
06 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enabling Capsule Networks at the Edge through Approximate Softmax and Squash Operations / Marchisio, Alberto;
Bussolino, Beatrice; Salvati, Edoardo; Martina, Maurizio; Masera, Guido; Shafique, Muhammad. - ELETTRONICO. -
(2022). (Intervento presentato al convegno ISLPED '22: ACM/IEEE International Symposium on Low Power Electronics
and Design tenutosi a Boston (USA) nel 1-2 August 2022) [10.1145/3531437.3539717].

Original

Enabling Capsule Networks at the Edge through Approximate Softmax and Squash Operations

Publisher:

Published
DOI:10.1145/3531437.3539717

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2968137 since: 2022-09-11T09:42:47Z

Association for Computing Machinery

Enabling Capsule Networks at the Edge through Approximate
Softmax and Squash Operations

Alberto Marchisio1,*, Beatrice Bussolino2,*, Edoardo Salvati2,*, Maurizio Martina2, Guido Masera2,
Muhammad Shafique3

1 Institute of Computer Engineering, Technische Universität Wien (TU Wien), Vienna, Austria
2Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy

3eBrain Lab, Division of Engineering, New York University Abu Dhabi, UAE
alberto.marchisio@tuwien.ac.at,beatrice.bussolino@polito.it,edoardo.salvati@studenti.polito.it,

maurizio.martina@polito.it,guido.masera@polito.it,muhammad.shafique@nyu.edu

ABSTRACT
Complex Deep Neural Networks such as Capsule Networks (Cap-
sNets) exhibit high learning capabilities at the cost of compute-
intensive operations. To enable their deployment on edge devices,
we propose to leverage approximate computing for designing ap-
proximate variants of the complex operations like softmax and
squash. In our experiments, we evaluate tradeoffs between area,
power consumption, and critical path delay of the designs imple-
mented with the ASIC design flow, and the accuracy of the quan-
tized CapsNets, compared to the exact functions.

KEYWORDS
Deep Neural Networks, Capsule Networks, Approximate Comput-
ing, Nonlinear Functions, Squash, Softmax.
ACM Reference Format:
Alberto Marchisio1,*, Beatrice Bussolino2,*, Edoardo Salvati2,*, Maurizio
Martina2, Guido Masera2, Muhammad Shafique3. 2022. Enabling Capsule
Networks at the Edge through Approximate Softmax and Squash Opera-
tions. In ACM/IEEE International Symposium on Low Power Electronics and
Design (ISLPED ’22), August 1–3, 2022, Boston, MA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3531437.3539717

1 INTRODUCTION
In recent years, Deep Neural Networks (DNNs) have achieved
outstanding performance in a wide range of applications [7][12].
Among the latest DNN models, Capsule Networks (CapsNets) [20]
enable high learning capabilities due to the capsules, which add a
layer of abstraction compared to the traditional neurons of DNNs.
Despite their groundbreaking success, the most advanced DNNs,
such as CapsNets, exhibit high complexity due to their compute-
intensive operations, which hinders their deployments on energy-
constrained edge devices. Therefore, several optimizations have
been proposed to increase the performance and reduce the energy
consumption of complex DNNs on edge devices, such as network
pruning [4][8][14], and quantization [13][24]. In this work, we

*These authors contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISLPED ’22, August 1–3, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9354-6/22/08.
https://doi.org/10.1145/3531437.3539717

focus on leveraging approximate computing for CapsNet optimiza-
tion. Therefore, our approach is orthogonal to other optimization
techniques (e.g., quantization), as we directly perform experiments
on the quantized CapsNets.

1.1 Motivations and Research Challenges
While for generic matrix multiplications (that are used on con-
volution operations) a common approach is to use approximate
adders and multipliers [16][17], there are other complex operations
(i.e., squash and softmax) that need more specialized designs to
be computed in approximate form. Indeed, as shown in Fig. 1, the
squash and softmax operations are the most compute-intensive
operations of the CapsNets. More precisely, 1○ the squash consti-
tutes the performance bottleneck of their execution on GPUs, and
2○ the softmax has a high execution time on a Capsule Network
Hardware Accelerator (CapsAcc [15]). Hence, these results moti-
vate our research to focus on the design of approximate squash
and softmax units. The research challenges tackled in this work
are to find tradeoffs for area, power, and delay of the approximate
softmax and squash units, without reducing the complete CapsNets’
inference accuracy much.

Ex
ec

u
ti

o
n

 T
im

e
[µ

s]

 1

2

Figure 1: Execution time breakdown for the Dynamic Rout-
ing operations of the ShallowCaps [20] on the Nvidia
GeForce RTX 2080 Ti GPU and the CapsAcc hardware accel-
erator [15].

1.2 Novel Contributions
Our novel contributions are:
• We analyze the state-of-the-art CapsNets models and the most ad-
vanced designs of approximate squash and approximate softmax
(Section 2).

• We design specialized approximate softmax units using domain
transformations (Section 3).

• We design approximate squash units with piecewise approxima-
tions (Section 4).

https://doi.org/10.1145/3531437.3539717
https://doi.org/10.1145/3531437.3539717

ISLPED ’22, August 1–3, 2022, Boston, MA, USA A. Marchisio, et al.

• We implement the approximate softmax and squash architectures
in VHDL, synthesize them in a 45nm technology node with the
ASIC design flow, and perform gate-level simulations to evaluate
the area, power consumption, and critical path delay.

• We also integrate the functional approximations into the open-
source Q-CapsNets framework to evaluate the inference accuracy
of state-of-the-art CapsNet models using the proposed approxi-
mate units (Section 5).

• Our proposed approximate softmax-b2 design outperforms the
related works, having −11% area, −8% power, and −19% critical
path delay, and comparable accuracy results.

• Our proposed approximate squash-exp and squash-pow2 have up
to −6% power consumption and up to −36% critical path delay
compared to the state-of-the-art, while showing similar accuracy
as having the exact squash function.

2 BACKGROUND AND RELATEDWORKS
2.1 Capsule Networks
Capsule Networks (CapsNets) are introduced to improve the gen-
eralization ability of Convolutional Neural Networks (CNNs) in
image classification tasks. CapsNets include multi-dimensional cap-
sules, i.e., groups of neurons that encode the existence probability
and spatial properties of a specific feature, and exploit the dynamic
routing-by-agreement algorithm to detect entities that are consis-
tent with lower-level features.

As a limitation, CapsNets show a higher computational complex-
ity than traditional CNNs, as indicated by the MACs per memory
ratio [13], due to the vectors of neurons and routing algorithm
involving the iterative computation of complex operations, i.e.,
softmax and squash. The softmax function is a nonlinear function
used to compute the routing coefficients connecting a lower-level
capsule to the higher-level capsules. It normalizes its input values
into a probability distribution. The squash function is the nonlinear
activation function applied to produce the activity vector of the
capsules. It ensures that the vector norm is below 1 to represent
the existence probability of the associated entity and preserves
the vector orientation in agreement with the lower-level capsules
predictions.

The ShallowCaps model proposed by Hinton et al. [20] is de-
signed for image classification on the MNIST dataset [11] with
greyscale images of handwritten digits. The architecture consists
of three layers for the inference pass, which are a convolutional
layer, a convolutional capsule layer, and a fully-connected capsule
layer. The first layer has 256, 9× 9× 1 kernels with ReLU activation.
The second layer applies 256, 9 × 9 × 256 kernels with a stride of 2
and ReLU activation, and the output feature maps are reshaped in
32 channels of 8-dimensional capsules with squash activation. The
final layer that performs the dynamic routing algorithm consists of
10 16-dimensional capsules, one for each dataset class.

The DeepCaps model [18] is introduced to improve the classifi-
cation accuracy on complex image datasets like CIFAR-10 [9] with
color images of animals and vehicles. The architecture consists
of a convolutional layer, four middle stages (CapsCells) including
convolutional capsule layers (ConvCaps) and a final fully-connected
capsule layer. The two main architectural improvements w.r.t. the

ShallowCaps are the skip connections that enable an efficient gra-
dient flow during training and the routing-by-agreement algorithm
based on 3D convolution to avoid the computational bottleneck that
would occur by stacking multiple fully-connected capsule layers.

2.2 Approximate Computing for DNNs
Nonlinear Operations

Approximate computing is an effective design methodology that
aims to achieve low power consumption, high performance, and
reduced circuit area by relaxing the accuracy requirement in error-
tolerant applications [3]. Extensive research efforts have been ded-
icated to the optimization of matrix multiplications in DNNs by
proposing approximate designs for adders [22] and multipliers [10].
However, a key factor for achieving high computing efficiency in
DNNs and CapsNets is represented by the implementation of nonlin-
ear functions, including nonlinearities such as sigmoid, hyperbolic
tangent, softmax, and squash.

Various techniques have been proposed to compute nonlinear
functions in an approximate form and enable an efficient hardware
implementation with limited accuracy loss. The work in [1] pro-
posed a piecewise linear approximation of the sigmoid function
by storing the curve breakpoints in a look-up table and applying
linear interpolation.

As for the softmax function, the work in [5] proposed an approx-
imate softmax design where the exponential function is evaluated
by using Taylor series expansion and a look-up table method. The
work in [21] presented a hardware architecture that exploits a
mathematical transformation into the logarithmic domain to sim-
plify the division operation and approximates the exponential and
logarithmic functions by using linear fitting within a specific range.

As regards the squash function, the work in [2] described a set of
approximations of the Euclidean norm that avoid the computation
of square and square-root operations. The work in [6] introduced
an approximate square-accumulate architecture with a self-healing
mechanism that is suitable for computing the sum of squared com-
ponents in the Euclidean norm. However, the previous works did
not consider advanced methods, like piecewise approximations and
domain transformations that are possible due to the error tolerance of
these functions inserted in the CapsNets computations, that we indeed
exploit in this work.

3 APPROXIMATE SOFTMAX DESIGN
In the following, we present three approximate softmax designs de-
scribing the algorithmic approximations and the RTL architectures.
The proposed softmax approximations are referred to as softmax-
taylor, softmax-lnu and softmax-b2, with names enclosing their key
features.

The softmax function shown in Eq. 1 is a probabilistic version of
the argmax function, which returns 1 for the highest input value
and 0 for all the other values.

yi =
exi∑n
j=1 e

x j (i = 1, ...,n) (1)

The softmax computation involves three fundamental opera-
tions: natural exponential, sum, and division. In the following ap-
proximate softmax designs, we mainly focus on the approximate

Enabling Capsule Networks at the Edge through Approximate Softmax and Squash Operations ISLPED ’22, August 1–3, 2022, Boston, MA, USA

xi

softmax(xi)

EXPU

DIVU

Exp. Sum Reg.

(a)

xi

LUT-b

a

LUT-a

b c

e a e b

1

P. Prod. Reg.

(b)

1

N1 / N2

>>

k2k1

>>

<<

LOD1

N1

w1

N2

w2

LOD2

(c)

xi

EXPU

Exp. Sum Reg.

LNU

softmax(xi)

(d) (e) (f)

Figure 2: Architectures of the approximate softmax designs: (a) Softmax-taylor unit. (b) Softmax-taylor exponent unit. (c)
Softmax-taylor division unit. (d) Softmax-lnu unit. (e) Softmax-lnu exp unit. (f) Softmax-lnu natural log unit. Softmax-b2 unit
replaces expu and lnu in Softmax-lnu with pow2u and log2u by removing the multipliers log2 e and ln 2.

computation of the exponentiation and division, which are the most
complex operations of the softmax function.

The softmax-taylor design is based on a specific softmax ap-
proximation [5] which exploits the Taylor series expansion method
for exponential computation and performs divisions in the loga-
rithmic domain.

The natural exponent operation is simplified as in Eq. 2 using the
first-order Taylor polynomial approximation. At the architecture
level, the exponent unit consists of 2 look-up tables to implement
the first two exponent contributions, a specific bus arrangement to
get 1 + c and a multiplier to compute the final product iteratively
(see Figure 2a and Figure 2b).

exi = ea+b+c ≈ ea · eb · (1 + c) (2)
The division operation is performed in the logarithmic domain

by exploiting the mathematical transformation in Eq. 3

pow2 (log2 (exi /
∑n
j=1 e

x j)) = pow2 (w1 + log2 k1 − (w2 + log2 k2))

≈ pow2 (w1 −w2 + k1 − k2)) = 2ui+vi ≈ 2ui · (1 +vi)
(3)

First of all, N1 = exi and N2 =
∑n
j=1 e

x j are expressed as 2wl ·kl ,
withwl ∈ Z and kl ∈ [1, 2) for l = 1, 2 and the base-2 logarithm of
kl is approximated by the linear fitting function kl − 1. Secondly,
the argument of the power-2 operation is split into its integer and
fractional parts, ui and vi , with ui ∈ Z and vi ∈ [0, 1) and 2vi is
estimated as (1 +vi).

The division unit is composed of 2 base-2 logarithm units, a lead-
ing one detector (LOD) and shift unit that compute the logarithm
of the dividend and divisor, a subtraction unit that performs the di-
vision in the log domain, and a power-2 unit (bus arrangement and
shift unit) that computes the softmax output value (see Figure 2c).

To be compliant with the capsule network models [20] [18] that
we use in our experiments, the softmax architecture is able to
process 10, 32 or 128 inputs.

The softmax-lnu design builds on a peculiar softmax approxi-
mation [21] which adopts a mathematical domain transformation

involving natural logarithm and natural exponential operations
(see Eq. 4).

exp (ln (exi /
n∑
j=1

ex j)) = exp (xi − ln (
n∑
j=1

ex j)) (4)

The transformation into the logarithm domain allows to perform
the division by using a more straightforward subtraction. On the
other hand, the exponentiation is required to convert the softmax
output values from the logarithmic domain to the linear one. The
design architecture mainly consists of three computational units
to compute the natural exponential of the softmax inputs (EXPU),
sum up the exponentials, and evaluate the natural logarithm of the
sum (LNU) required for the division (see Figure 2d).

The natural exponential operation is performed by using the
mathematical transformation in Eq. 5, with ui ∈ Z and vi ∈ [0, 1).
At the architecture level, the natural exponential unit is composed
of a constant multiplier by log2 e , a specific bus arrangement to im-
plement 1+vi and a shift unit to compute the result (see Figure 2e).

exi = 2xi ·log2 e = 2ui+vi = 2ui · 2vi ≈ 2ui · (1 +vi) (5)

The natural logarithm is computed as in Eq. 6, where F =∑n
j=1 e

x j is expressed as 2w · k , with w ∈ Z and k ∈ [1, 2) and
the base-2 logarithm of k is approximated by the linear fitting func-
tion k − 1. The natural logarithm unit consists of 4 main subunits:
a leading one detector to determine w , a shift unit to compute k ,
a specific bus arrangement to get the base-2 logarithm of F and a
constant multiplier by ln 2 (see Figure 2f).

ln F = ln 2 · log2 F = ln 2 · (w + log2 k) ≈ ln 2 · (w + k − 1) (6)

The architecture includes other hardware units to compute the
maximum input value, scale the inputs, execute the division in the
log domain, and allow for the processing of a variable number of
softmax inputs.

The softmax-b2 design implements the idea of computing a
softmax-like function with powers of 2 in place of natural exponen-
tials, and it exploits a domain transformation with base-2 logarithm

ISLPED ’22, August 1–3, 2022, Boston, MA, USA A. Marchisio, et al.

and power-2 operations (see Eq. 7).

pow2 (log2 (2
xi /

n∑
j=1

2x j)) = pow2 (xi − log2 (
n∑
j=1

2x j)) (7)

The proposed approximation allows for a complexity reduction
of the hardware implementation of the softmax-lnu design, thanks
to the removal of two constant multipliers.

Compared to the softmax-lnu design, the softmax-b2 architecture
avoids the preliminary multiplication by log2 e in the exponential
unit (see dashed square in Figure 2e) and the final multiplication
by ln 2 in the logarithmic unit (see dashed circle in Figure 2f), by
implementing the power-2 and base-2 logarithm unit, respectively.

4 APPROXIMATE SQUASH DESIGN
The proposed approximate squash designs are called squash-norm,
squash-exp and squash-pow2.

The squash function requires to compute the norm of the input
vector and the squashing coefficient that multiplies the input vector
to produce the output vector, as shown in Eq. 8.

y =
∥x∥2

1 + ∥x∥2
x
∥x∥

(8)

The first design exploits a specific norm approximation [2], while
the remaining two techniques introduce novel solutions to approx-
imate the squashing coefficient.

The squash-norm design is inspired by the specific Euclidean
norm approximation proposed by Chaudhuri et al. [2], which is
shown in Eq. 9.

∥x∥ ≈ Dλ(x) = |ximax | + λ
n∑
i=1

i,imax

|xi | (9)

This architecture does not require the square root operator and
the multiplications needed to square the vector components, but
it involves the computation of the absolute values and the maxi-
mum absolute value components. The parameter λ depends on the
number of vector components and it is selected accordingly [19].

The designed architecture is composed of two main units. The
norm unit computes the approximate vector norm, and the squash-
ing unit produces the squash outputs (see Figure 3a).

The norm unit implements the Chaudhuri approximation [2]
in Eq. 9. It consists of multiple arithmetic modules. A dedicated
component computes the absolute value of the inputs, an accumu-
lator sums up the absolute values, a unit determines the maximum
absolute value, a subtractor gets the second term of the formula,
a multiplier scales the sum by λ and an adder adds the maximum
value to the sum (see Figure 3b).

The squashing unit consists of two look-up tables to implement
the squashing coefficient and a multiplier to compute the squash
outputs as the product between the inputs and the squashing coef-
ficient (see Figure 3c).

To be compliant with the two capsule network models employed
in our experiments, the squash architecture is able to process 4, 8,
16, or 32 inputs.

The squash-exp design exploits a piecewise approximation of
the squashing coefficient ∥x∥/(1 + ∥x∥2) in two ranges of norm
values. The coefficient is approximated by the nonlinear function

1 − e−∥x∥ in the first range and by a direct mapping method in the
second range. The range of norm values is derived experimentally
by executing inference steps with two capsule network models on
two image datasets.

At the architecture level, the design mainly consists of two com-
putational units: the norm unit and the squashing unit.

The norm unit computes the Euclidean norm of the input vector.
It is composed of a multiplier to square the input components, an
accumulator to sum up the squared inputs, and two look-up tables
to implement the square root function over two specific ranges of
squared norm values (see Figure 3d).

The squashing unit implements the piecewise approximation
of the squashing coefficient and computes the output values. The
nonlinear function in the first range is implemented by a compo-
nent composed of a 2’s complement of the norm value, a natural
exponential unit, and a subtractor. The second-range approxima-
tion is performed with a look-up table. The final multiplier is used
to compute the squash outputs (see Figure 3e).

The squash-pow2 design builds on the piecewise approxima-
tion of the squashing coefficient used in the squash-exp architecture,
but the approximating nonlinear function used in the first range of
norm values is 1 − 2−∥x∥ .

At the architecture level, in the exponential unit the constant
multiplication by log2 e is removed to implement the power-2 unit
(see Figure 3f). The hardware cost reduction is obtained at the ex-
pense of a higher worst-case approximation error of the squashing
coefficient in the range of low norm values (see Figure 4).

5 EVALUATION OF OUR DESIGNS
In the following, the approximate softmax and squash designs are
evaluated in terms of inference accuracy loss and hardware imple-
mentation metrics.

First, we explore the inference accuracy degradation induced by
the proposed softmax and squash approximations in 4 case stud-
ies, with two capsule network models on two image classification
datasets. Secondly, we synthesize the complete architectures and
analyze our designs’ area usage, power consumption, and timing
performance.

The objective of the evaluation is to explore possible trade-offs
between the classification accuracy loss of a CapsNet using the
approximations and the hardware implementation cost of the ap-
proximate designs.

5.1 Experimental Setup
We implement the approximate softmax and squash algorithms in
Python and perform extensive software simulations to evaluate
the quality of each approximation w.r.t. the exact function. The
experiments are conducted for over 1,000 input vectors in a specific
range. We analyze the Mean Error Distance on the maximum and
average component errors, in absolute and relative terms.

To assess how the softmax and squash approximations affect the
inference accuracy of the complete capsule networks, we include the
approximate functions in a Python-based CapsNet model provided
by the open-source framework Q-CapsNets [13] and we perform
an image classification task with two CapsNet models, Shallow-
Caps [20] and DeepCaps [18], on two image datasets, MNIST [11]
and Fashion-MNIST [23].

Enabling Capsule Networks at the Edge through Approximate Softmax and Squash Operations ISLPED ’22, August 1–3, 2022, Boston, MA, USA

xi

squash(xi)

Norm

Unit

Squashing
Unit

(a)

xi

ABS(•)

||x||

P. Sum Reg.
MAX(x)

(b)

||x||

squash(xi)

Squash
coeff-
LUT

xi

(c)

xi

||x||

Square Reg.

Sqrt-
LUT

(d)

||x||

squash(xi)

xi

Squash
coeff-
LUT

CA2(•)

EXP(•)

1

(e)

||x||

squash(xi)

xi

Squash
coeff-
LUT

CA2(•)

POW2(•)

1

(f)

Figure 3: Architectures of the approximate squash designs: (a) Squash function unit. (b) Squash-norm norm unit. (c) Squash-
norm squashing unit. (d) Squash-exp and -pow2 norm unit. (e) Squash-exp squashing unit. (f) Squash-pow2 squashing unit.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

x

y

x/(1 + x2)
1− e−x

err(x)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

x

y

x/(1 + x2)
1− 2−x

err(x)

(b)

Figure 4: Behavior of (a) squash-exp and (b) squash-pow2 ap-
proximation with x := ∥x∥.

As shown in Figure 5, our experimental setup consists of both
software and hardware components. We use a software environ-
ment with PyTorch library and Nvidia CUDA Toolkit and execute
the inference passes on an Nvidia GeForce RTX 2080 Ti GPU.
To comply with the hardware implementation, we perform the
quantization of the approximate softmax and squash data, and we
test the quantized approximate functions in quantized CapsNet
models (see Table 1). Using the Q-CapsNets framework, we quan-
tize weights and activations of the CapsNet models on the image
datasets and input data of the softmax and squash functions.

Approximate Squash
and Softmax Functions
Python files

Approximate Squash
and Softmax Functions
VHDL files

SW-Level
Functional
Simulation
(Python)

SW Functional
Outputs

HW Functional
Outputs

Validation

Integration in
Q-CapsNets
Framework

CapsNets
Training and

Inference

Accuracy
Reports

Nvidia RTX 2080 Ti GPU

Logic Synthesis
(Synopsys DC)

Area
Reports

Critical Path
Delays

Gate-Level
Netlist

Logic Simulation
(ModelSim)

Power Simulation
(Synopsys DC)

.saif files

.vcd files

Power
ReportsDesign Compiler

Figure 5: Setup and tool-flow for conducting our experi-
ments.

We implement the design architectures in VHDL and perform
functional simulation using ModelSim to check the results against
the Python model outputs. We synthesize the architectures in a
45nm academic technology library, Nangate OCL, by using the

Table 1: Percentage of quantized inference accuracy.

MNIST Fashion-MNIST

ShallowCaps DeepCaps ShallowCaps DeepCaps

exact functions 99.44 99.35 92.42 94.69

softmax-lnu 99.46 99.42 92.37 94.71
softmax-b2 (ours) 99.49 99.33 92.33 94.64
softmax-taylor 99.42 99.41 92.47 94.69

squash-exp (ours) 99.18 98.79 91.32 94.76
squash-pow2 (ours) 99.00 98.58 89.05 94.62
squash-norm 99.26 99.23 92.51 94.70

ASIC design flow with Synopsys Design Compiler and obtain area
usage, power consumption, andmaximum path delay of each design
(see Table 2). Finally, we conduct post-synthesis functional and
timing validation of the gate-level netlist.

Table 2: Hardware characteristics with clock frequency
100MHz.

Area usage Power consumption Critical path delay
(µm2) (µW) (ns)

softmax-lnu 12,511 2,572 6.46
softmax-b2 (ours) 11,169 2,244 4.22
softmax-taylor 14,944 2,430 5.24

squash-exp (ours) 7,937 1,414 5.64
squash-pow2 (ours) 7,543 1,340 4.17
squash-norm 6,806 1,431 6.53

5.2 Evaluating the Softmax
From the experimental results, we derive the following key obser-
vations regarding the approximate softmax designs.

The softmax-b2 design is the best solution in terms of hardware
metrics but it implies the highest CapsNet accuracy loss in all the
case studies except for the ShallowCaps on MNIST. Actually, the b2
design consumes less area (−11% and −25%) and power (−13% and
−8%) than the lnu and taylor designs. Moreover, it has the lowest
critical path delay (−35% and −19% w.r.t. lnu and taylor).

The softmax-taylor design is the best choice in terms of in-
ference accuracy loss since it outperforms the other designs in
the ShallowCaps for Fashion-MNIST. However, it is characterised

ISLPED ’22, August 1–3, 2022, Boston, MA, USA A. Marchisio, et al.

by the worst area usage (+20% and +35% w.r.t. lnu and b2) and
intermediate power consumption and critical path delay.

The softmax-lnu design shows the highest power consumption
(+15% and +5% w.r.t. b2 and taylor) and maximum path delay (+53%
and+23%) but intermediate area usage. Its performance in inference
accuracy loss is similar to the taylor design in all the case studies,
except for the ShallowCaps for Fashion-MNIST, where the lnu
performs worse (+0.1% loss).

5.3 Evaluating the Squash
The squash-norm design is the best approximate squash solution
in terms of CapsNet accuracy loss. It also has the benefit of having
the best area usage (−13% and −8% w.r.t. exp and pow2), but as
a drawback, it shows the worst power (+1% and +7%) and delay
metrics (+15% and +56%).

The squash-pow2 design is the best option in terms of power
consumption (−5% and −6% w.r.t. exp and norm) and critical path
delay (−25% and−36%), and it has intermediate area usage. However,
it implies the highest CapsNet accuracy loss among all the case
studies.

The squash-exp design is characterized by an accuracy loss
similar to the norm design in two case studies and significantly
worse accuracy in the other two cases. In exchange for the reduced
accuracy, it has intermediate power and delay metrics, but as a
downside, it shows the worst area usage (+5% and +17% w.r.t. pow2
and norm).

6 CONCLUSION
To enable efficient CapsNets inference on edge devices, we propose
approximate designs for the most compute-intensive CapsNets
operations, which are the softmax and squash. Our softmax-b2 de-
sign based on approximating the natural exponential with powers
of 2 significantly reduces the hardware complexity, with limited
accuracy drop. Our squash designs based on piecewise approxi-
mations show interesting tradeoffs between accuracy, area, power
consumption, and critical path delay. We believe that our findings
will contribute to the deployment of CapsNets and other complex
DNN models on resource-constrained devices.

ACKNOWLEDGMENTS
This work has been supported in part by the Doctoral College
Resilient Embedded Systems, which is run jointly by the TUWien’s
Faculty of Informatics and the UAS Technikum Wien.

REFERENCES
[1] H. Amin, K.M. Curtis, and B.R. Hayes-Gill. 1997. Piecewise linear approximation

applied to nonlinear function of a neural network. IEE Proceedings - Circuits,
Devices and Systems 144, 6 (1997), 313–317.

[2] M. Emre Celebi, Fatih Celiker, and Hassan A. Kingravi. 2011. On Euclidean norm
approximations. Pattern Recognit. 44, 2 (2011), 278–283. https://doi.org/10.1016/j.
patcog.2010.08.028

[3] Vinay K. Chippa, Swagath Venkataramani, Srimat T. Chakradhar, Kaushik Roy,
and Anand Raghunathan. 2013. Approximate computing: An integrated hardware
approach. In 2013 Asilomar Conference on Signals, Systems and Computers. IEEE,
111–117. https://doi.org/10.1109/ACSSC.2013.6810241

[4] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In 7th International Conference on
Learning Representations, ICLR 2019. OpenReview.net.

[5] Yue Gao, Weiqiang Liu, and Fabrizio Lombardi. 2020. Design and Implementation
of anApproximate Softmax Layer for DeepNeural Networks. In IEEE International
Symposium on Circuits and Systems, ISCAS 2020. IEEE, 1–5. https://doi.org/10.
1109/ISCAS45731.2020.9180870

[6] G. A. Gillani, Muhammad Abdullah Hanif, M. Krone, Sabih H. Gerez, Muham-
mad Shafique, and André B. J. Kokkeler. 2018. Squash: Approximate Square-
Accumulate With Self-Healing. IEEE Access 6 (2018), 49112–49128. https:
//doi.org/10.1109/ACCESS.2018.2868036

[7] Sorin Mihai Grigorescu, Bogdan Trasnea, Tiberiu T. Cocias, and Gigel Macesanu.
2019. A Survey of Deep Learning Techniques for Autonomous Driving. arXiv
abs/1910.07738 (2019). arXiv:1910.07738

[8] Song Han, Jeff Pool, John Tran, andWilliam J. Dally. 2015. Learning bothWeights
and Connections for Efficient Neural Network. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015. 1135–1143.

[9] Alex Krizhevsky. 2012. Learning Multiple Layers of Features from Tiny Images.
University of Toronto (05 2012).

[10] Parag Kulkarni, Puneet Gupta, and Milos D. Ercegovac. 2011. Trading Accuracy
for Power with an Underdesigned Multiplier Architecture. In VLSI Design 2011:
24th International Conference on VLSI Design. IEEE Computer Society, 346–351.
https://doi.org/10.1109/VLSID.2011.51

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE (1998).

[12] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. 2021. A Survey
of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE
Transactions on Neural Networks and Learning Systems (2021), 1–21. https:
//doi.org/10.1109/TNNLS.2021.3084827

[13] Alberto Marchisio, Beatrice Bussolino, Alessio Colucci, Maurizio Martina, Guido
Masera, and Muhammad Shafique. 2020. Q-CapsNets: A Specialized Framework
for Quantizing Capsule Networks. In 57th ACM/IEEE Design Automation Confer-
ence, DAC 2020. IEEE, 1–6. https://doi.org/10.1109/DAC18072.2020.9218746

[14] Alberto Marchisio, Muhammad Abdullah Hanif, Maurizio Martina, and Muham-
mad Shafique. 2018. PruNet: Class-Blind Pruning Method For Deep Neural
Networks. In 2018 International Joint Conference on Neural Networks, IJCNN 2018.
IEEE, 1–8. https://doi.org/10.1109/IJCNN.2018.8489764

[15] Alberto Marchisio, Muhammad Abdullah Hanif, and Muhammad Shafique. 2019.
CapsAcc: An Efficient Hardware Accelerator for CapsuleNets with Data Reuse.
In Design, Automation & Test in Europe Conference & Exhibition, DATE 2019. IEEE,
964–967. https://doi.org/10.23919/DATE.2019.8714922

[16] Alberto Marchisio, VojtechMrazek, Muhammad Abdullah Hanif, andMuhammad
Shafique. 2020. ReD-CaNe: A SystematicMethodology for Resilience Analysis and
Design of Capsule Networks under Approximations. In 2020 Design, Automation
& Test in Europe Conference & Exhibition, DATE 2020. IEEE, 1205–1210. https:
//doi.org/10.23919/DATE48585.2020.9116393

[17] Vojtech Mrazek, Zdenek Vasícek, Lukás Sekanina, Muhammad Abdullah Hanif,
and Muhammad Shafique. 2019. ALWANN: Automatic Layer-Wise Approxima-
tion of Deep Neural Network Accelerators without Retraining. In Proceedings
of the International Conference on Computer-Aided Design, ICCAD 2019. 1–8.
https://doi.org/10.1109/ICCAD45719.2019.8942068

[18] Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima
Jayasekara, Suranga Seneviratne, and Ranga Rodrigo. 2019. DeepCaps: Going
Deeper With Capsule Networks. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019. 10725–10733. https://doi.org/10.1109/CVPR.2019.
01098

[19] Frank Rhodes. 1995. On themetrics of Chaudhuri, Murthy and Chaudhuri. Pattern
Recognit. 28, 5 (1995), 745–752. https://doi.org/10.1016/0031-3203(94)00134-8

[20] Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. 2017. Dynamic Routing
Between Capsules. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017. 3856–3866.

[21] Meiqi Wang, Siyuan Lu, Danyang Zhu, Jun Lin, and Zhongfeng Wang. 2018. A
High-Speed and Low-Complexity Architecture for Softmax Function in Deep
Learning. In 2018 IEEE Asia Pacific Conference on Circuits and Systems, APCCAS
2018. IEEE, 223–226. https://doi.org/10.1109/APCCAS.2018.8605654

[22] Yi Wu, You Li, Xiangxuan Ge, Yuan Gao, and Weikang Qian. 2019. An Efficient
Method for Calculating the Error Statistics of Block-Based Approximate Adders.
IEEE Trans. Computers 68, 1 (2019), 21–38. https://doi.org/10.1109/TC.2018.
2859960

[23] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747
(2017). arXiv:1708.07747

[24] Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, and Pascal
Frossard. 2018. Adaptive Quantization for Deep Neural Network. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18). AAAI
Press, 4596–4604.

https://doi.org/10.1016/j.patcog.2010.08.028
https://doi.org/10.1016/j.patcog.2010.08.028
https://doi.org/10.1109/ACSSC.2013.6810241
https://doi.org/10.1109/ISCAS45731.2020.9180870
https://doi.org/10.1109/ISCAS45731.2020.9180870
https://doi.org/10.1109/ACCESS.2018.2868036
https://doi.org/10.1109/ACCESS.2018.2868036
https://arxiv.org/abs/1910.07738
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/DAC18072.2020.9218746
https://doi.org/10.1109/IJCNN.2018.8489764
https://doi.org/10.23919/DATE.2019.8714922
https://doi.org/10.23919/DATE48585.2020.9116393
https://doi.org/10.23919/DATE48585.2020.9116393
https://doi.org/10.1109/ICCAD45719.2019.8942068
https://doi.org/10.1109/CVPR.2019.01098
https://doi.org/10.1109/CVPR.2019.01098
https://doi.org/10.1016/0031-3203(94)00134-8
https://doi.org/10.1109/APCCAS.2018.8605654
https://doi.org/10.1109/TC.2018.2859960
https://doi.org/10.1109/TC.2018.2859960
https://arxiv.org/abs/1708.07747

	Abstract
	1 Introduction
	1.1 Motivations and Research Challenges
	1.2 Novel Contributions

	2 Background and Related Works
	2.1 Capsule Networks
	2.2 Approximate Computing for DNNs Nonlinear Operations

	3 Approximate Softmax Design
	4 Approximate Squash Design
	5 Evaluation of our Designs
	5.1 Experimental Setup
	5.2 Evaluating the Softmax
	5.3 Evaluating the Squash

	6 Conclusion
	Acknowledgments
	References

