )#μ

m , νm
t = 1

m∑
δyj (t) .

(5.18)
⎩ m
j=1
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To simplify the notation, we further set μ0 := Law(X0) and νm
0 := 1

m

∑m
j=1 δy0,j

. Associated with 
system (5.18), we introduce the cost functional

E(X,y,u, g) =
T̂

0

L(μm
t , νm

t )dt + 1

m

m∑
j=1

T̂

0

φ(uj (t), g(μm
t ))dt . (5.19)

We first discuss the existence and uniqueness of solutions to (5.18).

Proposition 5.3. Let m ∈ N , (X0, y0) ∈ Lp(�; Rd) × (Rd)m, u ∈ L1([0, T ]; Km), and g ∈ G. 
Then, there exists a unique solution (X, y) ∈ M(�; C([0, T ]; Rd)) ×C([0, T ]; (Rd)m) to (5.18)
with initial conditions (X0, y0) and controls (u, g). Moreover, for q ∈ (1, +∞] there exists a 
constant D = D(p, q, T , Mv, Mw, K, �) > 0 such that

mp(μm) ≤ D
(
1 + mp(μ0) + m

p

1 (νm
0 )

)
, (5.20)

max
t∈[0,T ] mq(νm

t ) ≤ D
(
1 + m

q
p(μ0) + mq(νm

0 )
)
.

Proof. Concerning existence and uniqueness, we can set up the fixed point result of [8, Theo-
rem 3.1]. Indeed, the precise structure of the velocity fields used in [8] is not needed and only the 
Lipschitz continuity assumed in (v-Lip) is necessary.

For the estimates on the moments, we may observe that the measures νm
t are indeed solutions 

to the continuity equation

∂tν
m
t + div(wμm

t ,νm
t
νm
t + ζm

t ) = 0,

where

ζm
t := 1

m

m∑
j=1

uj (t)g(μm
t )δyj (t) ∈ Mb(R

d ;Rd) ,

and repeat the computations of Lemmas 4.3 and 4.4. �
Remark 5.4. We notice that the estimate in (5.20) implies that mp(μm

t ) and mp(μm) are uni-
formly bounded with respect to m ∈ N if we assume that

sup
m∈N

mq(νm
0 ) < +∞ . (5.21)

The next proposition can be proved following the arguments of [8, Lemma 3.8].

Proposition 5.5. Let X = (X0,1, . . . , X0,M) ∈ (Lp(�; Rd))M , y0 = (y0,1, . . . , y0,m) ∈ (Rd)m, 
u ∈ L1([0, T ]; Km), and g ∈ G, and assume that X0,i are i.i.d. Then, the solutions (Xi, yi )

of (5.18) with initial conditions (X0,i , y0) satisfy the following:

(i) Xi are i.i.d.;

(ii) yi = y1 for i = 1, . . . , M .
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Remark 5.6. In the notation of Proposition 5.5, since Xi are i.i.d. and yi = y1 for i = 1, . . . , M , 
we have that the cost functional E satisfies

E(Xi,yi ,u, g) = E(Xj ,yj ,u, g) for i, j = 1, . . . ,M.

In the next result we show that, by propagation of chaos, (5.1) and (5.18) are equivalent in the 
limit as M → ∞, uniformly with respect to m ∈ N .

Theorem 5.7 (Propagation of chaos). Let m ∈N , y0 = (y0,1, . . . , y0,m) ∈ (Rd)m, u ∈ L1([0, T ];
Km), and g ∈ G. For every M ∈ N , let X0 ∈ (Lp(�; Rd))M be such that X0,i are i.i.d., and 
let (X, y) and (X̃, ̃y) be the solutions to (5.1) and to (5.18), respectively. Then, there exists a 
positive constant C(μ0, ν

m
0 , M) such that C(μ0, ν

m
0 , M) → 0 as M → ∞ and

E

(
max

i=1,...,M,
t∈[0,T ]

|Xi(t) − X̃i(t)| + max
i=1,...,m,
t∈[0,T ]

|yj (t) − ỹj (t)|
)

≤ C(μ0, ν
m
0 ,M) , (5.22)

∣∣E(X,y,u, g) −E(X̃i, ỹi ,u, g)
∣∣ ≤ C(μ0, ν

m
0 ,M) for i = 1, . . . ,M . (5.23)

Moreover, if (5.21) is satisfied, then C(μ0, ν
m
0 , M) only depends on μ0 and M .

Remark 5.8. Inequality (5.22) can be interpreted as a propagation of chaos property. In light of 
the fact that C(μ0, ν

m
0 , M) → 0 as M → ∞, it entails, in particular, that the asymptotic behavior 

of the agents (X, y) is almost surely equivalent to that of the independent agents (X̃, ̃y) whose 
dynamics satisfies (5.18).

Proof. We denote by C a generic positive constant, which may vary from line to line.
We start by estimating yj − ỹj . By (v-Lip) and the assumptions on the controls u and g we 

have that

|yj (t) − ỹj (t)| ≤ Lw

tˆ

0

(
W1(μ

M,m
τ ,μm

τ ) +W1(ν
M,m
τ , νm

τ ) + |yj (τ ) − ỹj (τ )|)dτ

≤ Lw

tˆ

0

(
W1(μ

M,m
τ ,μm

τ ) + 2 max
j=1,...,m

|yj (τ ) − ỹj (τ )|)dτ .

Taking the supremum over j and applying Grönwall inequality we get

max
j=1,...,m

|yj (t) − ỹj (t)| ≤ C

tˆ

0

W1(μ
M,m
τ ,μm

τ )dτ . (5.24)

∑

Denoting by μ̃M,m

t := 1
M

M
i=1 δX̃i (t)

, by triangle inequality we obtain
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max
j=1,...,m

|yj (t) − ỹj (t)| ≤ C

( tˆ

0

W1(μ
M,m
τ , μ̃M,m

τ ) +W1(μ̃
M,m
τ ,μm

τ )dτ

)
. (5.25)

In the same way we estimate |Xi(t) − X̃i(t)|:

|Xi(t) − X̃i(t)| ≤ Lv

tˆ

0

(
W1(μ

M,m
τ ,μm

τ ) +W1(ν
M,m
τ , νm

τ ) + |Xi(τ) − X̃i(τ )|)dτ (5.26)

≤ Lv

tˆ

0

(
W1(μ

M,m
τ ,μm

τ ) + max
j=1,...,m

|yj (τ ) − ỹj (τ )| + |Xi(τ) − X̃i(τ )|)dτ .

Combining (5.24) and (5.26) we get that

max
i=1,...,M

|Xi(t) − X̃i(t)| ≤ C

tˆ

0

(
W1(μ

M,m
τ ,μm

τ ) +
τˆ

0

W1(μ
M,m
s ,μm

s )ds

+ max
i=1,...,M

|Xi(τ) − X̃i(τ )|
)

dτ

≤ C

tˆ

0

(
W1(μ

M,m
τ ,μm

τ ) + max
i=1,...,M

|Xi(τ) − X̃i(τ )|)dτ .

By Grönwall inequality and by the triangle inequality we deduce that

max
i=1,...,M

|Xi(t) − X̃i(t)| ≤ C

tˆ

0

W1(μ
M,m
τ ,μm

τ )dτ (5.27)

≤ C

tˆ

0

(W1(μ
M,m
τ , μ̃M,m

τ ) +W1(μ̃
M,m
τ ,μm

τ ))dτ .

Integrating (5.27) over �, by definition of μ
M,m
t and of μ̃

M,m
t and by Grönwall inequality we 

infer that

E
(
W1(μ

M,m
t , μ̃

M,m
t )

)
≤ C

tˆ

0

E
(
W1(μ̃

M,m
τ ,μm

τ )
)

dτ . (5.28)

In view of Proposition 5.5, we have that X̃i are i.i.d. with μm = Law(X̃i) for i = 1, . . . , M . 
Hence, by Theorem 2.1 we have that

E
(
W (μ̃

M,m
,μm)

)
≤ C m (μm) for t ∈ [0, T ] , (5.29)
1 t t M p
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for some positive constant CM independent of m and t and such that CM → 0 as M → ∞. In 
view of Proposition 5.3 and of Remark 5.4, we have that mp(μm) is bounded in terms of mp(μ0)

and of mq(νm
0 ). Hence, by (5.28) and (5.29) we have that for t ∈ [0, T ]

E
(
W1(μ

M,m
t , μ̃

M,m
t )

)
+E

(
W1(μ̃

M,m
t ,μm

t )
)

≤ C′(μ0, ν
m
0 ,M) → 0 as M → ∞ . (5.30)

Combining (5.25), (5.27), and (5.30), we conclude (5.22).
As for (5.23), by the uniform continuity of L we deduce that there exists a concave modulus 

of continuity ωL such that

E

( T̂

0

(
L(μ

M,m
t , ν

M,m
t ) −L(μm

t , νm
t )

)
dt

)
(5.31)

≤ E

( T̂

0

ωL
(
W1(μ

M,m
t ,μm

t ) +W1(ν
M,m
t , νm

t )
)

dt

)

≤
T̂

0

ωL

(
E

(
W1(μ

M,m
t ,μm

t ) +W1(ν
M,m
t , νm

t )
))

.

Let us further denote by ωφ a concave modulus of continuity of φ on K ×[−�, �]. Since each g

is �-Lipschitz continuous, we have that

E

( T̂

0

1

m

m∑
j=1

(
φ(uj (t), g(μ

M,m
t )) − φ(uj (t), g(μm

t ))
)

dt

)
(5.32)

≤ E

( T̂

0

1

m

m∑
j=1

ωφ

(|g(μ
M,m
t ) − g(μm

t )|)dt

)
≤ E

( T̂

0

1

m

m∑
j=1

ωφ

(
�W1(μ

M,m
t ,μm

t )
)

dt

)

≤
T̂

0

ωφ

(
�E

(
W1(μ

M,m
t ,μm

t )
))

dt .

We conclude for (5.23) by combining (5.22), (5.31), and (5.32).
Finally, we notice that if (5.21) is satisfied, then the constant C′(μ0, ν

m
0 , M) in (5.30) can 

be made independent of m ∈ N . This yields that also the constant C(μ0, ν
m
0 , M) can be taken 

independent of m. �
Since in Section 6 we are interested in working with i.i.d. initial conditions {X0,i}Mi=1, in view 

of Proposition 5.5 and of Theorem 5.7 we consider from now on the optimal control problem{
1 m

}

min E(X,y,u, g) : (u, g) ∈ L ([0, T ];K ) × G, (X,y) solves (5.18) , (5.33)
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with a single initial condition X0 ∈ Lp(�; Rd). For (X, y) solution to (5.18), we recall the nota-
tion μm = Law(X), μm

t = (evt )#μ
m, νm

t = 1
m

∑
δyj (t), μ0 = Law(X0), and νm

0 = 1
m

∑
δy0,j

.
The well posedness of (5.33) only comes at the expenses of slight modifications to the proof 

of Proposition 5.1 and Lemma 5.2, since now μm
t are no longer defined as empirical measures. 

We report the statements and a sketch of the proof.

Lemma 5.9. Let m ∈N , (X0, y0) ∈ Lp(�; Rd) × (Rd)m, (uk, gk), (u, g) ∈ L1([0, T ]; Km) ×G, 
and (Xk, yk), (X, y) be the corresponding solutions to (5.18). Assume that uk ⇀ u weakly∗ in 
L∞([0, T ]; K) and that gk → g locally uniformly in C(P1(Rd)). Then,

lim
k→∞ E

(
max

t∈[0,T ] |X
k(t) − X(t)| + max

j=1,...,m,
t∈[0,T ]

|yk
j (t) − yj (t)|

)
= 0 . (5.34)

Proof. We proceed following the lines of Lemma 5.2. Here, we denote by C a positive constant 
independent of m, which may vary from line to line. Since m ∈ N is fixed, we drop it in the 
notation of the measures μk , μ, νk , and ν. Arguing as in (5.7), we deduce that

max
j=1,...,m

|yk
j (t) − yj (t)| ≤ C

( tˆ

0

W1(μ
k
τ ,μτ )dτ +

m∑
j=1

Rk
j (t)

)
, (5.35)

where Rk
j is defined in (5.6).

By (v-Lip) and by (5.35) we have that

|Xk(t) − X(t)| ≤ Lv

tˆ

0

(
W1(μ

k
τ ,μτ ) +W1(ν

k
τ , ντ ) + |Xk(τ) − X(τ)|)dτ

≤ Lv

tˆ

0

(
W1(μ

k
τ ,μτ ) + max

j=1,...,m
|yk

j (τ ) − yj (τ )| + |Xk(τ) − X(τ)|)dτ

≤ C

tˆ

0

(
W1(μ

k
τ ,μτ ) +

m∑
j=1

Rk
j (τ ) + |Xk(τ) − X(τ)|

)
dτ .

By Grönwall inequality we infer that

|Xk(t) − X(t)| ≤ C

tˆ

0

(
W1(μ

k
τ ,μτ ) +

m∑
j=1

Rk
j (τ )

)
dτ . (5.36)

Integrating (5.36) over � we get, by definition of μk
t and of μt ,

W1(μ
k
t ,μt ) ≤ E

(|Xk(t) − X(t)|) ≤ C

( tˆ
W1(μ

k
τ ,μτ )dτ +E

( m∑ tˆ
Rk

j (τ )dτ

))
.

0 j=1 0
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Hence, by Grönwall inequality we deduce that

W1(μ
k
t ,μt ) ≤ CE

( m∑
j=1

tˆ

0

Rk
j (τ )dτ

)
. (5.37)

Arguing as in (5.11), we can show that the right-hand side of (5.37) tends to 0 as k → ∞ uni-
formly in [0, T ], so that

lim
k→∞ max

t∈[0,T ] W1(μ
k
t ,μt ) = 0 . (5.38)

Taking the maximum of (5.35) and (5.36) over t ∈ [0, T ], integrating over �, and summing up 
yield

E

(
max

t∈[0,T ] |Xk(t) − X(t)| + max
j=1,...,m,
t∈[0,T ]

|yk
j (t) − yj (t)|

)

≤ C max
t∈[0,T ] W1(μ

k
t ,μt ) +

m∑
j=1

T̂

0

Rk
j (t)dt .

Hence, passing to the limit as k → ∞ and recalling (5.38) we get (5.34). �
Proposition 5.10. Let m ∈ N , (X0, y0) ∈ Lp(�; Rd) × (Rd)m. Then there exists a solution to 
the minimum problem (5.33).

Proof. The proof follows the argument of Proposition 5.1, simply replacing the use of 
Lemma 5.2 with Lemma 5.9. �
6. Mean-field optimal control

This section is devoted to the study of the relation between the finite-particle control prob-
lems (5.3) and (5.33) and the mean-field control problem (4.5). In particular, we aim at showing 
that (4.5) is the mean-field limit of (5.3) and (5.33). This is the content of our main result, The-
orem 6.1 below. We point out that the theorem is stated only in terms of the cost functionals E

and E, since the propagation of chaos result in Theorem 5.7 already guarantees a �-convergence 
type of relation between (5.3) and (5.33).

We briefly recall some notation. Given the initial conditions (X0, ym
0 ) ∈ Lp(�; Rd) × (Rd)m

and the controls (um, gm) ∈ L1([0, T ]; Km) × G, to the solution (Xm, ym) to the corresponding 
system (5.18) we associate the measures μm = Law(Xm), μm

t = (evt )#μ
m, νm

t = 1
m

∑
δym

j (t), 
and

ζm := 1

m

m∑
j=1

um
j (t)gm(μm

t )δym
j (t) ⊗ dL1 [0, T ] ∈ Mb([0, T ] ×Rd;Rd) . (6.1)

∑

We further define νm

0 := 1
m

m
j=1 δym

0,j
.
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Theorem 6.1. Let q ∈ (1, +∞] and let μ0 ∈ P2(Rd) be such that μ0 = ρ0 dx = Law(X0) for 
some ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). Then the following facts hold:

�-liminf: for every sequence (um, gm, ym
0 ) ∈ L1([0, T ]; Km) × G × (Rd)m such that

sup
m∈N

mq(νm
0 ) < +∞ , (6.2)

let (Xm, ym) ∈ M(�; C([0, T ]; Rd)) × C([0, T ]; (Rd)m) be the solution to (5.18) with con-
trols (um, gm) and initial conditions (X0, ym

0 ). Then there exist ν0 ∈ Pq(Rd) and (μ, ν, ζ, g) ∈
S(μ0, ν0) such that, up to a not relabeled subsequence, νm

0 → ν0 narrow in P(Rd), μm → μ and 
νm → ν in C([0, T ]; P1(Rd)), gm → g locally uniformly in C(P1(Rd)), and ζm → ζ weakly∗
in Mb([0, T ] ×Rd ; Rd), as m → ∞. Moreover,

E(μ,ν, ζ, g) ≤ lim inf
m→∞ E(X,ym,um,gm) . (6.3)

�-limsup: for every ν0 ∈ Pq(Rd), every (μ, ν, ζ, g) ∈ S(μ0, ν0), and every sequence of 
initial data ym

0 ∈ (Rd)m such that W1(ν
m
0 , ν0) → 0, there exists a sequence (um, gm) ∈

L1([0, T ]; Km) ×G with corresponding solutions (Xm, ym) to (5.18) such that μm → μ, νm → ν

in C([0, T ]; P1(Rd)), ζm → ζ weakly∗ in Mb([0, T ] ×Rd ; Rd), and

E(μ,ν, ζ, g) ≥ lim sup
m→∞

E(Xm,ym,um,gm) . (6.4)

For the proof of the theorem, we need some preparatory work. We start from the following 
lemma.

Lemma 6.2. Let m ∈N , let (u, g) ∈ L1([0, T ]; Km) ×G, let X0 ∈ Lp(�; Rd) and ym
0 ∈ (Rd)m, 

and let (X, ym) ∈ M(�; C([0, T ]; Rd)) ×C([0, T ]; (Rd)m) be the solution to (5.18) with initial 
condition (X0, ym

0 ) and controls (u, g). Let us further set

θm
t

:= 1

m

m∑
j=1

ui(t)δyj (t) , θm := θm
t ⊗L1 [0, T ] . (6.5)

If, for j = 1, . . . , m, we have

uj (t) = 0 whenever g(μm
t ) = 0, (6.6)

then for a.e. t ∈ [0, T ] it holds

1

m

m∑
j=1

φ(uj (t), g(μm
t )) =

ˆ

Rd

φ

(
dθm

t

dνm
t

(y), g(μm
t )

)
dνm

t (y) . (6.7)

Proof. The proof of (6.7) can be obtained by combining the proof of [37, Lemma 6.2] with the 
proof of [1, Lemma 1, formula (38)]. The only difference is that the map (t, u) 	→ φ(u, g(μm

t ))
is non-autonomous, as it explicitly depends on time. However, the argument of [37, Lemma 6.2]
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does not change, as it works for fixed time t ∈ [0, T ]. Also notice that, to conclude the argu-
ment, one needs that ui(t) = uj (t) whenever ẏi (t) = ẏj (t) and yi(t) = yj (t). This is granted 
by (6.6). �

In the construction of a recovery sequence we will use the following lemma.

Lemma 6.3. Let μ, ν ∈ C([0, T ]; P1(Rd)), f ∈ L1
ν([0, T ] × Rd ; K), and g ∈ G, be such that 

f (t, ·) = 0 if g(μt ) = 0, and let us set

� :={
γ ∈ C([0, T ];Rd) : γ̇ (t) = wμt ,νt (γ (t)) + f (t, γ (t))g(μt ), γ (0) ∈ spt(ν0)

}
,

(6.8)

F(γ ) :=
T̂

0

φ(f (t, γ (t)), g(μt ))dt γ ∈ C([0, T ];Rd). (6.9)

Then F is lower semicontinuous on � with respect to the convergence in C([0, T ]; Rd). More-
over, if γj , γ ∈ � are such that γj → γ in C([0, T ]; Rd) and F(γj ) → F(γ ), then f (·, γj (·)) →
f (·, γ (·)) in Lp([0, T ]; Rd) for every p < +∞.

Proof. Let γj , γ ∈ � be such that γj → γ with respect to the convergence in C([0, T ]; Rd). 
Since f takes values in the compact set K we immediately deduce that f (·, γj (·)) is bounded 
in L∞([0, T ]; Rd), and therefore converges weakly∗, up to a subsequence, to some h ∈
L∞([0, T ]; Rd) and, by convexity of φ̃(t, ·) = φ(·, g(μt )),

T̂

0

φ(h(t), g(μt ))dt ≤ lim inf
j→∞ F(γj ) .

Since γj ∈ � for every j ∈N , for s < t ∈ [0, T ] we can write

γj (t) − γj (s) =
tˆ

s

(
wμτ ,ντ (γj (τ )) + f (τ, γj (τ ))g(μτ )

)
dτ .

By (v-Lip), passing to the limit as j → ∞ in the previous equality we get that

γ (t) − γ (s) =
tˆ

s

(
wμτ ,ντ (γ (τ )) + h(τ)g(μτ )

)
dτ .

Since γ ∈ � we have that

γ (t) − γ (s) =
tˆ (

wμτ ,ντ (γ (τ )) + f (τ, γ (τ ))g(μτ )
)

dτ ,
s
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which implies, by the arbitrariness of s and t , that h(τ)g(μτ ) = f (τ, γ (τ))g(μτ ) for a.e. τ ∈
[0, T ]. Hence, h(t) = f (t, γ (t)) for a.e. t ∈ {s ∈ [0, T ] : g(μs) �= 0}, while f (t, γ (t)) = 0 for 
t ∈ {s ∈ [0, T ] : g(μs) = 0}. Since φ ≥ 0 and φ(0, r) = 0 for every r ∈ R, we finally obtain

F(γ ) ≤
T̂

0

φ(h(t), g(μt ))dt ≤ lim inf
j→∞ F(γj ) .

Since φ(·, r) is superlinear uniformly with respect to r ∈ R, the convergence F(γj ) → F(γ )

implies that f (·, γj (·)) → f (·, γ (·)) as j → ∞ in L1([0, T ]; Rd), and hence in Lp([0, T ]; Rd)

for every p < +∞ by dominated convergence. �
We are in a position to prove Theorem 6.1.

Proof of Theorem 6.1. We divide the proof into two steps.

�-liminf: We may assume that the liminf in (6.3) is a limit and is finite, otherwise there is nothing 
to show. Noticing that νm solves

{
∂tν

m
t + div(wμm

t ,νm
t
νm
t + ζm

t ) = 0 ,

νm
0 = νm

0 ,

Theorem 3.5 implies that we have that (μm, νm, ζm, gm) ∈ S(μ0, ν
m
0 ) for every m ∈ N . Thanks 

to Lemma 6.2 we have that

E(μm,νm, ζm,gm) =
T̂

0

L(μm
t , νm

t )dt + �(ζm, νm) (6.10)

≤
T̂

0

L(μm
t , νm

t )dt +
T̂

0

ˆ

Rd

φ

(
dθm

t

dνm
t

(y), gm(μm
t )

)
dνm

t (y)dt

= E(Xm,ym,um,gm) ,

where we have set

θm
t := 1

m

m∑
j=1

um
j (t)δym

j (t) θm := θm
t ⊗L1 [0, T ] .

Hence, by Lemma 4.5 there exists (μ, ν, ζ, g) ∈ S(μ0, ν0) such that, up to a subsequence, μm →
μ and νm → ν in C([0, T ]; P1(Rd)), ζm → ζ weakly∗ in Mb([0, T ] × Rd; Rd), and gm → g
locally uniformly in C(P1(Rd)).
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Since ζm = gm(μm
t )θm, we deduce from (6.10) and from the definition of � in (4.4) that

�(ζm, νm) ≤ 1

m

m∑
j=1

T̂

0

φ(um
j (t), gm(μm

t )) . (6.11)

Hence, Lemma 4.5 and (6.11) yield that

�(ζ, ν) ≤ lim inf
m→∞ �(ζm, νm) ≤ lim inf

m→∞
1

m

m∑
j=1

T̂

0

φ(um
j (t), gm(μm

t )) . (6.12)

From the continuity of the Lagrangian cost and from (6.12) we deduce (6.3).

�-limsup: From now on, we denote by C any positive constant independent of m, which may 
vary from line to line.

Let (μ, ν, ζ, g) ∈ S(μ0, ν0) and let f ∈ L1
ν([0, T ] ×Rd; K) be such that ζ = fg(μt )ν and

�(ζ, ν) =
ˆ

[0,T ]×Rd

φ(f (t, y), g(μt ))dν(t, y) .

Since φ(0, ξ) = 0 for every ξ ∈ R (see (φ2)), we may assume that f (t, ·) = 0 whenever g(μt ) =
0. We recall that ν solves the continuity equation

{
∂tνt + div

(
(wμt ,νt + f (t, ·)g(μt ))νt

) = 0

ν0 = ν0 ,
(6.13)

while, by Theorem 3.5, we can write μt = (evt )#μ with μ = Law(X) and X ∈ M(�; C([0, T ];
Rd)) being the unique solution to

{
dX(t) = vμt ,νt (X(t))dt + √

2σ dW(t) ,

X(0) = X0 .
(6.14)

Since ν0 ∈ Pq(Rd), by Lemma 4.4 there exists R = R(μ0, ν0, �, �, T , K) > 0 such that

max
t∈[0,T ] m2(μt ) + mq(νt ) ≤ R .

This, together with the boundedness of g and of f , allows us to apply the superposition princi-
ple [6, Section 8.2] to the continuity equation (6.13). Hence, defining � as in (6.8) and setting 
for brevity � := C([0, T ]; Rd), there exists η ∈ P(�) supported on � such that νt = (evt )#η for 

every t ∈ [0, T ]. We further define F : � → [0, +∞) as in (6.9). In particular, we notice that
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ˆ

�

F(γ )dη(γ ) =
ˆ

�

T̂

0

φ(f (t, γ (t)), g(μt ))dt dη(γ ) (6.15)

=
T̂

0

ˆ

�

φ(f (t, evt (γ )), g(μt ))dη(γ )dt

=
T̂

0

ˆ

Rd

φ(f (t, y), g(μt ))dνt (y)dt = �(ζ, ν) .

By Lemma 6.3 we have that F is lower-semicontinuous in �. By Lusin approximation, we find 
an increasing sequence of compact subsets �k � �k+1 � � such that F is continuous on �k for 
every k ∈N and η(� \ �k) → 0 as k → ∞. We set

ηk := 1

η(�k)
η �k ∈P(�) ,

which satisfies

lim
k→∞ W1(ηk,η) = 0 and lim

k→∞

ˆ

�

F(γ )dηk(γ ) =
ˆ

�

F(γ )dη(γ ) . (6.16)

Given an at most countable set D = {ϕ�}�∈N dense in Cc([0, T ] ×Rd; Rd), reasoning as in [1, 
formulas (52)–(56)] we can construct a strictly increasing sequence n(k) ∈ N and {ηn

k}n ∈ P(�)

such that ηn
k = 1

n

∑n
j=1 δ

γ
j
k

for suitable yj
k ∈ � and for every k and every n ≥ n(k) it holds

W1(η
n
k ,ηk) ≤ 1

k
, (6.17)

∣∣∣∣ˆ
�

F(γ )dηn
k(γ ) −

ˆ

�

F(γ )dηk(γ )

∣∣∣∣ ≤ 1

k
, (6.18)

∣∣∣∣ˆ
�

T̂

0

ϕ�(t, γ (t)) · f (t, γ (t))g(μt )dt d(ηn
k − ηk)

∣∣∣∣ ≤ 1

k
for � ≤ k . (6.19)

Then, for every m ∈ [n(k), n(k + 1)) we set ηm := ηm
k . From (6.15)–(6.18) it follows that

lim
m→∞ W1(η

m,η) = 0 , (6.20)

lim
m→∞

ˆ
F(γ )dηm(γ ) = �(ζ, ν) . (6.21)
�
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We now construct the controls (um, gm) ∈ L1([0, T ]; Km) × G. First, we simply set gm :=
g for every m. We introduce the auxiliary curves of measures λm

t := (evt )#η
m for t ∈ [0, T ]

and denote by zm = (zm
1 , . . . , zm

m) ∈ � the curves on which ηm is concentrated, so that λm
t =

1
m

∑
j δzm

j (t). Then, we set um
j (t) := f (t, zm

j (t)). In particular, we notice that zm
j solves

żm
j (t) = wμt ,νt (z

m
j (t)) + um

j (t)g(μt ) , (6.22)

with initial condition zm
j (0) ∈ spt(ν0). Hence, we have to modify zm and X since the ODEs (6.22)

and the SDE (6.14) still account for the limit curves μ and ν. For later convenience, we further 
notice that, by construction of λm and by (6.20), we have that

lim
m→∞ W1(λ

m
t , νt ) = 0 uniformly in [0, T ]. (6.23)

Moreover, setting αm := 1
m

∑m
j=1 um

j (t)g(μt )δzm
j (t) ⊗L1 [0, T ], it holds

αm −→ ζ weakly∗ in Mb([0, T ] ×Rd ;Rd). (6.24)

Indeed, for every ϕ ∈ Cc([0, T ] ×Rd; Rd) and every ε > 0, we fix � ∈N such that ‖ϕ −ϕ�‖∞ ≤
ε. Then, by a direct computation and by definition of αm and of ηm we have that

∣∣∣∣
T̂

0

ˆ

Rd

ϕ(t, y)d(αm − ζ )(t, y)

∣∣∣∣
≤

T̂

0

ˆ

Rd

|ϕ(t, y) − ϕ�(t, y)|d|αm − ζ |(t, y) +
∣∣∣∣

T̂

0

ˆ

Rd

ϕ�(t, y)d(αm − ζ )(t, y)

∣∣∣∣
≤ Cε +

∣∣∣∣ 1

m

m∑
j=1

T̂

0

ϕ�(t, z
m
j (t)) · f (t, zm

j (t))g(μt )dt −
T̂

0

ˆ

Rd

ϕ�(t, y)f (t, y)g(μt )dνt (y)dt

∣∣∣∣
= Cε +

∣∣∣∣
T̂

0

ˆ

Rd

ϕ�(t, y) · f (t, y)g(μt )dλm
t (y)dt −

T̂

0

ˆ

Rd

ϕ�(t, y) · f (t, y)g(μt )dνt (y)dt

∣∣∣∣
= Cε +

∣∣∣∣ˆ
�

T̂

0

ϕ�(t, γ (t)) · f (t, γ (t))g(μt )dt dηm(γ ) −
ˆ

�

T̂

0

ϕ�(t, γ (t)) · f (t, γ (t))g(μt )dt dη(γ )

∣∣∣∣.

(6.25)

For m ∈ [n(k), n(k + 1)) we recall the definition ηm = η
n(k)
k and continue in (6.25) by triangle 

inequality with

∣∣∣∣
T̂

0

ˆ

Rd

ϕ(t, y)d(αm − ζ )(t, y)

∣∣∣∣ (6.26)

= Cε +
∣∣∣∣ˆ

T̂

ϕ�(t, γ (t)) · f (t, γ (t))g(μt )dt d(η
n(k)
k − ηk)(γ )
� 0
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+
ˆ

�

T̂

0

ϕ�(t, γ (t)) · f (t, γ (t))g(μt )dt d(ηk − η)(γ )

∣∣∣∣
≤ Cε + 1

k
+

∣∣∣∣ˆ
�

T̂

0

ϕ�(t, γ (t)) · f (t, γ (t))g(μt )dt d(ηk − η)(γ )

∣∣∣∣ ,
where, in the last inequality, we have used (6.19). Passing to the limit in (6.26) as k → ∞ we 
deduce (6.24) from the arbitrariness of ε.

Since the cost functional E in (5.19) is invariant under permutations of controls and trajecto-
ries, we may assume that

W1(ν
m
0 , λm

0 ) = 1

m

m∑
j=1

|ym
0,j − zm

j (0)| . (6.27)

We define (Xm, ym) ∈ M(�; C([0, T ]; Rd)) ×C([0, T ]; (Rd)m) as the unique solution to (5.18)
with controls (um, gm) and initial data (X0, ym

0 ). We finally recall the definition of ζm in (6.1).
We claim that (Xm, ym, um, gm) is a recovery sequence for (μ, ν, ζ, g). To this purpose, we 

first show the convergences

lim
m→∞ W1(ν

m
t , νt ) = 0 uniformly in [0, T ], (6.28)

lim
m→∞ W1(μ

m
t ,μt ) = 0 uniformly in [0, T ], (6.29)

ζm −→ ζ weakly∗ in Mb([0, T ] ×Rd;Rd). (6.30)

In view of (6.23), we notice that to conclude for (6.28) it is enough to prove that

lim
m→∞ W1(λ

m
t , νm

t ) = 0 uniformly in [0, T ]. (6.31)

We start by estimating the distance between the single trajectories ym
j and zm

j . By (v-Lip), by the 
definition of G, and by triangle inequality we have that

|ym
j (t) − zm

j (t)| ≤ |ym
0,j − zm

j (0)| +
tˆ

0

|wμm
τ ,νm

τ
(ym

j (τ )) − wμτ ,ντ (z
m
j (τ ))|dτ (6.32)

+
τˆ

0

|um
j (τ )| |g(μm

τ ) − g(μτ )|dτ

≤ |ym
0,j − zm

j (0)| + C

tˆ (
W1(μ

m
τ ,μτ ) +W1(ν

m
τ , ντ ) + |ym

j (τ ) − zm
j (τ )|

)
dτ
0
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≤ |ym
0,j − zm

j (0)| + C

tˆ

0

(
W1(μ

m
τ ,μτ ) +W1(λ

m
τ , ντ )

+W1(ν
m
τ , λm

τ ) + |ym
j (τ ) − zm

j (τ )|
)

dτ

≤ |ym
0,j − zm

j (0)| + C

tˆ

0

(
W1(μ

m
τ ,μτ ) +W1(λ

m
τ , ντ )

+ 1

m

m∑
�=1

|ym
� (τ ) − zm

� (τ )| + |ym
j (τ ) − zm

j (τ )|
)

dτ .

Summing up over j = 1, . . . , m and applying Grönwall inequality we deduce from (6.32) that

W1(ν
m
t , λm

t ) ≤ 1

m

m∑
j=1

|ym
j (t) − zm

j (t)| (6.33)

≤ C

(
W1(ν

m
0 , λm

0 ) +
tˆ

0

(
W1(μ

m
τ ,μτ ) +W1(λ

m
τ , ντ )

)
dτ

)

≤ C

(
W1(ν

m
0 , λm

0 ) +
tˆ

0

(
E(|Xm(τ) − X(τ)|) +W1(λ

m
τ , ντ )

)
dτ

)
,

where, in the last inequality, we have used (2.3) together with the equalities μm = Law(Xm)

and μ = Law(X). By Proposition 3.3 (see (3.16)), we may further estimate for every t ∈ [0, T ]

E(|Xm(t) − X(t)|) ≤ C

tˆ

0

W1(ν
m
τ , ντ )dτ

≤ C

tˆ

0

(
W1(ν

m
τ , λm

τ ) +W1(λ
m
τ , ντ )

)
dτ . (6.34)

Combining (6.33) and (6.34) we get

W1(ν
m
t , λm

t ) ≤ 1

m

m∑
j=1

|ym
j (t) − zm

j (t)| (6.35)

≤ C

(
W1(ν

m
0 , λm

0 ) +
tˆ

0

(
W1(ν

m
τ , λm

τ ) +W1(λ
m
τ , ντ )

)
dτ

)
.

Relying once again on Grönwall inequality, we infer from (6.35) that
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W1(ν
m
t , λm

t ) ≤ C

(
W1(ν

m
0 , λm

0 ) +
tˆ

0

W1(λ
m
τ , ντ )dτ

)
. (6.36)

Since (6.23) holds, inequality (6.36) yields (6.31) and thus (6.28). Finally, (6.28) and (6.34)
imply (6.29). We further notice that combining (6.28), (6.32), and (6.35), we deduce the auxiliary 
uniform limit

lim
m→∞

1

m

m∑
j=1

|ym
j (t) − zm

j (t)| = 0 uniformly in [0, T ]. (6.37)

We now show that

ζm − αm −→ 0 weakly∗ in Mb([0, T ] ×Rd;Rd). (6.38)

We notice that (6.38), together with (6.24), implies (6.30). For every ϕ ∈ Cc([0, T ] × Rd; Rd), 
using the definition of ζm, of αm, and of the controls um, we have that,

∣∣∣∣
T̂

0

ˆ

Rd

ϕ(t, y)dζm(t, y) −
T̂

0

ˆ

Rd

ϕ(t, y)dαm(t, y)

∣∣∣∣ (6.39)

=
∣∣∣∣ 1

m

m∑
j=1

T̂

0

(
ϕ(t, ym

j (t))g(μm
t ) − ϕ(t, zm

j (t))g(μt )
)
f (t, zm

j (t))dt

∣∣∣∣
≤ 1

m

m∑
j=1

T̂

0

∣∣ϕ(t, ym
j (t)) − ϕ(t, zm

j (t))
∣∣ · ∣∣g(μm

t )f (t, zm
j (t))

∣∣dt

+ 1

m

m∑
j=1

T̂

0

∣∣g(μm
t ) − g(μt )

∣∣ · ∣∣ϕ(t, zm
j (t))f (t, zm

j (t))
∣∣dt .

Relying on the �-Lipschitz continuity of g, on the boundedness of f , and on the uniform conti-
nuity of ϕ, we can continue in (6.39) with

∣∣∣∣
T̂

0

ˆ

Rd

ϕ(t, y)dζm(t, y) −
T̂

0

ˆ

Rd

ϕ(t, y)dαm(t, y)

∣∣∣∣ (6.40)

≤ C

m∑
j=1

1

m

T̂

0

ωϕ

(|ym
j (t) − zm

j (t)|)dt + C‖ϕ‖∞
T̂

0

W1(μ
m
t ,μt )dt

≤ C

T̂

ωϕ

(
1

m

m∑
|ym

j (t) − zm
j (t)|

)
dt + C‖ϕ‖∞

T̂

W1(μ
m
t ,μt )dt ,
0 j=1 0
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where ωϕ denotes a concave modulus of continuity of ϕ. By (6.29) and (6.37), we can pass to 
the limit as m → ∞ in (6.39) and deduce (6.38).

We are left to show that (6.4) holds. In view of (6.28) and (6.29) and of the continuity of the 
Lagrangian cost, we have that

lim
m→∞

T̂

0

L(μm
t , νm

t )dt =
T̂

0

L(μt , νt )dt. (6.41)

As for the control part of the cost E, denoting by ωφ a modulus of continuity of φ on K ×
[−�, �] and recalling that g is �-Lipschitz continuous, we estimate

1

m

m∑
j=1

T̂

0

φ(um
j (t), g(μm

t ))dt ≤ 1

m

m∑
j=1

T̂

0

φ(um
j (t), g(μt ))dt +

T̂

0

ωφ

(
�W1(μ

m
t ,μt )

)
dt .

(6.42)

By definition of the controls um
j (t) and of the measures λm

t and ηm, we may continue in (6.42)
with

1

m

m∑
j=1

T̂

0

φ(um
j (t), g(μm

t ))dt (6.43)

≤ 1

m

m∑
j=1

T̂

0

φ(f (t, zm
j (t)), g(μt ))dt +

T̂

0

ωφ

(
�W1(μ

m
t ,μt )

)
dt

=
T̂

0

ˆ

Rd

φ(f (t, y), g(μt ))dλm
t (y)dt +

T̂

0

ωφ

(
�W1(μ

m
t ,μt )

)
dt

=
ˆ

�

T̂

0

φ(f (t, γ ), g(μt ))dt dηm(γ ) +
T̂

0

ωφ

(
�W1(μ

m
t ,μt )

)
dt

=
ˆ

�

F(γ )dηm(γ ) +
T̂

0

ωφ

(
�W1(μ

m
t ,μt )

)
dt .

Thanks to (6.21), to (6.28), and to the choice gm = g, we pass to the limsup in (6.43) and infer 
that

lim sup
m→∞

1

m

m∑
j=1

T̂

0

φ(um
j (t), gm(μm

t ))dt ≤ �(ζ, ν) . (6.44)
Combining (6.41) and (6.44) we infer (6.4). This concludes the proof of the theorem. �
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As a consequence of Theorem 6.1 we have the following results on the convergence of minima 
and minimizers of the control problems (4.5) and (5.33).

Corollary 6.4. Let q ∈ (1, +∞], ν0 ∈ Pq(Rd), and μ0 ∈ P2(Rd) be such that μ0 = ρ0 dx =
Law(X0) for some ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). For m ∈ N , 
let ym

0 ∈ (Rd)m be such that (6.2) is satisfied and νm
0 → ν0 narrow in P(Rd). Then, for every 

sequence (Xm, ym, um, gm) ∈ M(�; C([0, T ]; Rd)) × C([0, T ]; (Rd)m) × L1([0, T ]; Km) × G
of solutions to (5.33), there exists (μ, ν, ζ, g) ∈ S(μ0, ν0) solution to (4.5) such that, up to a 
subsequence, μm → μ and νm → ν in C([0, T ]; P1(Rd)), ζm → ζ weakly∗ in Mb([0, T ] ×
Rd; Rd), gm → g locally uniformly in C(P1(Rd)), and

E(μ,ν, ζ, g) = lim
m→∞ E(Xm,ym,um,gm) .

Proof. The thesis follows by standard arguments of �-convergence, invoking the compactness 
and convergence results of Theorem 6.1. �
Corollary 6.5. Let q ∈ (1, +∞], ν0 ∈ Pq(Rd), and μ0 ∈ P2(Rd) be such that μ0 = ρ0 dx =
Law(X0) for some ρ0 ∈ L1(Rd) with finite entropy and some X0 ∈ L2(�; Rd). For m ∈ N , let 
ym

0 ∈ (Rd)m be such that (6.2) is satisfied and νm
0 → ν0 narrow in P(Rd). Then

min
{
E(μ,ν, ζ, g) : (μ, ν, ζ, g) ∈ S(μ0, ν0)}

= lim
m→∞ min

{
E(X,y,u, g) : (u, g) ∈ L1([0, T ];Km) × G, (X,y) solves (5.18)

}
.

Proof. The proof is an immediate consequence of Corollary 6.4. �
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