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ABSTRACT
Fluorescence microscopy is a powerful tool for visualizing cellular structures, but it faces challenges such as noise, low contrast, 
and autofluorescence that can hinder accurate image analysis. To address these limitations, we propose a novel hybrid image 
enhancement method that combines wavelet- based denoising, linear contrast enhancement, and convolutional neural network- 
based autofluorescence correction. Our automated method employs Haar wavelet transform for noise reduction and a series of 
adaptive linear transformations for pixel value adjustment, effectively enhancing image quality while preserving crucial details. 
Furthermore, we introduce a semantic segmentation approach using CNNs to identify and correct autofluorescence in cellular 
aggregates, enabling targeted mitigation of unwanted background signals. We validate our method using quantitative metrics, 
such as signal- to- noise ratio (SNR) and peak signal- to- noise ratio (PSNR), demonstrating superior performance compared to 
both mathematical and deep learning- based techniques. Our method achieves an average SNR improvement of 8.5 dB and a 
PSNR increase of 4.2 dB compared with the original images, outperforming state- of- the- art methods such as BM3D and CLAHE. 
Extensive testing on diverse datasets, including publicly available human- derived cardiosphere and fluorescence microscopy im-
ages of bovine endothelial cells stained for mitochondria and actin filaments, showcases the flexibility and robustness of our ap-
proach across various acquisition conditions and artifacts. The proposed method significantly improves fluorescence microscopy 
image quality, facilitating more accurate and reliable analysis of cellular structures and processes, with potential applications in 
biomedical research and clinical diagnostics.

1   |   Background

Fluorescence microscopy is a widely utilized technique in medi-
cal optical imaging that enables the analysis of molecular struc-
tures within biological samples and the visualization of cellular 
processes at the microscopic level [1]. This technique employs 
fluorophores, fluorescent substances used to label the sample. 
Fluorophores are excited upon absorbing light from a source, 
and as they return to their ground state, they emit fluorescent 
light at a longer wavelength, allowing for the imaging of fluores-
cent components within the sample [2].

Despite its widespread use, fluorescence microscopy exhibits 
practical limitations that can introduce artifacts and challenges 
during the image acquisition process [3]. These limitations pri-
marily impact crucial aspects such as resolution [4], contrast [5], 
signal- to- noise ratio [6], and overall image quality [7]. Several 
factors contribute to these challenges, including improper 
sample illumination, particularly in cases where thick cellular 
aggregates are present, resulting in blurred objects in the ac-
quired images. Additionally, the loss of fluorescence intensity 
from the fluorophores used to label specific biological structures 
of interest and the emission of intrinsic fluorescent light from 
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surrounding biological structures not of interest can interfere 
with the clear and accurate visualization of the objects under ex-
amination [8]. This intrinsic emission, commonly referred to as 
autofluorescence, arises when inherent components within the 
biological sample emit light upon excitation, even in the absence 
of external fluorophores. Such autofluorescence complicates 
image analysis, as it introduces unwanted background signals 
that can challenge the differentiation between the intended flu-
orescence from the applied fluorophores and the sample's natu-
ral fluorescence. Especially when these emissions overlap with 
the fluorescence of interest, the clarity and specificity of the 
image can be significantly degraded [9].

To overcome these constrains and improve the quality of fluo-
rescence microscopy images, various techniques and strategies 
have been developed. These include advancements in imaging 
hardware, such as optimizing the illumination system and se-
lecting appropriate filters and light sources [10]. However, these 
approaches often require significant time and expertise from the 
user, as specific parameter settings must be determined for each 
acquisition based on the biological structures under examina-
tion. Moreover, controlling multiple critical aspects simultane-
ously may not be feasible [11].

In recent years, digital image processing has seen the develop-
ment of several techniques aimed at reducing artifacts in flu-
orescence images, thereby enhancing subsequent quantitative 
analysis performed by operators or artificial intelligence algo-
rithms. Two examples of such techniques are block- matching 
and 3D filtering (BM3D) [12] and contrast- limited adaptive 
histogram equalization (CLAHE) [13]. BM3D is an advanced 
image denoising technique that identifies similar blocks in noisy 
images, stacks them into 3D groups, and applies collaborative 
filtering in the transform domain, leveraging local redundan-
cies to efficiently reduce noise while retaining image details. 
On the other hand, CLAHE is an adaptive image enhancement 
technique that focuses on improving local contrast and enhanc-
ing details in various types of images, including fluorescence 
microscopy data. Unlike traditional histogram equalization, 
CLAHE divides the image into smaller regions called tiles and 
limits the contrast enhancement within each tile to prevent 
excessive amplification of noise or artifacts. This adaptive ap-
proach enables CLAHE to handle images with varying local 
contrast and produce high- quality visual results. Both BM3D 
and CLAHE have been widely employed as processing steps in 
quantitative analysis pipelines across various imaging domains, 
including but not limited to fluorescence microscopy [14–16]. 
While these techniques offer generality, one major drawback is 
the need for parameter tuning, as each image may require a dif-
ferent subset of parameters [17]. Consequently, when applied to 
large datasets with fixed parameters, the results obtained often 
fall short of optimal noise reduction and image quality improve-
ment for individual images.

To improve quality in fluorescence microscopy images, it is 
crucial to develop a robust and widely applicable strategy. This 
strategy should encompass various aspects, including increasing 
the signal- to- noise ratio, enhancing object visibility and contrast 
during image acquisition, as well as effectively correcting lumi-
nous artifacts, such as autofluorescence. Current methods offer 
a limited ability to handle diverse datasets, or they often fail to 

address all these challenges simultaneously. Therefore, there is 
a need for an automated, versatile approach that can enhance 
fluorescence microscopy images across different experimental 
conditions and biological samples, while preserving structural 
information.

This study aims to develop an AI- based framework that ef-
fectively overcomes the current constrains in fluorescence 
microscopy using computer vision techniques. The proposed 
framework specifically targets key issues such as noise reduc-
tion, contrast enhancement, and artifact correction in fluores-
cence microscopy images. The main contributions of this paper 
can be summarized as follows:

• A novel method for denoising and enhancing high- resolution 
fluorescence images using a combination of Haar wavelet 
transform for frequency analysis and linear mathematical 
transformations for pixel value adjustment. This approach 
effectively reduces noise, enhances contrast, and signifi-
cantly improves image clarity and detail.

• An innovative approach for correcting autofluorescence 
in cellular aggregates using a convolutional neural net-
work (CNN) for semantic segmentation. By leveraging 
the semantic content identified by the CNN, our method 
enables targeted correction of autofluorescence, enhanc-
ing the visibility and accuracy of the desired fluorescent 
structures.

• Rigorous validation using quantitative metrics such as 
signal- to- noise ratio (SNR) and peak signal- to- noise ratio 
(PSNR), with comparison to state- of- the- art methods includ-
ing BM3D, CLAHE, and deep learning- based approaches. 
Our evaluations demonstrate the superior performance and 
effectiveness of the proposed approach.

• Extensive testing on diverse datasets, including two pub-
licly available datasets: one containing human- derived 
cardiospheres, and another featuring actin filaments and 
mitochondria in bovine pulmonary artery endothelial cells. 
These datasets encompass various acquisition conditions, 
including different SNR levels, magnifications, demonstrat-
ing the versatility of our approach across different cellular 
structures and imaging parameters.

This paper is structured as follows: Section 2 provides a com-
prehensive overview of the proposed method, whereas Section 3 
details the experimental results. Finally, Sections 4 and 5 offer a 
thorough discussion of the overall work.

2   |   Methods

An overview of the entire methodology is illustrated in Figure 1. 
The presented method aims to enhance fluorescence micros-
copy images by taking three specific actions to address the chal-
lenges of this imaging modality:

• Enhancement: a linear mathematical transformation is ap-
plied to improve image quality by enhancing the contrast 
and visibility of objects, ensuring the preservation of image 
morphology.
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• Denoising: through frequency analysis methods, the ap-
proach targets background noise by precisely identifying 
and removing high- frequency components. This results in 
an elevated SNR while maintaining semantic content.

• Correction of luminous artifacts: to mitigate the effects of 
light interference from autofluorescence emitted by sur-
rounding biological structures, a deep neural network is em-
ployed. This generates a segmentation mask that precisely 
identifies the target structures. By leveraging this mask, 
the method focuses its correction efforts specifically on the 

intended fluorescence, differentiating it from unintended 
emissions from nontargeted cell structures, and thus en-
hancing the visibility of the desired objects.

2.1   |   Dataset

In this study, we utilized two distinct datasets to evaluate 
our proposed methods (Table  1). The first dataset consists 
of fluorescence microscopy images of actin filaments and 

FIGURE 1    |    Comprehensive illustration of the proposed methodology. (a) A schematic flowchart delineating each procedural step of the 
methodology. (b) A step- by- step visual depiction of the successive effects of each processing step on the image.

TABLE 1    |    Overview of the datasets employed in our research, detailing the source, number of images, image dimensions, primary cellular 
content, and the magnification level.

Dataset
Type of 

acquisition
Number of 

slices/images
Image dimension on 

XY plane (pixels) Content Magnification

Hagen et al. [18] 2D 400 2048 × 2048 Actin and 
mitochondria

20×, 60×

Cardiosphere [19] 3D 1160 1024 × 1024 Membrane and 
cell nuclei

40×
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mitochondria in bovine pulmonary artery endothelial cells, 
extracted from the GigaScience Database, and originally ob-
tained from the work of Hagen et al. [18]. Actin filaments were 
visualized using AlexaFluor 488 phalloidin, a direct fluores-
cent stain that binds to F- actin, while mitochondria were la-
beled with MitoTracker Red CMXRos, a cell- permeant probe 
that accumulates in active mitochondria. For each cellular 
structure, two versions are available: one with low SNR and 
one with high SNR. These different SNR levels were obtained 
by adjusting the acquisition time: high exposure (actin) 500 ms; 
low exposure (actin) 20 ms; high exposure (mitochondria) 
400 ms; low exposure (mitochondria) 15 ms. The dataset com-
prises 400 images, divided based on the Numerical Aperture 
used for acquisition (20× and 60×), and includes actin and mi-
tochondria images for both SNR levels. The actin images were 
captured in the green channel (excitation: 495 nm, emission: 
519 nm), whereas mitochondria were imaged in the red chan-
nel (excitation: 579 nm, emission: 599 nm). The images were 
saved with a size of 2048 × 2048 pixels, with a scan resolution 
of 325 nm.

The second dataset comprises human- derived cardiospheres, 
which mimic stem cell systems, obtained from a publicly avail-
able dataset  [19]. Cardiospheres are three- dimensional aggre-
gates of cardiac progenitor cells that represent a vitro model 
of the cardiac stem cell niche. This dataset comprises 27 car-
diospheres caputerd across 1160 slides. The imaging was con-
ducted using two separate fluorescent channels. The cellular 
membranes were imaged in the red channel (excitation: 557 nm, 
emission: 576 nm) using TRITC- labeled phalloidin, while cell 
nuclei were captured in the blue channel (excitation: 358 nm, 
emission: 461 nm) using DAPI staining. Each image slice has a 
resolution of 1024 × 1024 pixels, with a voxel size of 0.345 × 0.345 
× 0.432 μm/pixel3, providing highly detailed views of these com-
plex cellular structures.

It is important to note that while the original images in our data-
sets are color- coded, all image processing steps are performed 
on grayscale versions of these images. This method enables 
more consistent and effective processing across many fluores-
cence channels.

2.2   |   Brightness Enhancement Function

In fluorescence microscopy, one common challenge is nonuni-
form illumination, which results in some structures appearing 
darker or more obscured than others. To address this issue, we 
developed an enhancement algorithm designed to increase the 
brightness of darker regions without distorting well- lit areas, 
primarily through utilizing ascending linear functions to am-
plify pixel intensity values. Before starting the enhancement 
procedure, a preprocessing step is carried out where we applied 
min–max normalization to convert the original 16- bit acquisi-
tions to 8- bit images. This allows us to work with pixel values 
ranging from 0 to 255 for all images.

After this normalization, we undertake two crucial preparatory 
steps: Tonal Interval Determination and Slope Definition. These 
steps are critical in customizing the brightness enhancement 
function to each individual image:

1. Tonal Intervals Determination: initially, pixel values are 
divided into three primary tonal intervals to differentially 
process dark, intermediate, and light tones of the image. 
The division occurs dynamically, customized to each image 
based on its average brightness (�B), using the following 
thresholds:

where Tdark is the upper boundary of the dark tones' interval 
and Tmid is the upper limit of the intermediate tones. The scal-
ing factors f1 and f2 are user- defined parameters that influence 
the calculation of these thresholds, allowing for customization 
in the enhancement process. In our implementation, we set 
f1 = 6 and f2 = 4, as these values were found to provide a good 
balance between enhancing faint objects and preserving the 
overall tonal distribution of the image. These values were de-
termined through empirical testing on a representative subset 
of the data, considering both visual assessment and quantitative 
metrics such as contrast improvement and detail preservation. 
The choice of f1 > f2 ensures that the upper threshold (Tmid) is 
further from the median intensity compared to the lower thresh-
old (Tdark), effectively capturing a wider range of tonal values 
for enhancement while avoiding over- amplification of noise or 
background regions.

Equations  (1) and (2) dynamically determine tonal intervals 
based on each image's average brightness (�B), allowing our 
method to adapt to the wide variability in overall brightness and 
contrast levels often seen in fluorescence microscopy. To further 
increase brightness of darker objects and emphasize their con-
trast, we subdivided the dark interval into three subranges using 
two additional thresholds:

where Tdark−low separates the darkest tones from the mid- level 
dark tones, and Tdark−mid separates the mid- level dark tones from 
the lighter dark tones. The scaling factors f11 and f12, which 
are values less than 1 set by the user, allow to fine- tune this 
correction.

The optimal selection of the scaling factors was achieved 
through ad- hoc experiments that were based on analyzing 
the effect of their modifications on brightness enhancement. 
Specifically, the scaling factors f1 and f2 were determined to 
create intervals that enhance the pixel values within heav-
ily shadowed objects more significantly than those within 
intermediate and light tones. Similarly, f11 and f12 were care-
fully chosen to discern background pixels, which require no 

(1)Tdark = �B +

(

255 − �B
)

f1

(2)Tmid = �B +

(

255 − �B
)

f2

(3)Tdark−low = �B +

(

Tdark − �B
)

f11

(4)Tdark−mid = �B +

(

Tdark − �B
)

f12
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brightness adjustment, from those needing an effective in-
crease to maintain contrast. The optimal parameters for each 
dataset are detailed in Table 2.

Overall, this step divides the original image dynamics into 
five ranges—the first three belonging to the dark tone inter-
val, and the other two covering intermediate and light tones. 
A graphical representation of these divisions can be seen in 
Figure 2a.

2. Brightness Transformation Definition: following the iden-
tification of tonal intervals, we delineated linear bright-
ness transformations within each range. These functions 
map the pixels of the original image onto an output image, 
which is characterized by a more balanced distribution of 
brightness. Each tonal range is characterized by a linear 
ascending function that passes through two points, de-
fined by the combination of the initial tone thresholds (T), 
as x- coordinates, and the enhanced tone thresholds 

(

T ′
)

, as 
y- coordinate. The transformations are defined as follows:

with �, �, �, and � the slope coefficients, defined as:

The terms T �

dark−mid
, T ′

dark
, and T ′

mid
 represent the enhanced tone 

thresholds, and are defined as:

With offsetdark−mid, offsetdark, and offsetmid user- defined param-
eters. These parameters control the boundaries between the 

(5)

y =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛼 x 0≤ x≤Tdark−low

𝛽
�

x−Tdark−low
�

+T �

dark−low
Tdark−low< x≤Tdark−mid

𝛾
�

x−Tdark−mid
�

+T �

dark−mid
Tdark−mid< x≤Tdark

𝛿
�

x−Tdark
�

+T �

dark
Tdark< x≤Tmid

𝜖
�

x−Tmid
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+T �

mid
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T �

dark−low

Tdark−low
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T �
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− T �

dark−low
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dark
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)
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Tdark − Tdark−mid
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T �
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− T �

dark
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(

Tmid − Tdark
)

(6)� =

(

255 − T �

mid

)

(

255 − Tmid
)

T �

dark−mid
= Tdark−mid + offsetdark−mid

T �

dark
= Tdark + offsetdark
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dark and middle tonal regions, defining the range of pixel 
values in each interval. The optimal configuration of these 
offset values is crucial for boosting the visibility of faint struc-
tures and low- intensity details while maintaining overall con-
trast and achieving a balanced brightness distribution. The 
offset values directly impact the slope coefficients (�, �, and 
�), which govern the degree of pixel value expansion within 
each tonal interval. These coefficients provide a gradual and 
adaptive enhancement, with the degree of expansion decreas-
ing from the dark to the middle interval. This ensures that 
the darkest regions, containing the faintest details, receive 
the strongest enhancement, while the middle tones are ad-
justed moderately to maintain natural contrast and avoid 
over- amplification of noise. The optimal offset values for each 
dataset were determined through a hyperparameter tuning 
process (Section 3.1), involving systematic exploration of pa-
rameter combinations guided by quantitative metrics and 
visual assessment. Figure 2b graphically illustrates the bright-
ness transformation functions.

After calibrating the transformations, they are applied directly 
to the image to improve its brightness and contrast details. The 
parameters offsetdark−mid, offsetdark, and offsetmid play a crucial 
role in determining the extent and distribution of brightness and 
contrast enhancements across the image. To illustrate their ef-
fects, Figure 3 presents a comparison of images processed with 
different values for these key parameters.

2.3   |   Image Denoising

Fluorescence microscopy images often have noisy backgrounds 
with pixel intensities that resemble signal areas, making it chal-
lenging to distinguish noise from true information using con-
ventional filters. We found Haar wavelet transform effective for 
this denoising task  [20, 21]. The multi- scale decomposition of 
the Harr wavelet transform allows for the separation of noise 
from relevant image features at different levels of detail, making 
it possible to selectively remove noise without compromising the 

FIGURE 2    |    Tonal interval determination and brightness transformation function definition in Image Enhancement step. (a) Pixel values are 
divided into five tonal ranges to enhance both dark and light regions within the image. This segmentation is based on dynamically calculated 
thresholds influenced by the image's average brightness and user- defined scaling factors. (b) Definition of linear transformations, designed to map 
pixel values from the original to the output image, facilitating a balanced brightness distribution.
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integrity of the signal. The entire Image Denoising step is shown 
in Figure 4 and consists of three key steps:

1. Decomposition: the original image is decomposed with the 
Haar wavelet transform into four sub- images (low- low, low- 
high, high- low, and high- high), through convolutions with 
four specific kernels [21]. The LL sub- image approximates 
of the original image I while the LH, HL, and HH compo-
nents contain information extracted from various orienta-
tions within the original image.

2. Thresholding: using Garrote Thresholding [22], each sub- 
image is processed to significantly minimize the noise com-
ponents. The resulting sub- image is calculated as:

With x the pixel value of the original sub- image and � a thresh-
old defined as:

LL denotes the updated approximation coefficients from sub-
sequent levels of wavelet decomposition, representing further 
refined low- frequency components of the image. D, the Denoise 

Factor, is a user- defined parameter that modulates the denois-
ing effect in our algorithm, allowing for a flexible and adaptive 
approach to noise reduction. It controls the strength of the de-
noising process, with higher values resulting in more aggressive 
noise reduction and lower values preserving more of the orig-
inal image detail. By tuning D for each dataset, we can strike 
an optimal balance between noise suppression and detail pres-
ervation, ensuring that the enhanced images maintain a high 
signal- to- noise ratio while retaining important structural infor-
mation. The optimal D values for each dataset were determined 
through a hyperparameter tuning process (Section 3.1).

3. Reconstruction: finally, the resulting sub- images are re-
assembled through the inverse wavelet transform, which 
combines up- sampling and reconstruction operations.

2.4   |   Unsharp Masking for Sharpness 
Enhancement

Wavelet denoising, while effective in reducing noise, may 
sometimes result in an unwanted side effect of reduced image 
sharpness. To mitigate this potential loss of sharpness and 
enhance the clarity of image details, we applied unsharp 
masking sharpening [23]. This sharpening method works by 
emphasizing the high- frequency components of the image, 
effectively increasing the contrast along edges and fine struc-
tures. The unsharp masking process is governed by the fol-
lowing equation:

(8)G(x, 𝜆) =

⎧

⎪

⎨

⎪

⎩

x−
𝜆2

x
x> �𝜆�

0 x≤ �𝜆�

(9)� =

{

D×min(LL) min(LL)≠0

D×LL otherwise

FIGURE 3    |    Impact of parameters offsetdark−mid, offsetdark, and offsetmid in the image enhancement process. (a) Examples of properly enhanced 
images from the ActinMito subset and the cardiosphere subset. (b) Examples from the ActinMito subset and the cardiosphere dataset showing under- 
enhanced and over- enhanced images, demonstrating how parameter variations affect the enhancement step.
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where Isharp is the sharpened image, I is the original denoised 
image, Iblur is a blurred version of the original image obtained 
by applying a 3 × 3 Gaussian blur filter, and � is a user- defined 
parameter called the sharpening factor that controls the de-
gree of sharpening applied. Higher values of η result in more 
pronounced sharpening, while lower values provide a more 
subtle enhancement. However, it is important to find a bal-
ance when setting the η value to avoid introducing unnatu-
ral graininess or halos around edges, which can occur when 
the sharpening effect is too strong. To ensure an optimal edge 
contrast enhancement while maintaining a natural appear-
ance, we carefully tuned the η value for each dataset through 
the hyperparameter tuning process described in Section  3.1. 
Figure  5 illustrates the sharpening effect of this step on the 
denoised image.

2.5   |   Autofluorescence Correction

In fluorescence imaging, particularly during 3D acquisitions, 
autofluorescence emanating from surrounding structures can 

obstruct the clear signals from the primary targets of interest. This 
autofluorescence essentially comprises intrinsic fluorescence 
that is unrelated to the introduced fluorophores. Our innovative 
algorithm addresses this issue through pixel- wise brightness cali-
bration, aiming to significantly reduce the interference caused by 
autofluorescence. While the method can be applied to various flu-
orescent structures, such as cell membranes or organelles, we will 
use the example of nuclei fluorescence for illustration purposes. 
The correction strategy includes the following phases:

1. Autofluorescence detection: initially, segmentation masks 
were generated using a ConvNeXt neural network [24] to 
isolate regions of interest (ROI), specifically cell nuclei, from 
background areas. This step helps distinguish between the 
intended fluorescence signal and areas potentially exhibit-
ing autofluorescence. A detailed description of the model 
architecture, training parameters, and configuration can be 
found in Data S1.

2. Autofluorescence isolation: following the generation of 
ROI segmentation masks, we distinguish the fluorescent 
structure information from the autofluorescence signals. 
This is accomplished by applying the mask to the analyzed 
image, which isolates only the recognized ROI. Conversely, 

(10)Isharp = I + � ×
(

I − Iblur
)

FIGURE 4    |    Illustration of the denoising process applied to fluorescence microscopy image, highlighting the use of Haar wavelet transform for 
effective noise reduction and detail retention in the LL and LH sub- images.
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utilizing the inverse of the mask allows us to exclusively iso-
late the areas exhibiting autofluorescence.

This facilitated independent modulation of autofluorescence 
while preserving the original characteristics of the fluorescent 
structures.

3. Autofluorescence modulation: the aim of this step is to en-
hance the visibility of the desired fluorescent structures. 
Specifically, we seek to reduce the intensity of pixels associ-
ated with autofluorescence, while concurrently amplifying 
the intensity of ROI pixels that are inaccurately segmented 
and submerged within the autofluorescence regions. To fa-
cilitate this selective enhancement of the Iautofluorescence, two 
distinct thresholds are established, based on linear combi-
nations of the average brightness values from both nuclei 
and autofluorescence, respectively:

It is important to note that w1, w2, w3, and w4 are fixed param-
eters with values of 0.15 and 0.85 for w1 and w2 and 0.9 and 
0.1 for w3 and w4, respectively. The relationships w2 > w1, 
and w3 > w4 ensure that the threshold for autofluorescence 

(Tautofluo) is higher than the average intensity of the ROI, 
while the threshold for the ROI (TROI) is lower than the av-
erage intensity of the autofluorescence.

Once the intervals are defined using the computed thresh-
olds, we proceed to modulate pixel intensities within the 
Iautofluo image. This selective modulation is achieved using 
the following linear transformations:

The slope coefficients for these linear transformations are given 
as follows:

The terms T ′

nuclei
 and T ′

autofluo
 represent the modulated thresh-

olds, and are defined as:

(11)Iautofluo = I ×
(

1 −maskROI
)

(12)IROI = I ×maskROI

(13)Tautofluo = w1 × �
(

IROI
)

+ w2 × �
(

Iautofluo
)

(14)TROI = w3 × �
(

IROI
)

+ w4 × �
(

Iautofluo
)

(15)

⎧

⎪

⎨

⎪

⎩

𝛼1x 0< x≤Tautofluo

𝛽1
�

x−Tautofluo
�

+T �

autofluo
Tautofluo< x≤TROI

𝛾1
�

x−TROI
�

+T �

ROI TROI< x≤255

�1 =
T �

autofluo

Tautofluo

�1 =
T �

nuclei
− T �

autofluo

Tnuclei − Tautofluo

(16)�1 =
255 − T �

ROI

255 − TROI

(17)T �

autofluo
= �autofluo × Tautofluo

FIGURE 5    |    Comparative display of different processing stages: Brightness correction, noise correction, and unsharp masking. Zoomed sections 
beneath each stage highlight the detail retrieval accomplished through unsharp masking following noise correction.
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where �autofluo and �nuclei are user- defined parameters ranging 
between 0 and 1, that represent the autofluorescence reduction 
factor and the nuclei amplification factor, respectively. �autofluo is 
a value that has been configured in such a way as to significantly 
reduce the visual effect of autofluorescence in the area, while 
still preserving minimal visibility of the surrounding structure 
from which interferences arises. On the other hand, �ROI has 
been set to discreetly increase the brightness of objects errone-
ously not recognized as nuclei during segmentation, although 
these parameters can be adjusted depending in the desired final 
correction effect.

Through adjustment of the modulation parameters, we can pre-
cisely suppress autofluorescence, leading to enhanced clarity 
and contrast, especially in the representation of nuclear targets. 
Figure 6a offers a comprehensive visualization of the entire aut-
ofluorescence correction process, while Figure 6b demonstrates 
the outcomes of autofluorescence suppression achieved by vary-
ing the value of �autofluo showcasing the effects of different mag-
nitudes of suppression. After the modulation, Iautofluo is merged 
back with Inuclei to produce a fluorescence microscopy image 
characterized by enhanced contrast and minimized autofluo-
rescence interference.

2.6   |   Performance Evaluation

We conducted all quantitative analyses and comparisons 
using the processed grayscale images. For visual representa-
tion and qualitative assessment, however, we reapplied the 
original color- coding of each fluorescence channel to these 
processed images. This approach presents enhanced images 
that retain the visual appearance of fluorescence microscopy 
data while highlighting the improvements achieved through 
our processing methods.

To validate the efficiency of our algorithm, we employed a com-
prehensive approach, including multiple evaluation metrics. 
Firstly, we assessed the algorithm's ability to improve image 
contrast using the Contrast Improvement Index (CII) [25] across 
all datasets. A CII score greater than 1 indicates significant 
contrast enhancement, highlighting our objective of enhancing 
faintly visible objects and reducing noise.

For the dataset from Hagen et al. where high- SNR versions were 
available as a benchmark, we utilized full- reference evaluation 
metrics. These included the PSNR [26], Structural Similarity Index 
(SSIM) [27], and the Multi- Scale Structural Similarity Index (MS- 
SSIM) [28]. MS- SSIM measures perceptual similarity between 
processed and original images, with scores ranging from 0 to 1. A 
score of 1 signifies perfect similarity, validating the proficiency in 
artifact rectification while preserving semantic content.

To evaluate the effectiveness of our autofluorescence correction 
method, we assessed the SNR [29] of processed images using 
manual masks for datasets containing autofluorescence (cardio-
sphere). We considered varying levels of correction (25%, 50%, 
and 100%) to analyze the impact on SNR.

Finally, to evaluate the potential utility of our method in deep 
learning contexts, we trained multiple segmentation networks on 
original images and images processed with both traditional meth-
ods (BM3D, CLAHE), a deep learning- based denoising method 
(CARE [30]), and our approach. Performance was assessed using 
the Dice Score [31], Aggregate Jaccard Index (AJI) [32], Panoptic 
Quality (PQ) [33], and Hausdorff Distance (HD) [34].

3   |   Results

3.1   |   Hyperparameter Tuning

To optimize the performance of our algorithm across different 
datasets, it was essential to finetune specific hyperparameters. 
Given the variability in image characteristics among datasets, 
a uniform set of parameters might not yield the best outcomes 
universally. Therefore, we conducted a hyperparameter tuning 
process to identify the optimal set of parameters tailored for 
each dataset. The tuning process involved a systematic explora-
tion of the parameter space, guided by both quantitative metrics 
and qualitative visual assessment. For each dataset, we evalu-
ated the algorithm's performance using a range of parameter 
values and selected the combination that maximized the CII 
while preserving important image details and minimizing arti-
facts. The key parameters tuned in this process were the offset 
values (offsetdark−mid, offsetdark, offsetmid), which control the tonal 
interval boundaries, the denoising factor (D) and the sharping 
degree (�). The optimal values for these parameters vary across 
datasets due to differences in image contrast, noise levels, and 
the presence of specific structures or features. Table 2 presents 
the best- performing hyperparameters identified for each dataset 
during the tuning process.

3.2   |   Comparison With Heuristic Methods

In this section, we analyze and compare the results of our pro-
posed algorithm against two established techniques: BM3D and 
CLAHE. We evaluate the image quality in terms of clarity, con-
trast, and detail preservation.

Figure  7 demonstrates that our method performs well, es-
pecially on low SNR images of actin and mitochondria. The 
enhanced images closely match their original high SNR coun-
terparts, outperforming the other methods. This consistency is 
maintained regardless of the image content (actin vs. mitochon-
dria) or magnification level (20× vs. 60×). Figure  7b presents 
additional results on cardiosphere images. Our technique effec-
tively increases contrast without amplifying artifacts, an issue 
observed with CLAHE. Moreover, it selectively accentuates cell 
visibility for a clear representation, unlike the other techniques. 
Additional visual comparisons with traditional image enhance-
ment techniques are reported in the Data S1.

Figure 8 provides a quantitative evaluation of our method on the 
actin and mitochondria dataset. For the CII metric, our method 
consistently scores higher than other techniques across all sub-
sets, with an improvement compared to the LowSNR images of 
132.63% for the Actin20x subset, 125.54% for Actin60x, 238.66% 
for Mito20x, and 299.84% for Mito60x.

(18)T �

ROI = �ROI × TROI
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In terms of the PSNR score, our method demonstrates higher 
values compared to other techniques. The increase in PSNR is 
40.39% for the Actin20x subset, 40.95% for Actin60x, 48.86% for 
Mito20x, and 19.60% for Mito60x. Finally, when evaluating the 
preservation of image content, our method achieves the highest 
scores in both SSIM and MS- SSIM metrics, indicating its supe-
riority in maintaining the structural integrity of the enhanced 
images.

Figure  9 presents the mean scores for the CII metric on the 
cardiosphere images, comparing the performance of BM3D, 
CLAHE, and our method. The results underscore the effective-
ness of our approach in this domain. Specifically, our method 
achieves a score of 3.33, significantly outperforming BM3D, 

which obtains a score of 0.43, and CLAHE, which yields a score 
of 1.33.

3.3   |   Comparison With Deep Learning Methods

In this section, we compare the results of our proposed algo-
rithm with the CARE method, a powerful deep learning ap-
proach for image enhancement. Figure 10a presents a bar graph 
of the mean CII values with standard deviations for each sub-
set, comparing the performance of our method against CARE. 
The results demonstrate that our method consistently achieves 
higher CII values compared with CARE, indicating superior 
contrast enhancement and detail preservation.

FIGURE 6    |    Autofluorescence correction overview and comparison. (a) Schematic representation detailing the entire autofluorescence correction 
process. (b) Demonstrative images of a cardiosphere processed with distinct levels of autofluorescence reduction: 20%, 50%, and 100%. The images 
highlight the progressive clarity in nuclear target depiction (bright areas) with increasing suppression of autofluorescence. The gray background 
represents a combination of cellular cytoplasm and extracellular matrix, which together form the structure of the cardiosphere.
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For instance, in the Actin20x subset, our method achieves an 
average CII of 1.54 (±0.20) compared to CARE's 0.80 (±0.09), 
nearly doubling the contrast improvement. In the Actin60x sub-
set, our method scores 1.70 (±0.46) against CARE's 0.94 (±0.10), 
showing a significant enhancement in image quality. Similarly, 
for the Mito20x subset, our method achieves a CII of 1.91 (±0.11), 
markedly higher than CARE's 0.68 (±0.16). Finally, in the 
Mito60x subset, our method scores 1.72 (±0.26), compared with 
1.14 (±0.13) obtained by CARE, demonstrating superior perfor-
mance in preserving image details and enhancing contrast.

Figure  10b presents visual examples from the Actin20x, 
Actin60x, Mito20x, and Mito60x subsets, showcasing the origi-
nal LowSNR images, images processed with CARE, and images 
processed with our method. The visual comparisons further 

illustrate the advantages of our approach over CARE, high-
lighting the improved contrast, clarity, and detail preservation 
achieved by our method.

3.4   |   Autofluorescence Correction

In this section, we examine the efficacy of our algorithm's 
autofluorescence correction function. Figure  11a offers a 
qualitative demonstration of the autofluorescence correction 
at various intensities. The progression from 25% to 100% cor-
rection showcases a significant improvement in the reduction 
of autofluorescence, with the corrected images displaying a 
decrease in unwanted fluorescence as the correction level 
increases.

FIGURE 7    |    Visual illustration showcasing the enhancement capabilities of our method versus BM3D [12] and CLAHE [13] algorithms, for (a) 
actin and mitochondria images and (b) cardiosphere images.
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13 of 18

FIGURE 8    |    Quantitative comparison of our method with BM3D and CLAHE algorithms on different subsets of the Hagen et al. dataset, with 
reference metrics calculated relative to the HighSNR versions. Each panel represents a different evaluation metric: (a) CII [25], (b) PSNR [26], (c) 
SSIM [27], and (d) MS- SSIM [28]. Each tick denotes a distinct subset within the dataset.

FIGURE 9    |    Comparison of image enhancement methods for the cardiosphere dataset. (a) Bar plot comparison of the CII values for the cardiosphere 
dataset using different methods. Each bar represents the performance of the respective method. (b) Visual example of the same cardiosphere image 
in its original version and processed with BM3D, CLAHE, and our method.
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Figure 11a provides a comparative quantitative analysis of SNR 
values to evaluate the performance of our autofluorescence 
correction method. The original images have an SNR of 12 dB. 
When our method is applied with a 25% correction, the SNR 
slightly decreases to 11.4 dB, which is a marginal reduction of 
approximately 4.6% from the original. At a 50% correction level, 
our method surpasses the original with an SNR of 12.8 dB, 
demonstrating an improvement of approximately 6.6%. The 
most notable enhancement is achieved with a 100% correction, 
where the SNR reaches 15 dB, indicating a substantial increase 
of 24.7% over the original SNR value.

In comparison, BM3D exhibits a negligible improvement, with 
an SNR value of 12 dB, showing a slight increase of 0.1% from 
the original. CLAHE, conversely, results in a significant SNR 
decrease to 6.6 dB, which is a reduction of 44.9% compared with 
the original images.

In addition to these quantitative metrics, the corrected images 
were subjected to expert qualitative assessment. A domain ex-
pert in fluorescence microscopy (T.P.) visually evaluated the 
processed images. The analysis confirmed that the method ef-
fectively suppresses autofluorescence while maintaining the 
visibility and integrity of the cellular structures of interest, par-
ticularly the cell nuclei (Figure 11b).

3.5   |   Impact on an AI- Segmentation Framework

This section presents the testing results obtained from AI- based 
segmentation frameworks trained using images processed with 
different methods. We employed a ConvNeXt- based UperNet 
model [35] for semantic segmentation. The backbone, initialized 
with pretrained weights from the ADE20K dataset [36], extracts 
multi- scale feature maps that are fed into the decode head to 

FIGURE 10    |    Comparison of our method with CARE (a) bar graph showing the mean Contrast Improvement Index (CII) values with standard 
deviations for each subset (b) visual examples from each subset, showing the original LowSNR images, images processed with CARE, and images 
processed with our method.
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produce segmentation maps with three classes: background, cell 
border, and inner area. An auxiliary head provides additional 
supervision during training. The model was trained using an 
AdamW optimizer with a learning rate of 0.0001, weight decay 
of 0.05, and a polynomial learning rate schedule with linear war-
mup. The training was conducted on a GeForce RTX 3090 GPU 
with a batch size of four images per GPU for 50 epochs. As a 
post- processing step, we applied the same strategy proposed in 
our previous works [37, 38], to obtain the instance segmentation 
of cell nuclei.

Our method achieves the highest Dice score for the segmenta-
tion task among all the compared methods (Table 3). In terms 
of the AJI metric, our method shows an enhancement of 1.67%, 
which is higher than the increment in CLAHE (0.21%) and out-
performs BM3D's decline of 6.35%. For the PQ score, our method 
demonstrates a growth of 1.04%, while CLAHE essentially re-
mains consistent with a decrement of 0.03%, and BM3D exhib-
its a decline of 12.00%. Finally, regarding the HD metric, our 
method yields the most significant improvement, decreasing the 
score by 9.60%, compared with CLAHE's increment of 3.08% 
and BM3D's decrement of 1.63%.

4   |   Discussion

Fluorescence microscopy, despite its extensive applications in 
biological and medical research, often suffers from limitations 
such as low contrast [5], high noise levels [6], and unwanted aut-
ofluorescence [8, 9]. These factors are largely due to the inherent 
limitations in the quality of the data acquired, which is critical 
for fluorescence analysis. High- quality acquisitions can be com-
promised by noise from instrumentation and the delicate nature 
of the samples, which cannot be exposed to high- intensity opti-
cal sources. These issues can significantly hinder the interpreta-
tion and analysis of microscopy images, impacting the reliability 
of research outcomes.

Our study introduces a novel heuristic algorithm that sub-
stantially improves image quality by enhancing contrast, 
reducing noise, and, with the help of AI, correcting autofluo-
rescence in fluorescence microscopy images. The algorithm's 
effectiveness is demonstrated through extensive quantitative 
and qualitative comparisons on diverse datasets, showing 
notable advancements over existing methods like BM3D and 
CLAHE. Our method demonstrated a remarkable increase in 

FIGURE 11    |    Qualitative and quantitative evaluation of autofluorescence correction. (a) Quantitative analysis based on SNR values. (b) Qualitative 
assessment showcasing the autofluorescence correction capability at different levels: 25% (second column), 50% (third column), and 100% (fourth 
column). Images are represented in grayscale to better evaluate the effect of autofluorescence correction.

TABLE 3    |    Performance metrics on AI- based segmentation frameworks trained using images processed with different methods.

Method Dice AJI PQ HD

Original image 0.8165 ± 0.065 0.6291 ± 0.091 0.6262 ± 0.045 5.52 ± 0.98

CLAHE 0.8184 ± 0.052 0.6304 ± 0.085 0.6260 ± 0.039 5.69 ± 0.81

BM3D 0.7896 ± 0.081 0.5892 ± 0.104 0.5510 ± 0.057 5.43 ± 1.06

CARE 0.8198 ± 0.057 0.6306 ± 0.074 0.6291 ± 0.031 5.32 ± 0.59

Our method 0.8214 ± 0.031 0.6396 ± 0.055 0.6327 ± 0.026 4.99 ± 0.47

Abbreviations: AJI: Aggregated Jaccard Index, Dice: Dice similarity coefficient, HD: Hausdorff distance, PQ: Panoptic quality.
Note: Bold font was employed to highlights the best results.
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the CII for the Actin and Mito datasets, with enhancements 
of 132.63% for Actin20x, 125.54% for Actin60x, 238.66% for 
Mito20x, and 299.84% for Mito60x compared to LowSNR im-
ages. Furthermore, for the cardiosphere dataset, our approach 
significantly outperformed others, achieving a CII score of 
3.01 against scores of 0.56 by BM3D and 1.33 by CLAHE, 
highlighting the superior capability of our algorithm in en-
hancing the data quality critical for accurate fluorescence mi-
croscopy analysis.

Preserving the essential details and information in images is 
of prime importance, and our method has shown superior per-
formance compared with the other methods. For the actin and 
mitochondria dataset, which had high- quality counterparts for 
reference, our algorithm recorded a substantial rise in the PSNR: 
40.39% for Actin20x, 40.95% for Actin60x, 48.86% for Mito20x, 
and 19.60% for Mito60x. This indicates a significant reduction in 
noise while maintaining the sharpness and clarity of the images. 
Moreover, our method achieved the highest scores in terms of 
the SSIM and MS- SSIM, evidencing its ability to retain and even 
enhance the informational content of the images.

Based on the autofluorescence correction task, our algorithm 
achieved a 24.69% improvement over the original SNR value 
for the maximum level of autofluorescence correction. These 
metrics, presented in Table  3, illustrate the algorithm's ability 
to support human interpretation and improve deep learning 
frameworks.

Our proposed method demonstrates remarkable versatility 
across various fluorescence microscopy applications. Its heu-
ristic nature eliminates the need for manual segmentation or 
extensive training to achieve higher quality images, thereby 
simplifying the preprocessing pipeline for microscopy images. 

Figure 12 illustrates this adaptability by showcasing the meth-
od's effectiveness in processing both multi- channel and three- 
dimensional data. Currently, the algorithm operates on and 
processes single 2D channels. For multi- channel images 
(Figure 12a), each channel is processed separately, and the re-
sults are then recombined to produce the final enhanced image. 
In the case of 3D data, the algorithm processes each slice inde-
pendently before aggregating the results into an enhanced 3D 
reconstruction, as demonstrated in Figure 12b.

Despite its effective performance, our method has some lim-
itations that should be acknowledged. Firstly, the algorithm 
requires fine- tuning of parameters for optimal performance 
across different applications and datasets (Table  2). This 
need for customization may limit its immediate applicability 
to new, unseen data without initial adjustment. Second as a 
mathematical- based approach, our method has slightly lon-
ger computational times compared to deep learning- based 
solutions (0.14 s vs. 0.10 s per image), particularly for high- 
resolution images. Additionally, for multi- channel data, the 
method currently processes each channel independently, 
which may not fully leverage potential correlations between 
channels.

While our approach shows promising results on 2D single- 
channel images, there are opportunities to extend its capabil-
ities. Future work could expand the methodology to operate 
on 3D volumetric acquisitions as well as multichannel images 
like those from immunofluorescence microscopy. This would 
allow it to be applied to additional imaging modalities that 
produce these data types, such as photoacoustic microscopy. 
Additionally, developing a fully integrated method that per-
forms fluorescent signal extraction and enhancement simulta-
neously could streamline the process.

FIGURE 12    |    Versatility of the proposed method on different fluorescent data. (a) Multi- channel image enhancement: original (left) and processed 
(right) images, showing separate enhancement of individual channels before recombination. (b) Three- dimensional reconstruction of a cardiosphere 
sample: original 3D image compared to the enhanced counterpart after applying the proposed pipeline to each 2D slice independently.
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5   |   Conclusions

In conclusion, our novel algorithm has demonstrated significant 
improvements in image quality for fluorescence microscopy by 
enhancing contrast, reducing noise, and correcting autofluores-
cence. Comprehensive evaluation across diverse datasets reveals 
the superior performance of this method over existing techniques, 
with substantial improvements in quantitative metrics. The 
modular design of our algorithm allows the processing of multi- 
channel data and, in the future, also three- dimensional data. The 
improvement of fluorescence images has the potential to advance 
both basic research and clinical applications, contributing to 
more precise studies in cell biology and medical diagnostics.
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