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Adaptive Sampling for Fast and Accurate
Metamodel-Based Sensitivity Analysis
of Complex Electromagnetic Problems

Paul Lagouanelle , Fabio Freschi , and Lionel Pichon

Abstract—This article presents the development of an adap-
tive sampling strategy for building surrogate models of complex
electromagnetic systems. Accurate sensitivity analysis is crucial to
electromagnetic compatibility but usually requires a few thousand
calls of the numerical model if performed using classical Monte
Carlo sampling. In the case of an expensive computational model,
this results in extremely long computation. Hence, with only a
few calls of the numerical model, surrogate models are built to
approximate the behavior of the system. This accurate predictor
can then be used instead of the expensive computational model for
various analyses. The active learning sampling strategy has been
tested successfully on a realistic finite-element method model.

Index Terms—Approximation methods, metamodeling,
numerical models, sensitivity analysis (SA).

I. INTRODUCTION

S ENSITIVITY analysis (SA) can be used on both numerical
models and experimental prototypes in order to predict and

quantify the variations of an output of interest regarding defined
variations of input parameters, thus helping in the design of
new systems and the improvement of existing devices. Owing
to the recent growth of electrical engineering for both domestic
and industrial applications, the need of fast and accurate SA for
such complex systems has been constantly increasing in the case
of electromagnetic compatibility (EMC) engineering.

Because of the overall complexity of most current numerical
models, computation time is increasing rapidly for SA when
the variation of several input parameters at once is considered.
A possible work-around is to use surrogate modeling (or meta-
modeling), which builds a predictor of the model using a given
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training dataset. This metamodel is an analytical function that
can be computed fast a great number of times. It can be used in
lieu of the existing simulation model (or experimental model).
Thus, the global SA, like Sobol’ indices [1] computed with
Monte Carlo (MC) methods, is performed on the predictor at
a low computation cost easily.

Thanks to their flexibility, ease of implementation, great ef-
ficiency with stochastic models, high accuracy for high-order
interaction, and nonlinearities, metamodels enable fast and easy
computation of global sensitivity indices on complex numerical
models [2], provided that an accurate metamodel has been built.
Regarding EMC problems in general, many numerical methods
have been recently developed in order to reduce the numerical
cost of SA. In [3], both response surface methodology (RSM)
and polynomial chaos expansion (PCE) are used to perform
accurate SA of crosstalks among differential vias. Both the
methods have been successfully validated using simulation data.
In [4], PCE has been used successfully to construct a surrogate
model of the radiated field in shielded wires. Surrogate models
can also be used for optimization in EMC design, as in [5], where
an RSM-based optimization process is used to efficiently design
multilayered shields.

The goal of the work presented here is to reduce the number
of samples needed for the surrogate model setup, thus reducing
the number of calls of the heavy computational model. In [6],
a performance-driven model is fully developed and validated
for the design of antenna structures. Koziel and Pietrenko-
Dabrowska [6] managed to reduce the number of calls of the
electromagnetic (EM) model by 60% (on average) compared to
a classical analysis. In [7], the use of Smolyak’s sparse grid algo-
rithm is presented for uncertainty quantification for EM systems.
As in [7], most of these numerical methods can be enhanced
using adaptive sampling to greatly reduce the initial samples
for the metamodel setup [8]. In [9], a radiated immunity test is
studied with a Thévenin-based metamodel paired with simple
adaptive sampling, which manages to reduce the computation
time from ∼ 119 h using a finite-element method (FEM) solver
to only 19 s. For complex EMC problems, adaptive sampling
has notably been used with Kriging metamodeling of radiated
susceptibility in coaxial shielded cables [10]. But also to perform
global SA of an EM interference filter [11].

Therefore, this work focuses on the design of an adaptive
sampling strategy for metamodeling. First, this article presents
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the development and the design parameters required for an
adaptive strategy for polynomial-chaos-based Kriging (PCK)
metamodeling. Then, based on various test functions and several
sampling strategies, a partition design is selected to greatly
reduce the number of calls of the input computational model.
The core of the work lies in the careful selection of the refine-
ment design, where the parameter space is subdivided based
on a local nonintrusive cross-validation (CV) criterion. Unlike
other existing adaptive strategies, the global consistency of the
metamodel is achieved by ensuring a local consistency of every
surrogate model built in every partition of the parameter space.
Finally, the resulting algorithm is tried on a realistic wireless
power transfer (WPT) system FEM model, on which accurate
SA is crucial for EMC studies.

II. SURROGATE MODELING ALGORITHM

A. Surrogate Model

This work focuses on two surrogate models, PCE and Kriging,
along with their combination PCK, which have been proven
quite efficient for building accurate predictors and performing
various global SAs on a wide range of complex models, for
example, in the case of EM device optimization [12], where
Kriging has been proven better compared to other surrogate
processes. PCE has been proven successful at approximating
magnetic flux density at a lower computation cost than regular
simulations [13]. As for PCK metamodeling, it has been recently
used in the case of computational dosimetry for estimating
specific absorption rate values [14].

The surrogate model used here is an exact interpolator: PCK
metamodeling combines both PCE and Kriging to predict the
variations of a given modelM(X). Kriging is used to interpolate
the local variations of the output model, while PCE is useful for
global approximation. A PCK metamodel is defined as [15]

M̂(X) =
∑
α∈A

yαψα(X) + σ2Z(X,ω) (1)

where
∑

α∈A yαψα(X) is a weighted sum of orthonormal poly-
nomials describing the trend of the PCK model andσ2Z(X,ω) is
a zero-mean stationary Gaussian process with a variance of σ2.
PCK can be interpreted as a Kriging metamodel with a poly-
nomial trend, whose characteristics are unknown. Therefore,
the PCK metamodel is built in two parts: the computation of
the polynomial coefficients (yα) on one side and the Kriging
hyperparameters on the other side. The computation of these
metamodel parameters is performed by the UQLab framework
available on MATLAB [16].

Let us consider a set {(X1, Y1), . . . , (XN , YN )} of N input
samples. Using this set, one can build a PCK metamodelM̂. The
consistency of the metamodel is evaluated by the leave-one-out
error (LOO):

LOO =
1

N

N∑
i=1

(
||M̂/i(Xi)− Yi||

||Yi||

)2

(2)

where M̂/i is the mean predictor that was trained using all
(X,Y ) but (Xi, Yi). The LOO enables us to evaluate the con-
sistency of the metamodel considering its build. If the LOO is
close to 1, the metamodel is highly modified if one datapoint is
taken out of the training dataset, whereas the smallest it is, the
least it will be modified.

B. Variance-Based SA

In order to perform global SA using metamodels, the well-
known Sobol’ indices [1] have been chosen as our sensitivity
trackers. The first-order Sobol index for a parameter P is a sim-
ple quantity varying from 0 (almost independent) to 1 (the more
dependent) quantifying the dependence of the output model on
a given parameter P regarding a variation of several parameters
simultaneously. When using PCE-based metamodels, the com-
putation of the Sobol’ indices can be easily extracted from the
polynomial decomposition [see (1)].

Let us consider a model output Y = M(X) with d input
parameters (P1, . . . , Pd). Thanks to the uniqueness of Sobol’
decomposition, the output variance Var(Y ) can be expressed as

Var(Y ) =

d∑
s=1

d∑
i1<...<is

Vi1,...,is

Var(Y ) =

d∑
i=1

Vi +

d∑
(i,j),i<j

Vij + · · ·+ V12...d (3)

with the following definitions for the partial variance terms:

Vi = VarPi
(EX/i

(Y |Pi))

Vij = VarPiPj
(EX/ij

(Y |Pi, Pj))

Vi1,...,is = VarPi1
...Pis

(EX/i1...is
(Y |Pi1 , . . ., Pis)). (4)

The variance can be decomposed in a sum of variance-based
terms showing the dependence on each input individually [Vi in
(3)] as well as the second-order (Vij) and higher order interac-
tions between the various input parameters.

1) Sobol’ Indices: Using the variance decomposition in (3),
a sensitivity tracker Su can be defined for any combination of
any order of input parameters, ∀u = (i1, . . ., is) ∈ [[1, d]]s, i1 <
· · · < is:

Si1,...,is =
Vi1,...,is
Var(Y )

. (5)

The most commonly used Sobol’ indices is the first-order Sobol’
index, ∀i ∈ [[1, d]]:

Si =
Vi

Var(Y )
=

VarPi
(EX/i

(Y |Xi))

Var(Y )
. (6)

which emphasizes the impact of the parameter Pi alone on the
output model compared to other parameters. The closer it is to 1,
the bigger impact it produces on the model. Higher order Sobol’
indices can be interpreted in the same way; as the sensitivity of
the output model is observed regarding the variations of several
input parameters simultaneously, the effect of each input cannot
be separated from the others. The total sum of all orders Sobol’
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indices verifies

d∑
i=1

Si +
d∑

(i,j),i<j

Sij + · · ·+ S12...d =
∑

{u,u⊆[[1,d]]}
Su = 1.

(7)
2) Total Indices: For high-dimensional output models, the

observation of all-order Sobol’ indices can be difficult due to the
high number of combinations. Therefore, for an input parameter
Pi, a total-effect index (or total Sobol’ index) ST

i is defined by
summing all the Sobol’ indices using this variable, as follows:

ST
i =

∑
{u,u⊆[[1,d]] and i∈u}

Su. (8)

Unlike Si, where according to (7),
∑d

i=1 Si ≤ 1, this time the
sum of all the total Sobol’ indices is greater than 1, i.e.,

d∑
i=1

ST
i ≥ 1. (9)

Indeed, for example, for a given couple (Pi, Pj) of input pa-
rameters, Sij is counted for both ST

i and ST
j . The equality case

for inequality (9) is for an output model purely additive. The
information given by ST

i is different from the one given by Si;
for example, Si << 1 does not imply necessarily ST

i << 1. A
total Sobol’ index close to zero means that the input parameter
is almost not affecting the output model, which can be useful for
further simulations and experimental designs.

C. Adaptive Sampling Strategy

Sampling strategies can be classified into two categories:
static (“one-shot”) sampling and sequential sampling (see [8,
Fig. 1]). In static sampling, the sample size and the input dataset
are chosen prior to the model evaluation. However, in our study
cases, the input models are rather costly and their response is
unknown. Thus, it is hard to determine an a priori sample, which
would result in a consistent surrogate model. Hence, sequential
sampling methods have been developed, where the input dataset
is modified based on previous computations along the build of
the metamodel.

Among sequential sampling strategies, the goal of an adaptive
sampling strategy (also called active learning) is to start from a
rather low number of samples and expand it in the regions of in-
terest of the model response (red samples in Fig. 1). This results
in a relatively low number of calls of the input model compared
to space-filling strategies for the same level of surrogate model
accuracy.

The general flowchart of an adaptive sampling strategy for sur-
rogate modeling is displayed in Fig. 2. Given an input parameter
space X for an expensive computational model M, N samples
are drawn from it, X = (X1, . . ., XN ). Their corresponding
model responses are computed Y = (Y1, . . ., YN ), and a first
metamodel M̂ is computed using this dataset. If such a meta-
model is not accurate, new samples (along with their responses)
are drawn in the regions of interest, and the input dataset is
enriched. The algorithm stops when the metamodel is accurate
enough.

Fig. 1. Visual representation of different sampling strategies, taken from [8].

Therefore, for the design of such an active learning metamod-
eling process, several design parameters need to be explored: a
local criterion to expand or not the dataset, a global stopping
criterion, the sampling method, and finally the definition of the
area of interests. The general goal is to minimize the calls of the
expensive model function (blue processes in the flowchart).

D. Design Parameters

1) Local Criterion: The most adaptive sampling strategy
starts with a space-filling sampling method to explore the input
parameter space as much as possible. Then, the expansion of the
dataset in a local area is ruled by the observation of certain local
metric. The metric can be model dependent (variance based,
gradient based, etc.), which often leads to additional model
calls and thus longer computation time in our case, or indepen-
dent (usually CV errors) using only the existing dataset or the
metamodel, which can be computed rapidly using the analytical
predictor. Therefore, considering low input dimensionalities (no
greater than ten input parameters) for the input parameter space,
the aforementioned LOO has been considered for the local
accuracy of our metamodel [see (2)]. This enables to minimize
the call of the computational model.

If the local LOO is too high in an area, more samples are
needed in this part of the input parameter space. This brings the
difficult choice of defining a proper threshold for the LOO as
a local stopping criterion (see discussion in [17]). The choice
of the LOO as a local stopping criterion is highly motivated by
its crucial use for the existing learning algorithms. Overall, the
LOO CV error is successful at estimating the consistency of any
metamodel while not being the best in every case [18]. Moreover,
within a region of interest, the use of LOO instead of other
k-fold CV error is obvious due to the low number of datapoints
considered. Choosing the LOO as a local metric ensures that,
in every area of interest considered within the input parameter
space, the resulting metamodel is locally consistent. Therefore,
the metamodel is globally consistent regarding the entire input
parameter space.

2) Partition Algorithm: The choice of a CV-based adaptive
sampling leads to an obvious partition design for the area of
interests. The main idea is to split each inaccurate region into 2d
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Fig. 2. Flowchart of an active learning metamodeling process, with the blue
processes being the computationally expensive steps.

subregions, with d being the dimension of the input space. This
quad-tree partition design [19] has already been successfully
developed for solving Navier–Stokes equations in aeronautic
design [20]. Although this subgridding technique is quite easy
to set up, the main drawback of using it is the obvious curse of di-
mensionality, where the number of computed datapoints would
explode for high-dimensional models. Hence, the application of
this algorithm and the models studied here have responses only
depending on a small number of parameters. Performing global
SA prior to a complete active learning algorithm can greatly
reduce the number of relevant parameters for a single analysis,
thus preventing us from computing too many useless datapoints.

3) Subdivision Limitation: Usually, a tradeoff between the
local and global criteria needs to be defined, with proper weights
given to each metric in order to subdivide or not the current
domain. However, in order to tackle the curse of dimensionality,
which appears due to the two previous choices, an obvious
choice for the global criterion is to set the maximum number
of divisions allowed for partitioning to limit the total number of
computations.

III. COMPARISON OF SAMPLING METHODS

Local and global stopping criteria have been chosen with
the CV LOO and a limit for the number of divisions, along
with a partitioning subgridding technique for the generation of
subspaces within area of interests where the new samples will
be drawn from.

A. Sampling Methods Considered

Then, the goal is to determine the best way to draw samples
within subdomains using either stochastic or deterministic meth-
ods. The final goal is to not compute a lot of datapoints due to the
possible complexity of the considered output model; therefore,
a great care should be taken in saving as many datapoints as
possible when drawing samples on the various domains. The
methods used for generating the initial sample and all the fol-
lowing subsamples have been considered identical. Thus, once
a subdomain is created with partitioning, the samples are also
exploring the whole subspace. Five different sampling methods
have been investigated, which all have already been proven
useful in the case of adaptive sampling for surrogate modeling
processes among the literature [8], [21]. The following three
stochastic sampling methods have been studied:

1) Latin hypercube sampling (LHS);
2) Sobol’ sequence sampling (Sobol’);
3) MC sampling;
along with the following two deterministic methods:
1) Halton sequence sampling (Halton);
2) Uniform sampling.
An example of some samples for a bidimensional parameter

space is displayed in Fig. 3 after one division of the partitioning
algorithm. For a d-dimensional parameter space, the number
of samples in each subdomain has been set to 2d + 1. This
embodies, in the case of a uniform quad-tree design, the 2d

corners and the center of the subdomain. This choice has been
motivated by various tests notably when comparing the decrease
in the local LOO (higher consistency) when adding centers to
the subdomains of an existing uniform partition design.

B. Test Functions

The algorithm with the five aforementioned sampling meth-
ods has been tested against several functions with bidimensional
inputs that aim to cover a range of possible computational model
outputs for EM quantities. These test functions have been chosen
purely arbitrary, and this choice has only been made based
on the type of output that had already been studied and the
corresponding variations observed. The four bidimensional test
functions are displayed in Fig. 4:

1) a function (a) that embodies the computation of the B-field
by an infinite wire with the current X and the distance to
the wire Y ;

2) a peak function (b) has also been chosen to represent a
possible resonance where the whole bidimensional space
is giving low values apart from the peak where the output
is 10;

3) a simple square function: (X,Y ) −→ X2 + Y 2 (c);
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Fig. 3. Sampling methods considered: 20 calls for LHS, Sobol’, MC, and Hal-
ton samplings instead of 12 calls for the uniform sampling for a bidimensional
input space.

4) a bidimensional wave function (d) with a lot of local and
global extrema.

C. Consistency of the Metamodels

Along testing the various sampling methods on these five
functions, three different values for both the LOO threshold
ε = [0.1, 10−2, 10−3] and the maximum number of divisions
m = [2, 3, 4] have been tried. Therefore, 180 metamodels have
been computed with our algorithm for all the possible combi-
nations with five samples on each domain. In Fig. 5, a different
number of samples nsamples against their corresponding LOO
are displayed for every functions and every sampling methods
studied. This number is the total number of samples required for
the algorithm to converge.

The consistent metamodels for performing accurate SA will
be considered only for LOO < 10−2. When comparing the re-
sults for the different sampling methods, it can be seen that using
local uniform sampling does not provide the best metamodels
considering the LOO consistency. However, some LOO values

Fig. 4. (a)–(d) Test functions for comparing sampling methods on the active
learning algorithm.

Fig. 5. LOO against nsamples for various test cases.

for nonuniform sampling are overly small (< 10−20), which is
not needed, and some are using way too many datapoints at
the same time. All in all, uniform sampling is the only one
to produce consistent enough metamodels with some decent
number of samples, which is already too much considering
realistic computational model. Considering LOO only, uniform
sampling seems to be the best compromise.

D. Validation Tests

In order to properly assess the accuracy of the predictor at
estimating the real model, four MC-generated validation sets of
100 datapoints have been created (one for every test function).

Once a metamodel M̂ is computed with a given input dataset,
a validation set {(Xi, Yi = M(Xi)), ∀i ∈ [[1, N ]]} can be used
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Fig. 6. Validation error R2 against nsamples for various test cases.

to compute a validation error for the metamodel with the well-
known coefficient of determination R2:

R2 = 1−
∑N

i=1 ||M̂(Xi)− Yi||2∑N
i=1 ||Y − Yi||2

(10)

whereY is the mean value of the validation set output. The closer
R2 is to 1, the better the predictor is at computing nonsampled
datapoints. This coefficient is useful for comparing different
metamodels on the same validation set in order to determine
which one gives us the best predictor.

In Fig. 6, the validation errorR2 has been displayed for the 180
computed metamodels. Among the five considered sampling
methods, uniform sampling is the only one to ensureR2 ∼ 1 for
a fairly low number of samples. For some test cases, MC, LHS,
Sobol’, and Halton samplings are producing predictors with
a small coefficient of determination, thus unable at predicting
accurately the behavior of the input model. This makes these
four sampling methods highly unreliable for regular use in
performing accurate SA using the active learning algorithm.
Again, from this second point of view, uniform sampling is the
best sampling method to balance both the number of samples
and an accurate enough predictor.

E. Discussion

If another sampling method is to be used for future computa-
tions, on these different test functions and for both analysis,
Sobol’ sequence sampling seems to provide the second best
results. When a domain is subdivided into 2d domains, during
the next loop, for the computation of the various metamodels,
only 2d corners need to be added along with 2d centers as many
datapoints are already available due to previous computations
(see comparison in Fig. 3). This is the main interest of using
uniform subgridding sampling instead of LHS or MC sampling,
which would result in much more datapoints computed. Con-
sidering the quad-tree partition design with uniform sampling,

Fig. 7. Results of the active learning algorithm on a peak function [maximum
at (3, 3)] for ε = 0.3 andm = 4. (a) Final subdomains and samples. (b) Accurate
predictor (nsamples = 97, LOO 	 0.0647).

the maximum number of datapoints computed is

nmax = (2m + 1)d + 2dm (11)

whered is the number of input parameters andm is the maximum
number of divisions allowed.

An example of the final partitioning and predictor for a peak
function on a bidimensional input space is shown in Fig. 7.
The resulting predictor needed only 97 datapoints to create a
consistent enough metamodel (LOO 	 0.0647). This shows
great interest of using the quad-tree design coupled with uniform
sampling as many datapoints (most of the corners) are within
several subdomains, which is not the case for other sampling
methods. For instance, reproducing the same 50 × 50 meshgrid
without the metamodel predictor would have required 2500 calls
of the computational model.
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Fig. 8. FEM model for a complete WPT model with 3F3 ferrites cores and an
optimized shielding structure.

This brings the crucial need to properly tune the LOO
threshold ε and the maximum number of divisions m of the
active learning algorithm regarding the model behavior and its
dimensionality. As the performance of this algorithm has been
fully validated on classical analytical functions, the goal is to
extend its application to heavy computational model such as
FEM model, where the gain in computation time could be of
great use.

IV. APPLICATION TO A REALISTIC WPT SYSTEM MODEL

The goal here has been to apply the metamodeling algorithm
on a realistic FEM model for a WPT system developed at the
Politecnico di Torino [22]. Based on this complex model, our
algorithm tries to build a consistent predictor that can be used
for both SA and optimization design in lieu of the real model to
save computation time.

A. Computational Model

Using the computer-aided design model from the WPT system
receiver used for experiments at the Politecnico di Torino, the
complete WPT model has been reproduced with a 3-D FEM
model displayed in Fig. 8. For the receiving device, only the
main shielding structure optimized with the shielding beams,
along with the double U-shaped coils (displayed in orange in
Fig. 8) topped by the 3F3 ferrite cores, has been considered,
while only the transmitting coil in the ground has been modeled
for the transmitter.

Because this model is fitting a real model available inside
the laboratory, the effects of mostly design-based geometrical
parameters have been considered:

1) Δx,Δy, andΔz: the misalignments between the receiving
and transmitting coils along the x-, y-, and z-axes;

2) wrcoil, lrcoil, wtcoil, ltcoil: the dimensions of the coils;
3) α, β, γ: the yaw, pitch, and roll of the transmitting coil.
The output considered in the following analysis is the coupling

factor k of the WPT system:

k =
M√
LRLT

(12)

where M is the mutual inductance of the two coils and
LR and LT are their respective self-inductances.

Regarding the computation time, one datapoint takes∼ 1 min
to compute on an Intel Core i7-10610U, 1.80 GHz, 8 GB of

TABLE I
PARAMETERS WITH THEIR CORRESPONDING RANGES FOR THE ANALYSIS OF A

DYNAMIC WPT SYSTEM (LOO 	 0.030018765223648, nsamples = 65)

Fig. 9. Variations of the coupling factor k against the z misalignment Δz and
the roll γ (Δx = Δy = 0 m and α = β = 0 ◦).

RAM. If one were to perform some brute-force SA (using MC
sampling, for example), this would require a few thousand calls
of the computational model. Thus, the total computation time of
the analysis would be several days.

B. Sensitivity to the Road Profile

The first application has been to compute a consistent pre-
dictor for the behavior of the coupling factor regarding the
movement of the vehicle and the road profile. The considered
parameters for this analysis are displayed in Table I. The Δx
misalignment and the yaw α have been chosen to consider a
car slightly deviating from the center of the road, while the
Δy misalignment embodies the direction of motion. The Δz
misalignment along with the pitch β and the roll γ take into
account the road profile.

The active learning metamodel algorithm managed to build
a consistent predictor with ε = 0.3 and m = 3. The result-
ing metamodel uses nsamples = 65 and has a consistency of
LOO 	 0.030018765223648. An example of the variation of
the coupling factor produced by the active learning metamodel
predictor is displayed in Fig. 9 for the variations of Δz and γ (a
modification of the road profile) with the other parameters set at
their nominal values (Δx = Δy = 0 m and α = β = 0 ◦).

Using this consistent predictor, an SA has been computed
using total Sobol’ indices displayed in Table I. The most impor-
tant parameters are the roll γ along with the Δz misalignment.
As expected, these two parameters greatly increase the distance
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TABLE II
PARAMETERS WITH THEIR CORRESPONDING RANGES FOR THE ANALYSIS OF A

DYNAMIC WPT SYSTEM (LOO 	 0.0141, nsamples = 17)

TABLE III
MAXIMUM NUMBER OF DATAPOINTS nmax COMPUTED AGAINST THE

DIMENSION OF THE INPUT SPACE d AND THE MAXIMUM NUMBER OF

DIVISIONS m

between the two coils, which decreases significantly the cou-
pling factor. Even if the pitch β also influences the gap between
the receiver and the transmitter, for this small range [−2◦, 2◦]
corresponding to an imperceptible bump on the road, its effect
is entirely negligible. The roll embodies a nonflatten road that
has still a greater impact with such a small range. The other three
parameters Δx, Δy, and α are taking into account the dynamic
aspect for the WPT system and are of course not negligible.

C. Sensitivity to Various Coil Dimensions

Another interesting analysis is to assess the dependence of the
coupling factor regarding the transmitter or receiver dimensions.
This could emphasize where the greatest care should be taken
when designing or building a new WPT system. The considered
parameters with their ranges and Sobol’ indices are displayed in
Table II. The algorithm has been run with ε = 0.3 and m = 3
resulting in a metamodel with LOO 	 0.0141 and nsamples =
17.

The length of the transmitting coil is by far the most important
parameter regarding the coupling factor behavior. It ensures that
the totality of the magnetic flux generated is embraced by the
receiving coil. Owing to the chosen possible dimensions, for the
same reason, the length of the receiver is also extremely impor-
tant. As the nominal gap between the coils is Δz = 23.5 cm,
the width of the transmitter has a lesser influence as long as the
totality of the magnetic flux can be directed to the receiver, which
is ensured with a range [0.3 m, 0.6 m] similar to the maximum
dimensions of the receiver. The receiver dimensions are only
limited by the car it can be put in and, therefore, cannot be
extended.

D. Discussion on the Algorithm Parameters

In Table III, the dependence of the maximum number of
computed datapoints nmax [see (11)] against the dimension of

TABLE IV
COMPUTATION TIME OF THE VARIOUS STEPS

TABLE V
ESTIMATED GAIN IN COMPUTATION TIME FOR THE STUDIES ON THE WPT

CHARGER MODEL

the input space d and the maximum number of divisions m is
displayed for several values. Using the algorithm, if one were to
diminish the consistency threshold ε to less than 1% for example,
the metamodel for the coil dimensions (m = 3, d = 4) would
need the maximumnmax = 10 657, whilenmax = 793 585 for the
WPT dynamic analysis (m = 3, d = 6). Thus, the computation
of a metamodel with a higher local consistency would be almost
impossible as one datapoint takes ∼ 1 min to compute if the
resulting submetamodels are not consistent.

E. Gain in Computation Time

The goal of the two analyses presented here has been to try
our active learning algorithm for accurate SA, in order to save
computation time compared to classical methods. When looking
at the algorithm flowchart in Fig. 2, the total computation time
for a run of the algorithm needs to consider three different
contributions: the calls of the expensive computational model,
the computation of the metamodels at every loop, and finally the
SA.

In Table IV, the total computation of time of the various steps
of the algorithm is displayed for both the analyses. As expected,
the only time-consuming step is the call of the FEM model. The
computation time of all the metamodels computed in a single
run of the algorithm put together does not exceed 2 s for both
the cases, while the two SAs are taking less than 1 s. Therefore,
the total computation time of the algorithm can be reduced to
the calls of the FEM model.

These computation times have been compared to that of a
brute-force analysis where a uniform grid with nmax samples
has been computed [see (11)]. The results are displayed in
Table V; the estimated computation time with an extremely
refined uniform grid would be in days or even years at six
parameters, while our algorithm does not last more than 1 h.
Thus, the gain in computation time using this active learning
metamodeling algorithm is over 99%. Even if some way better
sampling methods (such as MC, LHS, Halton, etc.) could be
used in a classical analysis to build the surrogate model, the
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time reduction compared to a uniform grid would not be greater
than 99% [23].

V. CONCLUSION

In this article, an adaptive sampling algorithm designed for
PCK metamodeling of complex EM problem was successfully
developed. Two analyses on a realistic FEM model were per-
formed to show the usefulness of such an algorithm. The two
computed metamodels had a great consistency (LOO < 3%),
which is sufficient for drawing tendencies for SA. The results
can be used for future designs or EMC analysis of WPT systems
for automotive applications.

As previously developed, the algorithm could show limi-
tations at high-dimensional input space. An easy solution to
this problem is to decrease the number of input parameters
by performing factor prioritization. A first wide analysis can
be performed on various parameters, giving us a consistent
predictor for the model able to perform an accurate SA. Using
this SA, only the relevant parameters can be extracted and a
finer input space can be chosen with the negligible parameters
ignored. Then, a better and more consistent metamodel can
be built on this smaller set of parameters as it will be able to
fully explore the input parameter space thanks to its smaller
dimension.

Many improvements for such a numerical method are still
possible, but using this algorithm on various FEM models saved
more than 99% of computation time compared to classical brute-
force analysis. Thus, this method is of great interest for future
SA in the case of complex EM systems.
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