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This paper proposes an evolutionary transfer learning approach (Evol-TL) for scalable QoT estimation
in multi-domain elastic optical networks (MD-EONs). Evol-TL exploits a broker-based MD-EON archi-
tecture that enables cooperative learning between the broker plane (end-to-end) and domain-level (local)
machine learning functions while securing the autonomy of each domain. We designed a genetic algo-
rithm to optimize the neural network architectures and the sets of weights to be transferred between the
source and destination tasks. We evaluated the performance of Evol-TL with three case studies consid-
ering the QoT estimation task for lightpaths with i) different path lengths (in terms of the numbers of
fiber links traversed), ii) different modulation formats, and iii) different device conditions (emulated by
the introducing of different levels of wavelength-specific attenuation to the amplifiers). The results show
that the proposed approach can reduce the average amount of required training data by up to 13× while
achieving an estimation accuracy above 95%. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Elastic optical networking (EON) has been recognized as one of
the most promising solutions for next-generation transport net-
works [1], thanks to its unprecedented flexibility in the control
and management of the optical fiber spectrum. While there has
been a large number of comprehensive studies on single-domain
EONs in the recent years [2–6], optimizing the inter-networking
of multi-domain elastic optical networks (MD-EONs) [7] remains
a challenging task due to the limited amount of intra-domain
information that can be exchanged between domains (the do-
mains autonomy constraints). In particular, accurate quality-of-
transmission (QoT) modeling is essential for low-margin (thus,
resource-efficient) connection provisioning [8] in MD-EONs.
However, the domain autonomy constraints make the conven-
tional analytical models relying on full network configuration
states [9–11] hard to be applied. Moreover, these models may
suffer from poor adaptability as they typically fail to capture the
evolving network conditions (e.g., due to hardware components
degradation).

Recently, the research community has made a series of break-
throughs in machine learning (ML) and demonstrated its suc-
cessful applications in optical communications and networking
[12–15]. Specifically, ML makes it possible to develop data ana-
lytics functions that can autonomically learn complex network

rules from data and hereby realize knowledge-based cognitive
networking [16]. Previous works have investigated various ML-
aided designs for optical networks, including QoT estimation
[17–22], failure/attack detection and identification [23–29], and
resource allocation [30–34]. While these existing works have
shown promising benefits, only a few of them are tailored for
MD-EONs. In particular, existing ML-aided QoT estimation
models require end-to-end data and network configuration in-
formation such as signal power, modulation format, fiber length,
and link channel occupancy [17]. Obtaining this information in
a multi-domain scenario is not trivial for the reasons discussed
above. In this context, we recently proposed a hierarchical learn-
ing approach, where the QoT of inter-domain lightpaths can be
inferred through cooperative learning between a broker-plane
(end-to-end) and domain-level (local) ML functions [35]. Ex-
perimental results have shown that the proposed approach can
achieve an estimation accuracy close to that of an omniscient
model relying on full multi-domain state data. However, the hi-
erarchical learning approach still requires the domain managers
(DMs) to collect a significant amount of optical performance
monitoring (OPM) data for every inter-domain lightpath, which
can add non-negligible operational costs to MD-EONs and cause
scalability issues.

Transfer learning (TL) can ease the training of ML models by

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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Fig. 1. (a) Broker-based MD-EON architecture with hierarchical learning, and (b) principle of inter-domain QoT estimation.

allowing the knowledge sharing between relevant tasks [36] and
therefore has been successfully applied to real-word applications
(e.g., natural language processing [37, 38] and computer vision
[39, 40]). In particular, the merit of TL for optical networks has
been confirmed by several recent studies, revealing that TL can
effectively reduce the amount of training data or time required
for QoT estimation [41–44] or resource allocation tasks [45, 46].
Nevertheless, these works only consider single-domain scenar-
ios. In [47], we proposed an evolutionary TL approach (Evol-TL)
for scalable QoT estimation in MD-EONs with hierarchical learn-
ing. Evol-TL makes use of a genetic algorithm (GA) to determine
the optimal structures of ML functions to use (i.e., the neural
network architectures) and the most effective sets of weights to
transfer between tasks.

In this paper, we extend our previous work in [47] by present-
ing a more elaborate description of Evol-TL and by performing
case studies incorporating more comprehensive network sce-
narios. Specifically, in Section 2, we describe the principle of
inter-domain QoT estimation in a broker-based MD-EON ar-
chitecture enabling cognitive inter-domain networking. The
problem of TL for QoT estimation is mathematically formulated
in Section 3 together with the principle of the proposed GA-
based knowledge transferring scheme. Section 4 reports the
performance of Evol-TL in three scenarios, where we transfer
knowledge between QoT estimators for inter-domain lightpaths
with i) different path lengths (in terms of the numbers of fiber
links traversed), ii) different modulation formats, and iii) differ-
ent device conditions. In Section 5, we perform a brief review of
the recent works on ML applications in optical networks. Finally,
Section 6 summarizes the main findings in the paper.

2. QOT ESTIMATION IN MD-EONS

A. Network Architecture
Fig. 1(a) shows the block diagram of the proposed broker-based
MD-EON architecture supporting cognitive inter-domain net-
working. Each DM manages its EON data plane with a software-
defined networking (SDN) paradigm to provide flex-grid optical

connection services among metro networks, data centers, and
scientific facilities. OPM functions are deployed at various data
plane locations to enable DMs to sense the network state in real
time. For instance, an optical spectrum analyzer (OSA) can be
used to monitor the signal power and channel utilization on a
specific fiber link. Taking advantage of the OPM capability and
the centralized control mechanism by SDN, DMs can develop
ML functions to realize cognitive intra-domain networking (e.g.,
QoT-aware lightpath provisioning, fault detection and recovery)
following an observe-analyze-act cycle [16]. Specifically, at each
operation point (e.g., upon receiving a service request), a DM
first collects the instant OPM data using a telemetry service [48]
(observe). Then, the DM performs data analytics by executing the
related ML functions (analyze). Finally, an intelligent operation
decision can be made based on the perception of the network
states and rules (act).

To facilitate effective inter-domain networking, we introduce
a broker plane as a new and higher network control and manage-
ment hierarchy. The broker plane offers cognitive inter-domain
services (also following an observe-analyze-act cycle) to the DMs
according to specific mutual service level agreements (SLAs).
For instance, an SLA can require a DM to abstract its domain
as a virtual topology consisting of domain ingress and egress
nodes connected by virtual links (i.e., intra-domain path seg-
ments) on which certain amounts of spectrum resources can be
reserved. The broker plane will notify which of the virtual links
can be used by the end-to-end service schemes afterward. Note
that, the abstracted domain information is often inadequate for
the broker-plane ML functions to correctly learn the rules of
MD-EONs. In this case, a hierarchical learning mechanism can
be applied, where the broker-plane and domain-level ML func-
tions learn cooperatively to accomplish inter-domain service
provisioning [35]. The domain-level ML functions learn local
features or operation policies from full network state data while
the broker-plane ML functions aggregate the local learning re-
sults and produce end-to-end learning targets. Such a scheme
allows the broker plane to implicitly exploit the intra-domain
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information while at the same time securing the privacy of each
domain.

B. Operation Principle

The principle of QoT estimation in MD-EONs with coopera-
tive learning is illustrated by the example in Fig. 1(b), where
two inter-domain lightpaths, i.e., lightpaths A and B, are estab-
lished successively. Each DM collects the network state and
OPM data (e.g., link load, signal power, noise level) related to
the corresponding intra-domain path segments and employs
an ML model to extract domain-level features from the data.
For instance, autoencoder, which is known as to be able to en-
code data while preserving the information contained in the
data, can be implemented to perform domain-level ML func-
tions. As such, reporting only the domain-level features to the
broker plane makes the original OPM data hard to be derived
and protects the confidentiality of domains. The broker plane
combines the domain-level features to train an end-to-end QoT
estimator for each lightpath. Here, although lightpaths A and
B traverse different numbers of links and probably use devices
of different vendors/conditions, the two QoT estimation tasks
still share high similarities as the physical layer principles of
the two systems are essentially the same. Therefore, the broker
plane applies TL and reuses the model parameters learned with
the data from lightpath A to significantly reduce the amount of
OPM data required to train the QoT estimator for lightpath B.

3. EVOL-TL DESIGN

In this section, we formulate the problem of TL for QoT estima-
tion in MD-EONs and detail the algorithm design for Evol-TL.

A. Problem Formulation

LetM = {X , P(X ),Y ,F} denote an inter-domain QoT estima-
tion task characterized by a feature space X = {X 1, ...,X N} (a
conjunction of N domain-wise feature spaces) with a probabil-
ity distribution P(X ), a label (i.e., QoT value) space Y , and a
mapping function F : X → Y . According to the discussions
in Section 2, we can decompose M into N domain-level sub-
tasks and a broker-plane subtask. LetMn = {X n, P(X n),Fn}
denote a subtask for domain n, then, a broker-plane subtask
can be represented by M̂ = {X̂ , P(X̂ ),Y , F̂}, where X̂ =
{F1(X 1), ...,FN(X N)} is the space of domain-level features.
Normally, F = {F1, ...,FN , F̂} can be learned from a data set
{(xi, yi)|xi ∈ X , yi ∈ Y} using the hierarchical learning ap-
proach [35], by minimizing the average error between F (xi)
and yi. Note that, Yn is not required for eachMn because the
training of Mn can be done either using unsupervised learn-
ing (for instance, when an autoencoder is used) or by using
the supervision signals (i.e., gradients) distributed by the bro-
ker plane through a collaborative learning approach presented
in [49]. Now, let us consider a source QoT estimation task
MS = {XS, P(XS),YS,FS} that has been trained, and a tar-
get taskMT = {XT , P(XT),YT ,FT}, whose feature and label
spaces may both differ, i.e., XS 6= XT , YS 6= YT . The goal of
Evol-TL is to minimize the number of data instances required to
learn an FT with target accuracy performance. To achieve the
goal, Evol-TL needs to explore and transfer the most effective
knowledge from FS. Note that, knowledge transferring can
happen within both domains and the broker plane, i.e., from Fn

S
to Fn

T , and from F̂S to F̂T .

Algorithm 1. Optimization procedures of Evol-TL.

Input: η, λ, γ, M̂S, M̂T
Output: C∗

1: P← GenerateRandomPopulation(J)
2: for r = 1 to R do
3: COMPUTEFITNESSFUNC(P)
4: P0 ← ParentSelection(P, η)
5: P′ ← CrossoverOperation(P0, λ)
6: P′ ←MutationOperation(P′, γ)
7: P+ ← GenerateRandomPopulation((1− η%) · J)
8: P = P′ ∪ P+

9: end for
10: return C∗ = arg maxCj F (Cj)
11:

12: procedure COMPUTEFITNESSFUNC(P)
13: for Cj in P do
14: Train each F̂T based on the solution encoded in Cj
15: Calculate F (Cj)

16: end for
17: Sort P in the descending order of F (Cj)
18: return P
19: end procedure

B. Optimization Procedures

We consider a neural network-based QoT estimator design.
Fig. 2 depicts the principle of knowledge transferring between
broker-plane tasks (i.e., M̂S and M̂T) in Evol-TL. Given a pre-
trained model F̂S parameterized by a neural network of a few
hidden layers, we build F̂T with the first one or multiple hidden
layers copied from F̂S and a few more randomly initialized lay-
ers inserted thereafter (including an output layer). We lock the
copied layers and fine-tune F̂T with a small amount of newly col-
lected OPM data. Here, by adding randomly initialized layers,
we can potentially mitigate the overfitting issue as the copied
layers are typically overfitted to M̂S. Still, it is necessary to
determine the right sets of weights to transfer (i.e., the number
of layers that should be copied) because the higher layers of F̂S
may be severely overfitted and cause negative transferring ef-
fects [50], especially when the difference between M̂S and M̂T
is significant. Meanwhile, the number of newly added layers
and other hyperparameters, such as the number of neurons in
each layer, can largely impact the performance of F̂T and also
should be optimized.

Unlike existing works that usually decide the hyperparam-
eters of ML models based on random or brute-force searches
[51], Evol-TL makes use of a GA approach that performs bio-
inspired evolutionary optimizations. Specifically, we encode
each feasible solution, i.e., a possible setting of the hyperparam-
eters, as an individual denoted by Cj = [Lc, Li, K,H,G], where
Lc and Li represent respectively the number of hidden layers
to copy from F̂S and the number of new layers to insert, K is
a vector containing the number of neurons in each of the new
layers,H indicates the activation function to adopt, and G tells
the optimizer to use in training. A set of individuals then form a
population P = {Cj, j ∈ [1, J]}. For evaluating the performance
of each individual, we also define a fitness function f (Cj) that
returns the average prediction accuracy from F̂T trained based
on the solution encoded in Cj. Algorithm 1 summarizes the
optimization procedures of Evol-TL. In Line 1, we first initialize
a population of size J by randomly generating the individuals.
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Fig. 3. Three-domain EON setup implemented in VPItransmissionMaker™ Optical Systems simulator.

Lines 2-9 performs evolutionary optimizations for R iterations.
In each iteration, Line 2 (expanded by Lines 12-19) calculates the
fitness of each individual in P and sort the individuals in the
descending order of their fitnesses. In Line 4, the best η% of the
individuals are selected as parents, which afterward perform
crossover (Line 5) and mutation (Line 6) operations to produce
the offsprings. Specifically, in each crossover operation, the se-
lected parents are randomly paired, with each pair randomly
exchanging λ of their genes (i.e., the elements composing the
individuals). The crossover operations thus allow exploiting
the advantageous knowledge during optimization. Whereas, by
committing random changes on genes with a relatively low prob-
ability of γ, the mutation operations encourage exploration of
the optimization space to prevent falling into local optima. Fur-
ther, to improve the diversity of the new population as well as
to maintain the population size, we add another (100%− η%) · J
random individuals (Line 7-8). Finally, after optimization of
R iterations, Line 10 returns the best individual C∗in P as the
solution for M̂T .

Let |P| and |C| denote respectively the number of individu-
als in a population and the number of hyperparameters in an
individual. Since the complexity of crossover and mutation op-
erations in each optimization iteration are both O(|P| ∗ |C|),
the complexity of Algorithm 1 is O(R ∗ (|P| ∗ O f itness + 2 ∗
|P| ∗ |C|)), where O f itness represents the complexity of com-
puting the fitness of each individual. Because computing the
fitness function involves a training process, O f itness is typi-
cally much larger than |P| ∗ |C|. Therefore, we can further
obtain the complexity of Algorithm 1 as O(R ∗ |P| ∗ O f itness).
In contrast, the time complexity of the brute-force approach is
O(Lc ∗ Li ∗K ∗H ∗G ∗O f itness). Since the possible combinations
of hyperparameters in an individual (i.e., Lc ∗ Li ∗K ∗H ∗ G) are
typically larger than R ∗ |P|, the complexity of brute-force ap-
proach is greater than Algorithm 1.

4. PERFORMANCE EVALUATION

We evaluated the performance of the proposed Evol-TL design
with data sets collected using VPItransmissionMaker™ Optical
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Table 1. Description of simulation setup in the VPItransmissionMaker™ Optical Systems simulator.

Path # of Nodes 
in Domain 1

# of Nodes 
in Domain 2

# of Nodes 
in Domain 3

Type of 
Fiber

Type of 
Amplifier

Launch Power
QoT  

indicator
Co-Tx ID Range of the 

power (Watt)

A-C-D 2 1 0

Single 
Mode 
Fiber

Gain-
controlled
Amplifier

1 7e-4 - 5e-3

Measured 
BER

Value at 
Co-Rx 

2 1e-3 - 3e-3

A-B-C-D 2 2 0
1 9e-4 - 4e-3

2 1e-3 - 3e-3

A-B-C-D-E 3 2 0
1 1e-3 - 2e-3

2 1e-3 - 2e-3

A-D-F-G 1 1 2
1 1.5e-3 - 7e-3

2 1e-3 - 2e-3

3 1e-3 - 2e-3

A-B-C-D-F 3 1 1
1 1.5e-3 – 3.6e-3

2 1.3e-3 – 2.3e-3

3 1.3e-3 – 2.3e-3

Systems simulator implementing a three-domain EON topology
(see Fig. 3). The three I/Q modulator blocks, each fed by eight
WDM lasers, are operated at 28 Gbaud (224 Gbaud) adopting
4-QAM or 16-QAM modulations. Each node is connected to
other nodes using a standard single-mode fiber module in VPI
(FiberNLS_PMD). The length of each fiber link was set as 100
kilometers. The fiber losses between two nodes are compensated
using gain-controlled amplifiers with a noise figure of 4 dB. We
set up five inter-domain lightpaths, three of which traverse two
domains (i.e., domain one and domain two) and are consisted
of three (A-C-D), four (A-B-C-D), and five (A-B-C-D-E) nodes,
respectively. The rest two lightpaths, i.e., lightpaths A-D-F-
G and A-B-C-D-F, traverse all the three domains. The optical
spectrum analyzers (OSAs) along the lightpaths monitored the
power of the eight background channels, one of which was
picked as the testing channel. For each run, we measured the
BER of each testing channel using a standard coherent receiver
(Co-Rx) module that estimates the BER from the constellation
plot obtained from the sampled data. We recorded these BER
values (in logarithmic scale) as the labels of the data instances.
The BER values range from 10−14 to 10−2. For each lightpath,
we randomly changed the number of background channels (by
configuring the three I/O blocks), the power of the background
channels, and the position of the testing channel to emulate
various network conditions. Note that, we measured the BER
with respect to different values of the launch power and chose a
range that shows the impact of nonlinear effects. We processed
the OPM data to generate 2400 data instances for each of the
inter-domain paths. Each data instance has three input features,
including i) the average power of the background channels, ii)
the position of the testing channel, and iii) the number of active
background channels. Table. 1 summarizes the description of
the simulation setup in the VPI simulator.

To cover various network scenarios, we performed three dif-
ferent case studies, i.e., knowledge transferring between QoT

estimation tasks for lightpaths i) traversing different numbers
of nodes, ii) adopting different modulation formats, and iii) con-
fronting different device conditions [emulated by introducing a
total of 2 dB attenuation or different gain tilts for the amplifiers
in the domains]. Here, we denote gain tilts applied to the ampli-
fiers in domain one and domain two as g1 and g2, respectively.
Specifically, for g1, we varied the gains on the eight channel
frequencies in each amplifier from 15.5 to 22.5 dB with a step of
0.5 dB. Whereas for g2, we considered gains ranging from 17.75
to 21.25 dB with a step of 1 dB introduced to each amplifier.

We pre-trained a QoT estimator built with a neural network
of three fully-connected layers (20 neurons in each layer) for
the three-node lightpath with 4-QAM modulation under the
ideal amplifier condition (0 dB attenuation and no gain tilt).
We denote the source tasks across two and three domains as
M1

S andM2
S, respectively. Table. 2 summarizes the target tasks

evaluated in different use cases. Specifically, for the lightpaths
traversing two domains, we considered two target tasksMi,1

T
andMi,2

T for each use case i: M1,1
T andM1,2

T differ fromM1
S

in only the path length, i.e., using the four-node and five-node
paths, respectively;M2,1

T andM2,2
T use the three-node and four-

node paths, respectively, with 16-QAM modulation;M3,1
T and

M3,2
T use the four-node and five-node paths, respectively, with

4-QAM modulation and a total of 2 dB attenuation introduced
to the amplifiers; M3,3

T uses the four-node path with 4-QAM
modulation and gain tilts (i.e., g1 and g2) introduced to the
amplifiers. Similarly, for lightpaths traversing three domains,
M2

S differs fromM1,3
T ,M2,3

T , andM3,4
T in the path length, the

modulation format adopted, and the level of wavelength-specific
attenuation introduced, respectively.

A. Results for Use Case 1

We first evaluated the performance of Evol-TL with M1
S and

M1,1
T . Fig. 4(a) shows the performance of Evol-TL as a function
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Table 2. Setup of the use cases.
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Case ID # Domains Source Task Target task

1
2 M1

S = [3-node, 4-QAM, 0 dB Atten.]
M1,1

T = [4-node, 4-QAM, 0 dB Atten.]

M1,2
T = [5-node, 4-QAM, 0 dB Atten.]

3 M2
S = [4-node, 4-QAM, 0 dB Atten.] M1,3

T = [5-node, 4-QAM, 0 dB Atten.]

2
2 M1

S = [3-node, 4-QAM, 0 dB Atten.]
M2,1

T = [3-node, 16-QAM, 0 dB Atten.]

M2,2
T = [4-node, 16-QAM, 0 dB Atten.]

3 M2
S = [4-node, 4-QAM, 0 dB Atten.] M2,3

T = [4-node, 16-QAM, 0 dB Atten.]

3
2 M1

S = [3-node, 4-QAM, 0 dB Atten.]

M3,1
T = [4-node, 4-QAM, 2 dB Atten.]

M3,2
T = [5-node, 4-QAM, 2 dB Atten.]

M3,3
T = [4-node, 4-QAM, g1,g2]

3 M2
S = [4-node, 4-QAM, 0 dB Atten.] M3,4

T = [5-node, 4-QAM, 2 dB Atten.]

and M. Tornatore, “An overview on application of machine learning
techniques in optical networks,” IEEE Commun. Surv. Tutor. 21, 1383–
1408 (2019).

37. F. Paolucci, A. Sgambelluri, F. Cugini, and P. Castoldi, “Network teleme-
try streaming services in SDN-based disaggregated optical networks,”
J. Light. Technol. 36, 3142–3149 (2018).

38. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” Adv. Neural Inf. Process. Syst. pp.
3320–3328 (2014).

39. J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res. 13, 281–305 (2012).

of the optimization iteration, where 150 data instances were used
(50 for training, 50 for validation, and another 50 for testing).
We can see that the optimization procedure converged at the
ninth iteration, achieving the maximum estimation accuracy of
97.5%, which is defined as 1− |Qest − Qmeas|/Qmeas (Qest and
Qmeas represent the estimated and measured QoT, respectively).
The solution of Evol-TL suggests that the optimal configuration
for the target task is transferring one hidden layer from the pre-
trained model while newly inserting three randomly initialized
layers of 26 neurons. Figs. 4(b) and (c) show the evolutions
of the training and validation losses from Evol-TL and a base-
line that performs training from scratch without using Evol-TL.
The results show that Evol-TL facilitates much lower training
and validation losses and combats overfitting even with only a
small amount of data. Whereas, a clear divergence of the valida-
tion loss from the training loss is observed when Evol-TL is not
involved. Fig. 4(d) shows the comparison of the accuracy perfor-
mance from Evol-TL and the baseline with different amounts of
training data used. It can be seen that Evol-TL can achieve an
accuracy of > 95% with only 36 new data instances. However,
without Evol-TL, the accuracy at this point is only 62.88%, and to
achieve the same accuracy performance, another 424 instances
are needed. The results indicate a 12.8× training data reduction
by Evol-TL. In Fig. 4(e), we summarize the results of the number
of required training data instances to reach the 95% accuracy
threshold and the asymptotic accuracy for the two target tasks,
where asymptotic accuracy is defined as the accuracy that can
be achieved using the full training datasets. The results show
the similar performance of Evol-TL with the two tasks, with the
asymptotic accuracies being ∼ 99%.

B. Results for Use Case 2
Next, we evaluated the performance of Evol-TL when transfer-
ring knowledge between tasks adopting different modulation
formats. Fig. 5 (a) shows the convergence process of Evol-TL
withM2,1

T , where 100 data instances were used. Similar to the
observations that can be drawn from the evaluations for use
case 1, Evol-TL converges at the tenth iteration and achieves

an accuracy of 95.9%. Based on the solution conveyed by the
best individual, a fully-connected neural network of five hidden
layers should be used, among which three are newly inserted.
Different from the optimal configuration forM1,1

T , where only
the first layer is copied from the pre-trained model, the best
configuration for M2,1

T takes two pre-trained layers. We pre-
sume that this is becauseM2,1

T is more similar toMS compared
withM1,1

T , as typically, the more similar two tasks are, the more
knowledge is useful for transferring [50]. Fig. 5 (b) shows that
the model is well fitted when Evol-TL is applied while Fig. 5
(c) indicates overfitting due to the short of training data. From
Fig. 5 (d), we can see that Evol-TL can achieve ∼ 11× reduction
in the amount of training data needed to reach the 95% accuracy
threshold. Fig. 5 (e) summarizes the results of asymptotic accu-
racy and the amount of training data required to achieve 95%
accuracy. The results show a smaller (i.e., 7×) data reduction
from Evol-TL withM2,2

T compared to that withM2,1
T . This is

because the difference betweenM2,2
T andM1

S is more signifi-
cant, which degrades the effectiveness of knowledge transfer.
For both tasks, asymptotic accuracies of > 98% can be achieved.

C. Results for Use Case 3

We evaluated the performance of Evol-TL in the case where
we transfer knowledge between the QoT models for lightpaths
confronting different device conditions. Fig. 6 (a) shows the
convergence process of Evol-TL withM3,1

T , where 50 training
data instances were used. The results show that Evol-TL derived
the best individual with an accuracy of 97.15% at the fifteenth
iteration. The solution encoded by the individual suggests that
the QoT estimator for M3,1

T should be built with one hidden
layer from the pre-trained model and three new layers of 19 neu-
rons. Again, this observation can be explained by the fact that
M3,1

T differs fromMS in both path length and device condition,
i.e., exhibiting more significant differences. Figs. 6(b) and (c)
give the comparison of training and validation losses between
Evol-TL and the baseline that learns from scratch, which show
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Fig. 4. Results for use case 1: (a) convergence process of Evol-TL withM1,1
T ; (b-c) evolutions of the training and validation losses vs

training epochs (b) with Evol-TL and (c) without Evol-TL. (number of training data instances = 50); (d) accuracy performance with
M1,1

T as a function of the size of training data set used; (e) results of required training data instances to reach above 95% accuracy
and asymptotic accuracy forM1,1

T andM1,2
T .
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Fig. 5. Results for use case 2: (a) convergence process of Evol-TL withM2,1
T ; (b-c) evolutions of the training and validation losses vs

training epochs (b) with Evol-TL and (c) without Evol-TL. (number of training data instances = 100); (d) accuracy performance with
M2,1

T as a function of the size of training data set used; (e) results of required training data instances to reach above 95% accuracy
and asymptotic accuracy forM2,1

T andM2,2
T .

trends similar to those we can observe from Figs. 4 and 5. We
plotted the accuracy performance with M3,1

T as a function of
the size of the training data set in Fig. 6(d). It can be seen that
Evol-TL can achieve a 16× reduction in the amount of train-
ing data needed for reaching the 95% accuracy threshold. We
summarize the results withM3,1

T ,M3,2
T , andM3,3

T in Fig. 6(e).

The results show that Evol-TL achieves around 11× reductions
in the amount of data required for reaching the 95% threshold
with bothM3,2

T andM3,3
T , confirming the effectiveness of the

proposed approach in confronting diversified device conditions.
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Fig. 6. Results for use case 3: (a) convergence process of Evol-TL withM3,1
T ; (b-c) evolutions of the training and validation losses vs

training epochs (b) with Evol-TL and (c) without Evol-TL. (number of training data instances = 50); (d) accuracy performance with
M3,1

T as a function of the size of training data set used; (e) results of required training data instances to reach above 95% accuracy
and asymptotic accuracy forM3,1

T ,M3,2
T andM3,3

T .

D. Scalability Studies

Finally, we performed scalability studies of Evol-TL with evalua-
tions using lightpaths traversing three domains, i.e., considering
the source task beingM2

S and tasksM1,3
T ,M2,3

T , andM3,4
T be-

ing the target tasks. Fig. 7 shows the results of the amount of
training data needed to achieve 95% accuracy and the asymp-
totic accuracies. We can see that Evol-TL can achieve training
data reductions of around 17×, 9× and 16× forM1,3

T ,M2,3
T , and

M3,4
T , respectively. For all three tasks, asymptotic accuracies of

higher than 98% can be achieved. The results show solid perfor-
mance of Evol-TL under more complex lightpath configurations,
which, to a certain extent, verifies the scalability of the proposed
approach. Meanwhile, we want to emphasize that the input
size of a multi-domain QoT estimator increases linearly with
the length of a lightpath. In an extreme case where a lightpath
traverses ten domains, the input size for the QoT estimator is
17*10 = 170 (8 bits for conveying the position of the testing chan-
nel in the one-hot form, 8 bits for representing whether each of
the eight background channels is active, and 1 bit for carrying
the average power of the background channels). On the other
hand, recent studies have demonstrated successful knowledge
transfer with similar approaches (i.e., transferring knowledge by
reusing trained weights) applied to deep neural networks with
input sizes of more than three hundred for different applications
[52, 53]. Therefore, we expect that our approach can also scale
to larger-scale multi-domain networks.

5. RELATED WORK

Recent research activities in ML-aided cognitive optical network-
ing mainly address QoT estimation, fault management, and
resource allocation tasks [12–15].

QoT estimation: In [8], Pointurier reviewed various margins
used in optical networks, i.e., unallocated margins (the differ-

ences between user demands and system capacities), system
margins (time-varying operating conditions owing to evolving
physical-layer impairments and traffic profiles) and design mar-
gins (the differences between the planned and the real QoT
values, typically, caused by inaccurate QoT estimations), and
discussed the techniques for handling these margins. In [17],
the authors developed a random forest-based classifier to pre-
dict whether the QoT of an unestablished lightpath meets the
minimum system requirements. The work in [18] evaluated
the effectiveness of different ML-aided QoT models [e.g. K-
nearest neighbors, logistic regression, support vector machine
(SVM), artificial neural networks (ANNs)] for an unestablished
lightpath. The results indicate that ANNs achieve better general-
ization with prediction accuracy of nearly 99.9% when compared
with the other models (accuraries > 90%). The authors of [19]
compared the QoT estimation models built with different ML
schemes, i.e., random forest (RF), K-nearest neighbors, and SVM,
showing that the SVM-based model achieves superior perfor-
mance. The authors of [20] studied two QoT estimator designs:
ML physical layer model (ML-PLM) and ML model (ML-M).
ML-PLM makes use of ML to learn the input parameters of the
PLM, whereas ML-M learns the QoT models directly from the
OPM data. The ML-PLM can achieve higher estimation accura-
cies but requires longer training time, while ML-M offers better
flexibility as it does not rely on prior physical layer knowledge.
In [21], the authors demonstrated a novel deep graph convo-
lutional neural network-based QoT estimator design that can
capture unseen network states (e.g., inter-core crosstalk) in op-
tical networks using multi-core fibers. Our previous work in
[22] experimentally demonstrated an alien wavelength monitor-
ing scheme in MD-EONs. Based on the proposed monitoring
scheme, an ML-aided QoT estimator design was also studied,
showing an optical-signal-to-noise ratio (OSNR) estimation error
of < 6%.
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size of training data set used. (d) results of required training data to achieve 95% accuracy and the asymptotic accuracies forM1,3
T ,

M2,3
T (c) andM3,4

T .

Fault management: In [23], Vela et al. proposed two algorithms
to detect bit-error-rate (BER) degradation and to identify the root
causes of the failures, including signal overlap, tight filtering,
gradual drift, and cyclic drift. The authors in [24] proposed an
approach, based on SVM and double exponential smoothing,
to detect and forecast optical equipment failures in an optical
network. The approach achieves a failure prediction accuracy of
> 95% according to the experimental results. In [25], Natalino et
al. developed a SVM and ANN based framework for detecting
and identifying optical jamming signal attacks. In [26], the au-
thors devised a Gaussian process classifier complemented by a
graph-based correlation heuristic to localize single-link failures
in optical networks. The results show localization accuracies
of > 91% and remarkable reductions in monitoring cost (com-
pared with the traditional schemes) from the proposed scheme.
Our previous work in [27] proposed a hybrid unsupervised and
supervised ML approach that can detect unknown-type soft
failures from a large set of unlabeled OPM data. In [28], the
authors performed an experimental study on different ML clas-
sifiers [e.g., RF, SVM, ANN] for detection and identification of
physical-layer attacks. The results reveal that the ANN-based
design can achieve the best performance, i.e., a classification
accuracy of > 99.9%. The authors of [29] proposed a dual-stage
soft-failure detection and identification framework, where only
the BER and optical power monitored by the coherent receivers
are used for failure detection at the first stage. Once an anoma-
lous sample is detected, extra digital spectrum features will be
extracted and analyzed at the second state.

Resource allocation: In [30], Suárez-Varela et al. devised a
deep reinforcement learning (DRL) scheme to manage the rout-
ing in optical transport networks with a refined representation
of network states. In [31], we proposed a cognitive routing,
modulation, and spectrum assignment (RMSA) scheme with a
modified actor-critic algorithm. The results demonstrate that
the proposed mechanism can achieve more blocking reductions

than heuristic approaches. The authors of [32] developed an
integer linear programming model assisted by an ML-based
QoT estimator for optimizing the QoT-aware RMSA problem
in EONs. In [33], the authors devised a reinforcement learning
(RL) formulation to learn effective policies for determining the
number of frequency slots to allocate in EONs. The results in-
dicate that the proposed RL approach facilitates more efficient
spectrum utilization while meeting the differentiated QoS re-
quirements. In [34], the authors proposed a DRL-based service
function chaining framework to manage the setup duration of
virtual network functions in inter-datacenter optical networks.

The aforementioned existing works mostly focus on ML de-
signs for enhanced network performance (i.e. higher QoT esti-
mation accuracy or resource efficiency), while rarely taking into
account important aspects such as data efficiency and training
overhead. These practical aspects have been attracting increas-
ing research interests lately as they impact the scalability and
feasibility of various ML approaches and applications. In [41],
Yu et al. applied an ANN-based QoT estimator design and
showed that by transferring knowledge between systems using
different modulation formats, only a small number of additional
data instances are needed to fine-tune a new QoT estimator.
Similarly, in [42], the authors demonstrated that TL can help
to significantly reduce the amount of training data and train-
ing time required in OSNR estimation tasks. The authors of
[43] investigated the accuracies achieved by active learning and
transfer learning with small numbers of training samples and
showed that the two approaches facilitate similar performance
gains. The results show comparable improvements of accuracy
can be obtained either with active learning or transfer learning.
In [44], the authors compared two types of domain adaption ap-
proaches (i.e., feature augmentation and correlation alignment)
applied to estimate the QoT of an unestablished lightpath. The
results indicate the domain adaption approaches can effectively
enhance the model accuracy in the cases when training data
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instances are rare in the target domains. The authors of [45]
made use of TL to facilitate the training of an ML model used for
predicting the spectrum defragmentation time. More recently,
we investigated the TL design for DRL applications in EONs and
proposed to train a multi-task learning agent for transferring
better-generalized knowledge across tasks [46]. Case studies
for the proposed approach with RMSA tasks under different
topologies demonstrated remarkable reductions in the number
of training steps required.

6. CONCLUSION

In this paper, we proposed an evolutionary transfer learning
design for scalable QoT estimation in MD-EONs. We inves-
tigated three use cases, i.e., knowledge transferring between
QoT estimation tasks for lightpaths with i) different numbers
of nodes, ii) different modulation formats, and iii) different de-
vice conditions. The results from the performance simulation
studies reveal that Evol-TL can reduce significantly the amount
of training data needed for the destination tasks by optimiz-
ing the neural network design and transfer learning process
with a genetic algorithm. Future research directions include:
building an MD-EON testbed and evaluating the performance
of Evol-TL with experimental data covering more diversified
network scenarios, for instance, lightpaths using different baud
rates, channel spacing, and vendor devices; adapting Evol-TL
to the service provisioning (e.g., routing and spectrum assign-
ment) and fault management (e.g., soft-failure detection and
localization) tasks in MD-EONs.
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