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Abstract
Purpose  The choice of appropriate boundary conditions is a crucial step in the development of cardiovascular models for 
blood flow simulations. The three-element Windkessel model is usually employed as a lumped boundary condition, providing 
a reduced order representation of the peripheral circulation. However, the systematic estimation of the Windkessel parameters 
remains an open problem. Moreover, the Windkessel model is not always adequate to model blood flow dynamics, which 
often require more elaborate boundary conditions. In this study, we propose a method for the estimation of the parameters 
of high order boundary conditions, including the Windkessel model, from pressure and flow rate waveforms at the trunca-
tion point. Moreover, we investigate the effect of adopting higher order boundary conditions, corresponding to equivalent 
circuits with more than one storage element, on the accuracy of the model.
Method  The proposed technique is based on Time-Domain Vector Fitting, a modeling algorithm that, given samples of the 
input and output of a system, such as pressure and flow waveforms, can derive a differential equation approximating their 
relation.
Results  The capabilities of the proposed method are tested on a 1D circulation model consisting of the 55 largest human 
systemic arteries, to demonstrate its accuracy and its usefulness to estimate boundary conditions with order higher than the 
traditional Windkessel models. The proposed method is compared to other common estimation techniques, and its robust-
ness in parameter estimation is verified in presence of noisy data and of physiological changes of aortic flow rate induced 
by mental stress.
Conclusion  Results suggest that the proposed method is able to accurately estimate boundary conditions of arbitrary order. 
Higher order boundary conditions can improve the accuracy of cardiovascular simulations, and Time-Domain Vector Fitting 
can automatically estimate them.

Keywords  Windkessel model · Vector fitting · Boundary conditions · Cardiovascular modeling · Circulation models

Introduction

Computational models of the cardiovascular system have 
become a valuable tool for the study and investigation of 
cardiovascular diseases [1]. Since a simulation of the entire 
cardiovascular system is computationally expensive, car-
diovascular models usually include only a specific region 
of interest. The excluded regions are taken into account by 
choosing appropriate boundary conditions (BCs), which 
must provide a realistic representation of the haemodynam-
ics in the rest of the circulatory system. Boundary conditions 
have been shown to largely affect flow rates, pressure distri-
bution and important haemodynamic indicators, such as wall 
shear stress [2, 3]. For this reason, the selection of proper 
inlet and outlet boundary conditions that can realistically 
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reproduce blood flow dynamics is particularly important. At 
the inlet, one typically imposes a flow rate waveform meas-
ured in vivo, while different solutions have been proposed 
as outlet boundary conditions [4]. Among these, the most 
commonly adopted (in order of increasing complexity) are:

•	 boundary conditions that simply prescribe a specific 
value for pressure or flow rate at the outlets [5];

•	 constant resistances, which result in a linear algebraic 
relation between pressure and flow rate [6–8];

•	 boundary conditions that impose a differential relation 
between pressure and flow rate, usually represented as 
equivalent lumped parameter networks. The latter can 
be classified according to their order, which corre-
sponds to the number of storage elements (capacitors and 
inductors) present in the circuit, or equivalently to the 
order of the corresponding differential equation, see [9, 
Sect. 11.6]. A typical example is the three-element Wind-
kessel model (3WK) [10], a circuit containing only one 
reactive component (the capacitor), and thus defined as 
a circuit of order one. Higher order Windkessel models, 
defined as circuits containing a total number of capaci-
tors and inductors higher than one, have also been pro-
posed [11].

The choice of the best model for outlet boundary conditions 
is generally the result of a trade-off between accuracy, model 
complexity, and number of parameters to estimate. The 
information available to estimate the boundary condition 
coefficients also plays a role. The most favourable scenario 
is when both flow rate and pressure information are available 
at the truncation location. In clinical practice this is not very 
common. While, with the advancements in MRI technology, 
flow rates are becoming increasingly available through phase 
contrast or 4D flow MRI, pressure information is harder to 
acquire in-vivo, typically requiring the use of catheters with 
pressure sensors. The most common scenario is when one 
or both quantities are not directly available, or are available 
at a different location (e.g. brachial pressure). In this case, 
the missing information is estimated using literature data, 
waveform generators [12, 13], or mathematical models for 
the systemic circulation [14]. In addition, several methods 
to recover pressure information from velocity-resolved MRI 
data have been recently proposed [15–17].

Presently, the most popular BC choice is the three-ele-
ment Windkessel model, also known as RCR model (see 
"The Three-Element Windkessel Model" section). Even if 
the number of parameters in the Windkessel model is lim-
ited, obtaining an accurate estimate is not straightforward, 
due to the limited availability of in-vivo measurements. A 
simple, yet expensive approach consists in identifying rea-
sonable ranges for each parameter, and then refining the 
choice by means of an iterative tuning procedure to obtain 

the desired pressure and flow rate [18]. If both pressure 
and flow data are available at the truncation location, more 
advanced and systematic approaches are generally used, 
where Windkessel models are fitted to available data. Note 
that, even if both pressure and flow rate data are known, it 
is not recommendable to impose them directly at the outlet 
sections since typical clinical measurements, due to uncer-
tainty and acquisition errors, are typically incompatible 
with the computational model, and can result in numerical 
issues, especially in fluid–structure simulations. For exam-
ple, flow rate measurements derived from phase contrast and 
4D flow MRI images usually violate mass conservation to 
some extent [19].

Some common approaches for Windkessel parameter esti-
mation are, for example, the simplex search method [10], or 
the least-square minimization [20]. Similarly, in [14], the 
terminal Windkessel resistances are estimated from mean 
pressure and outflow measurements at each terminal vessel, 
while terminal compliances are obtained by distributing the 
total peripheral compliance according to the cross-sectional 
areas of the outlets. The method proposed in [21], instead, 
selects parameters of the Windkessel models such that the 
net resistance and total compliance of the entire system are 
preserved. Other solutions resort to a non-iterative subspace 
model identification algorithm [22], or to other data-assim-
ilation techniques, such as Kalman filtering [23, 24] and 
optimal control [25], but their applicability is limited by 
their high computational cost.

Overall, the existing solutions for the estimation of 
Windkessel parameters tend to be either empirical, or time 
consuming. Moreover, most of the available approaches are 
suitable only for the estimation of first order boundary con-
ditions, such as the 3WK model, and are hard to generalize 
to higher order. Higher order BCs, in fact, have been proven 
to be more accurate and realistic than the three-element 
Windkessel model [10, 26], as they better capture the time 
evolution of pressure and flow rate, but the difficulty in 
estimating a larger number of parameters has limited their 
diffusion.

In this paper, we propose a novel approach for the auto-
mated estimation of boundary conditions of arbitrary order 
from pressure and flow rate waveforms co-located at the 
truncation point. Those waveforms may originate from lit-
erature data, waveform generators [12, 13], simplified mod-
els of the systemic circulation [21], in-vivo measurements 
where feasible, or a combination of these methods. The pro-
posed method is based on and extends the Time-Domain 
Vector Fitting algorithm (TDVF), which approximates the 
behavior of a system by means of differential equations 
relating input and output [27, 28]. Unlike recently proposed 
approaches [29, 30], TDVF uses a model in the form of lin-
ear ordinary differential equations of small order, that can 
be easily generated and solved in real time with minimal 
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computational efforts. Starting from pressure and flow rate 
waveforms at the truncation location, where the boundary 
condition must be imposed, TDVF can provide a boundary 
condition of arbitrary order relating pressure and flow rate 
very accurately. In the case of a model of order one, the 
proposed method provides an automated way to estimate the 
Windkessel parameters. For orders higher than one, instead, 
the model is represented as a differential relation between 
pressure and flow rate, which can be used as a boundary con-
dition to Navier–Stokes equations, and is easy to implement 
in computational fluid dynamics (CFD) solvers. Also in the 
high-order case, model identification is fully automated.

It has been shown that TDVF can provide more accurate 
results with respect to other common modelling techniques 
[9], such as the autoregressive-exogenous (ARX) model 
adopted for example in [31], with improved scalability and 
robustness. In fact, Vector Fitting is ubiquitous in Electronic 
Design Automation tools. In this work, we assess the capa-
bility of the proposed TDVF method for cardiovascular 
applications on a 1D circulation model consisting of the 55 
largest systemic arteries [32], by truncating some portions of 
the system and replacing them with boundary conditions of 
increasing order estimated with TDVF. Experimental results 
show that boundary conditions estimated with the proposed 
algorithm provide accurate pressure and flow rates at the 
truncation locations, making TDVF a promising candidate 
for parameter estimation in cardiovascular models. For 
Windkessel models, TDVF is compared to two other meth-
ods in the literature, one preserving the net resistance and 

total compliance of the original 55-artery system [21], and 
the other based on the Nelder-Mead simplex algorithm [33]. 
Overall, TDVF produces comparable, or better, results. The 
main advantage of the proposed approach is that it can eas-
ily estimate conditions of order higher than one, and results 
show that these can provide increased accuracy. Lastly, we 
verify that the proposed technique is able to accurately fit 
pressure and flow waveforms affected by noise down to 
20 dB of signal-to-noise ratio, and that the estimated BCs 
remain valid in presence of physiological changes of the 
input waveforms (e.g., in case of mental stress [34, 35]).

Methodology

In this section, the Time-Domain Vector Fitting algorithm 
will be introduced, together with the proposed formulation 
for boundary conditions estimation. The goal of this proce-
dure is represented in Fig. 1, where we want to move from 
a model representing the systemic arterial system (Fig. 1, 
left), to a reduced version where part of the vasculature has 
been removed and substituted by properly estimated bound-
ary conditions (Fig. 1, right). The latter could be Windkessel 
models, as displayed in Fig. 1, or general boundary condi-
tions of higher order.

In the following subsections, first the three-element 
Windkessel model will be briefly reviewed ("The Three-
Element Windkessel Model" section), and then a higher 
order generalization will be introduced, in a form suitable 

Fig. 1   Left: schematic represen-
tation of the complete 55-artery 
network. Right: representation 
of the reduced model after 
boundary conditions estima-
tion with Vector Fitting. The 
arterial segments are reduced 
from 55 to 21, and the truncated 
parts of the system (in grey) are 
substituted with the estimated 
boundary conditions. These 
could be Windkessel models, 
as depicted here, or models of 
higher order
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for the TDVF algorithm ("Generalization to High Order 
Boundary Conditions" section). The TDVF algorithm for 
the estimation of boundary conditions of arbitrary order will 
be presented in "Time-Domain Vector Fitting for Boundary 
Conditions Estimation" section, and the implementation of 
the obtained boundary conditions in 1D CFD solvers will 
be presented in "Implementation of High-Order Boundary 
Conditions" section.

The Three‑Element Windkessel Model

The three-element Windkessel model was first introduced by 
Westerhof et al. [36]. Its circuit interpretation includes three 
elements, as displayed in Fig. 2: the capacitor C models the 
storage properties of arteries, the resistor R1 represents the 
proximal resistance of the arterial network, while the resistor 
R2 models the resistance of the distal circulation. Moreover, 
a distal pressure contribution Pd is also included, in order to 
represent the pressure at which flow to the microcirculation 
ceases [32]. The Windkessel model relates pressure p(t) to 
flow rate q(t) by means of the differential equation

whose derivation from the equivalent circuit of Fig. 2 is 
straightforward by exploiting the equivalence between fluid 
dynamics quantities (pressure, flow rate) and electrical 
quantities (potential, current). Estimating the Windkessel 
parameters consists in determining the optimal values for R1 , 
R2 , C and Pd in (1) that best approximate the time domain 
evolution of the pressure and flow rate at the terminal point 
of the arterial network.

Laplace‑Domain Formulation

The following derivations and generalizations are best 
described in the Laplace domain [37]. The Laplace trans-
form L is a standard mathematical tool that converts linear 
differential equations into algebraic equations, leading to a 

(1)q(t)

(
1 +

R1

R2

)
+ CR1

dq

dt
=

p(t) − Pd

R2

+ C
dp

dt
,

drastic simplification in both solution and interpretation of 
differential models.

Let us denote with s the Laplace variable (representing 
the time derivative operator d/dt), and define the Laplace 
transforms of p(t) and q(t) as P(s) and Q(s), respectively. 
Assuming vanishing initial conditions at t = 0 , the Laplace 
transform of (1) is

which is an algebraic relation between pressure and flow 
rate, parameterized by the constants R1 , R2 , C, and Pd . The 
distal pressure Pd can be interpreted both as a free parameter, 
but also as an extra (constant) input, with specific reference 
to the circuit interpretation of Fig. 2 where it is represented 
as a voltage source.

Equation (2) can be rewritten as

where H(s) and Hd(s) are the two transfer functions

These are two first-order rational functions of the Laplace 
variable s, whose order is defined as the degree of the 
denominator. This is coherent with the differential equa-
tion  (1), which includes only first-order derivatives. To 
enable the generalization proposed in this paper, we rewrite 
these transfer functions in the general pole-residue (partial 
fraction) form as

where the pole a, the residues c1 , b1 , and the direct coupling 
constant c0 can be uniquely related to the Windkessel param-
eters through

Generalization to High Order Boundary Conditions

In this section we show how (3) can be generalized to arbitrary 
order, in a way that will facilitate the estimation of its coeffi-
cients using the TDVF algorithm, presented in "Time-Domain 
Vector Fitting for Boundary Conditions Estimation" section. 
The proper derivation of the proposed high order boundary 
conditions, starting from the standard 3WK model, requires 
a number of steps, which are discussed in the three follow-
ing sections. In particular, the first two steps eliminate the 

(2)Q(s)

(
1 +

R1

R2

)
+ sCR1Q(s) =

P(s)

R2

−
Pd

sR2

+ sCP(s),

(3)P(s) = H(s)Q(s) + Hd(s)
Pd

s
,

(4)H(s) = R1 +
R2

sR2C + 1
, H

d
(s) =

1

sR2C + 1
.

(5)H(s) = c0 +
c1

s − a
Hd(s) =

b1

s − a
,

(6)R1 = c0, R2 = −
c1

a
, C =

1

c1
, with b1 = −a.

Fig. 2   The three-element Windkessel model used as outlet boundary 
condition. The circuit includes the proximal resistance R1 , the distal 
resistance R2 , the capacitance C and the distal pressure P

d
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requirement of estimating two transfer functions, by modify-
ing the structure of the boundary condition model to a single 
transfer function H(s). Finally, the third step generalizes H(s) 
to a high-order transfer function, which will be expressed for 
convenience in pole-residue form. We will see, in fact, that 
this model structure simplifies estimation of the parameters in 
"Time-Domain Vector Fitting for Boundary Conditions Esti-
mation" section.

Relocation of the Distal Pressure Contribution

A well known result in circuit theory states that any linear and 
time invariant circuit with one port and internal sources can be 
transformed into an equivalent circuit, consisting of the series 
of an impedance and a voltage source. This result, known as 
Thevenin theorem [38], applies also to the present application 
case. When applied to the 3WK circuit of Fig. 2, we obtain the 
circuit of Fig. 3, where the equivalent source term is denoted 
as p̃d(t) . A full equivalence with the 3WK model is established 
in the Laplace domain by setting

so that (3) can be restated as

With these definitions, the two circuits in Figs. 2 and 3 
are indistinguishable in terms of the induced relationship 
between P(s) and Q(s).

Since Pd is constant, applying the inverse Laplace transform 
to P̃d(s) leads to

where we used (5)–(6), and where �(t) is the unit step (Heav-
iside) function. The signal p̃d(t) converges exponentially to 
the asymptotic value Pd with an initial transient, whose dura-
tion is related to the time constant � = −1∕a = R2C.

(7)P̃d(s) = Hd(s)
Pd

s

(8)P(s) = H(s)Q(s) + P̃d(s).

(9)p̃d(t) = Pd

(
1 − eat

)
�(t)

Approximation of Early‑Time Transient Behavior

The proposed generalization to higher order requires an 
approximation, which is motivated and discussed below. 
Although more advanced initialization schemes exist that 
result in shorter simulation times [39], time-domain car-
diovascular simulations are often initialized to a vanishing 
initial state for all variables (pressure and flow rate in our 
case). However, the solution of practical and clinical interest 
is the periodic state operation that arises due to pulsating 
input excitation, which is usually applied in form of a pre-
defined flow rate at the inlet. Such periodic state is reached 
after an initial transient, which is inevitably required by the 
numerical solvers, and which is generally disregarded when 
interpreting the results of the simulation.

Given the above observation, and noting that the equiva-
lent source p̃d(t) differs from its asymptotic value Pd only 
during the initial transient, we replace p̃d(t) with Pd in the 
circuit of Fig. 3, obtaining the approximate Windkessel 
model depicted in Fig. 4. This operation corresponds to 
redefining Hd(s) = 1 in (7), approximating then (8) as

A strict equivalence with the initial 3WK model of Fig. 2 
no longer holds, but the only difference between the two 
formulations occurs at early times. When the initial transient 
is extinguished, the periodic states obtained with the two 
models are identical. This is confirmed by Fig. 5, where 
the pressure signals obtained by exciting the three models 
in Figs. 2, 3 and 4 with the same inlet flow excitation are 
depicted. The first two responses are identical in light of the 
full equivalence of the corresponding models. The response 
of the approximate model (blue line) asymptotically con-
verges to the other two signals after the initial transient is 
extinguished. We conclude that, if only the periodic state 
operation is required, all discussed boundary condition mod-
els are equivalent.

(10)P(s) ≈ H(s)Q(s) +
Pd

s
.

Fig. 3   Equivalent Windkessel model, obtained by relocating the dis-
tal pressure contribution Fig. 4   Approximate Windkessel model
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Generalization to Arbitrary Order

Assuming the approximation discussed in "Approximation 
of Early-Time Transient Behavior" section, generalization 
to higher order boundary conditions becomes straightfor-
ward. We simply redefine the transfer function H(s) in (10) 
as a higher order rational function, expressed in pole-residue 
form as

Based on (11), the representation (10) is easily converted 
to a set of coupled differential equations for direct inclu-
sion as boundary conditions in 1D or 3D CFD solvers, see 
later "Implementation of High-Order Boundary Conditions" 
section. Therefore, the proposed high-order boundary condi-
tion model should be regarded as a black-box representation 
of the differential relation between outlet pressure and flow 
variables, as depicted in the model of Fig. 6. This model 
is characterized by richer dynamics and generally allows for 
more accurate numerical results compared to a first-order 

(11)H(s) = c0 +

n∑
i=1

ci

s − ai
.

Windkessel model. These claims will be demonstrated by 
the numerical examples of "Results" section.

We close this section by providing an interpretation for the 
presence of s at the denominator associated to Pd in (10). Since 
the Laplace transform of the unit step �(t) is L{�(t)} = 1∕s , 
we see that the distal pressure term in (10) can be interpreted 
as a time-domain source p̃d(t) = Pd �(t) . Therefore, we see 
that the proposed high-order model assumes that the distal 
pressure contribution Pd is applied instantaneously at t = 0 , 
rather than through an exponential transient (9). As discussed 
above, this difference is irrelevant when considering only the 
periodic state solution.

Time‑Domain Vector Fitting for Boundary 
Conditions Estimation

We now discuss how the parameters of the proposed high-
order boundary conditions (10)–(11) can be automatically 
estimated from time series of pressure p(t) and flow rate q(t) 
at some vessel outlet. We assume that samples of these signals 
are available as

with a constant sampling rate Δt = tk+1 − tk and vanishing 
initial conditions p(t0) = q(t0) = 0 . Generalization to non-
vanishing initial conditions will be provided in "Estimation 
in the Case of Non-zero Initial Conditions" section.

Model Parameterization

The proposed approach is based on the following model 
structure

(12)p(tk), q(tk), k = 0,… ,K, t0 = 0,

(13)H(s) =
N(s)

D(s)
,

Fig. 5   Pressure signals obtained 
by exciting the three boundary 
condition models: the standard 
Windkessel model of Fig. 2 
(black line), the equivalent 
Windkessel model of Fig. 3 (red 
dashed line), and the approxi-
mate Windkessel model of 
Fig. 4 (blue line) with the same 
inlet flow excitation signal

Fig. 6   Proposed high-order boundary condition model
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The transfer function H(s) is expressed as a ratio of two 
rational functions sharing the same set of common poles 
{ai} with unknown residues {ci} and {di} . A simple alge-
braic simplification shows that these poles eventually can-
cel out: the poles {ai} are simply instrumental variables on 
which we construct the identification algorithm. The expres-
sions (13)–(15) provide a parameterization of all proper 
rational functions with order n.

The TDVF Iteration

Let us start assuming that the poles {ai} in (14) and (15) are 
known, so that H(s) is parameterized only by the residues 
{ci} , {di} of numerator and denominator, respectively. These 
unknowns are computed by enforcing (10) as a fitting con-
dition, based on the available pressure and flow samples. 
Using (13), we rewrite (10) as

which is obtained by multiplying both sides by the 
(unknown) denominator D(s). Plugging  (14) and  (15) 
into (16) leads to the relation

The above can be expressed in time domain by applying the 
inverse Laplace transform to both sides, obtaining

where we used the shorthand notation

for any signal z(t). In order to render the approximation 
problem linear in the decision variables, we introduce the 

(14)N(s) = c0 +

n∑
i=1

ci

s − ai
,

(15)D(s) = d0 +

n∑
i=1

di

s − ai
.

(16)D(s)P(s) ≈ N(s)Q(s) +
Pd

s
D(s),

(17)

(
d0 +

n∑
i=1

di

s − ai

)
P(s) ≈

(
c0 +

n∑
i=1

ci

s − ai

)
Q(s)

+ Pd

(
d0

s
+

n∑
i=1

di

s ⋅ (s − ai)

)
.

(18)

d0 ⋅ p(t) +

n∑
i=1

di ⋅ pi(t) ≈ c0 ⋅ q(t) +

n∑
i=1

ci ⋅ qi(t)

+ Pd d0 ⋅ �(t) +

n∑
i=1

Pd di ⋅ �i(t),

(19)zi(t) = ∫
t

0

eai(t−�)z(�)d�

new set of dummy variables bi = Pd di and writing (18) for 
all discrete time samples t = tk leads to a homogeneous lin-
ear least squares problem in the unknowns {ci} , {di} , {bi} , 
which takes the compact form

where

The solution of (20) is computed by enforcing x ≠ 0 so that 
the trivial all-zero solution is avoided. This can be done e.g. 
by computing the Singular Value Decomposition (SVD) [40] 
of the matrix A,

and choosing x as the last column of V, i.e., the right singular 
vector associated with the least singular value. Alternatively, 
a non-triviality constraint can be introduced in the problem, 
as in [41].

Pole Relocation

The above procedure determines the optimal set of coef-
ficients {ci} , {di} given a prescribed set of numerator and 
denominator poles {ai} , considered as known quantities. 
We now consider also these poles as unknowns to be deter-
mined. We will see below that the {ai} play the role of esti-
mates for the poles of H(s), which are iteratively refined 
through a process denoted as pole relocation [9, 42].

An iteration with index � is set up. At the first iteration 
� = 0 , the starting poles {a0

i
} are initialized with a set of ran-

domly distributed values throughout the expected frequency 
band of the model [42]. At any given iteration � , the set of 
current poles {a�

i
} is used to construct and solve the least 

squares system (20). Let us denote as

(20)A x ≈ 0, A =
�
−Φ Γ Θ

�
, x =

⎡
⎢⎢⎣

d

c

b

⎤
⎥⎥⎦
,

(21)Φ =

⎡
⎢⎢⎣

p(t0) p1(t0) … pn(t0)

⋮ ⋮ ⋱ ⋮

p(tK) p1(tK) … pn(tK)

⎤
⎥⎥⎦
, d =

⎡⎢⎢⎢⎣

d0
d1
⋮

dn

⎤⎥⎥⎥⎦
,

(22)Γ =

⎡
⎢⎢⎣

q(t0) q1(t0) … qn(t0)

⋮ ⋮ ⋱ ⋮

q(tK) q1(tK) … qn(tK)

⎤
⎥⎥⎦
, c =

⎡⎢⎢⎢⎣

c0
c1
⋮

cn

⎤⎥⎥⎥⎦
,

(23)Θ =

⎡
⎢⎢⎣

�(t0) �1(t0) … �n(t0)
⋮ ⋮ ⋱ ⋮

�(tK) �1(tK) … �n(tK)

⎤
⎥⎥⎦
, b =

⎡⎢⎢⎢⎣

b0
b1
⋮

bn

⎤⎥⎥⎥⎦
.

(24)A = UΣVT
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the model denominator defined by the coefficients {d�
i
} 

resulting from the least squares solution. Since the zeros of 
D(s) provide the poles of H(s), we define the poles for the 
next iteration as the zeros of D�(s)

These can be found algebraically by evaluating the poles 
of the inverse transfer function [D�(s)]−1 . This is done by 
considering the state space realization of the denominator 
transfer function

where  A� = diag{a�
1
,… , a�

n
} ,  C� =

[
d�
1
,… , d�

n

]
 ,  and 

B� = 1 ∈ ℝ
n is a vector of ones. Algebraic inversion of the 

state space (27) shows that the poles of [D�(s)]−1 can be 
found by solving the eigenvalue problem

For further details about the pole relocation steps see [9, 42].
In summary, the proposed algorithm involves solv-

ing (20) and redefining poles through (26) for � = 0, 1,… , 
until the set {a�

i
} stabilizes, or until a maximum prescribed 

number of iteration �max is reached (in this work we set 
�max = 100 ). Under this convergence condition (see [9] for 
a detailed discussion), poles and zeros of D�(s) coincide so 
that D�(s) = d�

0
 , and the model (13) reduces to the numera-

tor N�(s) , characterized by poles {a�
i
} and residues {c�

i
} . 

This algorithm can be regarded as an extension of the well-
known TDVF scheme [27], suitably modified to account for 
the presence of the (unknown) distal pressure term, which 
produces the matrix block Θ and the additional dummy 
unknowns {bi} in (20).

Estimation of the Distal Pressure

Once H(s) is available from the above pole relocation itera-
tion, the distal pressure Pd can be determined in two alterna-
tive ways.

From Least Squares Variables
Recalling the definition of the dummy variables 

bi = Pd di , and noting that both {bi} and {di} are available 
from the least squares solution of (20), respectively collected 
in vectors b and d, we can determine Pd as the least-square 
solution of

As Periodic State Bias

(25)D�(s) = d�
0
+

n∑
i=1

d�
i

s − a�
i

(26){a�+1} = {ai ∶ D�(ai) = 0}.

(27)D�(s) ↔ (A� ,B� ,C� , d�
o
),

(28){a�+1} = �{A� − B�(d�
o
)−1C�}.

(29)d Pd ≈ b → Pd =
1

‖d‖2 d
T
⋅ b.

From (10) we recall that

where the approximation becomes exact at periodic state, 
after the transient contribution of Pd has extinguished. Sup-
pose that the periodic state holds for t ≥ tc . We can thus find 
Pd as the constant value that best fits the approximation

where

provides the output in absence of the distal pressure term. 
The best fit for Pd is simply computed as the average

Estimation in the Case of Non‑zero Initial Conditions

When BC estimation is based on in vivo or generally real-time 
measurements, the assumption of vanishing initial conditions 
on the data samples is not realistic. Data recording starts at 
some time instant t0 , at which q(t0) ≠ 0 and p(t0) ≠ 0 . In this 
case, the dynamic evolution of the pressure signal for t ≥ t0 
includes not only the zero-state response analyzed in the fore-
going sections, but also some contribution from the zero-input 
(natural) response [28]. The latter is due to the non-vanishing 
initial conditions on the internal system states of the under-
lying dynamical system, which are unknown. The following 
derivations show how to extend the proposed algorithm to 
handle also this situation.

The relation between pressure P(s) and flow rate Q(s) at the 
outlet can be generalized as

where G(s) represents the natural response contribution. The 
latter can be parameterized as

based on the same starting poles {ai} and using the same 
denominator as in (13). This choice is motivated by the 
well-known fact that both input–output and natural response 
contributions of any linear time-invariant system share the 
same poles.

With these definitions, condition (34) is rewritten as

(30)
Pd

s
≈ P(s) − H(s)Q(s),

(31)Pd ≈ p(t) − pm(t), t ≥ tc,

(32)pm(t) = L
−1{H(s)Q(s)}

(33)Pd =
1

K − c + 1

K∑
k=c

[
p(tk) − pm(tk)

]
.

(34)P(s) ≈ H(s)Q(s) + G(s) +
Pd

s
,

(35)G(s) =
B(s)

s ⋅ D(s)
, B(s) = r0 +

n∑
i=1

ri

s − ai
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which replaces (17). The time domain equivalent is obtained 
by applying the inverse Laplace transform to both sides and 
collecting the common terms

When compared with (18), this expression differs only in the 
definition of the dummy variables bi , that were nonetheless 
used only to estimate the distal pressure contribution after 
solving the least squares problem (20). For what concerns 
the estimation of the coefficients {ci} and {di} , the two prob-
lems (18) and (37) are identical. Therefore, the proposed 
estimation algorithm can be applied without any modifica-
tion and independently on the conditions of the system when 
the recording of the training signals begins.

Implementation of High‑Order Boundary Conditions

Once the estimation process is completed, the obtained model 
can be used as a boundary condition in cardiovascular simula-
tions. We already showed in "The Three-Element Windkessel 
Model" section how boundary conditions of order 1 can be 
represented as a three-element Windkessel model, and how it 
is possible to obtain Windkessel parameters from the general 
pole-residue form by means of (6).

For higher order BCs, different approaches can be adopted 
for their implementation into CFD solvers. One approach is to 
transform the final model expression (18) into an equivalent 
circuit by means of a synthesis process. Common techniques 
for equivalent circuit synthesis can be found in [9, 43]. An esti-
mate of the required model order can be obtained through the 
algorithm proposed in [44]. An alternative approach consists 
in using directly the discretized differential equations obtained 
with TDVF as boundary conditions, without resorting to their 
equivalent circuit realization. Since the poles identified by 
TDVF could be either real or complex, the general transfer 
function (11) can be rewritten as

(36)

(
d0 +

n∑
i=1

di

s − ai

)
P(s) ≈

(
c0 +

n∑
i=1

ci

s − ai

)
Q(s)

+ Pd

(
d0

s
+

n∑
i=1

di

s ⋅ (s − ai)

)
+

r0

s
+

n∑
i=1

ri

s ⋅ (s − ai)
,

(37)

d0 ⋅ p(t)+

n∑
i=1

di ⋅ pi(t) ≈ c0 ⋅ q(t) +

n∑
i=1

ci ⋅ qi(t)+

+ (Pdd0 + r0)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

b0

⋅�(t) +

n∑
i=1

(Pddi + ri)
⏟⏞⏞⏟⏞⏞⏟

bi

⋅�i(t).

(38)H(s) = c0 +

nr∑
i=1

cri

s − ari

+

nc∑
i=1

(
cci

s − aci

+
c∗
ci

s − a∗
ci

)
,

where the first sum includes the nr real poles, with 
ari , cri ∈ ℝ , while the second sum includes nc pairs of com-
plex conjugate poles, with aci , cci ∈ ℂ , and where the super-
script ∗ denotes the complex conjugate. Multiplying (38) by 
flow rate Q(s) and using the inverse Laplace transform leads 
to a set of differential equations, which can be cast in the 
following state space form for real poles

and in the following form for complex pole pairs

where cci = c�
ci
+ jc��

ci
 and aci = �ci + j�ci

 . Systems  (39) 
and (40) are composed of linear differential equations, so in 
principle they can discretized with most algorithms suited 
for differential equations, including those typically used for 
3D Navier–Stokes equations in CFD solvers. For a review 
of the methods and considerations pertinent to the coupling 
of 0D models to the 3D Navier–Stokes equations, we refer 
the Reader to [45]. For example, for the implementation in 
the Nektar1D solver [32] where the Forward Euler method 
was used, the real pole states were obtained as

A similar relationship holds for the coupled states associ-
ated with complex pole pairs. The two sets of equations (39) 
and (40) provide the total pressure at the k-th time step 
according to the Forward Euler method

in terms of flow rate at present and past time steps q(tk) , 
q(tk−1) , and instrumental state variables xi(tk−1) , which 
must be stored to enable the evaluation of the recurrence 
relations (41). We remark that the above implementation 
provides a direct extension of the actual implementation of 
3WK boundary conditions in the solver Nektar1D [32].

Alternatively, since the proposed estimation method rep-
resents the model by means of a transfer function, the latter 
can be used directly into dedicated solvers for the simulation 
of dynamical systems, such as Simulink [46], which are also 
widely used in cardiovascular modeling.

(39)
�

ẋi(t) = arixi(t) + q(t)

pr(t) =
∑nr

i=1
crixi(t)

(40)

⎧
⎪⎨⎪⎩

ẋ�
i
(t) = 𝜎cix

�
i
(t) + 𝜔ci

x��
i
(t) + 2q(t)

ẋ��
i
(t) = −𝜔ci

x�
i
(t) + 𝜎ci x

��
i
(t)

pc(t) =
∑nc

i=1
(c�

ci
x�
i
(t) + c��

ci
x��
i
(t))

(41)xi(tk) = xi(tk−1) + Δt ⋅ [arixi(tk−1) + q(tk−1)].

(42)p(tk) = pr(tk) + pc(tk) + c0q(tk)
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Results

This section provides numerical results for the experi-
ments related to boundary conditions estimation based on 
Time-Domain Vector Fitting. The corresponding TDVF 
code template is available in [47]. In particular, after a 
general description in "Experimental Setup" section of the 
experimental setup, in "Estimation of Windkessel Bound-
ary Conditions" section we evaluate the ability of the pro-
posed method to estimate the parameters of 3WK models, 
compared to two other methods presented in the literature, 
and we assess the level of accuracy obtained when these 
models are used as boundary conditions in place of a more 
detailed vascular model. Then, we quantify the sensitivity 
of the obtained estimates to noise in "Sensitivity to Noise" 
section and their validity under changes of the physiologi-
cal state of the patient ("Validity of BCs Estimated with 
Vector Fitting inCase of Varying Cardiac Output" section). 
Lastly, in "Higher-Order Boundary Conditions" section 
we evaluate the accuracy and robustness of the proposed 
algorithm for the estimation of higher order models.

Experimental Setup

Experiments were conducted on a 1D arterial network 
representing the 55 largest arteries, as depicted in the 
left panel of Fig. 1. One-dimensional models provide an 
accurate approximation of blood flow in larger arteries, 
as documented in [48, 49], with a significant reduction in 
the computational cost with respect to 3D fluid–structure 
interaction (FSI) simulations. The parameters character-
izing each segment are reported in [32], and refer to a nor-
motensive case. The inlet boundary condition corresponds 
to a realistic inlet flow at the aortic root [32], while the 
outlet boundary conditions at each terminal vessel consist 
of a 3WK model, whose parameters are detailed in [32]. 
The blood flow in the 55-artery network was simulated 
using the Nektar1D solver [32], which solves the nonlin-
ear, one-dimensional blood flow equations in a given net-
work of compliant vessels. Specifically, Nektar1D adopts 
the method of characteristics and a discontinuous Galerkin 
numerical scheme [32] to solve numerically the system of 
equations. The coupling between 1D model segments and 
0D models is obtained in Nektar1D by solving a Riemann 
problem at the 1D-0D interface [32, 50]. The solution pro-
vided by Nektar1D on the 55-artery network represents the 
reference solution for the model.

The 55-artery model was then reduced to a 21-artery 
model, containing only segments from the aorta up the first 
generation of bifurcations, by substituting the remaining 
segments with lumped parameter boundary conditions. A 

representation of the reduced model is shown on the right 
of Fig. 1, where the boundary conditions are represented 
as 3WK models. The original network on the left was trun-
cated at the end of segments 3 (brachiocephalic artery), 15 
(left common carotid artery), 19 (left subclavian artery), 
29 (celiac artery), 42 (left common iliac artery), and 43 
(right common iliac artery). The parameters of the corre-
sponding lumped parameter terminations were estimated 
with the TDVF algorithm presented in "Methodology" sec-
tion  through the following steps:

•	 the blood flow in the network described by the 55-artery 
model was simulated using Nektar1D, providing the ref-
erence solution of the model;

•	 the results of the simulation were used to extract the pres-
sure and flow rate waveforms at the truncation sites;

•	 for each truncation location, pressure and flow rate data 
were fed into the TDVF algorithm, which estimated 
simultaneously the parameters of the lumped boundary 
conditions, as explained in "Methodology" section;

•	 the segments downstream to the truncation site were sub-
stituted with the estimated boundary conditions;

•	 the reduced 21-artery model obtained in this way was 
simulated using Nektar1D.

Estimation of Windkessel Boundary Conditions

The results obtained from the estimation of Windkes-
sel parameters with TDVF have been compared to those 
obtained with two other methods proposed in the literature. 
The first was presented in [21], and selects parameters of the 
3WK models such that the net resistance and total compli-
ance of the entire system are preserved. The method was 
reproduced by implementing the equations reported in [21]. 
The second one is based on the use of the fminsearch algo-
rithm in MATLAB, which employs the Nelder-Mead sim-
plex algorithm [33] to find the minimum of a given function. 
In particular, the minimization problem is defined as

Equation (43) can be derived by transforming (2) back into 
time domain, and expressing the input q(t) and the Heaviside 
function �(t) by means of recursive convolutions. The four 
unknown parameters R1 , R2 , C and Pd , which were deter-
mined by means of fminsearch, were normalized to obtain 
a faster convergence of the algorithm. Figure 7 displays the 
obtained pressure waveforms at the truncation locations 
of the model, comparing the reference solution from the 
55-artery model (black curve) to those from the reduced 

(43)
min

R1,R2,C,Pd

‖‖‖p(t) − R1q(t) +
1

C ∫
t

0

e
−

1

R2C
(t−�)

q(�)d�

+
Pd

R2C ∫
t

0

e
−

1

R2C
(t−�)

�(�)d�
‖‖‖
2
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21-artery model with 3WK parameters obtained with the 
technique presented in [21] (dashed blue curve), with fmin-
search (solid green curve), and with the proposed method 
(dashed red curve). The curves obtained with fminsearch 
and the proposed method represent the best approximation 
of the original responses. The average and maximum errors 
for the pressure curves displayed in Fig. 7 are reported in 
Table 1: the results obtained with fminsearch and the pro-
posed method are comparable in terms of accuracy, and with 
average errors always lower than 1.1%, up to one order of 
magnitude smaller than the alternative method proposed in 
[21]. The latter does not provide an estimation of Pd , so 
the original value of 10 mmHg used in the 55-artery model 
was maintained for all outlets. This choice causes a visible 
offset of the obtained pressure curves with respect to the 
original curves, noticeable in Fig. 7, confirming the neces-
sity to estimate Pd from measurements at each truncation 
point, instead of setting it to a fixed value common to all 

outlets. A comparison of the 3WK parameters obtained with 
the different methods at each truncated segment is reported 
in Table 2.

Even if the fminsearch method is a valid solution for 
estimating Windkessel parameters, its extension to higher 
order models is problematic, as nonlinear optimization 
methods become increasingly time-consuming and prone 
to the issue of local minima as order increases.

More importantly, the user would need to choose a rep-
resentation of the model to define a suitable cost function 
that will be minimized, as in (43). Using the pole-residue 
representation, for example, would require to know the 
exact number of real and complex poles beforehand. It 
would be even more difficult to set a specific topology for 
the lumped circuit, just knowing the model response.

Fig. 7   Comparison between 
the reference solution from the 
complete 55-artery model (solid 
black), reduction method from 
[21] (dashed blue), fminsearch 
method (solid green green), and 
proposed method (dashed red) 
for the three-element Windkes-
sel boundary condition
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Sensitivity to Noise

To investigate the robustness of the proposed algorithm, 
both pressure and flow rate data were corrupted with zero-
mean white Gaussian noise with signal-to-noise ratio 
(SNR) ranging from 20 dB up to 100 dB, corresponding to 
a noise standard deviation ranging between 3.95 mmHg and 
3.90⋅10−4 mmHg for pressure and 1.18 cm3 /s and 1.15⋅10−4 

cm3 /s for flow rate, respectively. For each SNR level, we 
generated 50 different noise realizations to corrupt the data. 
Then, for each corrupted dataset a 3WK boundary condition 
was estimated, both with the proposed method and fmin-
search. The results for this analysis are reported in Fig. 8, 
where the relative error between the pressure samples from 
the 55-artery network and the output of the Windkessel mod-
els estimated at different SNR values is reported. In this 
experiments, the relative error is computed as

where p(t) is the reference noiseless pressure signal and 
pM(t) is the corresponding model reconstruction.

Moreover, at each SNR value, the bar indicates the stand-
ard deviation. Both techniques are able to estimate the cor-
rect boundary conditions starting from data samples with 
SNR ranging from 100 dB down to 40 dB, without any loss 
of accuracy. For segment 19, the error at 20 dB and 30 dB 
levels is about 2.1% and 1.9% respectively, while for segment 
3 these errors are 1.5% and 1.3% , with the proposed approach 
performing slightly better that fminsearch. Additionally, we 
report in Fig. 9 the mean value and the standard deviation 
of the pole � estimated by the TDVF algorithm, for each 
considered level of SNR, computed over models obtained 
for the 50 different noise realizations. These results verify 
the numerical robustness of the proposed estimation also 
in presence of noisy data, a condition more likely to occur 
when using patient-specific measurements instead of simu-
lation results to drive the boundary conditions estimation. 
Patient-specific measurements, however, may vary within 
an individual due to various physiological factors, which are 
not considered in this sensitivity analysis.

Validity of BCs Estimated with Vector Fitting in Case 
of Varying Cardiac Output

In the previous section, boundary conditions were estimated 
from data coming from a simulation of the cardiovascular 
system under normal conditions. However, under certain cir-
cumstances like physical exercise, the cardiovascular system 
does not operate under normal conditions anymore, experi-
encing physiological changes in heart rate and cardiac out-
put. These conditions can be modeled by properly changing 
the flow rate at the aortic root, which is the input imposed 
on the 55-artery model used in this work. Therefore, it is 
important to verify that the boundary conditions estimated 
with the standard input flow rate are still valid in presence 
of physiological changes of the cardiac output. In order to 
do so, we emulated a realistic variation of the input aortic 
flow rate under mental stress conditions by using the dataset 
presented in [34], which provides different aortic root flow 

(44)
‖p(t) − pM(t)‖2

‖p(t)‖2 ,

Table 1   Approximation errors for pressure curves at truncation loca-
tions, Windkessel case ("Estimation of Windkessel Boundary Condi-
tions" section)

Segment Method Max error (%) Avg error (%)

3 [21] 5.1 3.08
fminsearch 0.67 0.30
Proposed 0.67 0.30

15 [21] 6.51 3.24
fminsearch 4.40 0.89
Proposed 4.30 0.88

19 [21] 4.85 3.15
fminsearch 0.63 0.30
Proposed 0.62 0.30

29 [21] 4.31 3.12
fminsearch 0.77 0.25
Proposed 0.76 0.26

42–43 [21] 9.16 4.2
fminsearch 2.71 1.1
Proposed 2.81 1.1

Table 2   Comparison of estimated Windkessel parameters at the out-
lets of the 21-artery model ("Estimation of Windkessel Boundary 
Conditions" section)

Seg. Method R
1
 (Pa s 

m
−3)

R
2
 (Pa s 

m
−3)

C ( m3 Pa−1) P
d
 (kPa)

3 [21] 0.18⋅108 9.26⋅108 9.70⋅10−10 1.33
fminsearch 0.27⋅108 8.46⋅108 10.5⋅10−10 1.54
Proposed 0.26⋅108 8.43⋅108 10.5⋅10−10 1.58

15 [21] 3.60⋅108 19.2⋅108 1.14⋅10−10 1.33
fminsearch 6.72⋅108 14.2⋅108 1.31⋅10−10 1.58
Proposed 6.55⋅108 14.2⋅108 1.23⋅10−10 1.64

19 [21] 1.00⋅108 17.0⋅108 5.39⋅10−10 1.33
fminsearch 0.67⋅108 15.5⋅108 6.17⋅10−10 1.59
Proposed 0.67⋅108 15.4⋅108 6.13⋅10−10 1.68

29 [21] 1.62⋅108 7.58⋅108 3.06⋅10−10 1.33
fminsearch 1.99⋅108 6.90⋅108 4.36⋅10−10 1.41
Proposed 1.99⋅108 6.91⋅108 4.36⋅10−10 1.41

42-43 [21] 1.57⋅108 14.8⋅108 5.04⋅10−10 1.33
fminsearch 0.98⋅108 13.6⋅108 6.11⋅10−10 1.61
Proposed 0.97⋅108 13.5⋅108 6.06⋅10−10 1.71
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rates corresponding to different levels of mental stress in 
a human subject. These conditions translate into increased 
peak velocity and acceleration due to the increase in ejec-
tion fraction during stress [35]. An input flow correspond-
ing to different levels of mental stress was then generated 
and used as input for both the 55-artery model, chosen as a 
reference, and the 21-artery one. In the latter, the 3WK BCs 
previously estimated with the proposed approach in the nor-
motensive case, and reported in Table 2, were used. Pressure 
waveforms at different points of the model are reported in 
Fig. 10, where the results in the reference 55-artery model 
(black line) are compared to those in the 21-artery model. 
The background colors in the left panel of Fig. 10 indicate 
the corresponding level of mental stress induced by the input 
aortic flow rate, varying from a relaxed state (light blue), 

to the baseline (purple), medium (orange) and high (pink) 
levels of mental stress. The corresponding heart rate (HR) 
and cardiac output (CO) associated to each stress level are 
reported in Table 3 and can be found in [34]. From Fig. 10 
it is possible to see that the reduced model is able to closely 
follow the changes caused by the varying input flow, with 
average relative errors smaller than 0.7% for both segments. 
The results confirm that the estimated boundary conditions 
are valid also when considering a transient situation, instead 
of a periodic one.

Higher‑Order Boundary Conditions

In this section, we test the use of the proposed technique 
for the estimation of higher order boundary conditions and 

Fig. 8   Relative error between 
pressure samples obtained 
from the reference solution 
of the 55-artery network and 
Windkessel models estimated 
from noisy data, with different 
SNR values. The Windkessel 
parameters were estimated with 
TDVF (blue curve) and fmin-
search (green curve). Vertical 
bars in correspondence of the 
different SNR values indicate 
the standard deviation of the 
relative error
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we investigate their accuracy compared to standard 3WK 
models. The same experimental setup presented in 3.1, 
consisting of the reference 55-artery model and the reduced 
21-artery model, was adopted. In Table 4, we report the 
number of iterations needed by TDVF to attain convergence. 
In Fig. 11, we first compare the reference pressure from the 
55-artery model used for the estimation (blue line), to the 
pressure estimated by the proposed model (dashed red line), 
for the same flow rate coming from the 55-artery model. 
The results reported in Fig. 11 refer to the pressure in seg-
ment 19 fitted with models of order up to 8 (comparable 
results were obtained for the other segments). These can 
be defined as “a-priori” results of the TDVF models alone, 
which aim to assess the quality of fit for different model 
orders, before using them as boundary conditions of the 
circulation network. It is clear from Fig. 11 that accuracy 

greatly improves by increasing the model order. The right 
panel on the third line of Fig. 11 shows the average relative 
error on pressure versus model order, suggesting a decrease 
of around one order of magnitude going from order 1 to 
order 8. We then used the estimated models as boundary 
conditions for the reduced 21-artery model, simulated with 
Nektar1D. This step required a modification of the solver 
to accept boundary conditions defined as in 2.2.3, that we 
performed as discussed in "Implementation of High-Order 
Boundary Conditions" section. Pressure and flow rate curves 
up to order 4 at the truncated segments of the reduced 
21-artery model are displayed in Fig. 12, while the relative 
errors on pressure and flow rate waveforms up to order 8 are 
reported in Tables 5 and 7 (average error), and in Tables 6 
and 8 (maximum error). It is clear, both from plots and from 
numerical results, that higher order boundary conditions 

Fig. 9   The mean value (top 
panel) and the standard devia-
tion (bottom panel) of the pole 
� estimated by TDVF algorithm 
as a function of the SNR level
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can model pressure and flow rate more accurately than a 
simple Windkessel (corresponding to order 1). In particu-
lar, a significant improvement can be seen with order 2 and 
order 4, where average errors can decrease up to one order 
of magnitude with respect to BCs of order 1. Orders above 
4, instead, did not seem to provide an improvement in terms 
of accuracy. Segment 15 is the only case which does not 
seem to benefit from higher order boundary conditions, with 
the error remaining nearly constant for both pressure and 
flow rate, even for higher orders. This is further confirmed 
by the lack of stabilization of the pole relocation iteration, 
which is stopped not upon convergence but upon hitting 
the maximum allowed number of iterations �max = 100 , see 
Table 4. Looking at the corresponding plots in Fig. 12, it can 
be noticed that the curves obtained after the truncation are 
qualitatively different from the original pressure and flow 
in 55-artery model (black curve). A possible cause could be 
the higher wall viscosity of segment 15 with respect to the 

other terminal segments, which could increase the presence 
of nonlinear effects, hard to model with a linear boundary 
condition. However, no conclusive explanation was reached.

As already mentioned in "Methodology" section, the 
adoption of higher order models requires only a negli-
gible increase in the computational cost. Table 9 reports 
the wall clock time for the Vector Fitting step and for the 
21-segments model simulation with Nektar1D, for differ-
ent model orders. In the first column (Single TDVF), the 
average time and standard deviation for the estimation of a 
single boundary condition is reported, which was obtained 
by averaging over the estimation times at the six trunca-
tion locations of the 55-artery model. The second column 
(Total TDVF) reports the total time required to estimate 
the six boundary conditions necessary to move from the 
55-artery model to the 21-artery one. The last column 
reports the time required by Nektar1D for the simula-
tion of the 21-artery model. All the simulations were run 
on a laptop with Intel Core i7-7700HQ CPU, 2.80 GHz, 
and 16 GB RAM. As verified in [51], the computational 
cost of the Vector Fitting algorithm scales linearly with 
the number of poles. It is worth noticing how the total 
time required by TDVF for the estimation is less than 
that required for the simulation by at least one order of 
magnitude, thus constituting a very small computational 
overhead. Moreover, the Nektar1D simulation time does 
not increase when increasing the model order, confirming 
that the use of higher order boundary conditions comes at 
no additional computational cost.

Fig. 10   Pressure waveforms at 
segment 3 (top) and 19 (bottom) 
for the case of varying cardiac 
output. Background color indi-
cates the corresponding level of 
stress: relaxation (light blue), 
baseline (purple), medium stress 
(orange), high stress (pink). The 
plots on the right zoom on the 
black rectangle displayed on 
the plots on the left. Black lines 
refer to the reference 55-artery 
model, while red dashed lines 
refer to the reduced 21-artery 
model

Table 3   Prescribed heart rate (HR) and Cardiac output (CO) for the 
four different levels of stress, as described in "Validity of BCs esti-
mated with Vector Fitting incase of varying cardiac output" section

Stress level HR (bpm) CO (l min
−1)

Relaxation 66.9 5.2
Baseline 74.9 6.2
Medium stress 91.9 8.7
High stress 108.7 11.7
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Discussion

Results presented in "Results" section show that Time-
Domain Vector Fitting is able to estimate accurate lumped 
boundary conditions, making it a promising tool for car-
diovascular modeling. When employed to estimate Wind-
kessel boundary conditions, Vector Fitting was able to 
accurately determine optimal values for the Windkessel 
parameters. The efficacy of the proposed approach was 
further assessed in presence of noisy synthetic measure-
ments, where TDVF provided accurate parameters start-
ing from data with up to 20 dB of SNR, and under physi-
ological changes of pressure and flow rates induced by 
changing levels of mental stress. The results obtained 
with Vector Fitting were comparable to those attained 
with two other estimation methods presented in the litera-
ture. The advantage of the proposed approach, however, 
is mainly its ability to estimate an increasing number of 

parameters simultaneously and automatically. The pro-
posed model parametrization based on the use of trans-
fer functions, in fact, can be used to describe any linear 
dynamical system, allowing to generalize the model to 
differential relations of arbitrary order. The alternative 
solutions for higher order BCs proposed in the litera-
ture, instead, resort to specific circuit topologies, from 
which a generalization is difficult to obtain. Thanks to 
the aforementioned properties of the TDVF method, it 
was possible to formulate and estimate in a systematic 
way boundary conditions of increasing order with limited 
additional computational cost. For the case under analy-
sis, consisting of a 55-artery model reduced to 21 arterial 
segments, boundary conditions with order up to 8 were 
estimated and compared, in order to assess the effect that 
the order of the boundary condition has on its ability to 
accurately approximate the downstream vasculature. Even 
if in the scenarios presented in the paper the estimated 

Fig. 11   Comparison of pressure 
waveform in segment 19 (blue 
curve) against models with 
different order obtained with 
Vector Fitting. The bottom-
right panel reports the relative 
error (44) on pressure vs model 
order, computed over one period 
at steady-state
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boundary conditions have all the same order, this is not 
a requirement for the method. In fact, as each boundary 
condition is estimated with TDVF independently, differ-
ent boundary conditions can be used in different points 
of the model. Results showed that an order of 2 provides 
a significant increase in accuracy with respect to BCs 

of order 1, the most common choice up to now in the 
form of Windkessel models. Orders above 4, instead, pro-
vided negligible improvements in terms of accuracy in the 
model of the systemic arterial system considered.

Fig. 12   Comparison of pressure 
and flow waveforms in the 
55-artery model (solid black 
curve) and in the 21-artery one 
with boundary conditions of 
different orders, estimated with 
Vector Fitting
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Limitations and Future Developments

The estimation of boundary conditions with the proposed 
method requires time samples of both pressure and flow 
rate at the truncation location. This requirement could be 
a limitation, depending on whether pressure and flow rate 
measurements are available at the same location or not. The 
following scenarios may arise: 

1.	 flow rate and pressure are available at the same location. 
This is typically the case when the BC is meant to be 
derived from a circulatory model, such as the 1D models 
used in this work. It is also the case where an in-vivo 
pressure measurement is performed with a catheter, on 
purpose or as part of the clinical procedure;

2.	 flow rate is available, but pressure information is una-
vailable, or available only at a different location (e.g. in 
the arm). This scenarios is common in clinical practice 
where phase-contrast or 4D-flow MRI can measure the 
flow rate at the truncation location, but only cuff pres-
sure is acquired. In this case, the pressure at the trunca-
tion location can be estimated from: (i) brachial diastolic 
and systolic pressure, as commonly done to estimate 
Windkessel model parameters; (ii) using pressure 

Table 4   Number of iterations performed by TDVF to attain conver-
gence for the higher order boundary conditions models.("Higher-
Order Boundary Conditions" section)

Segment Number of iterations

Order 1 Order 2 Order 4 Order 6 Order 8

3 4 79 33 36 49
15 9 100 100 100 100
19 6 23 65 39 19
29 6 13 44 54 39
42-43 6 18 167 27 28

Table 5   Average relative errors (%) on pressure at truncation loca-
tions, with models of higher order ("Higher-Order Boundary Condi-
tions" section)

Segment Average relative error (%)

Order 1 Order 2 Order 4 Order 6 Order 8

3 0.30 0.12 0.078 0.084 0.079
15 0.88 0.75 0.65 0.67 0.67
19 0.30 0.1 0.069 0.079 0.068
29 0.26 0.15 0.11 0.093 0.079
42-43 1.1 0.36 0.31 0.23 0.21

Table 6   Maximum relative errors (%) on pressure at truncation loca-
tions, with models of higher order ("Higher-Order Boundary Condi-
tions" section)

Segment Maximum relative error (%)

Order 1 Order 2 Order 4 Order 6 Order 8

3 0.67 0.59 0.46 0.53 0.51
15 4.30 4.79 5.16 5.01 4.80
19 0.62 0.44 0.33 0.34 0.35
29 0.76 0.61 0.44 0.41 0.42
42-43 2.81 1.33 1.17 1.07 0.94

Table 7   Average relative errors (%) on flow rate at truncation loca-
tions, with models of higher order ("Higher-Order Boundary Condi-
tions" section)

Segment Average relative error (%)

Order 1 Order 2 Order 4 Order 6 Order 8

3 3.14 3.63 1.80 1.70 1.60
15 1.90 2.1 2.0 1.94 1.90
19 3.41 1.67 1.0 0.95 0.84
29 0.8 0.37 0.21 0.19 0.17
42-43 2.5 1.07 0.97 0.61 0.58

Table 8   Maximum relative errors (%) on flow rate at truncation loca-
tions, with models of higher order ("Higher-Order Boundary Condi-
tions" section)

Segment Maximum relative error (%)

Order 1 Order 2 Order 4 Order 6 Order 8

3 12.05 14.67 10.96 11.83 10.80
15 13.71 15.61 16.47 16.12 15.61
19 15.03 6.53 4.29 3.46 3.58
29 4.45 1.22 0.92 0.98 0.88
42-43 6.06 2.22 1.89 1.54 1.40

Table 9   Measured wall clock times for the estimation of a single 
boundary condition with Vector Fitting (Single TDVF), for the esti-
mation of the boundary conditions at the six truncation sites of the 
55-artery model (Total TDVF), and for the simulation of the reduced 
21-segments model with Nektar1D. Results are reported for different 
model orders

Model order Single TDVF (s) Total TDVF (s) Nektar1D (s)

Mean Std dev

1 1.25 0.15 7.52 471
2 1.42 0.20 8.53 473
4 1.98 0.25 11.86 470
6 1.99 0.38 11.97 470
8 2.54 0.64 15.23 472
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waveform generators [12, 13]; (iii) from blood velocity 
using recent advancements in 4D-flow MRI processing 
[15–17]. We are also investigating how to generalize 
the proposed method to estimate the BC given pressure 
information at an alternative location, and we believe 
that under mild assumptions (e.g. linearity) this should 
be feasible [52–54];

3.	 neither flow rate nor pressure measurements are avail-
able. In this case, both quantities have to be estimated 
using literature information or waveform generators. The 
main issue in this scenario is the limited information 
available, not how to determine BC coefficients. In this 
scenario, a low-order BC (e.g. a 2- or 3-element Wind-
kessel model) is typically advisable, and the proposed 
method can be used as an automated and robust way to 
determine the Windkessel model coefficients.

The use of the proposed automated approach for the estima-
tion of boundary conditions removes the uncertainty associ-
ated with empirical methods relying on manual tuning and 
a trial and error approach. The proposed method, in due 
course, can also guarantee remarkable robustness to the the 
limited accuracy of clinical measurements, that are inevita-
bly affected by significant measurement errors. It should be 
noted that there are still other sources of uncertainty, such as 
those arising from an imperfect reconstruction of the anat-
omy from medical images, from errors in the measurement 
and reconstruction of the pressure and flow rates, and from 
the limited understanding of self-regulation mechanisms 
present in the system circulation.

When the proposed approach is applied to estimate low-
order boundary conditions, as in "Estimation of Windkessel 
Boundary Conditions" section, the result is a standard Wind-
kessel model that retains its standard physical interpretation 
and parameterization. When a high-order BC is required, 
the proposed method provides a suitable differential relation 
between pressure and flow-rate that describes the hemody-
namic behaviour of the region downstream the outlet. If a 
physical interpretation is required, the proposed model (18) 
can be represented as an equivalent electrical circuit using 
network synthesis algorithms [9]. This conversion provides 
some physical insight into the obtained BC, and a poten-
tial opportunity for parametrizing the BC coefficients based 
on clinical information, such as patient age, or presence of 
hypertension. As an alternative approach to parametrization, 
the proposed method can be potentially generalized to make 
the proposed BCs parametrized by other clinical parameters, 
as successfully done for vector fitting type algorithms in 
other application areas [55].

Finally, we remark that, in this work, the vector fitting 
method has been tested only on 1D models of the cardiovas-
cular system. The extensions to three-dimensional models 
will be the subject of future developments.

Conclusions

In this work, we proposed a new automated method based 
on the Time-Domain Vector Fitting algorithm for the esti-
mation of boundary conditions for cardiovascular models. 
Starting from pressure and flow rate samples at the trunca-
tion location, this method can estimate boundary conditions 
corresponding to differential equations of increasing order. 
First, the TDVF algorithm was used to automatically esti-
mate 3WK boundary conditions, starting from a 1D model 
comprising the 55 main arteries of the human arterial sys-
tem. The robustness of the estimation procedure was verified 
in presence of noisy data, with down to 20 dB of signal-to-
noise ratio, and in presence of physiological changes of pres-
sure and flow rate induced by high levels of mental stress. 
Second, we proposed a generalization of the three-element 
Windkessel model to obtain boundary conditions of arbi-
trary order. We estimated higher order boundary conditions 
with TDVF, and we investigated the improvement in accu-
racy they provide with respect to the 3WK model. On the 
55-artery model, experimental results showed that boundary 
conditions up to order 4 are able to model the downstream 
pressure and flow rate more accurately than the Windkessel 
model, while orders above 4 provided negligible improve-
ments in term of accuracy. Future works will aim at applying 
the proposed methodology to generate boundary conditions 
for three-dimensional CFD simulations, as well as to use 
TDVF to generate higher order boundary conditions even 
in absence of co-located measurements of pressure and flow 
rate.
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