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Abstract
Objective.We analyze and interpret arm and forearm muscle activity in relation with the
kinematics of hand pre-shaping during reaching and grasping from the perspective of human
synergistic motor control. Approach. Ten subjects performed six tasks involving reaching, grasping
and object manipulation. We recorded electromyographic (EMG) signals from arm and forearm
muscles with a mix of bipolar electrodes and high-density grids of electrodes. Motion capture was
concurrently recorded to estimate hand kinematics. Muscle synergies were extracted separately for
arm and forearm muscles, and postural synergies were extracted from hand joint angles. We
assessed whether activation coefficients of postural synergies positively correlate with and can be
regressed from activation coefficients of muscle synergies. Each type of synergies was clustered
across subjects.Main results.We found consistency of the identified synergies across subjects, and
we functionally evaluated synergy clusters computed across subjects to identify synergies
representative of all subjects. We found a positive correlation between pairs of activation
coefficients of muscle and postural synergies with important functional implications. We
demonstrated a significant positive contribution in the combination between arm and forearm
muscle synergies in estimating hand postural synergies with respect to estimation based on muscle
synergies of only one body segment, either arm or forearm (p< 0.01). We found that
dimensionality reduction of multi-muscle EMG root mean square (RMS) signals did not
significantly affect hand posture estimation, as demonstrated by comparable results with
regression of hand angles from EMG RMS signals. Significance.We demonstrated that hand
posture prediction improves by combining activity of arm and forearm muscles and we evaluate,
for the first time, correlation and regression between activation coefficients of arm muscle and
hand postural synergies. Our findings can be beneficial for myoelectric control of hand prosthesis
and upper-limb exoskeletons, and for biomarker evaluation during neurorehabilitation.

1. Introduction

Human motion is characterized by astounding
dexterity, capable to achieve a broad range of move-
ments by controlling many actuators. Such dex-
terity in complex movements could arise from a

modular and hierarchical control of movements,
where spinal and supra-spinal neural modules drive
the co-activation of group of muscles to execute
simple sub-movements [1] that are then combined to
perform more complex movements [2–4]. Although
this modularity has been observed at the neural level
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[5–9], its external manifestation has been mainly
appreciated by observing the synergistic organisation
of muscle-skeletal activation. In the case of muscle
activity measured with electromyography (EMG),
the coactivation patterns of a group of muscles have
been defined as muscle synergies, while the simul-
taneous execution of a set of angular joints has been
mainly defined as postural synergies [10]. Among
many important types of movements analyzed in
terms of modularity in motor control, like standing
or gait [11, 12], human reaching has been extensively
investigated [13, 14]. Also, hand synergies have been
investigated under both the paradigms of muscle [15]
and postural synergies [10].

According to these findings on synergic motor
control, we would expect that muscle synergies of the
entire upper limb would coordinate with hand pos-
tural synergies during natural movements combin-
ing reaching, grasping and object manipulation. In
particular, as discussed by Santello et al [7], there
is a coherent interrelation between hand synergistic
behavior found in contact forces or kinematics and
hand muscle synergies, reflecting neural architec-
ture at the level of the central nervous system. The
biomechanics of the hand, and of the upper limb
in general, plays a fundamental role in constrain-
ing joints in limited ranges and coactivating joints
together. The findings obtained from forces and joint
angles in terms of synergistic control reflects mod-
ular neural models of motor control. Experimental
results confirm these considerations, by assessing
that kinematic synergies have their origin in syner-
gistic muscle activation [16, 17]. Thus, we expect
to predict hand posture from the muscle activity of
the entire upper limb, since this myoelectric activ-
ity would provide additional information correlating
with the act of pre-shaping the hand while approach-
ing an object. This could have an important impact
on myoelectric prosthetic control, as it would rein-
force the command of device pre-shaping, normally
obtained just from the residual forearm muscles in
the trans-radial stump, when concurrently executing
reaching.

Although many studies explored either muscle
or postural synergies, few of them compared these
two types of motor synergies during the same
movements [18]. Furthermore, the simultaneous
synergistic organization of shoulder, elbow, wrist,
and fingers during reaching, grasping and object
manipulation has been poorly investigated. Among
the studies investigating reach-to-grasp motor con-
trol, some recorded EMG both from arm and
extrinsic hand muscles in the forearm [19], eventu-
ally computing muscle synergies from both these two
body segments [20, 21], or they investigated postural
synergies between joints of the entire upper limb [22].

However, to the best of our knowledge, no studies
were conducted about the simultaneous investigation
of upper-limb synergies from the shoulder to the
hand, both at the muscular and kinematic level,
during the execution of daily-life movements to
reach, grasp and manipulate objects as a continuous
sequence of movements. We thus aim to extend the
work of Ajiboye and Weir [18] on the hand and seek
for correlation and proportional prediction between
activation coefficients of arm muscle and postural
synergistic [18].

We expect that, given the complexity of control
required for a fast and harmonious movement to
reach and grasp an object, all the muscles actuating
the joints of the entire upper limb should be max-
imally coordinated and coactivated, and thus most
of the involved joints would show highly correlated
excursions. The consequence of this hypothesis would
be that synergy computed on muscles of the entire
upper limbwould provide a better estimation of hand
postures, with respect to synergy compute from the
forearm only. To test this hypothesis, we concurrently
recorded the activity of forearm, arm, shoulder and
elbow muscles during hand movements and the kin-
ematics of the hand.

This evidence would be particularly useful for
myoelectric control of hand prostheses. In fact,
muscle synergy theory has been already adapted as a
framework for proportionalmyoelectric control [23].
In this context, synergy computation results in the
dimensionality reduction ofmany input EMGsignals,
by obtaining few time-varying continuous signals
used to control the actuators of a robotic prosthesis
[24]. However, such an approach implies that each
synergy must represent one of the two rotational dir-
ections (clockwise and anti-clockwise) of a DC elec-
tric motor actuating a single degree of freedom (DoF)
[23]. In this way, the number of synergies scales with
the double of the number of DoF to control, jeop-
ardizing the original aim of dimensionality reduction
for a high number of controlled DoF. We here pro-
pose instead to regress hand postural synergies from
muscle synergies, and then reconstructing the wrist
and finger angles from the regressed postural syner-
gies for prosthetic control.

Thus, in this study, we aim to assess whether
arm muscle activity can be useful for the estimation
of hand gestures, and we hypothesise that the main
reason for a correlation between arm muscles and
hand posture is to be found in synergistic motor con-
trol. To do so, we identify muscle synergies respons-
ible of actuating joints from the shoulder to the hand,
and we look for correlation and regression with hand
kinematic synergies in their time-varying behavior
(given by synergistic activation coefficients). For the
first time, we specifically look for a correlation and
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a regression between arm muscle synergies, actuat-
ing joints from the shoulder to the elbow, and hand
postural synergies, obtained from wrist and finger
joints, thus distal from the elbow. We also evaluate
correlation and regression between forearm muscles
and hand kinematics, and the combination of both
arm and forearm muscles for hand posture estim-
ation. Finally, we propose hand myoelectric control
as a future application of this findings, by discussing
how our framework fits in that scenario.

2. Methods

2.1. Subjects
Ten healthy participants, six males and four females,
(age, 30.3± 4.0 years; weight, 69.5± 15.4 kg; height,
172.4 ± 8.0 cm) voluntarily took part to the experi-
ments after having signed an informed consent. The
Italian Institute of Research Ethics Committee [CER
Liguria Ref. 11 554 of 18 October 2021] approved
the study protocol and procedures, assessing that all
the requirements of the Declaration of Helsinki were
followed.

2.2. Measurements
We recorded both hand movement kinematics and
myoelectric activity with the experimental setup
shown in figure 1.

Hand movement kinematics consisted in the
motion capture recording of 16 reflective markers
placed on arm, forearm, and hand, as in figure 1(a),
by targeting the subject movements with 10 infra-red
cameras (Nexus, Vicon, Denver, USA). Specifically,
we placed a marker on the lateral bone prominence
of the elbow (RELB), one in the middle of the fore-
arm (RFRM), one on radius and one on ulna bone
(SR and SU). The other markers were placed on the
hand (figure 1(a)).

Motion capture recordings were sampled at
100 Hz and an analogic-to-digital (A/D) converter
on 10-bit grayscale data was used. The DoFs tar-
geted with motion capture were forearm pronation-
supination, wrist flexion-extension, ulnar-radial
deviation of the wrist, flexion-extension of the five
fingers, abduction of thumb, index and little finger,
and thumb adduction. We selected abduction and
adduction only for the fingers where it was considered
most important, i.e. thumb, index and little finger, to
reduce the total number of features to be considered
for the analysis. This selection was made after a pre-
liminary manual inspection of pilot data appositely
collected, by evaluating the range of motion of all the
DoFs of the fingers.

Myoelectric activity was measured by recording
EMG signals with two different approaches, in terms
of acquiring systems and channelmontages (figure 1).
The first approach consisted in using 10 bipolar EMG
sensors from respectively upper trapezius, anterior
deltoid, middle deltoid, posterior deltoid, long head

of biceps, short head of biceps, lateral head of triceps,
medial head of triceps, brachioradialis and pronator
teres muscles [25]. Each of these bipolar surface EMG
measurementswas recordedwith a sensor amplifying,
band-pass filtering (10–500 Hz) and digitalizing the
signal locally to then send the data via wireless com-
munication to a central station (Wave Plus, Cometa
Systems, Bareggio, Italy). These signals were discret-
ized at a sampling frequency of 2 kHz and A/D con-
verted on 16 bits. The central station was synchron-
ized with the motion capture system. The Wave Plus
station from Cometa was connected via USB to the
PC running the Vicon Nexus acquisition software.
This software already accounts for the synchroniza-
tion of the data coming from the Wave Plus station
with the kinematics datameasured through the Vicon
system.

The other EMG recording approach was via
high-density surface EMG (HD-sEMG) with a port-
able 64-channel amplifier (Sessantaquattro, OT
Bioelettronica, Torino, Italy) to which two patches
containing a 32-channel electrode grid each were
connected (figure 1(b)). The portable system was
attached to the forearm of the subject proximally
5 cm below the olecranon. The first patch (namely
electrodes 1–32) was placed on flexor muscles of the
fingers, while the second patch (namely electrodes
33–64) was placed on the extensor muscles of the
fingers. The position of the patches was chosen as
to cover the entire circumference of the forearm.
Electrode grids were configured in 8 × 4 electrodes,
with an interelectrode distance of 10 mm. The first
grid was placed over flexor extrinsic hand muscles, in
the mid of the ventral side of the forearm, while the
second grid was placed over extensor extrinsic hand
muscles on the dorsal side of the forearm, in the first
proximal third of the forearm. Ulna palpation was
used as a reference, as well as muscle palpation during
required repeated contraction actuating the muscles
of interest, according to [26]. The signal was sampled
at 2 kHz and A/D converted on 24 bits. The HD-
sEMG recording was synchronized with the Vicon
motion capture system. Data acquisition was driven
by two computers (Windows operating system). One
ran the Vicon software, while the other ran a GUI
implemented in Matlab (Mathworks) to acquire HD-
sEMG data. A real-time target machine (Speedgoat)
was used to synchronize all the connected devices.

2.3. Experimental protocol
Participants sat in a comfortable posture in front of
a table on which different objects were placed at the
beginning of each task. Each task consisted in 10 repe-
titions of movements, starting from a rest position
with the elbow bent at 90◦ and the wrist aligned with
the forearm. The six tasks consisted in:

- Frontal reaching with spherical grasp, bringing the
spherical object close to the mouth (like eating
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Figure 1. Experimental setup. (a) Motion capture system and 23 reflective markers placement. (b) Muscles targeted with 16
bipolar and HD-sEMG. Two 8-x-4-channel electrode grids were used to record HD-sEMG, respectively over flexors and extensors
forearm muscle groups.

some fruit), then placing back the object on the
table and come back to rest (EatFruit);

- Frontal reaching without grasp and come back to
rest (FroRea);

- Frontal reaching to grasp a cylindrical glass, acting
to pour water from the glass, then placing back the
glass on the table and come back to rest (Pour);

- Frontal reaching to grasp a cylindrical object and
come back to rest (ReaCyl);

- Frontal reaching to grasp a spherical object and
come back to rest (ReaSph);

- Frontal reaching to grasp the cap of a bottle with
a tripod pinch, screwing the cap to open and then
close the bottle, and come back to rest (Screw).

The tasks were chosen to investigate how the same
synergies could simultaneously explain (a) reaching
without grasp (FroRea), (b) differences in the type of
grasp (ReaCyl vs ReaSph), and (c) differences among
two different reach-to-grasp movements (with com-
plex movements like EatFruit, Pour and Screw)

2.4. Computational procedures and rationale
The overall computational procedure for this study
is described in figure 2. As explained in detail in the
following section, synergy extraction by non-negative
matrix factorization (NMF) implies the identifica-
tion of a spatial time-invariant pattern, the syner-
gistic weights, and time-varying synergistic activation
coefficients. Each activation coefficient is a signal in
time representing how a synergy is modulated by the
central nervous system in time, and it presents the

same time support of the original factorized signals
(either EMG root mean square (RMS) or hand joint
angles). The synergistic weights are seen as the syn-
ergies themselves, which represent a time-invariant
synergistic pattern prescribed by the central nervous
system and modulated by supra-spinal descending
signals [4].

For each muscle synergy identified for different
muscle grouping, we looked for a correlation between
muscle and hand postural synergistic activation coef-
ficients in the time domain. We then predicted hand
postural synergies by regression of muscle synergies.
Muscle synergies were extracted from arm (more
proximal than the elbow) and forearm muscles, sep-
arately. For calculation of postural synergies, the neg-
ative values of angles were rectified and used as addi-
tional input to the NMF algorithm.

We tested whether we could predict time-varying
hand postural synergies from the time-varying activ-
ation coefficients of either arm or forearm muscle
synergies. As represented in figure 3, the main goal
was to describe M hand DoFs with a lower N num-
ber of control signals, constituted by the predicted
hand postural activation coefficients by regression
from muscle synergies activation coefficients.

Finally, we investigated shared synergistic beha-
vior among subjects and calculated synergy proto-
types in space and time, representative of all the
subjects, by clustering muscle synergies as described
in the following section. The reason for perform-
ing this analysis is twofold. First, we aimed to
assess synergy variability across subjects. Second, we
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Figure 2. Overall computational procedure which includes signal pre-processing, muscle synergy identification and prediction
between muscle and postural synergy activation coefficients. An example of representation for synergy weights of both types is
provided with a graphical functional representation on the right part of the figure.

Figure 3. Future application of the presented framework. By combining muscle synergies activation coefficients of arm and
forearm we want to infer hand postural synergy activation coefficients. An example of time-invariant synergy weights in an
anatomical graphic way is represented respectively in panel (a) for muscle synergies (coloured muscles of the arm and forearm)
and (b) for postural synergies (coloured arrows indicating joint movements). Colorbars indicate the color code for anatomical
representations. (c) Main advantage of the framework: M hand DoFs can be described with a lower number N of signals by
regression from muscle synergies activation coefficients extracted from upper-limb muscles.

aimed to investigate the feasibility of a synergy-based
myoelectric prosthesis control. For example, in the
context of multi-DoFs system, in which the low-level
control (i.e. the reference control signals provided to
the actuators of each DoF of the prosthesis) is driven
by the synergies. In this context, a control architec-
ture based on data from many subjects, may provide
a more robust and reliable control.

2.5. Signal processing
EMG signals were band-pass filtered between 20 and
500 Hz [27]. The HD-sEMG signals were recon-
figured, for each signal, as single-differential record-
ings, by subtracting each 8-channel row of a grid
to the following, to obtain 3 × 8 single-differential
HD-sEMG channels per grid. This was done to
attenuate crosstalk and common noise [28], and to
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be consistent with the bipolar recording of the other
single-channels recordings from sensors over armand
forearm muscles.

The RMS value of the EMG signals was computed
with non-overlapping 100mswindows [29], andwith
low pass filtering the RMS signals at 2 Hz. The res-
ulting sampling frequency of the filtered RMS signals
was then 10 Hz.

Angles from the anatomical joints targeted with
motion capture (described in section 2.2) were com-
puted from the 3D marker positions, which con-
sisted in a numerical matrix with dimension number-
of-samples x number-of-measured variables, where
the number of measured variables was the num-
ber of markers per the three coordinates (x,y,z) of
each marker. The Vicon Nexus software was util-
ized to extract anatomical joint angles from mark-
ers’ trajectories. For this purpose, two Vicon mod-
els, namely Plug-in-Gait and RHand bodybuilder,
were employed. A reduced version of the Plug-in-
Gait model was used to calculate the joint angles
for the whole upper arm, while the RHand body-
builder model was utilized for the finger joints. These
Vicon models define the rigid body segments link-
ing two consecutive markers on the body. Then, a
standard inverse kinematics approach was applied
through the Vicon Nexus software to obtain the
anatomical joint angles for the whole upper arm
based on the markers’ trajectories. Angles were
down-sampled to 10 Hz and low-pass filtered to
2 Hz to be consistent with the myoelectric signal
processing.

2.6. Signal extraction and number of synergies
The 2 Hz down sampled signals (both myoelectric
and kinematic) obtained for each repetition and task,
were concatenated to identify synergistic organiza-
tion by NMF across all tasks. Each signal was then
normalized by its absolute maximum across all tasks
[13]. Hand angles signals were divided in two sig-
nals, respectively the positive part and the rectified
negative part, to have non-negative quantities to fac-
torize by NMF. So, for each DoF, the two directions
of movement were encoded by two separated non-
negative signals. In other words, we split the posit-
ive and the negative part of each angle to create two
angle signals for each original angle. Once the ‘neg-
ative’ part was separated from the ‘positive’, each part
was considered between 0 and a positive maximum,
to be compliant with NMF. By doing so, we simply
established that for each DoF there are two excur-
sion angles instead of one, e.g. one for flexion and
one for extension, each ranging from 0 to a positive
value.

As mentioned in Sec. Measurement, the angles
selected to be factorized by NMF were flexion and
extension of the wrist, pronation and supination of
the forearm, ulnar and radial deviation of the wrist,

flexion and extension of the five fingers (10 non-
negative signals), adduction and abduction of the
thumb, and abduction of index and little fingers, for
a total of 20 non-negative signals.

NMF of such concatenated signals allowed to
compute: (a) arm muscle synergies from the eight
bipolar EMG signals more proximal than the elbow;
(b) forearm muscle synergies from the two bipolar
EMG signals on the forearm plus the two single-
differential HD-sEMG grids (3 × 8 signals); and (c)
hand postural synergies from the angles of the hand.

The NMF factorization decomposed each input,
shaped as a non-negative matrix X, with I rows rep-
resenting the number of variables andT columns rep-
resenting their temporal samples, as follows [30]:

X ≈W×H,

where W is the time-invariant I × S matrix of the
synergies, and H is the time-varying S × T matrix of
the activation coefficients, with S being the number of
identified synergies (S ⩽ I). How each input variable
contributes to a synergy is defined in matrix W for
each column, while the temporal trend of each syn-
ergy during the execution of the six tasks is described
by the rows of matrix H.

The NMF algorithm was iterated 100 times,
but stopped when a termination tolerance equal to
1× 10−4 was reached for the residual error betweenX
andW × H. Each of these iterations was repeated 10
times [13] and matricesW andH were each time ini-
tialized with different random values. To quantify the
reconstruction of the original input matrix X, for the
different types of input, by the product ofW and H,
the coefficient of determination (R2) was computed
as in [31]. For each number of synergies, the greatest
R2 among the 10 NMF repetitions was considered as
representative R2, to obtain a R2 curve in function of
the number of identified synergies [31].

For each input (e.g. EMG or kinematic data), we
run the NMF imposing a number of synergies ran-
ging from 1 to a maximum number of 10, following a
pilot processing of the data, where for all types of syn-
ergies a dimensionality lower than 10 was sufficient
for good reconstruction. The final number of identi-
fied synergies was determined by finding the number
of synergies corresponding to the change in slope of
the R2 curve [13]. To quantify this, the mean squared
error (MSE)was computed for a line fitting the part of
the R2 curve from each number of synergies between
1 and 9, to the maximum number evaluated, i.e. 10
[13]. The number of synergies was determined for the
minimumMSE value exceeding 10× 10−4 [13].

2.7. Cross-correlation betweenmuscle and hand
postural synergistic activation coefficients
Cross-correlation, normalized between −1 and 1,
was computed for each subject between each pair

6



J. Neural Eng. 21 (2024) 026043 S Tanzarella et al

of activation coefficients of a muscle synergy and a
hand postural synergy, separately for arm or forearm
muscle synergies. So, given two activation coefficient
matrices Hmusc and Hang, with size S1 × T, and
S2 × T, for each j ∈ [1,S1] and k ∈ [1,S2], the cross-
correlation function is defined as

T∑
m=−T

Hmusc [ j,m− n]Hang [k,m]

where m is the discrete time support and n is called
displacement or lag.

The value of the peak of the cross-correlation
function was taken as measure of correlation between
each pair. By progressively considering the most cor-
relating pair, we defined in descending order themost
correlating pairs of synergies between arm/forearm
synergies and hand postural synergies.

2.8. Clustering of synergies and shared
spatio-temporal pattern across subjects
The time-invariant weights describing the synergies
were clustered across all participants by hierarchical
clustering [32], separately for muscle synergies and
postural synergies. To do so, synergies of all sub-
jects were concatenated together, separately for arm
muscle, forearm muscle and hand postural syner-
gies. Thus, for each identified cluster, we expected to
have one or more synergies of different subjects. To
determine the number of clusters, we took the highest
integer lower than the mean number of synergies
identified across subjects, respectively for muscle and
postural synergies. After computing the clusters, we
adjusted each cluster by a criterion forcing to have no
more than one synergy of the same subject per cluster
[12]. To implement this criterion, for each cluster we
first computed the similarity of each synergy with all
the other synergies of that cluster. Then, among syn-
ergies of the same subject found into the same cluster,
we kept only the one presenting the highest similarity
with the other synergies of the cluster. Spare synergies
excluded by the clusters were relocated with the fol-
lowing approach: (a) check for each cluster whether
some subject is not represented with one synergy (b)
if so, check if among the spare synergies there is one
synergy with highest similarity with the elements of
the cluster, then insert this synergy in the cluster.
With this approach, the final number of clustered
synergies could change with respect to the identi-
fied number of synergies following single subject ana-
lysis. The centroid of each cluster was computed by
averaging the synergies into that cluster. Each cluster
prototype represents the shared information across
similar synergies of all subjects (all-subjects syner-
gies). All-subjects synergies centroids were then used
to reconstruct the activation coefficients for each sub-
ject. Importantly, while for single-subject synergies,
the number of synergies could differ for each sub-
ject, for all-subjects synergies, by imposing the same

set of synergies to each subject, we obtained the same
number of synergies and thus of activation coefficient
for each subject. Mathematically, this operation can
be computed by having the matrix of the centroids
(the all-subject synergies) as theW matrixmentioned
above to describe the NMF computation, and then
multiplying the inverse ofW for the input matrix X,
where X is the original data of each subject (RMS for
muscle synergies, angles for postural synergies). So,
for each subject we obtained a new matrix H of the
activation coefficients.

As done for the time-invariant all-subjects syner-
gies, averaged across all subjects for each cluster to
get the cluster centroids, we calculated an averaged
estimation of the time-varying all-subjects synergistic
activation coefficients across subjects. This was done
by segmenting the reconstructed activation coeffi-
cients of each subject by the onset and offset of each
of the 10 repetitions of each task, obtained by with
simple thresholding of the kinematics data. Then, the
10 repetition segments for each participant, each task
and each synergy, were resampled by the mean num-
ber of samples of the onset-offset intervals for that
task across the 10 subjects. By doing so, instead of res-
ampling all the segments of every task for the same
fixed number of samples, we obtained a different time
support for each task proportional to the duration of
that task.

Finally, we computed the cross-correlation
between the new all-subjects synergistic activation
coefficients for muscles versus postures. To do so, we
computed the cross-correlation between all-subjects
muscle and hand postural synergistic activation coef-
ficients, separately for arm and forearmmuscle syner-
gies, for all the possible pairings of synergies for each
task. Then, the mean across tasks of cross-correlation
peak value was taken to form the most correlating
pairings between all-subjects synergies in descend-
ing order, like done for subject-specific synergies,
described in section 2.7.

2.9. Hand postural synergy regression frommuscle
synergies
We evaluated the regression of hand postural syn-
ergies from muscle synergies extracted respectively
from arm and forearm muscles, and from their com-
bination. Also, we compared this analysis with the
regression of hand joint angles directly from the RMS
values used by NMF to compute the muscle syner-
gies. Again, the RMS values for regressing hand joint
angles were considered for arm and forearm muscles
separately, and for their combination.

We compared the regression obtained with lin-
ear regressor (LR), k-nearest neighbor (KNR), ran-
dom forest (RFR), and support vectormachine (SVR)
[33]. Train and test dataset were divided with a ratio
of respectively 80%20%of thewhole data. Regression
was performed separately on the data of each sub-
ject. The performance both for training and test of
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each model was evaluated in terms of the coefficient
of reconstruction R2, as defined for computing syn-
ergy reconstruction of the original data.

2.10. Statistical analysis
A paired t-test was conducted to establish signific-
ant difference between (a) numerosity of armmuscle,
forearm muscle and hand postural synergies, (b)
reconstruction of hand postural quantities (postural
synergy activation coefficients or joint angles) from
arm, forearm and arm + forearm muscle synergies,
(c) prediction of hand posture frommuscle synergies
or with original signals (EMG RMS signals to pre-
dict hand joint angles). The significance level was set
to 0.05.

3. Results

3.1. Number of identified synergies
The number synergies identified for the 10 subjects
was respectively 4, 3, 4, 4, 4, 5, 5, 5, 4, 5 (4.3 ± 0.6)
for arm muscle synergies, 6, 5, 5, 5, 6, 4, 5, 6, 5, 6
(5.3 ± 0.6) for forearm muscle synergies, and 7, 7,
7, 6, 6, 7, 6, 6, 7, 7 (6.6 ± 0.5) for hand postural
synergies. Thus, the dimensionality of hand postural
synergies identified is significantly higher than the
one of respectively arm (p = 4.6 × 10−8) and fore-
arm muscle synergies (p = 6.6 × 10−5). Also, the
dimensionality of arm muscle synergies was signific-
antly lower than the one of forearm muscle synergies
(p = 1.9 × 10−3). The value of R2 for the number of
synergies identified with the change in slope criterion
described in section 2.6 of methods was respectively
0.93± 0.03 for arm muscle synergies, 0.82± 0.02 for
forearm muscle synergies, and 0.79 ± 0.04 for hand
postural synergies, across subjects.

3.2. Correlation among different types of synergies
per subject
Figure 4 reports the values of cross-correlation peaks
between muscle and hand postural synergistic activa-
tion coefficients for each subject, respectively for arm
muscle synergies and for forearm muscle synergies,
separately paired with postural synergies.

Figure 5 shows, for a randomly chosen sub-
ject (# 3), the time-invariant weights and the time-
varying activation coefficients for pairs between arm
muscle synergies and hand postural synergies. The
pairs are sorted in descendent order by their cross-
correlation (XC) peak value, from top to bottom. As
described in figure 3, time-invariant weights are rep-
resented graphically with bar graphs, and with ana-
tomical maps for muscle synergies and with angle
directions for postural synergies, to enable an easier
functional interpretation. Time-varying activation
coefficients are represented as the mean and the
standard deviation (shadowarea) of the 10 repetitions

for each task. The values of cross-correlation between
the synergy pairs are also reported.

The first pair of synergies (XC = 0.80) suggests
a correlation between the posterior deltoid and the
act of shaping the hand by abducting the thumb,
extending the index finger, and flexing the little fin-
ger, while supinating. The hand postural synergies for
all the tasks have a peak at the middle of the reach-
ing repetition, except for the frontal reaching without
grasp (FroRea). It presents its maximal activity for
cylindrical grasp (ReaCyl). Also, it is present in the
act of grasping a glass before pouring the water in it
(Pour), in the phase of opening the hand to grasp and
to release (depression at the very center of the task, in
the act of pouring). Finally, it is present during spher-
ical grasps in EatFruit and ReaSph. The act of the pos-
terior deltoid hasmainly a stabilisation function. This
is true also for reaching followed by screwing a bottle
cap (Screw), in the phase of opening the hand to grasp
and to release the bottle cap (depression at the very
center of the task, when screwing the cap).

The second synergy pair (XC = 0.71) is clearly
associated to closing the hand while grasping (pos-
tural synergy) and it positively correlates with muscle
activity of the triceps which extend the elbow in the
act of stretching the arm for reaching the object.

The third synergy pair (XC = 0.65) is maximal
in temporal activity for Pour and it matches in the
functional interpretation of the corresponding pos-
tural synergy which pronates the wrist. In fact, prona-
tion is also largely used for spherical grasping, used
in EatFruit and ReaSph, which present peaks for
this synergy in the act of grasp the spherical object.
Also, the postural synergy includes thumb flexion
and wrist ulnar deviation, confirmed in the peak
of postural coefficients during Screw, which needs
these movements in the act of screwing the bottle
cap. Interestingly, the most activated arm muscles in
this action are the long head of the biceps and the
upper trapezius, supposedly to stabilize the pronation
movement.

Finally, the fourth synergy pair (XC = 0.60) may
suggest that the short head of the biceps brachii stabil-
ize the elbow, meanwhile ulnar deviation is executed
during grasping. Interestingly, in the only reaching
not followed by a grasp (FroRea) the postural syn-
ergy is maximally expressed at the beginning and at
the end of the movement for the considered subject.

Figure 6 shows the comparison between fore-
arm muscle synergies and hand postural synergies
paired and orderedwith the same criterion of figure 5,
for the same subject (#3). The first pair of syner-
gies (XC = 0.76) expresses hand opening, as indic-
ated by the time-invariant activation of the extensors
of the forearm (radial part) and finger extension of
all angles. The time-varying coefficients indicate that
this pair of synergies consists in the pre-shaping for
a cylindrical grasp (mainly activated in ReaCyl and
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Figure 4.Mean and standard deviation of cross-correlation (XC) peaks between muscle and hand postural synergistic activation
coefficients for each subject, respectively for arm muscle synergies and for forearm muscle synergies.

Figure 5. Pairs of arm muscle synergies (in blue) and hand postural synergies (in purple) of subject #3, paired in descending order
by their cross-correlation peak value, from top to bottom for subject #3 (each row in the figure is a synergy pair). Synergy weights
are shown with a graphical functional representation (darker colors represent higher activation in arm and hand representations)
and synergy activation coefficients are shown averaged across the 10 repetitions executed for each task. See figure 3 for legends
and graphical interpretation of the synergies.

Pour) and in the act of releasing the object (2 activ-
ation peaks are present in these tasks).

The second pair of synergies (XC = 0.69) repres-
ents wrist pronation with activation of the pronator,
the brachioradialis and of extensors of the forearm.

The third pair of synergies (XC = 0.67) repres-
ents the phase of opening the hand before starting a

new repetition of any reaching (as can be deducted by
observing the activation coefficients), with a concur-
rent activation of the flexor muscles.

The fourth pair of synergies (XC = 0.59) rep-
resents wrist supination and thumb adduction for
grasping an object, and the radial part of the extensor
muscles is more activated.
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Figure 6. Pairs of forearm muscle synergies (in blue) and hand postural synergies (in purple) paired in descending order by their
cross-correlation peak value, from top to bottom, for subject #3 (each row in the figure is a synergy pair). Forearm EMG channel
for each muscle synergy represents brachioradialis and pronator (first 2 channels on the top, the single differential of flexor
forearm muscles (first 3 rows) and the single differential of extensor forearm muscles (second 3 rows). Synergy weights are shown
with a graphical functional representation (darker colors represent higher activation in arm and hand representations) and
synergy activation coefficients are shown averaged across the 10 repetitions executed for each task. See figure 3 for legends and
graphical interpretation of the synergies.

The fifth pair of synergies (XC = 0.55) is maxim-
ally active during object grasping, as it includes fingers
flexion and activation of the ulnar part of the extensor
muscles.

3.3. Spatiotemporal evaluation of all-subjects
synergies
To find shared common synergistic spatiotemporal
patterns across subjects, synergies of all subjects were
clustered by forcing to have only one synergy per sub-
ject into a cluster (see Methods). With this method,
we found respectively four cluster for arm muscle
synergies, four clusters for forearm muscle synergies
and six clusters for postural hand synergies. Figures 7
and 8 show the cluster centroids for the three types of
identified synergies, respectively for arm and forearm
muscles. Centroids are represented both functionally
and with bar graphs to show variability among ele-
ments in the cluster. In order to analyze and inter-
pret the time-varying component of synergies, the 10
repetitions per task were segmented and resampled

for each subject for each all-subjects synergy from the
reconstructed activation coefficients starting from the
all-subjects weights (for more details see Methods).
Then, by averaging all these segments across subjects,
we obtained one segment for each all-subjects synergy
and for each task.

Remarkably, for 3 out of 4 clusters for armmuscle
synergies, the centroids are representative of all the
10 subjects, while the fourth centroid excludes only
one subject. For forearm muscle synergy centroids, 2
out of 4 include all subjects, while the other 2 only
7. For hand postural synergies, 4 out of 6 centroids
include all subjects, while the other 2 respectively 6
and 8 subjects.

The average cosine similarity between the synergy
weights of each cluster and the synergy weights of the
relative centroid are respectively 0.81, 0.84, 0.95, 0.81,
0.98, 0.88 for the 6 all-subjects hand postural syner-
gies, 0.95, 0.89, 0.95, 0.94 for the arm muscle syner-
gies, and 0.90, 0.88, 0.87, 0.86 for the forearm muscle
synergies.
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Figure 7. All-subjects arm muscle synergies and average activation coefficients. The all-subjects average cycles per task are colored
in cyan, while the shaded areas and correspondent continuous lines are the averaged repetitions for each subject per task. See
Methods for computational details and figure 3 for legends and graphical interpretation of the synergies.

By looking at arm all-subjects synergies (figure 7),
the first synergy seems to activate both lateral and
medial heads of triceps. This synergy can be function-
ally interpreted as extension of the elbow and high
triceps activation and its time-varying behavior per-
fectly matches this functionality, since a bell curve is
observed for each extension in the task. For EatFruit
and ReaSph the bell curves are 2, while for all the oth-
ers there is just 1, with Screw presenting a unique pat-
tern in between, due to the complexity of the task.
The second synergy involves mainly upper trapezius
and long head of biceps brachii in its time-invariant
representation. Its time-varying behavior presents a
peak in correspondence to the grasp execution for all
the task, although with different patterns. In fact, the
peaks look higher for grasps concurrent with prona-
tion like EatFruit, Pour and ReaSph. This is compat-
ible with the interpretation for the single subject in
section 3.2, where long hand biceps in synergy with
upper trapezius are supposed to stabilize the arm dur-
ing pronation. The third synergy activates themiddle-
posterior deltoid and looks timely activated during
reaching and coming back, while presents a depres-
sion during grasping. Moreover, for EatFruit, this
third synergy is responsible of positioning the arm in
the act of ‘eating’ the fruit. Finally, the fourth synergy

activates the short head of biceps brachii and indeed it
is timely activated to flex the elbow at the beginning
of the reaching and to bring back the arm after the
grasp.

Observing forearm muscle synergies (figure 8),
the first synergy activates more the ulnar part of
the extensor forearm muscles. This synergy clearly
activates during pronation, mainly in EatFruit, Pour,
ReaSph and Screw (in the act of screwing the bottle
cap). In terms of their time-invariant activations, the
second synergy involves the radial part of the extensor
forearmmuscles and brachioradialis, the thirdmainly
coactivates brachioradialis and pronator teres, while
the fourth presents amajor activity for the flexor fore-
arm muscle group. However, for these last three fore-
arm muscle synergies, a clear pattern across all sub-
jects does not emerge. We provide an interpretation
of this in Discussion.

Finally, for the hand postural synergies (figure 9),
we identified (proceeding top to bottom) func-
tional interpretation respectively for (a) thumb-little
flexion while index extends, (b) supination and
radial deviation of the wrist, (c) hand closing, (d)
thumb extension-abduction, (e) hand-opening and
(f) wrist pronation and ulnar deviation. Interestingly,
by applying unsupervised techniques to natural
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Figure 8. All-subjects forearm muscle synergies and average activation coefficients. The all-subjects average cycles per task are
colored in cyan, while the shaded areas and correspondent continuous lines are the averaged repetitions for each subject per task.
See Methods for computational details and figure 3 for legends and graphical interpretation of the synergies.

reaching-grasping tasks, we identified six actions,
which are largely used for control of robotic hand
prostheses.

The first postural synergy, which from its time-
invariant part looks the pre-shaping of a tripod pinch,
is largely activated as a bell curve for all grasps (so for
FroRea is flat).

This explains the two bell curves for EatFruit,
because it is mainly activated before to close the
grasp around the object and when releasing. The lar-
ger activity is for ReaCyl, where the cylindrical grasp
could mainly interest the flexion of the thumb and of
the little finger, by prevalently extending the index,
and Screw, where exactly a tripod pinch is performed.
The second synergy is the one executing wrist supin-
ation, maximally high at the centre of EatFruit when
the forearm is supinated in the act to eat the fruit,
and it is also activated at the beginning and at the
end of each reaching movement. It presents a deep
depression at the center of Pour where pronation,
i.e. the opposite movement of supination, is per-
formed. The third synergy mainly encodes a spher-
ical grasp, although is also high for the tripod grasp
in Screw, which resembles more the pre-shaping of a

spherical grasp than a cylindric one. The fourth syn-
ergy reveals a finger movement, thumb adduction-
extension, very active at the very beginning of a reach-
ing cycle and when completing the movement to
bring back the arm. The fifth synergy is clearly for
hand opening both in its time-invariant and time-
varying representation, while the sixth is confirmed
to be the wrist pronation postural synergy.

In table 1 the cross-correlation peaks with hand
postural synergy repetitions, respectively for arm
and forearm all-subjects muscle synergy repetitions
is reported, by sorting the most correlated pairs in
descending order. The cross-correlation peak value
reported in the table (XC) is the average across the
cross-correlation peak values for the respective pairs
of all-subjects repetition segments for each task.

3.4. Regressing hand postural synergies from
muscle synergies
Table 2 reports the coefficient of reconstruction (R2)
for the regression of hand postural synergies from
myoelectric activity in terms of mean and standard
deviation across the 10 subjects. Myoelectric activity
is considered both in terms of RMS values for each
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Figure 9. All-subjects hand postural synergies and average activation coefficients. The all-subjects average cycles per task are
colored in cyan, while the shaded areas and correspondent continuous lines are the averaged repetitions for each subject per task.
See Methods for computational details and figure 3 for legends and graphical interpretation of the synergies.

Table 1. Values of cross correlation (XC) with hand postural synergies (PS) respectively for arm and forearm muscle synergies (MS) in
terms of their activation coefficients (time-varying) for the all-subject synergies. The # of each synergy indicating each muscle-postural
synergy pair is correspondent to the order in figures 7–9. The value of XC for postural synergies excluded by the pairing due to
termination of corresponding muscle synergies, are reported with grey-shaded cells, paired with muscle synergies already paired with
other postural synergies above.

# ArmMS # Hand PS XC # Forearm MS # Hand PS XC

3 2 0.98 2 2 0.95
2 6 0.98 3 3 0.95
1 1 0.94 1 6 0.94
4 5 0.92 4 5 0.93
2 3 0.95 1 1 0.94
2 4 0.94 3 4 0.94

muscle and in terms of muscle synergies extracted
by NMF from the same RMS values. Results look
averagely higher both for training and test with the
RFR.

Regression reconstruction of hand postural syn-
ergies was found significantly higher when predict-
ing from the combination of arm and forearmmuscle
synergies with respect to forearm muscle synergies
only (p < 0.001) and arm muscle synergies only
(p < 0.05) for all the regressors. Also, regression
reconstruction of hand joint angles from combined

EMG RMS of arm and forearm muscles was sig-
nificantly higher than from forearm muscles only
(p < 0.05) and arm muscles only (p < 0.0001). No
significant difference was found between using a syn-
ergistic approach for regressing hand posture quant-
ities, i.e. between computing synergies and regress-
ing hand joint angles from EMG RMS, in the case
of combining arm and forearm muscles, or for arm
muscles only. Instead, when considering forearm
muscles only, using RMS instead of muscle synergies
to regress hand joint angles to predict hand postural
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Table 2.Mean and standard deviation of value of train (Train acc) and test accuracy (Test acc) for regression of hand postural synergies
(PS) respectively from arm and forearm muscle synergies (MS) across the 10 subjects. In the same way value of regression of hand angles
from arm and forearm filterted RMS are reported. The comparison is between 4 different regressors. The regressors considered were
linear regressor (LR),k-nearest neighbor (KNR), random forest (RFR), and support vector machine (SVR).

LR KNR RFR SVR

Arm EMG RMS—Hand angles

Train acc 0.27± 0.04 0.77± 0.04 0.95± 0.01 0.54± 0.05
Test acc 0.25± 0.06 0.42± 0.12 0.49± 0.10 0.44± 0.08

ArmMS—Hand PS

Train acc 0.27± 0.07 0.83± 0.03 0.96± 0.01 0.56± 0.05
Test acc 0.26± 0.07 0.42± 0.13 0.46± 0.13 0.47± 0.07

Forearm EMG RMS—Hand angles

Train acc 0.40± 0.07 0.85± 0.04 0.96± 0.01 0.69± 0.05
Test acc 0.32± 0.09 0.54± 0.11 0.59± 0.09 0.52± 0.10

Forearm MS—Hand PS

Train acc 0.18± 0.05 0.78± 0.03 0.95± 0.01 0.45± 0.07
Test acc 0.17± 0.06 0.32± 0.08 0.39± 0.09 0.36± 0.07

Arm and Forearm EMG RMS—Hand angles

Train acc 0.49± 0.05 0.90± 0.02 0.97± 0.01 0.77± 0.03
Test acc 0.40± 0.08 0.63± 0.10 0.66± 0.08 0.60± 0.08

Arm and Forearm MS—Hand PS

Train acc 0.37± 0.06 0.95± 0.01 0.98± 0.00 0.73± 0.03
Test acc 0.35± 0.07 0.64± 0.10 0.66± 0.07 0.57± 0.07

synergies, provided a significant higher reconstruc-
tion (p< 0.05).

4. Discussion

In this study, we investigate synergistic control of the
upper limb by comparing muscle synergies extrac-
ted both from arm and forearm muscles with hand
postural synergies. We hypothesise that muscle syn-
ergies of the entire upper limb predict hand pos-
tural synergies better than considering synergies just
from forearmmuscles.We proved this hypothesis and
showed that myoelectric activity recorded from the
entire upper limb improves the prediction of hand
pre-shaping in daily-life natural movements com-
bining reaching, grasping and object manipulation.
This result supports the perspective of integrating
EMG recordings of the proximal part to those of the
residual forearm muscles in trans-radial stumps, to
improve the control of active myoelectric prostheses.

4.1. Methodological choices and limitations
We extracted both muscle and postural synergies by
NMF. Other alternative factorization methods for
dimensionality reduction include principal compon-
ent analysis (PCA) for muscle synergy identification
[32]. However, PCA implies the complication of

interpreting negative muscle activation. A further
option consists in using NMF for muscle synergies
and PCA for postural synergies [10, 15], but this
would lead to method inconsistency among the two
types of synergies.We thus chose to useNMF for both
types of synergies. The method we used to split into
positive and negative parts each joint angle has been
already proposed by Ting et al [34, 35] for factoriz-
ing force with NMF and enable a quantitative com-
parison with muscle synergies. Recently, Scano et al
[36] proposed a novel method called mixed matrix
factorization, which enables to directly assess the rela-
tionship between kinematic and muscle activity vari-
ables, by enforcing the non-negativity constrain on
a subset of variables. Since it outperformed the clas-
sical approach based on NMF with splitting positive
and negative angle phase, wewill consider it for future
studies.

In figures 5 and 6, we detailed the pairing of
muscular and kinematic synergies for subject # 3.
However, across different subjects, we observed vari-
ability both in number and type of identified syn-
ergies, thus also the pairs between synergies could
change in their functional interpretation. At this stage
we are assuming a univocal correspondence between
a muscle synergy and a postural synergy and not
the possibility that more than one muscle synergy
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might correlate with the execution of one or more
hand postural synergies. This is a limitation of our
study, and future work should address the relation-
ship between muscle synergies and multiple hand
postural synergies.

4.2. Number of synergies and variability across
subjects
We identified about 4 arm muscle synergies, 5 fore-
armmuscle synergies and between 6 and 7 hand pos-
tural synergies, for each subject. We found a statistic
significance in having higher hand postural synergies
than muscle synergies of both types. This could be
interpreted as a major complexity in finger move-
ment execution with respect to the complexity inher-
ent into the central nervous system in controlling
muscles. Also, we found significantly more forearm
muscle synergies than arm muscle synergies. This
could be since, while forearm muscles are directly
involved in finger actuations, arm muscles are only
involved in arm actuation during reaching, so con-
trollingmuch less degrees of freedom. Another aspect
to consider is the different approach in recording
EMG between arm and forearmmuscles. For forearm
muscles we measured pronator and brachioradialis
activity with bipolar electrodes, like for all the arm
muscles, but we also recorded extrinsic fingermuscles
by HD-EMG, with a much higher spatial resolution
(8 × 4 electrodes, inter-electrode distance. = 8 mm)
providing richer information. We are aware that a
large variability in the forearm size across subjects
may be the greatest source of variability for synergy
extraction and regression accuracy. Thus, we encour-
age to repeat our study by recruiting a higher number
of subjects to decrease such variability.

Remarkably, we found high consistence in syn-
ergies among subjects. The number of clusters we
found by hierarchical clustering were 4, 5 and 6
clusters for arm muscle synergies, forearm muscle
synergies and hand postural synergies, respectively,
reflecting the average number of synergies across sub-
jects reported above. This allowed us to conduct a
functional analysis of synergy cluster prototypes, both
in space and time. Consistency among subjects in
synergy patterns and functionality was found both
for muscle and postural synergies. Each synergy takes
part in a different moment of the observed task and
is usually activated in more than one task, confirm-
ing previous studies of synergistic control. We only
found poor consistency between single subjects’ time-
varying coefficients obtained from all-subjects fore-
armmuscle synergies. This is reflected on the fact that
for 3 of the 4 all-subject forearm muscle synergies,
a clear pattern across all subjects did not emerged.
In fact, the all-subjects time-varying patterns are the
average of the temporally scaled time-varying pat-
terns of each single subject, so high variability flat-
ten this averaged cue. This variability could be due to

the placement of the HD-sEMG patches that could be
slightly different for each subject.

We thus confirmed that the kinematic complexity
of the human hand can be reduced to a lower sub-
space of a limited number of primitives, as found by
many studies However, one recent study [37] found
that hand kinematic could be explained with a higher
number of primitives, and that the residual low-
amplitude synergies discarded according to the selec-
tion method (e.g. explained variance, VAF, or MSE
change-in-slope criterion) could contribute to voli-
tional hand coordination, and not reflect noise. With
respect to our work, this study [37] was conducted on
a larger set of grasp types and other gestures (signing
in ASL alphabet). This difference prevented us from
exploring the hypothesis that hand control occupies a
higher dimensional space than traditionally thought.

4.3. Roles of muscular and postural synergies
during handmovements
Correlation among pairs ofmuscles and postural syn-
ergies in time domain, i.e. by considering the syner-
gistic activation coefficients, enables to sort the two
synergies type by function. In the case of the com-
parison between armmuscle synergies and hand pos-
tural synergies (figure 5) we show how arm muscle
activity can predict hand pre-shaping during reach-
ing an object to grasp it. In fact, for the grasping
and manipulation of different objects, the modality
of reaching changes accordingly and in different parts
of the reaching, and hand shape changes in function
of the object handled. By extending the same meth-
odology to more tasks, important aspects of upper
limb synergisticmotor control could be found, as sug-
gested by the example of functional analysis observed
in Results. Moreover, the pairings in table 1 confirm
the functional interpretation described in Results for
arm muscle synergy correlation with hand postural
synergies in time domain. In fact, the first pairing
regards coming back to rest after a reaching and grasp
action or in the case of bringing the ‘fruit’ toward the
face in EatFruit, and it also includes wrist supination.
The second pairing regards wrist pronation, the third
reaching to grasp an object, and the fourth flexing the
elbow before to stretch it for a reaching and to come
back after the grasp, associated by opening the hand
(to prepare to grasp an object and when releasing).
Instead, the only clear pairing for forearmmuscle syn-
ergies and hand postural synergies is the third pairing
(#Forearm MS 1- #Hand PS 6 in table 1), expressing
pronation.

Regression of hand postural synergies from
muscle synergies of different segments of the upper
limb was also evaluated. We compared 5 differ-
ent types of regressors and we evaluated train and
test coefficient of reconstruction. We selected these
regressors as largely known in the machine learn-
ing literature [33]. We found that the reconstruction
of hand postural quantities was significantly higher
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when considering themyoelectric activity of both arm
and forearm muscles (p < 0.05). This confirms our
hypothesis of the beneficial effect of adding inform-
ation about arm muscle activity to forearm muscle
activity to predict hand posture. This was true both
when predicting hand postural synergies frommuscle
synergies and in the case of considering regression of
hand joint angles from muscle RMS values.

Overall, we obtained a relatively low test recon-
struction for all the methods, with the higher res-
ult (0.66 ± 0.08) for RFR when considering muscles
from both arm and forearm myoelectric activity to
regress hand joint posture. For EMG RMS, we found
significantly higher performances of forearm instead
of arm muscle. Curiously, we found the opposite for
muscle synergies, with arm muscle synergies having
higher performance than forearm muscle synergies,
although without statistical significance. This may
be since muscle synergies were extracted from dif-
ferent systems: HD-EMG signals were collected over
the densely packed forearm muscles, which could
present small conduction volumes needing more
dense grids for a better discrimination of forearm
muscle synergies.

A possible explanation for low test accuracy is
that activation coefficients might vary for the same
forearm movement under different muscle contrac-
tion force and arm positions and these factors may
degrade the test accuracy. Moreover, it is likely that
this regression would be higher, with more data or
by implementing a grid search for hyperparameter
optimization. These aspects go beyond the purpose of
this work. Future studies should collect a larger data-
set, including more subjects and tasks, and attempt a
regressionwith the new state-of-the-art deep learning
models, like LSTM or transformers. Further explora-
tions could address whether and how amodel repres-
entative of all subjects obtained from a larger data-
set can indeed generalize upper limb motor control.
New generation of neuromorphic machine learning
by spiking neural networks could lead to faster pre-
dictions as recently done in [38] and in this frame-
work we could include intrinsic hand muscles in the
prediction, to obtain a more complete prediction of
kinematics, as in [39].

4.4. Applications to prosthetics, robotics and
neuromotor rehabilitation
We envisage a broad set of applications leveraging
on the outcomes of this study, especially (a) new
paradigms for myoelectric control of robotic hands
and (b) new biomarkers and indicators for quantitat-
ive investigation of motor control in disabled people.
We discuss below these two possible applications.

Regarding regressing hand postural synergies
from arm and forearmmuscle synergies for myoelec-
tric control purposes, we did not find a clear advant-
age in computing synergies for hand posture pre-
diction, since predicting directly angles from EMG

RMS provided comparable results than in the case
of synergy regression, with no significant difference.
However, we envisage the advantage in adopting a
synergistic approach in myoelectric control of pros-
thetic devices both from a computational cost and
a mechatronic design perspective. The first aspect is
especially critical when considering online signal pro-
cessing necessary in myoelectric control, where pro-
cessing less control signals provide a lower through-
put, thus assuring a greater robustness and efficiency
of the system. The second aspect is related to robotic
limb design. In cases on underactuated mechanism
(i.e. Hannes system [40] and [41], Soft Hand Pro [42]
and others commercial devices as Michelangelo hand
from Ottobock) a reduced number of actuators sig-
nificantly reduces the development costs and design
complexity instead of having a motor for each DoF.
Thus, with this work we ensure an equivalent effic-
acy of control with less actuators. Alternatively, in case
each finger is independently actuated by a dedicated
trained predicting model, the proposed paradigm
provides a more human-inspired and biomimetic
solution which results in a more natural and syn-
ergistic movement of each joint (i.e. Shadow Hand,
iLimb hands from Ossur and Bebionic hands from
Ottobock). Therefore, we demonstrated that with a
synergistic paradigm in prostheses control we can
pursue different technical advantages without losing
prediction performance [24]. Moreover, the compu-
tation of all-subjects synergies indicates the possibil-
ity of building robust synergy-based control architec-
tures, in which low level signals used to drive the pros-
theticmotors are tuned according tomuscle synergies
weights.

The frontiers and challenges of synergistic myo-
electric control that we found in the implementa-
tion of our study were first envisaged by Ison and
Artemiadis (2014) [43]. First, they considered the
critical aspect in EMG recording and processing like
the influence of the electrode placement, crosstalk,
amplitude cancellation and muscle selection. These
aspects both influence traditional myoelectric con-
trol and, specifically, muscle synergies extraction, like
the fact that smaller groups of selected muscles can
increase variability and compromise completeness of
synergic information. Second, the selection of RMS
and other time-domain features have the advantage
of computational simplicity, essential for real-time
computation, but they are sensitive to noise, while
NMF and other linear dimensionality reduction lead
to some information lost. Third, a problem we do
not deal with here, NMF does not guarantee session-
independence, i.e. must be recalibrated at each new
myoelectric control session. In terms of regression in
myoelectric control, Roche et al [44] already envis-
aged that regression approach provides flexibility
for the user, leading towards a more intuitive pros-
thesis control, but at the time this approach was at
a very early stage. Current frontiers towards the new
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generation of proportional control are taking advant-
age of real-time EMG decomposition for broad-band
neural prosthetic interfaces [45] and transformers for
EMG-to-kinematics regression [46].

The findings of this study can be exploited for
prosthetic applications. In this case arm muscle syn-
ergies could be extracted from signals recorded with
an EMG-sensor t-shirt, while forearm muscle syner-
gies could be computed from EMG recorded from
the trans-radial stump of an amputee (figure 3). To
this end, some considerations must be made. For
example, electrode placements: due to limited space
available, we placed the grid for recording flexors
muscles in the mid of the ventral side of the fore-
arm. However, in the context of myoelectric control,
this approach may be not replicable for some trans-
radial amputees with an amputation more proximal
than this level. Thus, it is necessary to optimize HD-
EMG placement to make our analysis applicable to a
broader range of possible applications and users.

Our findings could be exploited also for other
applications, such as neurorehabilitation of motor
impaired people. Muscle synergies have been extens-
ively considered for exoskeleton-based rehabilitation,
both for controlling the robotic system [47, 48] and
for producing muscle stimulation patterns concur-
rently delivered during exoskeleton actuation [49].
In particular, muscle synergies have been proven to
be promising as insightful biomarkers during post-
stroke rehabilitation and recovery [50]. Thus, our
study could constitute a benchmark for future post-
stroke studies, to compare the case of impairedmotor
control with respect to healthy motor control.

4.5. Translational possibilities in clinics
To specify the translational potential in clinical
applications for stroke impairment, we envisage
applying our framework to quantitatively assess
motor impairment by relating muscle and pos-
tural synergies with established clinical metrics. For
example, a new sensor-fusion framework could ref-
erence muscle synergy alteration (fractionation and
merging as found in [50]) to hand postural syner-
gies. In this way, muscle synergies, which are not dir-
ectly visible in relation with the environment interac-
tion, could be related with postural synergies, which
instead are visible and constitute a biomechanical
quantity. This would lead to more robust and com-
plete quantitative assessment of motor recovery dur-
ing rehabilitation for stroke-survivors, people with
neurological diseases or with a neural injury. Another
example could consist in quantifying motor asym-
metry in unilateral hemiplegic stroke patients, as
demonstrated by [51], or to correlate the activation
profiles of synergies in paretic and healthy muscles
with established clinical metrics such as the Fugl-
Mayer assessment (FMA), like the approach taken
by [52]. In the latter study, the authors identified
a reliable biomarker for motor recovery in stroke,

measured during BMI-based proprioceptive ther-
apies administered via robotics and rehabilitation.
For these initial translational applications, the dis-
covery of consistent inter-subject synergies among
numerous healthy individuals, both in terms of
muscle and postural synergies, could serve as a quant-
itative standard for comparing patient synergies to
those identified in our study. Our experiment could
be replicated across a wider variety of tasks and adap-
ted flexibly to meet research needs.

Another promising area for application of our
framework is in the use of hybrid BCIs (combin-
ing EEG and EMG) to identify motor dysfunction
in stroke patients during upper limb movements,
as explored by [53]. This research found that prop-
erties of the cortico-muscular coherence network
were correlated with FMA and manual muscle test
(MMT) scores. Integrating insights on postural syn-
ergy organization into multimodal models for hybrid
BCIs could enhance the accuracy of impairment
assessments once these models are trained with FMA
or MMT scores as targets.
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