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On the role of modelling uncertainty in optimal control and performance assessment of wave
energy conversion systems

Nicolás Faedo and Maria Luisa Celesti
Marine Offshore Renewable Energy Lab, Politecnico di Torino, Turin, Italy

ABSTRACT

Modelling uncertainty can play a fundamental role in optimal
control design for wave energy converters (WECs), with poten-
tially drastic results predicted within the literature, if not consid-
ered and incorporated into the synthesis procedure appropriately.
Most of these hypothesised situations, nonetheless, are conducted
on the basis of modelling uncertainty generated synthetically, e.g.
by assuming numerically produced parameter/system variations,
precluding a realistic assessment of the effect of uncertainty aris-
ing from actual experimental conditions. To fill this gap, within
this paper, modelling and uncertainty characterisation are per-
formed fully based on experimental data, with tests designed
specifically to extract information on the response of a proto-
type WEC system under different operating conditions. With
the computed family of models, the energy-maximising control
problem is solved by leveraging so-called moment-based theory,
in both nominal and robust control frameworks.

KEY WORDS: Wave energy, Robust control, Uncertainty

INTRODUCTION

While effectively representing a vast renewable resource, ocean
wave energy is yet largely untapped: Technology convergence has
not yet been achieved, with thousands of patents proposed in the
last decades, ostensibly due to the substantial variability between
operating conditions in different sites among the globe (Clément
et al., 2002). In other words, mostly in line with wave condi-
tions, certain wave energy converter (WEC) concepts might be
deemed more suitable, making the transition towards standardis-
ation a rather difficult task. A fundamental tool, which relatively
quickly became popular to ‘adapt’ WEC systems to diverse sites
and conditions, hence contributing to the pathway towards con-
cept convergence, is the use of appropriate control technology
(Ringwood et al., 2023b). In particular, the core role of control
in wave energy is that of maximising the energy absorbed from
the incoming wave field in a wide variety of wave conditions, while
systematically guaranteeing technological limitations, hence both

maximising the raw profit obtained for any given WEC concept,
and minimising the need for repeated maintenance intervention.
This, consequently, improves the overall cost-efficiency of the con-
verter, minimising the associated levelised cost of energy (LCoE).

Though a recognised key stepping stone, the design and synthe-
sis of control technology for WEC systems is known to be signif-
icantly challenging. Most of the available state-of-the-art tech-
niques, able to both maximise energy conversion and guarantee
constraint satisfaction, are model-based, i.e. they necessitate a
dynamical description of the WEC device under analysis. Even if
a mathematical model is effectively derived, given that the formu-
lation of the control problem itself leads to branches within the
field of optimal control theory, an online optimisation is virtually
always required (see e.g. (Pasta et al., 2023)), which automat-
ically imposes a hard limit in the computational and analytical
complexity of the mathematical model used for control purposes.
As a consequence, the vast majority of the literature is based
on (nominal) linear WEC representations, derived under the as-
sumption of infinitesimally small device motion, i.e. a constant
still water level (SWL), in an effort to compute control solutions
with practical relevance, that is, with real-time capabilities.

This set of assumptions, known as linear potential flow theory
(Korde and Ringwood, 2016), is intrinsically limiting, creating
what is nowadays referred to as the WEC modelling paradox
(Windt et al., 2021): While, within these assumptions, modelling
is performed with the hypothesis of infinitesimally small motion,
the control system itself often tries to exaggerate device displace-
ment to maximise absorbed energy, driving the WEC well be-
yond linearity conditions. This creates an uncertainty ‘cycle’ be-
tween nominal device representation and associated synthesised
controller, shown to lead to drastic scenarios, with even negative
overall power absorption (Bacelli et al., 2015; Faedo et al., 2022a).

In an effort to avoid this, modelling uncertainty can be quantified
and parameterised accordingly, generating an associated family
of WEC models, as opposed to a single (nominal) mathematical
structure (Celesti et al., 2024; Farajvand et al., 2023). Such a set
of systems can be used both for pure performance assessment pur-
poses, for controllers based on a nominal model (as per the vast
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majority of the state-of-the-art), and for design and synthesis of
(more suitable) robust control design techniques. Though rather
scarce and often limited in practical relevance, examples pertain-
ing to the latter can be found in (Faedo et al., 2022b; Garcia-
Violini and Ringwood, 2021; Zhang and Li, 2022). Nonetheless,
up to date, characterisation of uncertainty for control purposes
has been limited to simulation studies, i.e. a family of WEC
models is generated based on synthetic data only, precluding a
realistic assessment of the effect of modelling inaccuracies in con-
trol synthesis and corresponding performance. This would pro-
vide actual confirmation of some of the extreme scenarios found
in simulation for control techniques solely based on nominal WEC
representations, and provide conclusive information on the role
and relevance of uncertainty, even at a preliminary design stage.

To fill this gap, this paper aims to address each fundamental stage
in the overall process: Modelling and uncertainty characterisation
is performed fully based on experimental data, with tests designed
specifically to extract information on the response of a prototype
WEC system under different operating conditions. The chosen
device is a 1:20 scale prototype of the so-called Wavestar system
(Hansen and Kramer, 2011), tested in the wave facilities available
at Aalborg University, Denmark, as part of a larger experimen-
tal campaign (Faedo et al., 2023). With the computed family of
models, the WEC energy-maximising control problem is solved
by leveraging so-called moment-based theory (Faedo and Ring-
wood, 2023), in both nominal and robust control frameworks.
Moment-based control, which has shown to be effective in solv-
ing the WEC control problem efficiently (including experimental
validation for single devices and even array configurations) es-
sentially constitutes a direct optimal control technique, able to
transcribe the energy-maximising infinite-dimensional problem to
a tractable finite-dimensional nonlinear program (NP). Within
this paper, leveraging such a control framework, we provide the
following key outcomes:

• Optimal controllers solely based on nominal WEC represen-
tations can effectively lead to drastic scenarios, with both (a)
suboptimal energy absorption (often even being negative, i.e.
the device drains energy from the grid, as opposed to generat-
ing), and (b) inability to guarantee technological limitations,
potentially leading to increased device fatigue due to inconsis-
tent constraint satisfaction, affecting scheduled maintenance
and reducing the overall lifetime of the device.

• Within a suitable mathematical framework, informing the con-
trol synthesis procedure on the existence of uncertainty, and a
corresponding set of suitably defined bounds, guarantees a con-
sistent energy absorption performance, with systematic con-
straint satisfaction, hence recovering the role of this technology
in reducing the LCoE.

The remainder of this paper is organised as follows. Sec-
tion “Notation” introduces the mathematical notation and a set
of convenient operators, used within the formal treatment of the
problem. Section “Device and uncertainty description” describes
the experimental device considered, including the correspond-
ing set of tests performed within the wave basin facilities, and
a suitable characterisation of uncertainty, leading to a family
of WEC models for the considered prototype. Section “Nomi-
nal and robust control design” introduces the control framework
considered, i.e. moment-based direct transcription, in both nom-
inal and robust scenarios, leveraging the uncertainty sets de-
rived in Section “Device and uncertainty description” , while

Section discusses the core numerical results of this study. Sec-
tion “Conclusions” encompasses the outcomes of this paper.

Notation

R+ denotes the set of non-negative real numbers, while C0 de-
notes the set of pure-imaginary complex numbers. The symbol 0
stands for any zero element, conformable according to the con-
text. The symbol In denotes the identity matrix in Cn×n. The
superscript T denotes the transposition operator. The notation
NN ⊂ N indicates the set of natural numbers up to N , i.e. NN =
{1, 2, . . . , N}. The spectrum of a matrix A ∈ Rn×n, i.e. the set
of its eigenvalues, is denoted by λ(A). Let A represent a set of
square matrices with well-defined dimensions. The direct sum
operator over A is denoted as

⊕
i∈NN Ai = diag(A1, . . . , AN ),

where Ai ∈ A and N = #A . M1 ⊗M2 denotes the Kronecker
product between two matrices M1 and M2. Given two functions
f1 and f2 in L2(I ), I ⊆ R, their canonical inner-product is de-
noted as 〈f1, f2〉I =

∫
I
f1(τ)f2(τ)dτ . The Laplace transform of

f(t) (provided it exists), is denoted with the corresponding cap-
ital letter, i.e. F (s). With some abuse of notation, the Fourier
transform is written as the restriction of F (s) on C0, i.e. F (ω),
where s = σ+ω. Standard notation is used for Hardy spaces, i.e.
H∞ is used for the set of analytic and bounded L∞ functions on
the open right-half complex plane, whileRH∞ is the real rational
subspace of H∞. Let x = [x1, . . . xn]T ∈ Cn. To conclude this
preliminary section, we define the following two useful operators.
The operator R : Cn → R2n, as

R(x) =
[
<(x1) =(x1) . . . <(xn) =(xn)

]T
, (1)

where <(◦) and =(◦) stand for the real and imaginary part of
◦ ∈ C. Note that (1) represents the linear isomorphism Cn ' R2n.
Finally, we define the operator B : Cn → R2n×2n as

B(x) =
⊕
k∈Nn

[
<(xk) =(xk)
−=(xk) <(xk)

]
. (2)

DEVICE AND UNCERTAINTY DESCRIPTION

The device considered for this case study, presented in Figure 1,
is a prototype of the so-called Wavestar WEC system, developed
in-house at Aalborg University, Denmark. In the following, we
provide a brief description of the prototype for completeness, with
emphasis on its configuration and reference point for modelling.
The interested reader is referred to (Faedo et al., 2023) for a full
description of the device and working principle.

The system is composed of a semi-spherical floater, attached to
a corresponding arm, fixed at the reference point (considered for
modelling purposes) described within Figure 1. A linear mo-
tor/generator, sitting on the top part of the structure, acts as a
power take-off (PTO) system, exerting an associated moment u
at the corresponding input point. The prototype is equipped with
suitable instrumentation, able to measure linear and rotational
motion, as well as total force acting on the PTO axis, being able
to derive a measure of the associated wave excitation torque d
for control and simulation purposes, by means of tailored testing
(see (Faedo et al., 2023)). The set of tests, i.e. waves, required
for modelling, uncertainty characterisation, and performance as-
sessment, is fully generated within the wave basin, by means of
a mechanical wavemaker, available at Aalborg facilities.

Following previous theoretical and experimental control devel-
opments in the state-of-the-art literature considering this spe-
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Fig. 1 Wavestar prototype considered for experimental
modelling and characterisation of the corresponding
uncertainty.

cific Wavestar system (see (Ringwood et al., 2023a)), within this
study, the nominal dynamical model describing the WEC proto-
type, with respect to the reference point defined in Figure 1, is
defined in terms of a linear operator G0 ∈ RH∞, s 7→ G0(s),
which characterises the input/output (I/O) relation

Y (s) = G0(s) (D(s)− U(s)) , (3)

where d(t) ∈ R denotes the wave excitation torque acting on the
device, generated by the pressure exerted on the wetted surface of
the WEC as a direct action of the incoming wave field, u(t) ∈ R is
the user-defined PTO (control) torque, and y(t) ∈ R denotes the
device angular velocity, which is set as the main output of the
system, due to its inherent relevance in the associated optimal
control synthesis procedure (see Section “Nominal and robust
control design” ).

To provide a more consistent and complete dynamical represen-
tation for the prototype WEC described in this section, and fol-
lowing the framework pursued in (Celesti et al., 2024), a family of
(uncertain) linear time-invariant (LTI) models is considered, i.e.
the ‘true’ map G : (d− u) 7→ y representing the Wavestar device
is assumed to belong to a family of systems G ⊂ H∞, described
by means of an unstructured uncertainty set

D : {∆ ∈ H∞ | ‖∆‖∞ < 1}. (4)

Considering the definition in (4), and a corresponding additive
uncertainty scheme, the family G can be fully defined as

G : {G ∈ H∞ | G = G0 +W∆∆}, (5)

where W∆ is the weight characterising the additive uncertainty.

Following (Celesti et al., 2024), the experimental characterisation
of the WEC family (5) is performed in terms of a set of Q suitable
input (torque) signals F = {fi(t)}i∈NQ , producing an associated
set of angular velocity outputs Y = {yi(t)}i∈NQ . With these two
sets, a characterisation of the I/O behaviour of the actual WEC
system G can be computed in terms of the so-called empirical
transfer function estimate (ETFE), for each individual I/O test,
i.e.

Ḡi(ω) =
Yi(ω)

Fi(ω)
, i ∈ NQ. (6)

As a matter of fact, the associated set of ETFEs {Ḡi} encodes
information of both the nominal modelG0, and the corresponding
uncertainty weight W∆, required to define the family of systems
G in (5). In particular, the nominal model can be computed in
terms of the average ETFE Ḡ0, defined as

Ḡ0(ω) =
1

Q

∑
i∈NQ

Ḡi(ω). (7)

With the knowledge of (7), a parametric approximation can be
computed leveraging standard frequency-domain system identifi-
cation procedures (see (Ljung, 1999)), i.e.

G0(s) 7→ min
G0∈RH∞

∥∥G0(ω)− Ḡ0(ω)
∥∥2

2
. (8)

where, due to the physical properties of the WEC process, the
identified nominal model G0 is minimal, strictly proper, stable,
and minimum-phase (see e.g. (Faedo et al., 2022c; Scruggs et al.,
2013) for a detailed discussion).

Remark 1. When convenient, the identified (minimal) model G0

is written in terms of its associated state-space representation,
i.e. G0(s) = C0(sI−A0)−1B0 where

ẋ = A0x+B0(d− u), y = C0x, (9)

with x(t) ∈ Rn the state-vector of the nominal WEC system, and
where the triple of matrices (A0, B0, C0) is conformable for (9).

Following the identification of the nominal model as per (8), and
given the nature of the space D, the uncertainty weight W∆ can
be defined by simply leveraging the following condition:

|W∆(ω)| ≥ r∆(ω) = max
i∈NQ

∣∣Ḡi(ω)−G0(ω)
∣∣ , (10)

where the map r∆ denotes the smallest radius including all possi-
ble plants in G. A corresponding parametric description W∆(s),
fulfilling (10), can be performed by exploiting standard filter re-
alisation techniques (see (Ljung, 1999)).

The results of this experimental uncertainty characterisation pro-
cedure, for the Wavestar prototype, are summarised within the
Bode diagram presented in Figure 2. In particular, as per (Celesti
et al., 2024), the results discussed in the following are obtained
by imposing a set of input signals F , composed of banded white-
noise waves generated within the basin using the available wave-
maker, with significant energy content covering the full operating
range of the prototype. Figure 2 (top) illustrates the magnitude
associated with each ETFE Gi, and that characterising the iden-
tified nominal WEC model G0 (order/dimension 4), while Figure
2 (bottom) offers an appraisal of the map r∆, and the identified
uncertainty weight W∆ (order/dimension 2), fulfilling (10).

NOMINAL AND ROBUST CONTROL DESIGN

Within this section, and following the discussion pursued in Sec-
tion “Introduction” , we provide a definition of the control prob-
lem for WEC systems, in both nominal and uncertain conditions.
In particular, the overall aim of WEC control technology is that
of maximising the energy absorbed from the incoming wave field,
which, in a nominal scenario, can be essentially written in terms
of a (correspondingly nominal) OCP, termed (P )0, as

(P )0 : uopt
0 = arg max

u

1

T
〈u, y〉Ω,

subject to:

Y = G0(D − U),

(u, p) ∈ U × P, ∀t ∈ Ω

(11)
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Fig. 2 Frequency-domain characterisation of the family of
systems G, describing the experimental WEC proto-
type considered within this study.

where Ω = [0 T ] ⊂ R+ is the time interval in which energy is
effectively maximised, uopt

0 denotes the associated nominal opti-
mal control input, and, for the considered Wavestar prototype,
p =

∫
y denotes the angular position of the WEC system about

the reference point in Figure 1. The admissible sets U and P,
which enforce fulfilment of technological constraints in available
control effort and maximum operational space, respectively, are
defined in terms of standard box (∞-norm) constraints, i.e.

U : {u ∈ R | |u| ≤ Umax}, P : {p ∈ R | |p| ≤ Pmax}, (12)

where (Umax, Pmax) ∈ R+ ×R+ denote maximum admissible val-
ues for control torque and angular displacement, accordingly.

Remark 2. Note that the equality constraint describing the dy-
namics of the WEC system within the OCP defined in (11) does
not contain any information regarding deviations from the nom-
inal operator G0, i.e. it provides a control solution in idealised
(nominal) conditions. To incorporate such information, the OCP
has to be instead defined in terms of the family of systems (5),
hence effectively including dynamical uncertainty when solving
for the corresponding optimal control input.

In the light of Remark 2, and following the underlying princi-
ples presented in (Ben-Tal et al., 2009), we pursue a worst-case
paradigm, in which the nominal OCP (P )0 is re-casted in terms
of an associated robust optimisation formulation, that is, in line
with Wald’s decision principle:

(P )R : uopt
R = arg max

u
arg min

G∈G

1

T
〈u, y〉Ω,

subject to:

Y = G(D − U),

(u, p) ∈ U × P, ∀t ∈ Ω ∧ G ∈ G.

(13)

The OCP presented in (P )R is written in terms of a maximin
procedure which, for a given wave excitation d, computes a so-
lution uopt

R maximising the worst-case performance in terms of

energy absorption, for every possible dynamical WEC descrip-
tion G ∈ G, while consistently respecting the set of technological
constraints for any potential plant in (5).

Clearly, both the nominal OCP formulation (P )0 in (11), and
its corresponding robust counterpart (P )R in (13), are defined
over infinite-dimensional function spaces, necessitating a suitable
approximation technique to compute its solution. To produce
a computationally tractable problem, we consider, within this
study, the direct transcription approach presented in (Faedo and
Ringwood, 2023), based on the mathematical concept of a mo-
ment (see also the discussion provided in Section “Introduction”).
Moments are, in essence, a system-theoretic characterisation of
the steady-state response of a dynamical map, excited by a
user-defined class of input signals. In particular, within such
a moment-based framework, we consider that both control u and
disturbance (wave excitation torque) d can be expressed in terms
of a finite number of harmonics of a given fundamental frequency
ω0 = 2π/T , written using an associated exogenous system, com-
monly termed signal generator, i.e.

ζ̇ = Sζ, u = Luζ, d = Ldζ, (14)

where λ(S) = {±kω0}k∈Nν/2 ⊂ C0, with ν ∈ 2Z, ζ(t) ∈ Rν ,

while
(
S,LT

u, L
T
d

)
∈ Rν×ν × Rν × Rν . The system in (14) is

assumed to be driven by a suitably defined initial condition ζ(0) =
ζ0, where the pair (S, ζ0) is reachable.

With the definition of the signal generator in (14), and the cor-
responding device state-space description in (9), the steady-state
response yss

0 of the nominal WEC system G0 can be computed in
terms of the unique solution of an invariant manifold (Sylvester)
equation (see (Faedo and Ringwood, 2023)), which, after suitable
algebraic manipulation, can be written as

yss
0 = Y0ζ,

Y0 = Φ0(Ld − Lu),

ΦT
0 = (Iν ⊗ C0) (S ⊗ In + Iν ⊗A0)−1 (Iν ⊗−B0).

(15)

Furthermore, if the matrix S, characterising the internal dynam-
ics of the exogenous generator in (14), is written (without any
loss of generality) in a Jordan canonical form over R, i.e.

S =
⊕

k∈Nν/2

[
0 kω0

−kω0 0

]
, (16)

it is relatively straightforward to prove (see (Faedo, 2020)) that
the matrix Φ0 in (15) can be alternatively written in terms of the
nominal frequency-response function G0(ω), i.e.

Φ0 =
⊕

k∈Nν/2

B(φk0), with φk0 = G0(kω0). (17)

Remark 3. Equation (17) facilitates, in essence, a direct relation
between the frequency-domain experimental characterisation of
the WEC prototype, discussed in Section “Device and uncer-
tainty description” , and the moment-based approach pursued for
direct transcription of the associated OCP, as presented within
the remainder of this section.

Up until this point, equations (15)-(16)-(17) describe a moment-
based representation of the steady-state response of the WEC
system in its nominal conditions, i.e. without considering the
presence of modelling uncertainty. To incorporate this informa-
tion within the same framework, let H∆ = W∆∆, for any admis-
sible ∆ in D. Following an analogous procedure to that pursued
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in (Faedo, 2020), and leveraging the equality in (17), the steady-
state response yss of the (actual) WEC system G ∈ G, for any
fixed ∆, can be written in terms of the solution of (14) as

yss = (Y0 + Y∆) ζ,

Y∆ = Φ∆(Ld − Lu),

Φ∆ =
⊕

k∈Nν/2

B(φk∆), with φk∆ = H∆(kω0).
(18)

Remark 4. Note that Y∆ effectively encodes the information re-
garding the uncertainty affecting the nominal model G0 at the
frequency points induced by λ(S), i.e. {kω0}k∈Nν/2 , particu-
larly by means of the matrix Φ∆ in (18).

Given the identified uncertainty weight W∆, characterising the
family (5), and with the main objective of translating the exper-
imentally computed bound condition (10) to the corresponding
moment-based transcription (18), we begin by noting that

|φk∆| ≤ |W∆(kω0)|, ∀k ∈ Nν/2, (19)

as a direct consequence of (10). Furthermore, considering the
inequality in (19), let {δk++, δ

k
+−, δ

k
−+, δ

k
−−} ⊂ R2 be defined as

δk++ = R(φk0) + |W∆(kω0)|
[

1 1
]T
,

δk+− = R(φk0) + |W∆(kω0)|
[

1 −1
]T
,

δk−+ = R(φk0) + |W∆(kω0)|
[
−1 1

]T
,

δk−− = R(φk0) + |W∆(kω0)|
[
−1 −1

]T
,

(20)

for every k ∈ Nν/2.

Remark 5. Note that this set of vectors can be effectively used to
describe the corresponding modelling uncertainty for each single
frequency point induced by λ(S) in terms of a box-type bound,
as schematically illustrated in Figure 3 (left).

The definitions provided in (20) characterise deviations from the
nominal model associated with a single point in frequency, i.e.
according to a single element in λ(S). In order to effectively
reflect and cover any potential dynamical deviations from the
corresponding nominal WEC model, for the full set {kω0}, we
define the following set V ⊂ Rν of bounding vertexes:

V = {V++, V+−, V−+, V−−},

V++ =
[
δ1T

++ . . . δ
ν/2T

++

]T
, V+− =

[
δ1T

+− . . . δ
ν/2T

+−

]T
,

V−+ =
[
δ1T

−+ . . . δ
ν/2T

−+

]T
, V−− =

[
δ1T

−− . . . δ
ν/2T

−−

]T
,

(21)

which essentially contains all the limit points characterising the
box-type bounds for each frequency (eigenvalue) in the signal
generator (14), as illustrated within Figure 3 (right). Note that
the set V induces a corresponding (uniquely defined) convex V -
polytope in Rν , i.e. O = conv(V ), which fully covers any poten-
tial deviations from the nominal response φk0 , for any k ∈ Nν/2,
according to the bounding condition (19).

Following the definition of the set V in (21), and the induced
polytope O, let now φk = φk0 +φk∆, which essentially corresponds
with the frequency response of the actual WEC plant for any
given uncertainty ∆, according to λ(S) in (14). Furthermore, let
us ‘collect’ these values in terms of an associated response vector

Vφ =
[
R(φ1)T . . . R(φν/2)T

]T ∈ Rν . (22)

Fig. 3 Geometric description of the considered uncertainty
sets, for a single frequency (left), and a subset of
points (right), induced by λ(S). Grey circles denote
(limit) vertexes, while black and blue circles denote
nominal and actual response, according to the family
of WEC systems (5).

Leveraging the definition in (22), it is possible to see that the
moment-based representation of the actual (uncertain) WEC
plant in (18) can be compactly written in terms of Vφ as

yss = Yζ,

Y = (Ld − Lu)
⊕

k∈Nν/2

B(φk). (23)

Remark 6. From (22)-(23), it is straightforward to see that Vφ ∈
O for any admissible uncertainty element, i.e. ∀∆ ∈ D. That is,
any possible variation from the nominal moment in (15) can be
covered (and represented) in terms of the convex polytope O.

Finally, considering the parametric representation of the steady-
state response via moments in (14)-(23), the robust OCP for-
mulation (P )R can be fully transcribed into an approximating
finite-dimensional nonlinear program in Rν as1

(̃P )R : LuR = arg max
LT
u∈Rν

arg min
Vφ∈V⊂O

1

T
〈Luζ,Yζ〉Ω,

subject to:

Y = B(Vφ)(Ld − Lu),

(Luζ,YS
−1ζ) ∈ U × P, ∀t ∈ Ωc ∧ Vφ ∈ V ,

(24)

where the associated robust control solution is uR = LuRζ. The
set of technological constraints in (13) are collocated by means of
the set of Nc uniformly distributed instants Ωc = {ti}i∈NNc

⊂ Ω.

Remark 7. Tractability of (24) can be guaranteed by exploiting
the theoretical results in (Faedo, 2020). In particular, it can be
shown that (24) is quadratically concave in the controller param-
eterisation Lu (for any physically meaningful WEC family G) and
linear in the response vector Vφ, which implies that is sufficient

to solve (̃P )R at the four vertexes defining the polytope O, i.e.
V . This guarantees both a robust solution in the sense of opti-
mal energy absorption in the worst-case scenario, and consistent
constraint satisfaction, for any Vφ, due to the convexity of O.

1Variable integration, in terms of the exogenous system (14),
can be simply performed by matrix inversion, i.e. if yss = Y ζ,
then pss = Y S−1ζ (see (Faedo, 2020)).
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Remark 8. If ∆ = 0 in (4), i.e. we exclude uncertainty and
compute the corresponding optimal controller solely based on a
nominal WEC model, then the formulation in (24) can be effec-
tively used to derive a nominal moment-based control solution in
a straightforward fashion, i.e. in terms of the nonlinear program

(̃P )0 : Lu0 = arg max
LT
u∈Rν

1

T
〈Luζ,Y0ζ〉Ω,

subject to:

Y0 = Φ0(Ld − Lu),

(Luζ,YS
−1ζ) ∈ U × P, ∀t ∈ Ωc,

(25)

where the corresponding nominal control torque is u0 = Lu0ζ.

NUMERICAL RESULTS

This section presents a numerical appraisal of the overall results
obtained, considering the family of uncertain WEC models for the
tested Wavestar prototype system, computed as described in Sec-
tion “Device and uncertainty description” . In particular, aiming
to test both nominal and robust control synthesis procedures,
and hence provide an assessment of the effect that uncertainty
can effectively have in the overall device production under con-
trolled conditions, 300 plants in G are generated according to the
experimental characterisation presented in Section “Device and
uncertainty description” , by a corresponding random sampling
from D, for exhaustive simulation. Each of these randomly gen-
erated systems in G are represented in terms of a Nyquist plot,
within Figure 4, using blue lines with transparency.

Fig. 4 Nyquist plot for the randomly sampled elements
from the family G (transparent-blue lines), nominal
response (circles) at the frequencies induced by λ(S),
and corresponding uncertainty for each single ele-
ment (squares).

A single sea-state condition is considered for performance assess-
ment, generated within the wave basin using a JONSWAP de-
scription with Hs = 0.0624 [m], Tp = 0.988 [s], and γ = 1, being
this a wide-banded operating condition, with a typical period
close to the device resonance. The length of the generated wave

is set to T = 100 [s] (which corresponds to ≈ 100 typical peak
periods). While the measured wave torque is effectively used for
simulation purposes, within moment-based theory, an approxi-
mation of d is pursued in terms of the exogenous system in (14),
which defines the optimisation space for both robust and nominal
direct transcription procedures in (24) and (25), respectively.

To get an accurate description of both wave and uncertainty sets
within such a moment-based direct transcription procedure, we
set ν = 320 in (16), which corresponds to 160 harmonics of the
fundamental frequency ω0 = 2π/100 [rad/s]. Both the nominal
system response and corresponding uncertainty set (defined in
terms of the set of vertexes (20), for each frequency induced by
λ(S), are also represented within Figure 4. The corresponding
uncertainty V -polytope, defined in terms of (21), can be derived
directly from the vertexes defined in (20), as per Figure 4.

Figure 5 provides an appraisal of both the (measured) wave exci-
tation force d, generated within the basin, and the corresponding
nominal u0 (blue) and robust uR (black) control solutions, accord-
ing to the uncertainty characterisation (and associated family of
WEC models) presented in Figure 4. For this particular analysis,
both control solutions have been computed in an unconstrained
scenario, i.e. U = P ≡ R in (24) and (25), to purely assess overall
energy-maximising performance. Note that the resulting control
torques are indeed significantly different, including a relatively
large change in maximum applied force (and corresponding vari-
ance), being the robust case more conservative in terms of applied
control effort than its nominal counterpart.

The performance obtained when applying these two control so-
lutions to each of the randomly sampled 300 members of the
experimentally characterised family G (see Figure 4) can be ap-
preciated in the histogram of Figure 6. The results presented
within this figure elucidate quite a concerning conclusion: While
the nominal control solution is sometimes able to achieve higher
values of mean power when compared to its robust counterpart,
it can also produce negative energy absorption for a relatively
large number of cases within G, effectively draining power from
the grid, as opposed to increasing generation. In other words,
the variability in terms of performance is significantly large, hin-
dering a consistent power generation across G. In contrast, the
robust solution, while more conservative, is able to narrow the
distribution of generated mean power by leveraging knowledge
of the uncertainty affecting the process, being largely more con-
sistent than its nominal formulation, always delivering positive
energy generation, for any G ∈ G.

Finally, and to showcase the fundamental issue of constraint sat-
isfaction in uncertain scenarios, both nominal and robust control
solutions are re-computed, for the same wave excitation d, but
now considering a corresponding constraint in device angular dis-
placement, with Pmax = 20 [deg] in (12). The collocation set Ωc,
used to enforce constraint satisfaction in (24) and (25), is com-
posed of uniformly distributed time instants with a corresponding
sampling of 0.05 [s], resulting in a cardinality of Nc = 4000. A
preliminary, yet significantly strong, result, is presented in Figure
7, which illustrates a time-snippet of device motion under nom-
inal (solid blue) and robust (dotted black) control actions, for
the totality of the randomly sampled WEC systems in G consid-
ered. As can be appreciated directly from the figure, the robust
control solution is able to systematically respect the defined con-
straint set by effectively exploiting the knowledge of the uncer-
tainty polytope O, while its nominal counterpart, only informed
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Fig. 5 Measured wave excitation torque generated within the wave tank (top), and corresponding nominal u0 (solid blue) and
robust uR (solid black) control inputs (bottom).

Fig. 6 Histogram of the performance obtained with nominal
(blue) and robust (black) control solutions, consid-
ering the set of 300 randomly sampled systems in G.

by the nominal WEC model, does not guarantee the imposed
technological limits. This is illustrated in a more complete fashion
within Figure 8, which presents, in sampling counts, the absolute
value of angular displacement for each simulated WEC system, in
nominal (solid blue) and robust (dotted black) control scenarios.
The difference between these two solutions is evident, being the
robust counterpart able to fulfil the designed limits consistently,
in spite of the presence of uncertainty. This is not the case for
the nominal controller, which spends a (quite) elevated number
of sampling instants outside the constraint set itself, potentially
generating a fatigue excess in device components, reducing its
overall lifetime, and increasing maintenance requirements.

CONCLUSIONS

Consistent and accurate modelling of wave energy systems is a
difficult task, mainly due to the strong hydrodynamic compo-
nent within the description of the energy absorption process it-

Fig. 7 Time-snippet of device motion under nominal (solid
blue) and robust (dotted black) control actions, for
the totality of the randomly sampled WEC systems
in G considered.

self. Linear models are widely used for energy-maximising control
purposes, ostensibly due to their underlying computational (and
representational) simplicity. Nonetheless, a significant degree of
uncertainty is introduced when adopting this practice, due to rel-
evant unmodelled effects. This issue translates directly to model-
based design, though this is virtually always ignored within the
current WEC control and device assessment literature.

A more complete panorama can be obtained when quantifying
uncertainty properly, in terms of tailored experiments, and a cor-
responding (suitably defined) family of WEC systems. Within
this paper, and to showcase the overall effect of modelling un-
certainty in the overall control design and performance assess-
ment procedure, a family of models is computed based on exper-
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Fig. 8 Absolute value of angular displacement (in sampling
counts), for each of the 300 randomly sampled sim-
ulated WEC systems, in nominal (solid blue) and
robust (dotted black) control scenarios.

imental data, for a 1:20 scale Wavestar prototype. Furthermore,
leveraging state-of-the-art direct transcription techniques, partic-
ularly moment-based control, we design and synthesise optimal
controllers in nominal and uncertain (robust) scenarios. We ex-
plicitly demonstrate that neglecting uncertainty can lead to two
fundamental issues: Inconsistent performance, even draining, as
opposed to generating, energy from the grid, and failure to ful-
fil technological limitations. These two significant problems can
certainly compromise the role of control technology in lowering
the associated LCoE, due to (a) suboptimal energy absorption
performance and (b) increased device fatigue due to inconsistent
constraint satisfaction, affecting scheduled maintenance and re-
ducing the overall lifetime of the device.

Fortunately, it’s not all bad news: We further show that, if a suit-
able mathematical framework is exploited accordingly, informing
the control synthesis procedure on the existence of uncertainty,
and a corresponding set of suitably defined bounds, guarantees
a consistent energy absorption performance with a remarkable
reduction in variability and systematic constraint satisfaction,
hence recovering the role of this technology in helping towards
WEC commercialisation.
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