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Abstract

This paper considers the leader-following bipartite consensus for a class of

nonlinear multi-agent systems (MASs) subject to exogenous disturbances un-

der directed fixed and switching topologies, respectively. First, the scenario

of a fixed topology is considered, and a new output feedback control protocol

based on relative output measurements of neighboring agents is proposed.

In order to estimate the disturbances produced by an exogenous system, a

disturbance observer-based approach is developed and incorporated into the

controller. Then, theoretical guarantees on the effectiveness of the proposed

controller in steering the system to a bipartite leader-following consensus are

derived. Second, the scenario of switching topologies is considered, and a dis-

turbance observer-based controller is proposed, following a similar approach.

∗Corresponding authors (emails: wanglihe@ecust.edu.cn, wmzhong@ecust.edu.cn)

Preprint submitted to Neurocomputing April 21, 2023



Then, it is proved that the leader-following bipartite consensus can be real-

ized with the designed output feedback control protocol if the dwell time is

larger than a non-negative threshold. Finally, numerical simulations inspired

by a real-world physical MAS are provided to illustrate the effectiveness of

the proposed controllers.

Keywords: Nonlinear MASs, bipartite consensus, signed graphs, switching

topologies, disturbance observer, observer-based control

1. Introduction

In recent years, a tremendous amount of attention has been devoted to

cooperative control of MASs [1, 2, 3]. This can be ascribed to its wide

applications in varieties of fields such as sensor networks [4], unmanned air

vehicles [5], opinion dynamics [6, 7, 8], formation control [9, 10], and so on.

Among the dynamic behavior of MASs, consensus is a fundamental issue,

which is committed to driving each participating agent to the same state

by only collecting the local information from its neighbors [9, 11, 12, 13].

Leader-following consensus reduces the tracking consensus when there is a

leader in MASs, where the followers’ states will gradually become consistent

with that of the leader over time [14, 15, 16, 17, 18]

While most of these works focus on agents that cooperatively work toward

a common goal [9], in many practical situations competitive and antagonistic

interaction are also present [19]. For instance, in [20], it was observed that,

in the industrial market, companies not only collaborate, but also compete

for market resources. The co-existence of cooperative and competitive inter-

actions has been observed as a key feature in government formation process
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in parliamentary democracies [21]. In a leader-follower framework, the au-

thors of [22] investigated the cooperation and competition between employer

and employees in management control systems. Signed graphs, originally

proposed in [19], became a universal tool, widely used to describe and study

networks with both cooperative and competitive relationships.

The study on dynamic behavior of MASs over signed graphs can be traced

back to the seminal work on linear systems in [23], where it is studied how the

network structure determines whether the system converges to a collective

agreement or a polarized scenario, termed bipartite consensus. In partic-

ular, it is proved that the states of the agents converge to two subgroups

with different consensus states if the signed graph is structurally balanced,

or they converge to a common state if the signed graph is structurally un-

balanced. Inspired by this pioneering work, many efforts have been made to-

ward addressing the dynamic behaviors of more complex dynamics of MASs

on signed graphs [24, 25, 26, 27, 28, 29]. Concerning leader-following dy-

namics, we mention leader-following bipartite consensus under discrete-time

[30, 31], fractional-order nonlinear dynamics [32], adaptive control [33], and

finite-time consensus [34].

Most of works on competitive interactions proposed in the literature rely

on the assumption that communication topologies are undirected and fixed

[35]. However, for many practical situations, communication channels among

agents may be directional and change in time, due to possible disruptions in

the communication pattern, or changes in the agents’ displacement. There-

fore, a growing literature on consensus on time-varying topologies have been

reported [36, 37, 38, 39, 40]. Within this research field, switching topologies
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has recently started becoming popular. Concerning its application to leader-

following consensus, in [41], based on Lyapunov theory and the property of

M-matrix, the leader-following consensus control problem was solved with

nonlinear MASs under switching topologies. Directed topologies were con-

sidered in [42]. In [43], the authors addressed the leader-following bipartite

consensus problem of multiple uncertain Euler-Lagrange systems over signed

switching networks by means of a distributed observer, and leveraging the

certainty equivalence principle. Other works dealt with bipartite consensus

over fixed and switching topologies [44], utilizing pinning control strategies

[45, 46] and distributed adaptive control algorithms [47]. However, the above

mentioned literatures only study bipartite consensus problem under switch-

ing topologies without exogenous disturbances, and the limited information

for unknown disturbances makes it difficult to consider the bipartite consen-

sus, involving how to construct the output feedback control strategy without

using any state information, how to combine the nonlinear control condition,

and how to deal with the effects of competitive relationship between agents.

These are challenging problems for leader-following bipartite consensus for

nonlinear MASs subject to exogenous disturbances.

In this paper, we fill in this gap by considering a leader-following bipartite

consensus for a class of nonlinear MASs under directed fixed and switching

topologies. While many existing works on control of bipartite utilize the

relative states of neighboring agents to construct control laws, this infor-

mation cannot be obtained in many real-world applications. Therefore, we

decided to implement a distributed controller [48, 49], which have been al-

ready adopted for nonlinear dynamics, and for which promising results have
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been found in [50, 51]. However, differently from these works, in our formu-

lation, we assume that the MAS is subject to exogenous disturbances. The

study of MASs with exogenous disturbances has received growing attention

recently [52, 53]. For leader-follower bipartite consensus, results have been

derived for fixed [54, 55] and switching topologies [56]. In particular, distur-

bance observer-based control strategies were proposed in [57, 58]. Motivated

by these works, we propose two disturbance observer-based control laws to

steer the system to a bipartite consensus when agents interacts over fixed

and switching topologies, respectively.

After having formally defined the two controllers and illustrated the al-

gorithms to set the gain matrices, we performed a theoretical analysis of

the proposed approaches. Through a Lyapunov-based argument, we prove

that the two controllers are able to guarantee convergence of the system to a

leader-following bipartite consensus. Our algorithms and theoretical findings

are then illustrated via numerical simulations on some case studies based on a

real-world MAS inspired by [46, 52] and formed by single-link manipulators

with revolute joints actuated by DC motors, which interact over different

(static or switching) topologies. The numerical findings show the good per-

formances of the proposed controllers in different scenarios, corroborating

our theoretical results. The main novelties of our approach with respect to

the literature discussed in the above is summarized as follows:

• As opposite to many existing works, in which full relative states of

neighboring agents are used [16, 41], we propose two distributed bi-

partite consensus control strategies based on output measurements, in

which only the relative output information of neighboring agents is

5



utilized.

• Different from [31, 42], where the dynamic of the system state is linear,

we consider a large class nonlinear dynamics, which allows to represent

more complex and realistic real-world dynamical systems.

• In real-world systems, disturbances are inevitably preset, as an effect of

the presence of exogenous dynamics that may impact the MAS under

study. In order to deal with this problem, a disturbance observer-based

control protocol is formulated to estimate the exogenous disturbances

and system states, which provides an effective solution to the MASs

subject to exogenous disturbances.

• The patterns of real-world interactions between agents are typically

complex, as they might be time-varying, cooperative or antagonistic. In

this setting, the proposed controllers are able to deal with the presence

of all these features in the context of leader-following, guaranteeing

convergence to a leader-following bipartite consensus.

The rest of the paper is organized as follows. In Section 2 we report some

definitions and preliminaries used in this paper. In Section 3, we formulate

the problem. In Section 4, we present our main results, with proofs reported

in Appendices A and B. In Section 5, we discuss three numerical examples.

Section 6 concludes the paper and outlines future research.
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2. Notation and Preliminaries

2.1. Notation

We gather here some notational conventions. We denote by N+, R, and

R+ the sets of positive integers, real numbers, and real positive numbers.

Given a positive integer N ∈ N+, the N -dimensional Euclidean space is

denoted by RN , 1N denotes the N -dimensional column vectors of all 1 and

IN is the N × N identity matrix. Given a scalar x ∈ R, we denote by |x|

its absolute value. Given a vector x ∈ RN , ||x|| denotes its 2-norm. Given

a matrix A ∈ RN×N , λmin (A) and λmax (A) represent its the minimum and

maximum eigenvalues. The symbol ⊗ denotes the Kronecker product, sgn (·)

is the sign function, and diag(·) is the diagonalization operator. We also

define the set ofN×N matrices SN = diag {s1, . . . , sN}, where si ∈ {+1,−1}.

2.2. Preliminaries

We consider a system of N follower agents (also referred to as followers),

labeled by positive integer numbers as V = {1, . . . , N}, connected through a

(signed di-)graph G = (V , E ,W ), which represents the communication topol-

ogy between the followers. When not differently denoted, the graph is as-

sumed to be fixed (that is time-invariant). Specifically, E ⊆ V × V is the set

of directed edges, where (j, i) ∈ E means that agent i can receive information

from agent j, and W ∈ RN×N is the (signed) weighted adjacency matrix, in

which its generic entry wij measures the information that i receives from j;

hence wij 6= 0 if and only if (j, i) ∈ E , i 6= j, and wij = 0 otherwise. We
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define the (signed) Laplacian matrix L = (lij) ∈ RN×N of the graph as

lij :=


∑

k∈V\{i}
|wik| if i = j,

−wij if i 6= j.

(1)

Define Ni := {j ∈ V : (j, i) ∈ E} as the set of (in-)neighbors of agent i. A

path from agent vi to agent vj is a sequence of edges e1 = (v1, w1), . . . em =

(vm, wm) ∈ E such that i) v1 = vi, ii) wk−1 = vk, k = 2, . . . ,m and iii)

wm = vj. In the following, we list some definitions and some technical results

that will be used in the following of the paper.

Definition 1 (Spanning tree). A graph G = (V , E ,W ) is said to contain

a spanning tree if there exists a agent i such that there exists a path from

j to any other agent j ∈ V \ {i}. The agent i is said to be the root of the

spanning tree.

Definition 2 (Structural balance). A signed graph G = (V , E ,W ) is said

to be structurally balanced if there exists a partition of the agent set V1, V2

satisfying i) V1∪V2 = V, ii) V1∩V2 = ∅, iii) wij ≥ 0,∀ vi, vj ∈ Vk (k ∈ {1, 2}),

and iv) wij ≤ 0,∀ vi ∈ Vk, vj /∈ Vk (k ∈ {1, 2}) . Otherwise, it is called struc-

turally unbalanced.

Note that the notion of structural balance derives from the balance the-

ory in the social psychology literature [19], for which a social system is in

psychological balance if friends of friends are friends, enemies of friends are

enemies, and enemies of enemies are friends.

Lemma 1 (Lemma 1 from [23]). For a structurally balanced graph G, there

exists a diagonal matrix S ∈ SN such that all diagonal elements of SWS are
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nonnegative. Moreover, the diagonal entries of SLS are nonnegative and all

off-diagonal entries of SLS are nonpositive. Besides, S ∈ SN induces a par-

tition V1 = {i : si > 0} and V2 = {i : si < 0} that satisfies properties i)–iv)

in Definition 2.

In this paper, we will consider an augmented graph GR formed by the

set of N followers and a leader, which will be labeled as v0. Some of the

followers may be access the leader’s information. We define by N0 the set

of neighbors of the leader. The augmented graph has thus agent set VR =

V ∪ {v0} and edge set ER = E ∪ {(j, 0) : j ∈ N0}. We define a nonnegative

N × N -dimensional diagonal matrix R = diag([a10, . . . aN0]), whose entry

wi0 ≥ 0 measures how much follower i interacts with the leader, with the

understanding that wi0 > 0 if and only if i ∈ N0, whereas wi0 = 0 if i /∈ N0.

Then, we can define the augmented Laplacian matrix of the leader-follower

system LR ∈ RN×N as LR = L+R.

Lemma 2 (Lemma 6 from [41]). Suppose that the graph GR consisting of

a leader and the N followers contains a directed spanning tree with the leader

located at the root, then LR is positive definite and there exists a matrix

Θ = diag {ϕ1, · · · , ϕN}, with ϕi > 0 such that ΘLR + L>RΘ > 0, where

L>Rϕ = 1N and ϕ = [ϕ1, · · · , ϕN ]> ∈ RN .

In the second part of this paper, we will deal with switching topolo-

gies. A (directed, signed) switching topology (G̃, $) is defined by a set of

τ directed and signed graphs G̃ = {G1 = (V , E1,W 1) , · · · ,Gτ = (V , Eτ ,W τ )}

and a switching signal $ : R+ → {1, · · · , τ}, which assigns to each non-

negative time t ∈ R+ a communication topologies G$(t). The switching
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signal is piecewise constant, over the time intervals [tk, tk+1) , k ∈ N, with

t1 = 0, τ̂0 ≤ tk+1 − tk ≤ τ̂1, in which the positive constant τ̂0 is termed dwell

time and denotes the minimum time between two changes in the topology.

3. Problem Formulation

We consider a MAS consisting of N follower agents and one leader agent.

Each agent i ∈ V is characterized by a n-dimensional state vector xi (t) ∈ Rn

and a r-dimensional output measurement zi (t) ∈ Rr, which evolve in con-

tinuous time t ∈ R. We assume that the all the followers have the same

internal dynamics, which may then be subject to external inputs and ex-

ogenous disturbances. Specifically, the dynamics of the ith follower agent

and is described by the following system of nonlinear ordinary differential

equations:

ẋi(t) = Axi(t) + f (xi(t), t) +Bui(t) +Dwi(t),

zi(t) = Cxi(t), (2)

where ui (t) ∈ Rm is the m-dimensional input vector; f (·) : Rn × R → Rn

is a nonlinear function, common to all the agents, which is continuous and

differentiable in t; wi(t) ∈ Rp denotes the exogenous disturbance, which is

generated by

ẇi(t) = Mwi(t), (3)

in which M ∈ Rp×p is an external matrix; and A ∈ Rn×n, B ∈ Rn×m,

C ∈ Rr×n, and D ∈ Rn×p are constant matrices.

We assume that the leader’s state x0(t) ∈ Rn is not influenced by external

inputs and disturbances. Hence, the dynamic of the leader, labeled by 0, is
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defined as

ẋ0 (t) = Ax0 (t) + f (x0(t), t) . (4)

In the rest of this paper, we will make the following assumptions on the

agents’ dynamics.

Assumption 1. The pair (A,B,C) is stabilizable and detectable.

Assumption 2. There exists a matrix F ∈ Rm×p such that D = BF .

Assumption 3. The matrix M has k distinct eigenvalues and the real part

of each eigenvalue is zero. Moreover, (M,D) is observable.

Assumption 4. There exists a positive constant ρ > 0 such that

‖f (a1, t)− sif (a2, t)‖ ≤ ρ ‖a1 − sia2‖ , ∀ a1, a2 ∈ Rn. (5)

In our analysis, we focus on the study of the convergence to a leader-

following bipartite consensus for the MAS of N followers and one leader

defined in (2) and (4), which is defined as follows.

Definition 3 (Leader-following bipartite consensus). Consider a MAS

with N followers V and one leader, denoted by index 0. Then, we say that

the MAS converges to a leader-following bipartite consensus if there exists a

partition V1,V2 with V1 ∪ V2 = V and V1 ∩ V2 = ∅ such that

lim
t→∞
‖xi (t)− x0 (t)‖ = 0, ∀ i ∈ V1, (6)

lim
t→∞
‖xi (t) + x0 (t)‖ = 0, ∀ i ∈ V2, (7)
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which can be written in a general form as

lim
t→∞
‖xi (t)− six0 (t)‖ = 0, ∀ i ∈ V , (8)

for some diag([s1, . . . , sn]) ∈ Sn.

Note that, differently from other notions of consensus [3], in Definition 3

we are not requiring that the leader converges to a fixed point, but we say

that a leader-following bipartite consensus is achieved if the entire system

synchronizes toward a trajectory in which a set of followers has the same

state of the leader, and the remaining followers have the opposite state.

Remark 1. As indicated in [42], Assumption 2 presents a matching con-

dition under which the disturbance effects can be compensated through the

control action. A sufficient criterion for the existence of the matrix F is that

rank (B,D) = rank (B). Since F may not be equal to Im, the disturbances

can be imposed on some channels other than the control input channels.

Remark 2. Equation (3) is mainly motivated by the disturbance observer-

based approach for MASs in the work of [57]. It is to reflect the deterministic

disturbances such as constants and sinusoidal disturbances, and it covers a

wide range of periodic disturbances such as the sinusoidal functions upon

which many other functions can be approximated with a bias. Moreover,

Assumption 3 on the eigenvalues of M is commonly used for disturbance

rejection and output regulation. If the eigenvalues of the matrix M are strictly

located in the left-half plane, the disturbance is stable.
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4. Main Results

In this section, we solve the leader-following bipartite consensus problem

for nonlinear MASs with deterministic exogenous disturbances over directed

topologies by utilizing an observer-based approach. Specifically, we will start

considering fixed topologies. Then, we will generalize our results to switching

topologies.

4.1. Bipartite consensus under directed fixed topologies

In this subsection, we consider the bipartite consensus for the MASs in

(2)–(4) over a directed fixed topology containing a spanning tree. Specifically,

we make the following assumption.

Assumption 5. Suppose that the augmented graph GR consisting of the N

followers and the leader is static and contains a directed spanning tree with

the leader located at the root and that the signed network is structurally bal-

anced.

An observer-based controller based on the output measurements is devel-

oped by defining the following input functions for the followers:

ui(t) =βK1[
∑
j∈V

|wij| (x̂i(t)− sgn (wij) x̂j(t))

+ wi0 (x̂i(t)− six0 (t))]− Fŵi(t), i ∈ V ,
(9)

where β > 0 is a coupling strength, K1 is the feedback gain matrix, x̂i(t)

is the state observer, and ŵi(t) is the disturbance estimation vector. The
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evolution of these two functions is defined as follows:

˙̂xi(t) =Ax̂i(t) + f (x̂i (t) , t) +Bui(t) +Dŵi (t)− αF̃

[∑
j∈V

|wij|·

·
(
ξ̃i (t)− sgn (wij) ξ̃j (t)

)
+ wi0

(
ξ̃i (t)− sgn (wi0) ξ̃0 (t)

)]
,

(10)

and

˙̂wi(t) =Mŵi(t)−G1

[∑
j∈V

|wij|
(
ξ̃i (t)− sgn (wij) ξ̃j (t)

)
+ wi0

(
ξ̃i (t)− sgn (wi0) ξ̃0 (t)

)]
,

(11)

for all i ∈ V , respectively, where α > 0 is a coupling strength, F̃ is the state

observer gain matrix, G1 is the disturbance observer gain matrix, and ξ̃i (t) =:

zi (t) − Cx̂i (t) is the error between the measurement output, zi(t), and the

corresponding quantity computed from the state observer, Cx̂i (t). Since the

leader acts as a reference signal generator, it is supposed that x̂0 (t) =x0 (t) ,

i.e., the leader does not need to observe its own state as it knows it, and,

consequently, it holds ξ̃0 (t) = z0 (t)− Cx̂0 (t) = z0 (t)− Cx0 (t) = 0.

Being the signed graph structurally balanced (Assumption 5), let S =

diag([s1, . . . , sN ]) ∈ SN be the diagonal matrix induced by the partition

defined in Lemma 1. In order to analyze the MAS in (2)–(4) under the

observer-based controller defined in 9–11, we define the following three errors:

ξ̄i(t) = xi(t)− x̂i(t), ξ̂i(t) = x̂i(t)− six0 (t) , ei(t) := wi(t)− ŵi(t), (12)

between the state of agent i and its observer (observer error), between the

state observer of agent i and the state of the leader or its opposite depending
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on the set i ∈ V belongs to (consensus tracking error), and between the

disturbance and its observer, respectively. Note that, if the three quantities

in (12) converges to 0 as t → ∞ for all i ∈ V , then the observer-based con-

troller is well-defined and a bipartite leader-following consensus is achieved

according to Definition 3). Hence, we will utilize these three quantities to

study the system.

Specifically, utilizing the definitions in (12), we can write the dynamics

for the state and its observer as

ẋi(t) =Axi(t) + f (xi(t), t) + βBK1

[∑
j∈V

|wij| (x̂i(t)− sgn (wij) x̂j(t))

+ wi0 (x̂i(t)− six0 (t)))

]
+Dei(t),

(13)

and

˙̂xi(t) =Ax̂i(t) + βBK1

[∑
j∈V

|wij| (x̂i(t)− sgn (wij) x̂j(t))

+ wi0 (x̂i(t)− six0 (t))
]

+ f (x̂i (t) , t)

− αF̃
[ ∑
j=∈V

|wij|
(
ξ̃i (t)− sgn (wij) ξ̃j (t)

)
+ wi0ξ̃i (t)

]
,

(14)

respectively. From which we can derive the following dynamics for the three
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errors in (12):

˙̄ξi (t) =Aξ̄i (t) + f (xi (t) , t)− f (x̂i (t) , t) +Dei(t) (15)

+ αF̃

[∑
j∈V

|wij|
(
ξ̃i (t)− sgn (wij) ξ̃j (t)

)
+ wi0ξ̃i (t)

]
,

˙̂
ξi (t) =Aξ̂i (t) + f (x̂i (t) , t)− sif (x0 (t) , t) +Bui(t) (16)

− αF̃

[∑
j∈V

|wij|
(
ξ̃i (t)− sgn (wij) ξ̃j (t)

)
+ wi0ξ̃i (t)

]
,

ėi(t) =Mei(t) +G1

[∑
j∈V

|wij|
(
ξ̃i (t) − sgn (wij) ξ̃j (t)

)
+ wi0ξ̃i (t)

]
, (17)

where the latter is obtained using that sgn(wij)sj = si, which holds true due

to Lemma 1 and property iv) in Definition 3.

In the following, we will show that, if Assumptions 1–3 and 5 hold true,

then one can establish an algorithmic procedure to design the gain matrices

for the observer-based control law in (9)–(11). Specifically, we propose the

following algorithm.

Algorithm 1. Assume Assumptions 1–3 and 5 hold. Then, we define the

following steps:

1. Set four positive scalars µ0 > 0, µ1 > 0, c1 > 0, and c2 > 0, and

choose coupling strengths α > µ0/λ0 and β > µ1/λ0, where λ0 :=

λmin

(
LR + Θ−1L>RΘ

)
, with Θ from Lemma 2.

2. Solve the following two matrix inequalities to get a matrix P that veri-
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fies: 
ATP + PA− µ0C

TC + γ1I + c1P P DTP

P −I 0

∗ 0 −I

 < 0, (18)

 ATP + PA− µ1PB
TBP + γ2I + c2P P

P −I

 < 0, (19)

with γ1 > (α + 1)λmax

(
Θ−1L>RΘLR

)
+ λmax(Θ)

λmin(Θ)
ρ2, γ2 > λmax(Θ)

λmin(Θ)
ρ2 +

αλmax(C>CC>C), and ρ > 0 such that verifies Assumption 4.

3. Solve the following linear matrix inequality to get a matrix Q that ver-

ifies:

QM +M>Q+ γ3I + c3Q < 0, (20)

with c3 > 0 and γ3 > λmax(C>CC>C) + 1.

4. Define K1 = −BTP , G1 = Q−1CT , and F̃ = −P−1C>.

At this stage, we can analytically prove that the observer-based control

law in (9)–(11) with gain matrices defined via Algorithm 1 solves the leader-

following bipartite consensus for nonlinear MAS in (2)–(4) on a structurally

balanced communication network with a directed spanning tree with leader

located at the root (Assumption 5). The following result formally guarantees

our claim. The proof, which is based on a Lyapunov argument to show

convergence to 0 for the three quantities in (12), is quite cumbersome and is

thus reported in Appendix A, for the sake of readability.

Theorem 1. Consider the nonlinear MAS in (2) and (4) on a (static) signed

communication network with the deterministic disturbances from (3). Let
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Assumptions 1–3 and 5 hold. Then, the observer-based control law in (9)–

(11) with gain matrices defined via Algorithm 1 solves the leader-following

bipartite consensus, as defined in Definition 3.

Remark 3. For general nonlinear MASs, it may be challenging to design

distributed protocols only based on relative states of neighboring agents over

directed networks to eliminate the effects of the nonlinear term, and the state

feedback control approach is no longer applicable. To amend the drawback of

this fact, the disturbance observer approach and output feedback control ap-

proach have been proved to be significant in dealing with the bipartite consen-

sus problem of nonlinear MASs with exogenous disturbances. Furthermore,

Assumption 4 is the so-called Lipschitz condition and all linear and piecewise-

linear time-invariant continuous functions satisfy this condition. However,

it is still an open topic that how to ensure bipartite consensus for MASs

under directed switching topologies and unknown continuous-time nonlinear

dynamics which do not satisfy the Lipschitz condition. The design approaches

presented in [52, 48, 50] might be useful for investigating this topic.

4.2. Bipartite consensus under directed switching topologies

In this subsection, we consider the leader-following bipartite consensus for

MAS in (2)–(4) over switching topologies (G̃, ϕ), where G̃ = {G1, . . . ,Gτ} is

the set of signed graphs and $ is the switching signal, with dwell time τ̂0 > 0.

We will consider the scenario in which the switching topology that charac-

terizes the augmented graph has always a spanning tree and is structurally

balanced, that is, the following assumption is verified.
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Assumption 6. Assume that the all the augmented graphs in G̃R contain a

directed spanning tree with the leader located at the root node and they are

structurally balanced and admit the same partitioning V1 and V2.

A direct consequence of applying Lemma 1 to all the graphs in G̃R is that

the following result can be directly claimed.

Lemma 3. If Assumption 6 holds, then there exists a diagonal matrix ΘΓ =

diag{ϕΓ
1 , · · · , ϕΓ

N}, with ϕΓ
i > 0 such that ΘΓLΓ

R +
(
LΓ
R

)>
ΘΓ > 0, where(

LΓ
R

)>
ϕΓ = 1N and ϕΓ =

[
ϕΓ

1 , · · · , ϕΓ
N

]> ∈ RN , for any Γ = 1, . . . , τ .

Similar to the scenario of static topologies, we propose an observer-based

controller to guarantee leader-follower bipartite consensus for the MAS. In

particular, for each agent i ∈ V , we propose the following input function:

ui(t) =β̃K2

[∑
j∈V

∣∣∣w$(t)
ij

∣∣∣ (x̂i(t)− sgn
(
w
$(t)
ij

)
x̂j(t)

)
+ w

$(t)
i0 (x̂i(t)− six0 (t))

]
− Fŵi(t),

(21)

where β̃ > 0 is a coupling strength, K2 is the feedback gain matrix, x̂i(t)

is the state observer, and ŵi(t) is the disturbance estimation vector. The

evolution of these two functions is defined as follows:

˙̂xi(t) =Ax̂i(t) + f (x̂i (t) , t) +Bui(t) +Dŵi (t)− α̃F̂

[∑
j∈V

∣∣∣w$(t)
ij

∣∣∣ ·
·
((
ξ̃i (t)− sgn (wij) ξ̃j (t)

)
+w

$(t)
i0

(
ξ̃i (t)− sgn

(
w
$(t)
i0

)
ξ̃0 (t)

)]
,

(22)
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and

˙̂wi(t) =Mŵi(t)−G2

[∑
j∈V

∣∣∣w$(t)
ij

∣∣∣ ((ξ̃i (t)− sgn (wij) ξ̃j (t)
)

+w
$(t)
i0

(
ξ̃i (t)− sgn

(
w
$(t)
i0

)
ξ̃0 (t)

)]
,

(23)

respectively, where α̃ > 0 is a coupling strength, F̂ is the state observer gain

matrix, G2 is the disturbance observer gain matrix, and ξ̃i (t) =: zi (t) −

Cx̂i (t) is the error between the measurement output, zi(t), and the corre-

sponding quantity computed from the state observer, Cx̂i (t). Similar to the

scenario with fixed topology, since the leader acts as a reference signal gen-

erator, it is supposed that x̂0 (t) =x0 (t) , i.e., the leader does not need to

observe its own state as it knows it, and, consequently, ξ̃0 (t) = 0. Similar

to the analysis of the scenario with static topologies, we can study the con-

vergence of the system to a leader-following bipartite consensus by studying

the convergence of the errors in (12) to 0.

In the following, we will show that, if Assumptions 1–3 and 6 hold true,

then a procedure to design the gain matrices for the observer-based control

law in (21)–(23) can be designed, according to the following algorithm.

Algorithm 2. Assume Assumptions 1–3 and 6 hold. Then, we define the

following steps:

1. Set four positive scalars µ̃0 > 0, µ̃1 > 0, c̃1 > 0, and c̃2 > 0, and

choose coupling strengths α̃ > µ̃0/λ̃0 and β̃ > µ̃1/λ̃0, where λ̃0 :=

minΓ=1,··· ,τ

(
λmin

(
LΓ
R +

(
ΘΓ
)−1(

LΓ
R

)T
ΘΓ
))

, with ΘΓ from Lemma 3.
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2. Solve the following two matrix inequalities:
A>P̄ + P̄A− µ̃0C

>C + γ4I + c̃1P̄ P̄ D>P̄

P̄ −I 0

∗ 0 −I

 < 0, (24)

 A>P̄ + P̄A− µ̃1P̄B
>BP̄ + γ5I + c̃2P̄ P̄

P̄ −I

 < 0, (25)

to get a matrix P̄ , with γ5 > maxΓ=1,...,τ
λmax(ΘΓ)
λmin(ΘΓ)

ρ2+α̃λmax(C>CC>C),

ρ is defined in Assumption 4, and

γ4 > max
Γ=1,...,τ

λmax

(
ΘΓ
)

λmin (ΘΓ)
ρ2 + (α̃ + 1)λmax

(
(ΘΓ)−1

(
LΓ
R

)>
ΘΓLΓ

R

)
.

3. Solve the LMI as follows:

Q̄M +M>Q̄+ γ6I + c̃3Q̄ < 0, (26)

to get a matrix Q̄, with scalars c̃3 > 0, γ6 > λmax(C>CC>C) + 1.

4. Set K2 = −BT P̄ , F̂ = −P̄−1CT , and G2 = Q̄−1C>.

Similar to the scenario with fixed topologies, we can analytically prove

that the observer-based control law in (21)–(23) with gain matrices defined

via Algorithm 2 solves the leader-following bipartite consensus for nonlinear

MAS in (2)–(4) on switching topologies that verify Assumption 6. The fol-

lowing result, whose proof is reported in Appendix B, formally guarantees

our claim, under some conditions on the dwell time τ̂0.

Theorem 2. Consider the nonlinear MAS in (2) and (4) on switching topolo-

gies with deterministic disturbances from (3). Let Assumptions 1–3 and
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6 hold and let the dwell time satisfy the inequality τ̂0 > ln(`0/ĉ0), where

ĉ0 = mini∈{1,2,3} {ĉi}, `0 = ϕmax/ϕmin, ϕmin = minΓ∈{1,...,τ},i∈{1,...,N}{ϕΓ
i },

and ϕmax = maxΓ∈{1,...,τ},i∈{1,...,N}{ϕΓ
i }. Then, the observer-based control law

in (21)–(23) with gain matrices defined via Algorithm 2 solves the leader-

following bipartite consensus, as defined in Definition 3.

We conclude this section with some general remarks on the algorithms

and the theoretical findings presented in this section and a discussion of their

relation with the existing literature.

Remark 4. The control protocols (9) and (21) are partly motivated by the

observer-type protocols for MASs proposed in [42]. However, the observer de-

signed here is indeed different from that in [42]. In fact, our assumptions are

less restrictive, as we only require that a follower can access the information

on its state observer, and not the actual state, as in [42].

Remark 5. According to Algorithms 1 and 2, the existence of the gain ma-

trices to be used in the controller depends on the possibility to solve a set of

matrix inequalities. It is easy to observe that the matrix inequalities in Algo-

rithm 2 are feasible if and only if the matrix inequalities in Algorithm 1 are

feasible. However, observe that the positive scalars γ4,γ5, λ̃0, and matrix ΘΓ

defined in Algorithm 2 depends on the characteristics of the switching topolo-

gies, so the choices of parameters and the solutions of the matrix inequalities

are in general different for the two algorithms.

5. Numerical examples

In this section, we propose and discuss three examples to illustrate our

theoretical findings and demonstrate the performance of the algorithms we
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Figure 1: The four different topologies considered in the two examples: (a) G1, (b), G2, (c)

G3, and (d) G4. Solid arrows with black text denote positive entries of the signed weighted

adjacency matrix W , dashed arrows with red text denote negative entries of W .

developed. In the first example, we consider a scenario with a fixed topology

and we show that the observer-based controller proposed in Algorithm 1 is

able to steer the system to leader-following bipartite consensus. We consider

the scenario of a linear dynamics and we discuss the characteristics of the

consensus state reached, depending on the topology structure. In the second

example, we consider a nonlinear dynamics on a static signed topology, and

we show that our algorithm is also able to deal with nonlinear scenarios,

where other methods proposed in the literature fail [31, 42]. In the third ex-

ample, we consider a scenario of nonlinear dynamics on switching topologies,

and we illustrate how Algorithm 2 can be used to design an observer-based

controller for the system, whereas linear controllers and observers proposed

in the literature cannot be used [52].

In the examples, we consider a network of six agents interacting according

to four different topologies, labeled as G1, G2, G3, and G4, and illustrated in

Fig. 1. Observe that all the six topologies are structurally balanced, with

the same partition equal to V1 = {1, 2} ,V2 = {3, 4, 5}.

Similar to [46, 52], we consider a MAS consisting of six single-link manip-
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ulators with revolute joints actuated by DC motors: N = 5 follower agents

and one leader agent, labeled as agent 0. A schematic illustration of the

physical system is reported in Fig. 2. The state of each agent is character-

ized by a 4-dimensional vector xi (t) = (xi1 (t) , xi2 (t) , xi3 (t) , xi4 (t))>, where

xi1 (t) is the angular rotation of the motor, xi2 (t) is the angular velocity of

the motor, xi3 (t) is the angular rotation of the link of the ith manipulator,

and xi4 (t) is the angular velocity of the link of the ith manipulator. Similar

to [46, 52], the dynamic of the ith manipulator can be written in the form of

(2), with

A =


0 1 0 0

−48.6 −1.26 48.6 0

0 0 0 10

1.95 0 −1.95 0

 , B =


0

21.6

0

0

 ,

C =


1 0

1 0

0 1

0 1



>

, D = B ·

 1

0

>,
(27)

and nonlinear function f (xi (t) , t) = (0, 0, 0, 0.333 sin (xi3 (t)))>, i ∈ V , when

present. The disturbances are generated by (3) with M =

 0 1.5

−1.5 0

. It

is easy to obtain that D = BF . Also, it is easy to verify that Assumptions 1–

3 hold, and that Assumptions 4 holds with ρ = 0.333. In all the simulations,

the initial conditions are assigned randomly.

Example 1. We consider the MAS made of six single-link manipulators with

dynamics defined in (2) and (27), interacting on the fixed topologies G1 and
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Figure 2: Schematic of the single-link manipulator with a flexible joint.
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Figure 3: Temporal evolution of xi1 (t) under the linear dynamics in Example 1, for two

different topologies.
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G2, illustrated in Figs. 1(a) and (b), respectively, where the first topology

does not contain antagonistic edges, whereas the second does. We construct

the observer-based controller utilizing the proposed Algorithm 1, for which

convergence is guaranteed by Theorem 1. Specifically, by simple calculations,

we get Θ = diag {2.0422, 1.0060, 0.9012, 2.3980}. We take c1 = 1, c2 = 1,

c3 = 3, γ1 = 5, γ2 = 7, γ3 = 6, and following step 1) of Algorithm 1, we set

α = 34, β = 21, µ0= 10, and µ1 = 6, it yields that λ0=0.3173. Note that

step 2) in Algorithm 1 holds if A>P + PA+ γ2I + c2P P

P −I

 < 0. (28)

Then, based on (28) and following steps 2) and 3) of Algorithm 1, we compute

the following matrices P and Q

P =


0.7373 0.0147 −0.6210 −0.2588

0.0147 0.0162 −0.0063 0.0175

−0.6210 −0.0063 1.0708 −1.0625

−0.2588 0.0175 −1.0625 3.7443

 ,

Q =


3.9492 0.1854 −1.2871 −0.6210

0.1854 4.5754 −1.2934 −0.1762

−1.2871 −1.2934 3.6787 −1.2641

−0.6210 −0.1762 −1.2641 3.3694

 ,

respectively, which are used in step 4) of Algorithm 1 to compute the gain
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matrices:

G1 =

 0.3679 0.2960 0.3001 0.1959

0.2997 0.1963 0.6546 0.6079

>,
F̃ =

 −1.1711 −60.8337 −1.1634 −0.1267

−15.5325 14.2425 −15.6654 −5.8523

>,
and K1 = [−0.3167 − 0.3508 0.1363 − 0.3781]. We consider the linear

dynamics, that is, excluding the term f , and we implement the proposed

observer-based controller. Figure 3 shows that the followers asymptotically

approach the leader’s state in the absence of antagonistic edges (G1), while

in their presence (G2), the system converges to a leader-following bipartite

consensus. Interestingly, when considering the trajectories with antagonistic

edges reported in Fig. 3b, it can be observed that the states of agents 1 and 2

can asymptotically approach those of the leader, while the states of agents 3,

4 and 5 asymptotically track the opposite values of those of the leader, which

is in accordance with the cluster partition V1 and V2.

Example 2. Then, we consider the nonlinear MAS made of the six single-

link manipulators with dynamics defined in (2) and (27), interacting on the

fixed topology G2. The results are reported in Fig. 4. Figure 4a reports the

temporal evolution of the state of the agents, when the observer-based con-

troller is enacted, showing that the state of the followers converges to a leader-

follower bipartite consensus. Note that many existing controllers proposed in

the literature cannot handle this scenario [31, 42]. Figures 4b and 4c depicts

the error between the (signed) leader’s state and each follower agent under the

proposed control protocol for different coupling gains α and β; these figures
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shows how the errors quickly vanish. Figures. 4d and 4e shows the temporal

evolution of the disturbances and disturbance observers. These figures shows

that the disturbance observer exhibits an excellent estimation performance.

Example 3. Finally, we consider the nonlinear MAS in the scenario of

switching topologies, and we provide some simulation results to illustrate the

effectiveness of the control protocol proposed in Algorithm 2, and whose effec-

tiveness is discussed in Theorem 2. We consider the MAS of six single-link

manipulators under switching topologies with antagonistic edges shown in

panels (c) and (d) of Fig. 1. Note that it is not difficult to get (A,B,C)

stabilizable and detectable. Assume that the network topologies switches pe-

riodically between G3 and G4 every 0.4s. Assume Assumption 6 holds, then,

following step 1) of Algorithm 2, let α̃ = 29, β̃ = 32, µ̃0= 20, µ̃1= 8, γ4 = 9,

γ5 = 6, γ6 = 5, c̃1 = 1, c̃2 = 2, and c̃3 = 4, it yields that λ̃0 = 0.7218. Similar

to Example 2, following steps 2) and 3) of Algorithm 2, we compute

P̄ =


0.3109 0.0083 −0.2887 −0.0387

0.0083 0.0526 −0.0283 0.0652

−0.2887 −0.0283 0.8722 −1.0888

−0.0387 0.0652 −1.0888 2.7165

 ,

Q̄ =


4.1127 0.1678 −1.3310 −0.6656

0.1678 4.7540 −1.3341 −0.2042

−1.3310 −1.3341 3.8466 −1.3126

−0.6656 −0.2042 −1.3126 3.5213

 ,

respectively. Then, following step 4) of Algorithm 2, we compute the three
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Figure 4: Temporal evolution of (a) state xi1 (t), (b) error ξ̄i(t), (c) error ξ̂i(t), (d) distur-

bance ωi(t), and (e) disturbance estimation ω̃i(t) under the nonlinear dynamics in Example

2, with topology G2.

29



gain matrices, obtaining

G2 =

 0.3554 0.2867 0.2876 0.1910

0.2886 0.1901 0.6244 0.5823

>,
F̂ =

 −8.7655 −18.2778 −6.2112 −2.1757

−10.2680 1.8811 −10.3730 −4.7172

>,
and K2 = [0.3303 − 0.7992 0.2282 − 0.1146].

Based on Theorem 2, bipartite consensus control subject to the determin-

istic disturbances can be realized if the dwell time τ̂0 > ln(`0/ĉ0) = 0.3715; in

our scenario τ̂0 = 0.4 > 0.3715, hence this condition is verified. Results are

reported in Fig. 5. In particular, in Fig. 5a we show that we can solve the

consensus problem for nonlinear MASs under directed switching topologies by

means of the controller proposed in Algorithm 2, differently from most linear

controller and observer designed in the literature [52], which cannot deal with

nonlinear scenario. To illustrate the performance of our controller, in Fig. 5b

and 5c we report the profiles of the observer error ξ̄i(t) and of the bipartite

consensus tracking error ξ̂i(t), respectively for different coupling strengths.

Our numerical simulations illustrate that both the convergence for leader-

following bipartite consensus and state’s observer are typically fast and that

their rates can be improved by enlarging the coupling strength α̃ and β̃. This

indicates that, even though the theoretical guarantees in Theorem 2 ensures

that the bipartite consensus can be solved by setting any coupling strengths

α̃ > µ̃0/λ̃0 and β̃ > µ̃1/λ̃0, the convergence rates may be quite small if the

coupling strengths are only slightly larger than the requirements, suggesting

the use of larger couplings to speed up the convergence process. The evolution

of disturbances and disturbance observers are plotted in Fig. 5d and 5e, re-
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spectively, which shows the good performance of our algorithm in estimating

the exogenous disturbances.

6. Conclusion

In this paper, we have investigated the leader-following bipartite consen-

sus control of nonlinear MASs subject to exogenous disturbances, connected

through directed signed topologies, which may be fixed or switching. In both

scenarios, we utilized an observer-based approach. Specifically, we propose

a control law based on relative output measurements of neighboring agents

and on an observer-based estimator of the disturbances generated from the

exogenous system. Then, by assuming that each fixed or switching topol-

ogy contains a directed spanning tree, we proved that the leader-following

bipartite consensus can be achieved with the designed output feedback con-

trol law. For switching topologies, we determined a further condition on the

dwell time to be sufficiently large to guarantee convergence. Finally, the ef-

fectiveness of the developed algorithms in different scenarios is verified via

three numerical examples, based on a real-world physical system.

Our work advances the literature along several directions. Compared to

previous works [43, 57], our approach is more general, as it consider non-

linear MASs, antagonistic interactions, output feedback control, disturbance

observer, and switching topologies simultaneously, allowing to deal with more

general and realistic scenarios. In particular, different from [31, 33, 35], the

disturbance observer is incorporated into the controller to actively compen-

sate for the disturbance effects on leader-following bipartite consensus. This
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Figure 5: Temporal evolution of (a) state xi1 (t), (b) error ξ̄i(t), (c) error ξ̂i(t), (d) distur-

bance ωi(t), and (e) disturbance estimation ω̃i(t) under the nonlinear dynamics in Example

3, with switching topologies G3 and G4, with deterministic switches every 0.4s.
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enables our controller to be robust to disturbances produced by an exoge-

nous system, making our algorithms suitable for direct application in many

control areas, such as game control, formation control, containment control,

and flocking control for MASs [4, 53, 49].

Our promising results, supported by the examples illustrated in Section 5,

suggest the possible extension of our methodology to different scenarios. In

particular, following [28, 44], it would be interesting to investigate event-

based bipartite consensus of MASs under directed switching topologies, and

further extending our algorithms to deal with disturbances that cannot be

estimated or may be unbounded. Furthermore, following [35], a promising

idea can be that of implementing a reduced-order dynamic gain observer into

a distributed disturbance observer to utilize the distributed information of

the agents under directed switching topologies. This idea will be investigated

in our future study.
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Appendix A. Proof of Theorem 1

In the proof, we will show that ξ̄ (t) → 0, ξ̂ (t) → 0, and e(t) → 0 as

t→∞, guaranteeing convergence to the leader-following bipartite consensus.

First, utilizing the Kronecker product notation, we can write the dynam-
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ics in (16)–(17) in a compact matrix form as

˙̄ξ(t) =
[
IN ⊗ A+ α

(
LR ⊗ F̃C

)]
ξ̄(t) + (IN ⊗D) e (t) (A.1)

+ IN ⊗ (f (x (t) , t)− f (x̂ (t) , t)) ,

˙̂
ξ (t) = [IN ⊗ A+ β (LR ⊗BK1)] ξ̂ (t)− α

(
LR ⊗ F̃C

)
ξ̄ (t) (A.2)

+ (f (x̂ (t) , t) − (SIN ⊗ f (x0 (t) , t))) ,

ė(t) =(IN ⊗M)e(t) + (LR ⊗G1C)ξ̄ (t) , (A.3)

where we use the notation f (x(t), t) :=
[
f> (x1(t), t) , · · · , f> (xN(t), t)

]>
,

f (x̂(t), t) :=
[
f> (x̂1(t), t) , · · · , f> (x̂N(t), t)

]>
, and e (t) :=[

e>1 (t) , e>2 (t) , · · · , e>N (t)
]>

.

Then, we choose a Lyapunov function candidate V1 (t) as follows

V1 (t) = V11 (t) + V12 (t) + V13 (t) , (A.4)

where V11 (t) = ξ̄T (t)(Θ ⊗ P )ξ̄(t), V12 (t) = ξ̂T (t)(Θ ⊗ P )ξ̂(t), and V13 (t) =

eT (t)(Θ ⊗ Q)e(t). Taking the derivatives of V11 (t), V12 (t) and V13 (t), we

obtain

V̇11 (t) =ξ̄T (t)
[
Θ⊗

(
A>P + PA

)
+ 2α

(
ΘLR ⊗ PF̃C

)]
ξ̄(t)

+ 2ξ̄T (t) (Θ⊗ P )× (f (x (t) , t)− f (x̂ (t) , t)) ,

+ 2ξ̄T (t) (Θ⊗ PD) e(t)

V̇12 (t) =ξ̂T (t)
[
Θ⊗

(
A>P + PA

)
+ 2β (ΘLR ⊗ (PBK1))] ξ̂(t)

+ 2ξ̂T (t) (Θ⊗ P )× (f (x̂ (t) , t) − (SIN ⊗ f (x0 (t) , t))) ,

− 2αξ̂T (t)
(

ΘLR ⊗ PF̃C
)
ξ̄(t)

V̇13 (t) =e>(t)
[
Θ⊗

(
QM +M>Q

)]
e(t)

+ 2e> (t) (ΘLR ⊗QG1C) ξ̄(t).

(A.5)
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According to Assumption 4 and Young’s inequality, we have

2ξ̄> (t) (Θ⊗ P ) (f (x (t) , t)− f (x̂ (t) , t))

≤ξ̄> (t)
(
Θ⊗ PP>

)
ξ̄ (t) +

[
(f (x (t) , t)− f (x̂ (t) , t))>

(Θ⊗ I) (f (x (t) , t)− f (x̂ (t) , t))
]

≤ξ̄> (t)
(
Θ⊗ PP>

)
ξ̄ (t) + [λmax (Θ)

(f (x (t) , t)− f (x̂ (t) , t))> (f (x (t) , t)− f (x̂ (t) , t))]

≤ξ̄> (t)
(
Θ⊗ PP>

)
ξ̄ (t) + λmax (Θ) ρ2ξ̄> (t) ξ̄ (t)

≤ξ̄> (t)

[
Θ⊗

(
PP> +

λmax (Θ)

λmin (Θ)
ρ2I

)]
ξ̄ (t) ,

(A.6)

where

λmax (Θ) ρ2ξ̄> (t) ξ̄ (t) ≤ λmax (Θ)

λmin (Θ)
ρ2ξ̄> (t) (Θ⊗ I) ξ̄ (t) .

Similar to (A.6), we obtain

2ξ̂>(t)(Θ⊗ P )(f(x̂(t), t)− SIN ⊗ f(x0(t), t))

≤ ξ̂>(t)(Θ⊗ PP>)ξ̂(t) + [(f(x̂(t), t)− SIN ⊗ f(x0(t), t))>·

· (Θ⊗ I)(f(x̂(t), t)− SIN ⊗ f(x0(t), t))]

≤ξ̂>(t)(Θ⊗ PP>)ξ̂(t)

+ [λmax(Θ)(f(x̂(t), t)− SIN ⊗ f(x0(t), t))>·

· (f(x̂(t), t)− SIN ⊗ f(x0(t), t))]

≤ ξ̂>(t)(Θ⊗ PP>)ξ̂(t) + λmax(Θ)ρ2ξ̂>(t)ξ̂(t)

≤ ξ̂>(t)
[
Θ⊗

(
PP> +

λmax(Θ)

λmin(Θ)
ρ2I
)]
ξ̂(t).

(A.7)

Substituting K1 = −BTP , G1 = Q−1CT , and F̃ = −P−1C> into (A.5), and
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using (A.6) and (A.7), we obtain the following inequalities:

V̇11 (t) ≤ξ̄> (t)

[
Θ⊗

(
PA+ A>P

)
− α

((
ΘLR + L>RΘ

)
⊗ C>C

)
+ Θ⊗

(
PP> +

λmax (Θ)

λmin (Θ)
ρ2I

)]
ξ̄ (t) + 2ξ̄T (t) (Θ⊗ PD) e (t) ,

V̇12 (t) ≤ξ̂T (t)

[
Θ⊗

(
A>P + PA

)
− β

((
ΘLR + L>RΘ

)
⊗ PBB>P

)
+ Θ⊗

(
PP> +

λmax (Θ)

λmin (Θ)
ρ2I

)]
ξ̂(t) + 2αξ̂T (t)

(
ΘLR ⊗ C>C

)
ξ̄(t),

V̇13 (t) =e> (t)
[
Θ⊗

(
QM +M>Q

)]
e(t) + 2e> (t)

(
ΘLR ⊗ CTC

)
ξ̄(t).

(A.8)

Let Â = LR + Θ−1L>RΘ and H = −α
((

ΘLR + L>RΘ
)
⊗ C>C

)
, by utilizing

Lemma 2, we obtain H ≤ −αΘÂ ⊗ C>C ≤ −αλ0Θ ⊗ C>C, where λ0
∆
=

λmin

(
LR + Θ−1L>RΘ

)
and Θ = diag {ϕ1, · · · , ϕN}. According to Lemma 4 in

[23], we obtain

V̇11(t) ≤ξ̄T (t)

[
Θ⊗

(
PA+ A>P − αλ0C

>C + PP>

+
λmax(Θ)

λmin(Θ)
ρ2I
)]
ξ̄(t) + 2ξ̄T (t)(Θ⊗ PD)e(t).

(A.9)

Similarly, calculating the derivative of V12(t), we obtain

V̇12(t) ≤ξ̂T (t)

[
Θ⊗
(
A>P + PA− βλ0PBB

>P + PP>

+
λmax(Θ)

λmin(Θ)
ρ2I
)]
ξ̂(t) + 2αξ̂T (t)(ΘLR ⊗ C>C)ξ̄(t).

(A.10)
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Based on Lemma 2 and the facts α > µ0/λ0, β > µ1/λ0, we obtain

V̇11 (t) ≤ξ̄T (t)

[
Θ⊗

(
PA+ A>P − µ0C

>C + PP>

+
λmax (Θ)

λmin (Θ)
ρ2I
)]
ξ̄(t) + 2ξ̄T (t) (Θ⊗ PD) e (t) ,

V̇12 (t) ≤ξ̂T (t)

[
Θ⊗
(
A>P + PA− µ1PBB

>P + PP>

+
λmax (Θ)

λmin (Θ)
ρ2I
)]
ξ̂(t) + 2αξ̂T (t)

(
ΘLR ⊗ C>C

)
ξ̄(t).

Furthermore, under Assumptions 1 and 2, by utilizing Young’s inequality

and Lemma 1, we have

2ξ̄T (t) (Θ⊗ PD) e(t)

≤ ξ̄T (t)
(
Θ⊗D>PPD

)
ξ̄(t) + e> (t) (Θ⊗ I) e(t),

2αξ̂T (t)
(
ΘLR ⊗ C>C

)
ξ̄(t) ≤ αξ̂T (t)

(
Θ⊗ C>CC>C

)
ξ̂(t)

+ αξ̄>(t) (Θ⊗ I)
(
Θ−1L>RΘLR ⊗ I

)
ξ̄(t)

≤ αλmax(C>CC>C)ξ̂T (t) (Θ⊗ I) ξ̂(t)

+ αλmax

(
Θ−1L>RΘLR

)
ξ̄>(t) (Θ⊗ I) ξ̄(t),

2e> (t)
(
ΘLR ⊗ C>C

)
ξ̄(t) ≤ e> (t)

(
Θ⊗ C>CC>C

)
e (t)

+ ξ̄>(t) (Θ⊗ I)
(
Θ−1L>RΘLR ⊗ I

)
ξ̄(t)

≤ λmax(C>CC>C)e> (t) (Θ⊗ I) e (t)

+ λmax

(
Θ−1L>RΘLR

)
ξ̄>(t) (Θ⊗ I) ξ̄(t).

(A.11)

37



Substituting (27) into (A.8), we have V̇1 (t) ≤ ˙̄V11 (t) + ˙̄V12 (t) + ˙̄V13 (t), where

˙̄V 11 (t) =ξ̄T (t)
[
Θ⊗

(
PA+ A>P − µ0C

>C +D>PPD + PP>

+ (
λmax (Θ)

λmin (Θ)
ρ2 + (α + 1)λmax

(
Θ−1L>RΘLR

)
) I)] ξ̄(t),

˙̄V 12 (t) =ξ̂T (t)
[
Θ⊗

(
A>P + PA − µ1PBB

>P + PP>

+ (
λmax (Θ)

λmin (Θ)
ρ2 + αλmax(C>CC>C)) I)] ξ̂(t),

˙̄V 13 (t) =e> (t)
[
Θ⊗

(
QM +M>Q +

(
λmax(C>CC>C) + 1

)
I
]
e (t) .

It can be yielded from (18), (11) and (20) that

˙̄V 11 (t) ≤ξ̄T (t)
[
Θ⊗

(
PA+ A>P − µ0C

>C + D>PPD + γ1I + PP>
)]
ξ̄(t),

˙̄V 12 (t) ≤ξ̂T (t)
[
Θ⊗

(
A>P + PA − µ1PBB

>P + PP> + γ2I
)]
ξ̂(t),

˙̄V 13 (t) ≤e> (t)
[
Θ⊗

(
QM +M>Q+ γ3I

)]
e (t) .

According to the Schur complement lemma, with ρ > 0, we can conclude

there exist three nonnegative parameters c1, c2, and c3 such that ˙̄V 11 (t) <

−c1ξ̄
>(t) (Θ⊗ P ) ξ̄(t), ˙̄V 12 (t) < −c2ξ̂

>(t) (Θ⊗ P ) ξ̂(t), and ˙̄V 13 (t) < −c3e
>(t)

(Θ⊗Q) e(t). Then, we obtain V̇1 (t) < −c0V1 (t) , where c0 = mini∈{1,2,3} {ci}.

Thus, one has V1 (t) < e−c0tV1 (0). By summing the three terms in (A.4), we

conclude that when t → 0, V1 (t) → 0, which implies ξ̄ (t) → 0, ξ̂ (t) → 0,

and e(t)→ 0. This completes the proof. �
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Appendix B. Proof of Theorem 2

Under Assumption 1, and utilizing the definitions in (12), we can write

the following dynamics for the state and its estimator:

ẋi(t) =Axi(t) + β̃BK2

[∑
j∈V

∣∣∣w$(t)
ij

∣∣∣ (x̂i(t)− sgn
(
w
$(t)
ij

)
x̂j(t))

+ w
$(t)
i0 (x̂i(t)− six0 (t)))

]
+ f (xi(t), t) +Dei(t),

(B.1)

and

˙̂xi(t) =Ax̂i(t) + β̃BK2

[∑
j∈V

∣∣∣w$(t)
ij

∣∣∣ (x̂i(t)− sgn
(
w
$(t)
ij

)
x̂j(t))

+ w
$(t)
i0 (x̂i(t)− six0 (t)))

]
+ f (x̂i (t) , t)

− α̃F̂

[∑
j∈V

∣∣∣w$(t)
ij

∣∣∣ (ξ̃i (t) − sgn
(
w
$(t)
ij

)
ξ̃j (t)) + w

$(t)
i0 ξ̃i (t)

]
,

(B.2)

respectively, from which we derive the following dynamics for the three errors

in (12):

˙̄ξ(t) =
[
IN ⊗ A+ α̃

(
L
$(t)
R ⊗ F̂C

)]
ξ̄(t) + (IN ⊗D) e(t)

+ IN ⊗ (f (x (t) , t)− f (x̂ (t) , t)) ,
.

ξ̂ (t) =
[
IN ⊗ A+ β̃

(
L
$(t)
R ⊗BK2

)]
ξ̂ (t)− α̃

(
L
$(t)
R ⊗ F̂C

)
ξ̄ (t)

+ (f (x (t) , t)− (SIN ⊗ f (x0 (t) , t))) ,

ė(t) = (IN ⊗M) e(t) +
(
L
$(t)
R ⊗G2C

)
ξ̄(t).

We will now show that these three quantities converge to 0 under the

control proposed in Algorithm 2. For t ∈ [tk, tk+1), k ∈ N, the multiple
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Lyapunov functions V2 (t) can be constructed as follows:

V2 (t) = V21 (t) + V22 (t) + V23 (t) , (B.3)

where V21 (t) = ξ̄> (t)
(
Θ$(t) ⊗ P̄

)
ξ̄(t), V22 (t) = ξ̂> (t)

(
Θ$(t) ⊗ P̄

)
ξ̂ (t) , and

V23 (t) = e> (t)
(
Θ$(t) ⊗ Q̄

)
e(t). Taking the derivatives of V21 (t), V22 (t) and

V23 (t), which yield

V̇21 (t) =ξ̄> (t)
[
Θ$(t) ⊗

(
A>P̄ + P̄A

)
+ 2α̃

(
Θ$(t)L

$(t)
R ⊗ P̄ F̂C

)]
ξ̄ (t)

+ 2ξ̄> (t)
(
Θ$(t) ⊗ P̄

)
(f (x (t) , t)− f (x̂ (t) , t))

+ 2ξ̄> (t)
(
Θ$(t) ⊗ P̄D

)
e(t),

V̇22 (t) =ξ̂> (t)
[
Θ$(t) ⊗

(
A>P̄ + P̄A

)
+ 2β̃

(
Θ$(t)L

$(t)
R ⊗

(
P̄BK2

))]
ξ̂ (t)

+ 2ξ̂> (t)
(
Θ$(t) ⊗ P̄

)
(f (x̂i (t) , t)− (SIN ⊗ f (x0 (t) , t))) ,

− 2α̃ξ̂> (t)
[
Θ$(t)L

$(t)
R ⊗

(
P̄ F̂C

)]
ξ̄ (t)

V̇23 (t) =e>(t)
[
Θ$(t) ⊗

(
Q̄M +M>Q̄

)]
e>(t) + 2e> (t)

(
Θ$(t)L

$(t)
R ⊗ Q̄G2C

)
ξ̄ (t) .

(B.4)

To simplify the analysis, based on Assumption 4 and Young’s inequality, we

obtain

2ξ̄> (t)
(
Θ$(t) ⊗ P̄

)
(f (x (t) , t)− f (x̂ (t) , t))

≤ ξ̄> (t)

[
Θ$(t) ⊗

(
P̄ P̄> +

λmax

(
Θ$(t)

)
λmin (Θ$(t))

ρ2I

)]
ξ̄ (t) ,

2ξ̂> (t)
(
Θ$(t) ⊗ P̄

)
(f (x̂ (t) , t)− SIN ⊗ f (x0 (t) , t))

≤ ξ̂> (t)

[
Θ$(t) ⊗

(
P̄ P̄> +

λmax

(
Θ$(t)

)
λmin (Θ$(t))

ρ2I

)]
ξ̂ (t) .

(B.5)

Substituting K2 = −BT P̄ , G2 = Q̄−1CT , and F̂ = −P̄−1C> into (B.4), and
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in view of (B.5), we obtain

V̇21 (t) ≤ξ̄> (t)
[
Θ$(t) ⊗

(
P̄A+ A>P̄

)
− α̃

((
Θ$(t)L

$(t)
R

+
(
L
$(t)
R

)>
Θ$(t)

)
⊗ C>C

)
+ Θ$(t) ⊗ (P̄ P̄>

+
λmax

(
Θ$(t)

)
λmin (Θ$(t))

ρ2I)

]
ξ̄ (t) + 2ξ̄> (t)

(
Θ$(t) ⊗ P̄D

)
e(t),

V̇22 (t) ≤ξ̂> (t)
[
Θ$(t) ⊗

(
A>P̄ + P̄A

)
− β̃

((
Θ$(t)L

$(t)
R +(

L
$(t)
R

)>
Θ$(t)

)
⊗P̄BB>P̄

)
+ Θ$(t) ⊗ (P̄ P̄>

+
λmax

(
Θ$(t)

)
λmin (Θ$(t))

ρ2I)

]
ξ̂ (t) + 2α̃ξ̂> (t)

(
Θ$(t)L

$(t)
R ⊗ C>C

)
ξ̄ (t) ,

V̇23 (t) =e> (t)
[
Θ$(t) ⊗

(
Q̄M +M>Q̄

)]
e(t) + 2e> (t)

(
Θ$(t)L

$(t)
R ⊗ C>C

)
ξ̄ (t) .

Since α̃ > µ̃0/λ̃0 and β̃ > µ̃1/λ̃0, and according to Lemma 4 in [45], we obtain

V̇21 (t) ≤℘̄T (t)
[
Θ$(t) ⊗ (P̄A+ ATP̄ − µ̃0C

TC + P̄ P̄T

+
λmax

(
Θ$(t)

)
λmin (Θ$(t))

ρ2I)

]
℘̄ (t) ,

V̇22 (t) ≤ξ̂> (t)
[
Θ$(t) ⊗ (P̄A+ A>P̄ − µ̃1P̄BB

>P̄ + P̄ P̄>

+
λmax

(
Θ$(t)

)
λmin (Θ$(t))

ρ2I)

]
ξ̂ (t) + 2α̃ξ̂> (t)

(
Θ$(t)L

$(t)
R ⊗ C>C

)
ξ̄ (t) .

Furthermore, under Assumptions 2 and 4, by utilizing Young’s inequality
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and Lemma 1, one has

2ξ̄> (t)
(
Θ$(t) ⊗ P̄D

)
e(t)

≤ ξ̄> (t)
(
Θ$(t) ⊗D>P̄ P̄D

)
ξ̄ (t) + e> (t)

(
Θ$(t) ⊗ I

)
e(t),

2α̃ξ̂> (t)
(
Θ$(t)LR ⊗ C>C

)
ξ̄ (t)

≤ α̃λmax(C>CC>C)ξ̂> (t)
(
Θ$(t) ⊗ I

)
ξ̂ (t)

+ α̃λmax

(
(Θ$(t))−1

(
L
$(t)
R

)>
Θ$(t)L

$(t)
R

)
ξ̄> (t)

(
Θ$(t) ⊗ I

)
ξ̄ (t) ,

and

2e>(t)
(

(Θ$(t))−1L
$(t)
R ⊗ C>C

)
ξ̄ (t)

≤ λmax(C>CC>C)e>(t)
(
Θ$(t) ⊗ I

)
e(t)

+ λmax

(
(Θ$(t))−1

(
L
$(t)
R

)>
Θ$(t)L

$(t)
R

)
ξ̄> (t)

(
Θ$(t) ⊗ I

)
ξ̄> (t) .

Similarly, one can conclude V̇2 (t) ≤ ˙̄V 21 (t) + ˙̄V 22 (t) + ˙̄V 23 (t), where

˙̄V 21 (t) ≤ξ̄> (t)
[
Θ$(t) ⊗

(
AP̄ + P̄A> − µ̃0C

>C +D>P̄ P̄D

+γ4I + P̄>P̄
)]
ξ̄ (t) ,

˙̄V 22 (t) ≤ξ̂> (t)
[
Θ$(t) ⊗

(
A>P̄ + P̄A − µ̃1P̄BB

>P̄

+ γ5I + P̄ P̄>
)]
ξ̂ (t) ,

˙̄V 23 (t) ≤e>(t)
[
Θ$(t) ⊗

(
Q̄M +M>Q̄+ γ6I

)]
e(t).

Based on the Schur’s complement lemma, one can conclude there exist three

non-negative parameters c̃1, c̃2 and c̃3 such that ˙̄V 21(t) < −c̃1ξ̄
>(t)

(
Θ$(t) ⊗ P̄

)
ξ̄(t), ˙̄V 22(t) < −c̃2ξ̂

>(t)
(
Θ$(t) ⊗ P̄

)
ξ̂(t), and ˙̄V 23(t) < −c̃3e

>(t)
(
Θ$(t) ⊗ Q̄

)
e(t).

Hence, one has V̇2 (t) < −c̃0V2 (t) , t ∈ [tk, tk+1), for k ∈ N, where c̃0 =

mini∈{1,2,3} {c̃i}. It is noted that the MASs with control law (21) switches
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when t = tk, k ∈ N. Then one can obtain V2

(
t−2
)
< V2 (t1) e−c̃0(t2−t1) <

e−c̃0τ̂0V2 (t1), t ∈ [t1, t2), where V2

(
t−2
)

= lim
t→t2

V2 (t). Let Γ = $ (tk), Γ̄ =

$ (tk−), Âmin = λmin

(
ΘΓ
)
⊗P̄ , Âmax = λmax

(
ΘΓ
)
⊗P̄ , Ãmax = λmax

(
ΘΓ̄
)
⊗P̄ ,

Ãmin = λmin

(
ΘΓ̄
)
⊗ P̄ , B̂min = λmin

(
ΘΓ
)
⊗ Q̄, B̂max = λmax

(
ΘΓ
)
⊗ Q̄,

B̃max = λmax

(
ΘΓ̄
)
⊗ Q̄, and B̃min = λmin

(
ΘΓ̄
)
⊗ Q̄, according to (B.3),

one gets ξ̄T (tk) Âminξ̄ (tk) ≤ V21 (tk) ≤ ξ̄T (tk) Âmaxξ̄ (tk) , ξ̂
T (tk) Âminξ̂ (tk) ≤

V22 (tk) ≤ ξ̂T (tk) Âmaxξ̂ (tk) , e
T (tk) B̂maxe (tk) ≤ V23 (tk) ≤ eT (tk) B̂mine (tk) ,

ξ̄T (tk−) Ãminξ̄ (tk−) ≤ V21 (tk−) ≤ ξ̄T (tk−) Ãmaxξ̄ (tk−) , ξ̂T (tk−) Ãminξ̂ (tk−) ≤

V22 (tk−) ≤ ξ̂T (tk−) Ãmaxξ̂ (tk−) , and eT (tk−) B̃maxe (tk−) ≤ V23 (tk−) ≤ eT (tk−)

B̃mine (tk−) , In summary, we obtain V21 (tk) ≤ `0V21 (tk−), V22 (tk) ≤ `0V22 (tk−),

and V23 (tk) ≤ `0V23 (tk−), where

`0 =
maxΓ=1,··· ,L

(
λmax

(
ΘΓ
))

minΓ̄=1,··· ,L
(
λmin

(
ΘΓ̄
)) =

ϕmax

ϕmin

.

Thus, we obtain V2 (t2) < `0e
−c̃0τ̂0V2 (t1) , i.e., V2 (t2) < e(−c̃0τ̂0+ ln `0)V2 (0) .

Hence, if the dwell time satisfies τ̂0 > ln(`0/c̃0), then the following holds

V2 (t2) < e−κτ̂0V2 (0) , where κ = c̃0 − (ln `0)/τ̂0 > 0. For t > t2, there exists

a non-negative integer s ≥ 2 such that ts < t ≤ ts+1. In addition, for an

arbitrary nonnegative integer w ∈ N , one ohas V2 (tw+1) < e−κτ̂0V2 (tw) <

e−κwτ̂0V2 (0) . Similarly, when t ∈ (ts, ts+1), one has

V2 (t) < e−c̃0(t−ts)V2 (ts) < e−[c̃0(t−ts)+(s−1)κτ̂0]V2 (0)

< e
− (s−1)τ̂0

sτ̂1
κt
V2 (0) < e

− τ̂0κ
2τ̂1

t
V2 (0) ,

where s ≥ 2 and τ̂0 ≤ tk+1 − tk ≤ τ̂1. When t = ts+1, we obtain V2 (t) <

e
− τ̂0κ

τ̂1
t
V2 (0), which implies ξ̄(t)→ 0, ξ̂(t)→ 0, and e (t)→ 0 as t→∞. �
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