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ABSTRACT Denoising Diffusion Models (DDMs) have become a popular tool for generating high-quality
samples from complex data distributions. These models are able to capture sophisticated patterns and
structures in the data, and can generate samples that are highly diverse and representative of the underlying
distribution. However, one of themain limitations of diffusionmodels is the complexity of sample generation,
since a large number of inference timesteps is required to faithfully capture the data distribution. In this paper,
we present MMD-DDM, a novel method for fast sampling of diffusion models. Our approach is based
on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a
given budget of timesteps. This allows the finetuned model to significantly improve the speed-quality trade-
off, by substantially increasing fidelity in inference regimes with few steps or, equivalently, by reducing
the required number of steps to reach a target fidelity, thus paving the way for a more practical adoption
of diffusion models in a wide range of applications. We evaluate our approach on unconditional image
generation with extensive experiments across the CIFAR-10, CelebA, ImageNet and LSUN-Church datasets.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the
time required by widely-used diffusion models, and outperforms state-of-the-art techniques for accelerated
sampling. Code will be available at: https://github.com/diegovalsesia/MMD-DDM.

INDEX TERMS Denoising diffusion models, fast inference, image generation, MMD.

I. INTRODUCTION
Denoising Diffusion Models (DDMs) [1], [2], [3] have
emerged as a powerful class of generative models. DDMs
learn to reverse a gradual multi-step noising process to
match a data distribution. Samples are then produced by a
Markov Chain that starts from white noise and progressively
denoises it into an image. This class of models has shown
excellent capabilities in synthesising high-quality images [4],
[5], audio [6], and 3D shapes [7], [8], recently outperforming
GenerativeAdversarial Networks (GANs) [9], [10], [11], [12]
on image synthesis.

However, GANs require a single forward pass to generate
samples, while the iterative DDM design requires hundreds
or thousands of inference timesteps and, consequently,
forward passes through a denoising neural network. The slow
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sampling process thus represents one of the most significant
limitations of DDMs. It is well-known that there is a trade-off
between sample quality and speed, measured in the number of
timesteps [4], [13]. However, it is currently unclear how low
the number of timesteps can be pushed while retaining high
quality for a given data distribution [6]. This issue is the focus
of a lot of current research in the field, with recent works
proposing acceleration solutions which can be divided into
two categories: learning-free sampling and learning-based
sampling. The learning-free approach focuses on modifying
the sampling process without the need for training [13],
[14], [15], [16]. These methods are beneficial as they do
not require additional computational resources for training,
making them straightforward to implement. However, they
often achieve limited improvements in sampling speed and
may not fully leverage the capabilities of the model. On the
other hand, the learning-based approach uses techniques
such as truncation [17], [18], knowledge distillation [19],
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FIGURE 1. Generated samples for CelebA (top) and CIFAR-10 (bottom). The samples are obtained using 5 timesteps with the DDIM sampling
procedure. Results from standard DDIM (left), the same model finetuned using MMD with Inception-V3 features (center-left) and CLIP features
(center-right), reference images from the dataset (right). Samples are not cherry-picked. Finetuning improves details clarity and sharpness,
occasionally introducing semantic changes.

[20], dynamic programming [21] and differentiable sampler
search [22] to improve sampling speed. These methods can
provide more substantial acceleration but at the cost of
additional training complexity and computational overhead.
Despite these advancements, significant technical gaps
remain, particularly in balancing the trade-off between speed
and sample quality without incurring high computational
costs.

In this paper, we propose MMD-DDM, a technique to
finetune a pretrained DDM with a large number of timesteps
in order to optimize the features of the generated data
under the constraint of a reduced number of timesteps.
This is done by directly optimizing the weights of the
denoising neural network via backpropagation through the
sampling chain. The minimization objective is the Maximum
Mean Discrepancy (MMD) [23] between real and generated
samples in a perceptually-relevant feature space. This allows
to specialize the model for a fixed and reduced computational
budget with respect to the original training; the use of MMD
represents a different and, possibly complementary, objective
to the original denoising loss. Our proposed approach is
extremely fast, requiring only a small number of finetuning
iterations. Indeed, the finetuning procedure can be performed
in minutes, or at most few hours for more complex datasets,
on standard hardware.Moreover, it is agnostic to the sampling
procedure, making it appealing even for future models
employing new and improved procedures.

Extensive experimental evaluation suggests that the pro-
posed solution significantly outperforms state-of-the-art
approaches for fast DDM inference. MMD-DDM is able

to substantially reduce the number of timesteps required to
reach a target fidelity. We also need to remark that the choice
of feature space for the MMD objective may artificially
skew results, if the evaluation metric is based on the same
feature space being optimized, such as Inception features
and the FID score. We discuss the importance of this point
for fair evaluation and present results on different metrics
and features spaces, such as CLIP features [24], in order to
present a fair assessment of the method. The proposedMMD-
DDM addresses several gaps left by existing acceleration
techniques. By optimizing directly in a perceptually-relevant
feature space, it ensures high sample quality even with a
reduced number of timesteps, bridging the gap between
speed and fidelity without the extensive computational
demands of additional training. This makes our method a
versatile and efficient solution for accelerating DDMs while
maintaining or even enhancing the quality of the generated
samples.

To summarize our contributions are:
• We Introduce MMD-DDM, a novel technique that
significantly improves the speed-quality trade-off in
denoising diffusion models by finetuning with Max-
imum Mean Discrepancy (MMD) in a perceptually-
relevant feature space, allowing for high-quality samples
with fewer timesteps.

• We demonstrate that the proposed finetuning process
is extremely fast, requiring only a small number of
iterations and minimal computational resources, making
it practical for a wide range of applications without the
need for extensive additional training.

VOLUME 12, 2024 106913
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FIGURE 2. Overview of finetuning scheme in the proposed MMD-DDM. During the forward pass samples are generated with a fixed number of
sampling steps (e.g 5 in the example). During the optimization process the gradient flows through the sampling chain, directly optimizing the
sampling procedure with a limited number of steps.

• We showcase that the method is decoupled from the
sampling procedure, ensuring compatibility with future
models and samplers.

• We focus on the importance of fair evaluation by
presenting results across different metrics and feature
spaces, addressing potential biases in standard evalua-
tion methods.

II. RELATED WORK
DDMs ([1], [2]) leverage the diffusion process to model a
specific distribution starting from random noise. They are
based on a predefined Markovian forward process, by which
data are progressively noised in T steps. T is set to be
sufficiently large such that xT is close to white Gaussian noise
(in practice, T ≥ 1000 is often used). The forward process
can be written as:

q(x0, . . . , xT ) = q(x0)
T∏
t=1

q(xt |xt−1) (1)

q(xt |xt−1) = N (xt |
√
1 − βtxs, βtI) (2)

where q(x0) denotes the real data distribution and βt the
variance of the Gaussian noise at timestep t . The reverse
process traverses the Markov Chain backwards and can be
written as:

pθ (x0:T ) = p(xT )
∏T

t=1
pθ (xt−1 | xt ) (3)

pθ (xt−1 | xt ) = N (xt−1 | µθ (xt , t), σ 2
t I) . (4)

The parameters of the learned reverse process pθ can
be optimized by maximizing an evidence lower bound
(ELBO) on the training set. Under a specific parametrization

choice [2], the training objective can be simplified to that of
a noise conditional score network [3], [25]:

min
θ
L(θ ) = Ex0,ϵ,t ||ϵ − ϵθ (xt , t)||22 (5)

where x0 ∼ qdata, ϵ ∼ N (0, I) and t is uniformly sampled
from {1, . . . ,T}.

A. ACCELERATED SAMPLING FOR DDMS
Accelerated DDM sampling is currently a hot research topic.
At a high level, the different approaches can be divided into
two categories: learning-free sampling and learning-based
sampling [26]. The learning-free approaches do not require
training and instead focus on modifying the sampling process
to make it more efficient. One example is the work of Song
et al. [13] (DDIM), in which they define a new family of
non-Markovian diffusion processes that maintains the same
training objectives as a traditional DDPM. They demonstrate
that alternative ELBOs may be built using only a sub-
sequence of the original timesteps τ ∈ {1, . . . ,T}, obtaining
faster samplers compatible with a pre-trained DDPM. Other
works focus on using the Score SDE formulation [14] of
continuous-time DDMs to develop faster sampling methods.
For example, Song et al. [14] propose the use of higher-
order solvers such as Runge-Kutta methods, while Jolicoeur
et al. [15] propose the use of SDE solvers with adaptive
timestep sizes. Another approach is to solve the probability
flow ODE, which has been shown by Karras et al. [16] to
provide a good balance between sample quality and sampling
speedwhen usingHeun’s second-order method. Additionally,
customized ODE solvers such as the DPM-solver [27] and
the Diffusion Exponential Integrator sampler [28] have been
developed specifically for DDMs and have been shown to be

106914 VOLUME 12, 2024



E. Aiello et al.: Fast Inference in Denoising Diffusion Models via MMD Finetuning

more efficient than general solvers. These methods provide
efficient and effective ways to speed up the sampling process
in continuous-time DDMs.

The other main line of approaches for efficient sampling
is the learning-based one. Among these approaches we can
distinguish between approach that incorporate the acceler-
ation component of the loss at pre-training time and those
who have a separate finetuning stage focused on sampling
acceleration. The first line of works is represented bymethods
that use hybrid adversarial and diffusion objectives [29], [30],
these methods achieve several order of acceleration without
compromising the sample quality. On the same line of work
some recent advancements [31] propose to use a fractional
multi-phase distilled diffusion prior to improve sampling effi-
ciency, based on the observation that a single denoiser may
be insufficient to capture the reverse diffusion process [32].
On the other hand, finetuning based approach does not require
to retrain the model and can be adopted on top of large
scale pretrained models. Recently proposed Consistency
Models [33] share some similarities with MMD-DDMs: both
aim to achieve faster sampling through a form of temporal
distillation, but they differ significantly in their objectives
and theoretical approaches. The primary distinction lies in
how the models handle the optimization process. Consistency
models do not backpropagate through the sampling chain;
instead, they focus on ensuring consistency in the outputs
across different timesteps through a fixed procedure. Some
of these approaches [17], [18] involve truncating the forward
and reverse diffusion processes to improve sampling speed,
while others [19], [20] use knowledge distillation to create
a faster model that requires fewer steps. Another approach
(GENIE) [34], based on truncated Taylor methods, trains an
additional model on top of a first-order score network to
create a second-order solver that produces better samples
with fewer steps. Dynamic programming techniques [21]
have also been used to find the optimal discretization scheme
for DDMs by selecting the best time steps to maximize
the training objective, although the variational lower bound
does not correlate well with sample quality, limiting the
performance of the method. In a successive work [22], the
sampling procedure was directly optimized using a common
perceptual evaluation metric (KID) [35], but this required
a long training time (30k training iterations). In this work.
the authors backpropagate through the sampling chain using
reparametrization and gradient rematerialization in order
to make the optimization feasible. Our work is closely
related to [22], since we similarly backpropagate through the
sampling chain. However, we use the MMD [23], [36] to
finetune the weights of a pretrained DDMwithout optimizing
the sampling strategy. In essence, the proposed method is
complementary to [22]: instead of optimizing the sampling
procedure, keeping the model fixed, we directly optimize
the model leaving the sampling procedure unchanged. This
leads to better results with as few as 500 finetuning iterations.
We also remark that our approach is decoupled from the

sampling strategy and can be used in conjunction with other
training-free acceleration methods such as DDIM.

B. MMD IN GENERATIVE MODELS
The MMD [23], [36] is a distance on the space of probability
measures. It is a non-parametric approach that does not
make any assumptions about the underlying distributions,
and can be used to compare a wide range of distributions.
Generative models trained by minimizing the MMD were
first considered in [37] and [38]. These works optimized
a generator to minimize the MMD with a fixed kernel,
but struggled with the complex distribution of natural
images where pixel distances are of little value. Successive
works [35], [39] addressed this problem by adversarially
learning the kernel for the MMD loss, reaching results
comparable to GANs trained with a Wasserstein critic. In this
work we apply the MMD in the context of diffusion models,
demonstrating its effectiveness in finetuning a pretrained
DDM under a more restrictive timesteps constraint.

III. METHOD
A. OVERVIEW
We propose MMD-DDM, a technique to accelerate inference
in DDMs while maintaining high sample quality, based on
finetuning a pretrained diffusion model. The finetuning pro-
cess minimizes an unbiased estimator of the MMD between
real and generated samples, evaluated over a perceptually-
relevant feature space. We backpropagate through the
sampling process with the aid of the reparametrization trick
and gradient checkpointing. This is done only for a small
subset of the original timesteps and can be combined with
existing techniques for timestep selection or acceleration
of the sampling process. The overview of our approach is
showed in Figure 2. The reduction in timesteps with respect to
the original model degrades the distribution of the generated
data. However, the main idea behind the proposed approach
is that it is possible to recover part of this degradation by
analyzing the generated data in a perceptual feature space
and imposing that the reduced DDM produces perceptual
features similar to those of real data via MMD minimization.
By utilizing this approach, we are thus able to maximize the
model performance under a fixed computational budget. It is
interesting to notice that older approaches that utilized MMD
as sole objective for image generation failed to capture their
complex data distribution. On the other hand, our approach
avoids that as it leverages the strong baseline provided by the
pretrained DDM, albeit degraded by the timesteps constraint.

B. FINETUNING WITH MMD
We are interested in learning a model distribution pθ (x0) that
approximates the real data distribution q(x0). Starting from
a pretrained diffusion model, we know from previous work
(DDIM [13]) that it is possible to sample from p(T )

θ (x0),
i.e., the learned distribution using a subset of the original
timesteps T ⊂ {1, . . . ,T}, accepting a complexity-quality
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tradeoff. The MMD [23] is an integral probability metric that
we use to measure the discrepancy between the real data
distribution q(x0) and the generated data distribution with
the given budget of timesteps p(T )

θ (x0). Mathematically, it is
defined as:

MMD(p(T )
θ , q) = ∥Ex∼p(T )

θ

ϕ(x) − Ey∼qϕ(y)∥ (6)

where ϕ represents a function mapping raw images to a
perceptually-meaningful feature space. This is needed as
MMD would not perform well on the pixel space, since it is
well known that images live on a low-dimensional manifold
within the high-dimensional pixel space. However, once the
images aremapped into an appropriate feature space,MMD is
proven to have strong discriminative performances, as proved
by the success of the KID [35] as evaluation metric for
perceptual quality. The choice of feature space is critical for
the performance of the proposed method and for the fair
assessment of methods optimizing quality metrics, whichwill
be presented in Secs. III-C and IV-C.

In order to use the MMD as our loss function, given a
batch of generated samples {xi}Ni=1 ∼ p(T )

θ (x0) and a batch of
real samples {yi}

N
i=1 ∼ q(x0), we use the unbiased estimator

proposed by Gretton et al. [36]:

Lunbiased
MMD2 =

1
N (N − 1)

n∑
i̸=j

k(φ(xi), φ(xj))

−
2
N 2

N∑
i=1

N∑
j=1

k(φ(xi), φ(yj)) + c (7)

where N is the batch size, c is a constant, and k is a generic
positive definite kernel (in our experiments we consider
linear, cubic and Gaussian kernels, see Sec. IV-G). The loss
function is minimized in order to finetune the values of
the parameters θ of a pretrained denoising neural network
composing the diffusion model. Next, we are going to discuss
the choice of the feature extraction function φ.

C. PERCEPTUALLY-RELEVANT FEATURE SPACES
As we previously mentioned, it is necessary to embed real
and generated images in some perceptually-relevant feature
space, so that the MMD objective could be effective. The
feature mapping network φ plays a crucial role in the
performance of the method. However, this is not a trivial
choice. The most popular choice could be to use the feature
space of the penultimate layer of an ImageNet-pretrained
Inception-V3 classifier [44]. This choice is widely used to
evaluate performance of generative models, with Inception
Score (IS) [45], FID [46] and KID [35] all using it.
However, a recent study [47] has examined the effective-

ness of using ImageNet-pretrained representations to evaluate
generative models, and found that the presence of ImageNet
classes has a significant impact on the evaluation. The study
highlights some potential pitfalls in using these metrics,
and how they can be manipulated by the use of ImageNet
pretraining. This suggests that care should be taken when

using ImageNet features to optimize generative models as
this can potentially distort the FID quality metric and make it
unreliable. Indeed, for any image generation method, part of
the improvement might lie in the perceptual null space [47]
of FID, which encompasses all the operations that change the
FID without affecting the generated images in a perceptible
way. For our finetuning procedure, we have experimentally
observed a better overall visual quality of generated images
and a consistent gain in FID, when optimizing MMD with
Inception features. However, it is hard to quantitatively assess
how much of this improvement is due to actual perceptual
improvements versus optimizations in the perceptual null
space. These considerations apply also to the work of
Watson et al. [22].

One solution to this problem is to use a different feature
space for the feature mapping network, such as one that
has not been pretrained on ImageNet. Thus, we propose to
optimize theMMD using the feature space of the CLIP image
encoder [24], which has been trained in a self-supervised
way and is supposed to have richer representations without
exposure to ImageNet classes. Moreover, we also consider
the case in which we optimize MMD with Inception features
and measure performance with a variant of FID using CLIP
features. More comments, details, and a discussion of the
various results can be found in Sec. IV-C.

IV. EXPERIMENTS
A. SETTING
a: DATASETS
In order to demonstrate the effectiveness of the proposed
solution, we validate it on several datasets with different
resolutions. We use CIFAR-10 [48] at resolution 32 × 32,
CelebA [49] at resolution 64 × 64, Image-Net [50] at
resolution 64 × 64, and LSUN-Church [51] at resolution
256 × 256.

b: MODELS AND SAMPLING
We use the models pretrained by Ho et al. [2] for the CIFAR-
10 and LSUN experiments, the model pretrained by Song
et al. [13] for CelebA, and the model pretrained by Nichol
and Dhariwal [4] with the Lhybrid objective for ImageNet.
All the architectures are based on the modified UNet [52]
that incorporates self-attention layers [53]. We perform
our experiments using the efficient sampling strategy of
DDIM [13], as it already has good performance in few-
timesteps regime. We fix the timestep schedule in the main
experiments to be linear. The MMD kernel is polynomial
cubic in all experiments, except the kernel ablation one.
We also test the proposed solution with the DDPM [2]
sampling strategy in Sec. IV-G.

c: EVALUATION
We use the FID [46] to evaluate sample quality. All the
values are evaluated by comparing 50k real and generated
samples as this is the literature’s standard. We also use
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TABLE 1. Unconditional CIFAR-10 generative performance (Inception FID).

TABLE 2. Unconditional CelebA generative performance (Inception FID).

FIGURE 3. Generated samples for LSUN-Church (top) and ImageNet (bottom). The samples are obtained using 5 timesteps for LSUN-Church and
10 timesteps for ImageNet, with the DDIM sampling procedure. Results from Standard DDIM (left), the same model finetuned using Inception-V3
features (center-left) and CLIP features (center-right), reference images from the dataset (right). Samples are not cherry-picked.

FIDCLIP [47] in some experiments to remove the effect of
Image-Net classes in the evaluation. Additional evaluation
metrics such as Inception Score [45], Spatial FID [54], and
Precision and Recall [55] can be found in the Supplementary
Material.

d: IMPLEMENTATION DETAILS
For all the experiments we set the batch size equal to 128.
We use Adam as optimizer [56] with β1 = 0.9, β2 = 0.999,
ϵ = 1 × 10−8 and learning rate equal to 5 × 10−6. When
DDIM is used, we set σt = 0. As feature extractors, we use
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TABLE 3. Unconditional ImageNet generative performance (Inception
FID).

TABLE 4. Unconditional LSUN-Church Outdoor generative performance
(Inception FID).

TABLE 5. Comparison of relative improvements evaluating FID in
Inception-V3 feature space versus CLIP feature space.

the standard Inception-V31 pretrained on Image-Net, and
the ViT-B/322 model from CLIP [24]. We use torch-fidelity
[57] for the FID evaluation. We train all the models for
about 500 iterations. Finetuning with a budget of 5 timesteps
required about 10 minutes for CIFAR-10, about 45 minutes
for CelebA, and about one hour for ImageNet on a single
Nvidia RTX A6000. For LSUN-Church and for the other
timesteps budgets, finetuning has been performed on four
Nvidia RTX A6000. Finetuning for 5 timesteps of LSUN-
Church required about two hours on the mentioned hardware.

B. IMAGE GENERATION RESULTS
We evaluate MMD-DDM using the following timesteps
budgets: |T | ∈ {5, 10, 15, 20}. We report the values of FID
on unconditional generation experiments for CIFAR-10 in

1http://download.tensorflow.org/models/image/imagenet/inception-
2015-12-05.tgz

2https://github.com/openai/CLIP

FIGURE 4. Generated samples by the DDIM model (top) and the
finetuned model (bottom) for CelebA. For each generated samples we
visualize the top-4 nearest neighbours.

Table 1, for CelebA in Table 2, for ImageNet in Table 3 and
for LSUN-Church in Table 4.
We compare against several state-of-the-art methods

for accelerating DDMs. The tables report the results for
MMD-DDM trained with Inception features and we also
report results taken from literature for other methods. For
all datasets and timesteps budgets, MMD-DDM provides
superior or, occasionally, comparable quality to state-of-the
art approaches. For the ImageNet experiment, we remark that
we report the result of the Learned Sampler approach [22],
which uses an improved version of the model from [4]
trained for 3M iterations, instead of the 1.5M iterations
used by our checkpoint, thus making the comparison slightly
unfavourable for our method. We do not compare with
the progressive distillation method [19], as it cannot be
considered a post-training acceleration technique but rather a
very computationally-demanding modification of the DDM
training procedure.

Qualitative comparisons for CIFAR-10 and CelebA are
shown in Fig. 1 and for LSUN-Church and ImageNet in
Fig. 3. More generated samples, for different numbers of
timesteps, can be found in the Supplementary Material.
It can be noticed that MMD-DDM provides substantial
improvements in visual quality when the number of timesteps
is highly constrained. As the available timesteps budget is
relaxed to 20 or more, the improvement provided MMD-
DDM diminishes, although all approaches start providing
high quality samples.
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C. FEATURE SPACE DISCUSSION
Results in the previous section were presented with the
commonly-used FID metric exploiting Inception features.
However, as detailed in Sec. IV-C, our optimization of
Inception features via the MMD loss could raise concerns
about the reliability of the FID metric. In this section,
we present results using the CLIP feature space in either the
MMD loss or the FID metric.

Figs. 1 and 3 already show a visual comparison between
using the MMD with Inception features and CLIP features
and more results are present in the Supplementary Material.
It can be noticed that optimizing over CLIP features leads
to higher visual quality, including sharper details and clarity,
confirming that the CLIP space is a superior embedding of
perceptually-relevant features. As a reference, we also report
the FID scores obtained by MMD-DDM with CLIP features
in Tables 1,2,3,4. Notice that lower values are observed,
possibly due to the reliance of the FID on flawed Inception
features and the metric not accurately tracking a genuine
improvement in visual quality.

We further expand the set of results in Table 5, in which
we optimize Inception features with the MMD but then
measure quality using the FID computed on CLIP features
(FIDCLIP), as proposed in [47]. Since the feature space used
for evaluation is different from the one used in optimization,
the observed gains in FIDCLIP suggest us that the quality
improvement in quantitatively meaningful and not just an
artifact of the metric. Percentage improvements in FIDCLIP
mostly track those of regular FID, albeit being lower in some
cases, suggesting that some overfitting of the perceptual null
space does indeed happen when Inception features are used
for both MMD and FID.

D. ANALYSIS OF OVERFITTING
One might wonder whether finetuning via the MMD loss
leads to images overfitting the features of the training set.
This section presents a experiment to dispel this concern.
To do so, we looked at the top-K nearest neighbors of
generated samples when the CLIP feature space is used
for both the optimization with the MMD and the space for
nearest neighbor search (Euclidean distance betweeen CLIP
features). Fig. 4 provides the results of this experiment for
samples generated with both the pretrained model and the
finetuned model. We can see that the nearest neighbors of the
samples generated after finetuning are not more significantly
similar to the generated image than those for the pretrained
model. More samples can be found in the Supplementary
material.

E. ADDITIONAL EVALUATION METRICS
We report additional evaluation metrics computed on
CIFAR-10. The Inception Score [45], the Spatial FID [54],
i.e. the FID evaluated using the first 7 channels from the
intermediate mixed_6/conv feature maps, and the Precision
and Recall metrics [55]. In particular Recall is used to

TABLE 6. Unconditional CIFAR-10 generative performance over different
metrics.

evaluate the diversity of generated samples. We denote an
overall improvement on all the metrics for both our proposed
solutions. The results are showed in Table 6. Interestingly, our
proposed finetuning increases the diversity of the generated
samples leading to higher recall scores. 3

F. LATENT SPACE INTERPOLATION
We create interpolations (Fig. 5) on a line by selecting two
random xT values from a standard Gaussian distribution,
using them in a spherical linear interpolationmethod and then
applying the DDIM sampling [2] to generate x0 samples.

x(α)T =
sin((1 − α)θ )

sin(θ )
x(0)T +

sin(αθ )
sin(θ )

x(1)T (8)

where θ = arccos

(
(x(0)T )⊤x(1)T∥∥∥x(0)T ∥∥∥∥∥∥x(1)T ∥∥∥

)
.

G. ABLATION STUDIES
In this section we consider how the choice of MMD kernel,
timestep scheduling and sampling process affect the perfor-
mance of the proposed method. In all the experiments, unless
otherwise specified, we use the DDIM sampling procedure
and the Inception-V3 feature space. First, we ablate the
choice of the kernel for the MMD loss by comparing three
different kernels: the linear kernel k lin(x, y) = x⊤y, the

polynomial cubic kernel kcub(x, y) =

(
1
d x

⊤y+ 1
)3

[35] and

the Gaussian RBF kernel k rbf(x, y) = exp
(
−

1
2σ 2 ∥x−y∥

2
)
.

Table 7 reports the results for different kernels in terms of
FID, showing a marginal preference for the cubic kernel and
overall robustness of MMD-DDM to kernel choice.

Next, we ablate the influence of timesteps selection in
Table 8. We consider the two commonly-used alternatives to
select T : linear τi = ⌊ci⌋, and quadratic τi = ⌊ci2⌋, where c
is selected to make τ1 ≈ T . This experiment does not show a
preference for either selectionmethod. However, it is possible

3The values are obtained using OpenAI evaluator that can be found at:
https://github.com/openai/guided-diffusion/tree/main/evaluations
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FIGURE 5. Generated interpolations by the DDIM model (first row) and the Inception finetuned model (second row)
and the CLIP finetuned model (third row) for LSUN-Church The samples are generated using 5 timesteps.

TABLE 7. Ablation study for the kernel choice - CIFAR-10.

TABLE 8. Ablation study for the timestep schedule - CIFAR10.

TABLE 9. Ablation study for the sampling procedure - CIFAR10.

that other subset selection strategies such as grid search [34]
or learning the optimal timesteps [22] could further improve
results. We remark that MMD-DDM is decoupled from the
specific timesteps selection technique.

Finally, we also test MMD-DDM with the DDPM
sampling procedure, instead of DDIM. Results are reported
in Table 9. As expected, the DDIM sampling procedure
is more powerful and produces better results with a low
number of timesteps. However, we notice that MMD-DDM
produces significant improvements even when applied to
DDPM.

V. CONCLUSION AND DISCUSSION
This paper addressed the problem of inference speed of
DDMs. We showed that finetuning a DDM with a constraint
on the number of timesteps using the MMD loss provides
substantial improvements in visual quality. The limited com-
putational complexity of the finetuning procedure offers a
way to quickly obtain an improved tradeoff between inference

speed and visual quality for a wide range of DDM designs.
A limitation of the current technique lies in the memory
requirements when the finetuning needs to be performed over
a larger number of timesteps, although gradient checkpoint
partially addresses this issue in most practical settings.
Furthermore, coupling MMD-DDM with more advanced
timestep selection and optimization techniques, possibly via
joint optimization, could represent an interesting avenue
to further improve speed-quality tradeoffs. Integration with
conditional DDMs could also represent a direction for future
work.

VI. LIMITATIONS AND FUTURE WORK
MMD-DDM significantly enhances the speed-quality trade-
off in denoising diffusion models. However, it still faces
certain limitations. One major challenge is maintaining
the highest sample quality at extremely low timestep
counts. Our experiments indicate that while our method
performs exceptionally well with fewer timesteps, the quality
improvements diminish as the number of timesteps increases.
Another limitation is that our approach relies on pretrained
diffusion models, meaning its performance is contingent
on the quality and characteristics of the base model.
Variations in the base model’s architecture or training data
can influence the effectiveness of MMD-DDM’s finetuning
process. For future work, several areas could be explored
to overcome these limitations. Advanced techniques for
timestep selection and optimization, possibly through joint
optimization methods, could further enhance the speed-
quality trade-offs. Techniques like grid search or learning
optimal timesteps could be beneficial. Extending MMD-
DDM to conditional diffusion models could broaden its
applicability and improve its performance in specific tasks
such as image-to-image translation and super-resolution.
Investigating alternative or complementary loss functions to
MMD could potentially enhance the model’s performance.
For instance, incorporating perceptual losses might yield
better sample quality and diversity. Additionally, testing and
optimizing MMD-DDM on larger and more diverse datasets
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FIGURE 6. Generated samples for ImageNet. The samples are obtained using 5, 10 and 20 timesteps with the DDIM sampling procedure.
Results from Standard DDIM (left), the same model finetuned using Inception-V3 features (center) and CLIP features (right).

could provide insights into its scalability and robustness.
By addressing these limitations and exploring the suggested
future directions, we aim to enhance the practicality and
performance of MMD-DDM in various applications of
denoising diffusion models.

APPENDIX
A. IMAGE GENERATION RESULTS ON IMAGENET
In Fig. 6, we report visualizations of generated images for the
ImageNet dataset with several timesteps choices.
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