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POD-BASED REDUCED ORDER METHODS FOR OPTIMAL CONTROL
PROBLEMS GOVERNED BY PARAMETRIC PARTIAL DIFFERENTIAL

EQUATION WITH VARYING BOUNDARY CONTROL

MARIA STRAZZULLOa,∗, FABIO VICINIa,∗

Abstract. In this work we propose tailored model order reduction for varying boundary optimal
control problems governed by parametric partial differential equations. With varying boundary
control, we mean that a specific parameter changes where the boundary control acts on the system.
This peculiar formulation might benefit from model order reduction. Indeed, fast and reliable sim-
ulations of this model can be of utmost usefulness in many applied fields, such as geophysics and
energy engineering. However, varying boundary control features very complicated and diversified
parametric behaviour for the state and adjoint variables. The state solution, for example, changing
the boundary control parameter, might feature transport phenomena. Moreover, the problem loses
its affine structure. It is well known that classical model order reduction techniques fail in this
setting, both in accuracy and in efficiency. Thus, we propose reduced approaches inspired by the
ones used when dealing with wave-like phenomena. Indeed, we compare standard proper orthog-
onal decomposition with two tailored strategies: geometric recasting and local proper orthogonal
decomposition. Geometric recasting solves the optimization system in a reference domain simpli-
fying the problem at hand avoiding hyper-reduction, while local proper orthogonal decomposition
builds local bases to increase the accuracy of the reduced solution in very general settings (where
geometric recasting is unfeasible). We compare the various approaches on two different numerical
experiments based on geometries of increasing complexity.

1. Introduction

Parametric Optimal Control Problems (OCP(µ)s) constrained to parametric partial differential
equations (PDE(µ)s) are widely used in connection with several engineering applications, such as
geothermal and environmental analysis [18, 24, 33, 76, 79], shape optimization [25, 53] or the pre-
diction of fluid flow and transport of contaminants [12, 21, 65]. The main goal of OCP(µ)s is to
steer the expected behaviour of the PDE(µ) towards a desired configuration by means of an external
variable, called control. The control acts on the system in order to make the solution as close as
possible to the desired state through a PDE(µ)-constrained minimization problem. Each parame-
ter µ ∈ P ⊂ Rp, represents a particular configuration, physical or geometrical, of the controlled
system. For each new parameter, a different optimal solution is sought. In the aforementioned
applications, OCP(µ)s are usually related to time consuming activities where many simulations
are required in a small amount of time. This task is not practicable in real-time contexts us-
ing standard discretization techniques that feature high computational costs. For these reasons,
in recent years, the research proposed different reduced order methods (ROMs) to reduce the to-
tal computational effort needed for simulating OCP(µ)s, both at steady and time-dependent level
[22, 23, 39, 40, 43, 44, 46, 45, 55, 57, 56, 63, 66, 77, 78, 79, 82]. ROMs strategies build a low-
dimensional reduced space capable to describe the problem solutions varying with respect to µ in
a reliable and fast way. This approximation is based on the manipulation of some parametric in-
stances of the high-fidelity solution, i.e. solutions obtained by a standard discretization, in our case
the Finite Element method (FE).

In this work we focus on steady Neumann boundary optimal control problems with a geometrical
variation on the control action: the control variable plays a role on a portion of the boundary of the
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2 POD-based ROMs for vbOCP(µ)s

computational domain and this portion varies according to a specific geometric parameter µu ∈ R.
We are going to address this particular type of OCP(µ) as varying boundary OCP(µ) (vbOCP(µ)).
Despite this parametric framework can be exploited to describe complex and interesting physical
phenomena, to the best of our knowledge, this is the first time that this model is proposed. As
an example, the performances of heat exchangers can be improved by the variation of the baffle
geometries, since the heat irradiated from baffles with different lengths has significant effects on the
flow characteristics and heat transfer on the shell side [13, 85]. The variation of the baffles seen
as boundary controls on the heat exchanger, totally comply with the model at hand. As a further
example, the fluid flow inside porous fractured media is strongly influenced by the position and the
size of the intersections among the fractures in the rock matrix, thus it is important to characterize
the pressure field on each fracture changing the flow injected in the fracture intersections of different
length [11, 73]. Fractures moving and intersecting are a natural extension of vbOCP(µ)s.

In literature, ROMs for standard geometric OCP(µ) have been tackled by means of an affine
transformation able to map the desired domain to a corresponding reference shape [47, 71, 72].
However, the affinity hypothesis limits the applicability of the reduction in realistic geometrical
configurations. To overcome this problem, non-affine maps were proposed to introduce more complex
deformations, [42, 48], coupled with tailored interpolation method to recover the linearity of the
bilinear forms of the equations. In this work, we are also interested in exploiting vbOCP(µ) on
complex domains and shapes, that can hardly be recast in a reference domain. The main novelty of
this contribution relies on:

◦ the proposed vbOCP(µ) model, which describes not a single control action but a varying
control action on the boundary of the considered domain;

◦ a first experimental analysis for ROMs approaches for vbOCP(µ) based on tailored reduced
strategies inspired from the ones used in nonlinear model order reduction, i.e. geometric
recasting on a reference domain [70] and local bases generation [2, 3, 14, 26, 27, 28, 29, 34, 52].

Indeed, ROMs for vbOCP(µ) turned out to be a very difficult task, that features complex paramet-
ric behaviour, wave-like-phenomena and non-affine structure. We believe that this work is a first
step towards the applications of this model in real-life and interdisciplinary scenarios that naturally
fit the proposed framework. We analyzed several reduction techniques and we compare them with
standard proper orthogonal decomposition (POD) to propose some guidelines to deal with this pe-
culiar optimal control problem. The comparisons are performed on two numerical tests of increasing
geometrical complexity. The final goal is to provide a preliminary numerical investigation to analyze
the best approach to be used in different geometrical settings of vbOCP(µ)s.

The paper is outlined as follow. In Section 2 we present the vbOCP(µ) continuous formulation
and its high-fidelity formulation. Section 3 is devoted to introduce ROMs and the tailored reduction
techniques needed to deal with vbOCP(µ)s. In Section 4 we report the numerical tests in detail.
We first test the approaches over a simple geometry and, then, we move our investigation towards
more complex computational domains. Conclusions are reported in Section 5.

2. Problem Formulation of vbOCP(µ)s

In this section we introduce vbOCP(µ)s: i.e. varying boundary OCP(µ)s, where the geometrical
influence of the control, i.e. the portion of the boundary where the control acts, changes with
respect to a parameter. We will focus on linear equations; however, the context can be easily
generalized to other PDE(µ)s. The discussion follows the formulation presented in other works on
steady constrained optimization as [43, 44, 57]. Indeed, even if in this problem the control action is
different from standard geometrical OCP(µ)s, it totally fits the standard framework.

2.1. Continuous formulation. Let us consider the parameter µ ∈ P ⊂ Rp, p ∈ N: it represents
physical and geometrical features of the problem at hand. In our specific setting, the parameter
is of the form (µ1, . . . , µp−1, µu), where µu ∈ R determines where the boundary control is active.
We call Ω an open and bounded regular domain subset of R2. The portion of the boundary ∂Ω
where Dirichlet conditions apply is ΓD, while ΓN is the portion of ∂Ω where Neumann boundary



POD-based ROMs for vbOCP(µ)s 3

conditions are considered. The Neumann boundary is split into Γµ
C , the portion of the boundary

where the control acts, and Γµ
N , where homogeneous Neumann conditions are applied. The reason

of the dependence on µu will be clarified in what follows. Moreover, let y ∈ Yg and u ∈ U be the
state and the control variables of the following spaces

Yg = {y ∈ H1(Ω) | y = g on ΓD} and U = L2(Γµu

C ),

where g ∈ H
1
2 (ΓD) is the value related to the Dirichlet boundary condition. From now on, we will

assume g ≡ 0, without loss of generality: indeed, the non-homogeneous case can be dealt with a
lifting procedure [67]. For the sake of notation, we call Y = Y0. In order to have a meaningful
OCP(µ), we still need to define, for Ωobs ⊂ Ω, a desired state yd(µ) ∈ L2(Ωobs). We are interested
in the solution of:

min
(y,u)∈Y ×U

1
2∥y − yd(µ)∥2

L2(Ωobs) + α

2 ∥u∥2
U︸ ︷︷ ︸

J(y,u;µ)

,

constrained to a PDE(µ) of the following form

(1)



Da(µ)y = f(µ) in Ω,

y = 0 on ΓD,
∂y

∂n
= u on Γµu

C ,

∂y

∂n
= 0 on Γµu

N ,

where Da(µ) : Y → Y ∗ is a general differential operator, f(µ) ∈ L2(Ω) ⊂ Y ∗ is an external
forcing term and α > 0 is a penalization parameter for the control action. As already specified, the
boundary where the control acts changes with respect to the parameter µu, as graphically represented
in Figure 1. Namely, the parameter µu does not change the shape or the dimension of the domain
by means of an affine transformation, but influences the measure of the curves Γµu

C and Γµu

N .
Parametric geometrical boundary control was already investigated in several works, see for example

[57, 77, 78, 86], but in these cases, the geometrical parameter changes Ω := Ωµ by means of an affine
transformation. Consequently, the related portion of the boundary where the control acts varies,
but not its relative measure, as depicted in Figure 2. However, the herein problem is different:
the parameter µu changes the nature of the problems itself, considering also limit scenarios, where
Γµu

N → ∅ or Γµu

C → ∅. The setting we propose is denoted by the acronym vbOCP(µ), as already
specified.

The consequences of this framework on the parametric reduction of the model will be widely
discussed in the following sections. Let us focus on the problem formulation and the high-fidelity
approximation of it. The weak formulation of problem (1) reads: given µ ∈ P find the pair (y, u) ∈
Y × U which verifies

(2) a(y, q; µ) = c(u, q; µ) + ⟨G(µ), q⟩Y ∗,Y ∀q ∈ Y,

where the differential operator Da(µ) is represented by the bilinear form a : Y × Y → R, forcing
terms are included in G(µ) ∈ Y ∗ and, c : U × Y → R is defined by:

c(u, q; µ) :=
∫

Γµu
C

uq ds,

with q ∈ Y meant in the sense of traces.
For the sake of notation, we drop the parameter dependence from the variables. Indeed, the value
of µ ∈ P affects the optimal solution: namely, y := y(µ) and u := u(µ). We do the same for the
desired state, i.e. yd := yd(µ).

To state the well-posedness of the problem at hand, we assume that:
(a) a(·, ·; µ) is continuous and coercive;
(b) c(·, ·; µ) is continuous.
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Ω

ΓD Γ
µ∗
u

C

Γ
µ∗
u

N

Ω

ΓD Γµu

C

Γµu

N

Figure 1. Schematic representation of the computational domain and of the control action
of a vbOCP(µ) for different values of µu, say µu = µ∗

u (left) and µu = µu (right).

Ωµ∗

Γµ
∗

D Γµ
∗

C

Γµ
∗

N

Ωµ

ΓµD ΓµC

ΓµN

Figure 2. Schematic representation of the computational domain and of the control action
of a classical geometrical OCP(µ) under affine transformation for different values of µ, say
µ = µ∗ (left) and µ = µ (right).

Thanks to (a) and (b), given a parameter µ ∈ P and a control u ∈ U , the weak state equation
(2) is well-posed [67]. Moreover, combining (a) and (b) with the definition of Y and U and α > 0,
for every parametric instance, we can state the well-posedness of the following weak minimization
problem:

(3) min{J(y, u; µ) : (y, u) ∈ Y × U and (2) is verified}.

To solve (3), we rely on a Lagrangian approach, exploitable since [38, Corollary 1.3] holds under our
assumptions. Thus, let us define the adjoint variable p := p(µ) ∈ Y and the Lagrangian functional
as

L (y, u, p; µ) = J(y, u; µ) + a(y, p; µ) − c(u, p; µ) − ⟨G(µ), p⟩Y ∗,Y .

The minimizing pair (y, u) is given by the solution of the following three-equations system: given
µ ∈ P, find (y, u, p) ∈ Y × U × Y such that

(4)


DyL (y, u, p; µ)[z] = 0 ∀z ∈ Y,

DuL (y, u, p; µ)[v] = 0 ∀v ∈ U,

DpL (y, u, p; µ)[q] = 0 ∀q ∈ Y,
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which in strong form reads: for a given µ ∈ P find (y, u, p) ∈ Y × U × Y such that

(5)



yχΩobs + Da(µ)∗p = ydχΩobs in Ω,

αu − p = 0 in Γµu

C ,

Da(µ)y = f(µ) in Ω,
∂y

∂n
= u on Γµu

C ,

∂y

∂n
= ∂p

∂n
= 0 on Γµu

N ,

y = p = 0 on ΓD,

where we define Da(µ)∗ as the dual operator of Da(µ) and χΩobs is the characteristic function of
Ωobs. The first equation is called adjoint equation, the second one optimality equation and the third
one is the state equation itself. It is clear that, thanks to the equality αu = p on Γµu

C (also in this
case, we mean p in the sense of traces), system (5) can be recast in: given µ ∈ P, find the pair
(y, p) ∈ Y × Y such that

(6)



yχΩobs + Da(µ)∗p = ydχΩobs in Ω,

Da(µ)y = f(µ) in Ω,
∂y

∂n
= 1

α
p on Γµu

C ,

∂y

∂n
= ∂p

∂n
= 0 on Γµu

N ,

y = p = 0 on ΓD.

Namely, we consider only two variables and the control is recovered through a postprocessing pro-
cedure thanks to the condition αu − p = 0 on the control boundary. System (6) can be interpreted
in a weak form as follows: given µ ∈ P, find (y, p) ∈ Y × Y such that

(7)

 m(y − yd, w; µ) + a(w, p; µ) = 0 ∀w ∈ Y,

a(y, q; µ) − 1
α

c(p, q; µ) = ⟨G(µ), q⟩Y ∗,Y ∀q ∈ Y,

where m : Yobs × Yobs → R is the L2−inner product restricted to the observation domain.
In the next section, we focus on the discretized version of the problem at hand.

2.2. High-fidelity formulation. To deal with system (7), as already specified in the introduction,
we use FE as high-fidelity approximation. Let us define a conforming and regular triangulation T
on Ω. Let Y Nh = Y ∩ Xr, with

Xr = {y ∈ C0(Ω) : y|K ∈ Pr, ∀K ∈ T },

where K is an element of T and Pr is the space of polynomials of degree at most r.
Any yNh and pNh in Y Nh has a FE expansion of the form

yNh =
Nh∑
1

yiϕi, pNh =
Nh∑
1

piϕi,

where {ϕi}Nh
i=1 is a basis for Y Nh and yi, pi are (unknown) real numbers for i = 1, . . . , Nh (also in

this case, we are omitting the µ-dependence of the FE coefficients). We now perform a Galerkin
projection in the FE spaces, solving

(8)

 m(yNh − yd, w; µ) + a(w, pNh ; µ) = 0 ∀w ∈ Y Nh ,

a(yNh , q; µ) − 1
α

c(pNh , q; µ) = ⟨G(µ), q⟩Y ∗,Y ∀q ∈ Y Nh .

Algebraically, we consider Da(µ) = a(ϕj , ϕi; µ), for i, j = 1, . . . , Nh, as the stiffness matrix. More-
over, Mo(µ) is the mass matrix related to the L2-inner product over Ωobs and C(µ)ij := c(ϕj , ϕi; µ),
for i, j = 1, . . . , Nh is the control matrix that acts over Γµu

C . We denote by y ∈ RNh and p ∈ RNh
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the unknown FE vectors for state and adjoint variables respectively. The same notation is used for
the forcing term and the desired state, i.e. f = [f1, . . . , fNh ]T and yd = [y1

d, . . . , yNh

d ] with

f i :=
∫

Ω
f(µ)ϕi dx and yi

d :=
∫

Ωobs

yd(µ)ϕi dx, ∀i ∈ {1, . . . , Nh}.

The algebraic formulation of the state equation reads

(9) Da(µ)y − 1
α

C(µ)p = f,

while the adjoint equation has the following form:
(10) Mo(µ)y + Da(µ)T p = yd.

Namely, combining equations (9) and (10), finding the minimizing FE solution (yNh , pNh) ∈ Y Nh ×
Y Nh translates in solving the saddle point system

(11)
[
Mo(µ) Da(µ)T

Da(µ) − 1
α C(µ)

] [
y
p

]
=

[
yd
f

]
.

The two-equations system preserves the classical saddle point framework of optimal control problems:
indeed, it is well-known that PDE(µ) constrained optimization leads to such a peculiar structure
both at the steady level [6, 22, 32, 43, 44, 46, 56, 57] and at the time-dependent one [36, 37, 38, 74,
75, 77, 79, 78].

For the well-posedness of the presented saddle point structure, we refer the reader to [10]. We
remark that the existence and uniqueness of an optimal solution can be proved by means of Brezzi
Theorem [4, 15] as done in [57] for the three-equations system (5). Another proving strategy exploits
the Nečas-Babuška theory [54] as done in [78]. Both approaches consider the state and the adjoint
solutions in Y Nh . This is the reason why we assumed, from the very beginning, to work with the
same space for both variables.

We are now interested in studying vbOCP(µ) for several parametric instances: the high-fidelity
system is usually not suited to analyze many parameters in a small amount of time. The FE problem
suffers the high dimensionality of the optimality system, most of all when the physical phenomenon
studied needs fine mesh resolutions. Thus, in the next Sections, we introduce ROMs for vbOCP(µ).

3. Reduced Order Methods for vbOCP(µ)s

We propose ROMs as a way to reliably solve vbOCP(µ)s in a faster way. We introduce the
general ideas of this modelling strategy and then we will move towards the algorithms we use to
tackle the experiments presented in Section 4. We describe three different approaches to deal with
vbOCP(µ)s, namely:

◦ (Section 3.4) Proper Orthogonal Decomposition (POD).
◦ (Section 3.5) Local Proper Orthogonal Decomposition (L-POD).
◦ (Section 3.6) Geometric Recasting (Geo-R).

The motivations behind the use of L-POD and Geo-R are discussed in Section 3.2.

3.1. Reduced Problem Formulation. In this section we describe the basic ideas behind ROM
strategies. To make concepts clearer, we explicit the parameter dependence of the variables. Let us
consider
(12) M = {(y(µ), p(µ)) | µ ∈ P},

as the solution manifold, i.e. the set of the optimal solutions varying with respect to the parametric
instance. We here assume that M is smooth with respect to µ ∈ P. Once defined a high-fidelity
discretization, a discrete solution manifold is defined analogously as

MNh = {(yNh(µ), pNh(µ)) | µ ∈ P}.

Namely, MNh ≈ M is a reliable surrogate of M when the high-fidelity approximation is a good
representation of the the continuous model, i.e. when the mesh is fine enough. We now aim at
representing the discrete solution manifold by means of a second approximation process: the ROM
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approach. The main goal is to rely on a low-dimensional space YN ×YN ⊂ Y Nh ×Y Nh ⊂ Y ×Y , with
N ≪ Nh, to solve a smaller system but preserving a certain accuracy in terms of errors between the
reduced and the high-fidelity solution. The space YN is a linear combination of state and adjoint
snapshots, i.e. high-fidelity solutions evaluated for properly chosen values of µ ∈ P. There are
several strategies to build the reduced spaces: we postpone the description of them in the next
sections and we now assume to be provided with these reduced spaces. Indeed, once built YN × YN ,
we perform a Galerkin projection in the built low-dimensional framework to find the optimal solution
for a new parametric instance: given µ ∈ P, find (yN , pN ) ∈ YN × YN such that

(13)

 m(yN − yd, w; µ) + a(w, pN ; µ) = 0 ∀w ∈ YN ,

a(yN , q; µ) − 1
α

c(pN , q; µ) = ⟨G(µ), q⟩Y ∗,Y ∀q ∈ YN .

The projection stage is convenient when it is independent from the high-fidelity dimension Nh. To
rely on a fast ROM solution, the approach should verify an offline-online decomposition that consists
in two stages:

◦ the offline phase: the building process and the storing process. It depends on the dimension
Nh but it is performed only once;

◦ the online phase: given a new parameter, a Galerkin projection into the low-dimensional
framework is performed to provide a solution in a small amount of time.

The aforementioned division is possible only when the problem verifies the affine decomposition. In
other words, when the weak forms can be written as

(14)
m(·, ·; µ) =

Qm∑
l=1

Θl
m(µ)ml(·, ·), a(·, ·; µ) =

Qa∑
l=1

Θl
a(µ)al(·, ·),

c(·, ·; µ) =
Qc∑
l=1

Θl
c(µ)cl(·, ·), ⟨G(µ), q⟩ =

QG∑
l=1

Θl
G(µ)⟨Gl, q⟩Y ∗,Y ,

for some Qm, Qa, Qc and QG in N, with Θl
m, Θl

a, Θl
c, and Θl

G smooth real functions depending on
µ and ml(·, ·), al(·, ·), cl(·, ·) and ⟨Gl, ·⟩Y ∗,Y independent of µ. The structure (14) is necessary to
rely on an offline-online concept. In this way, in the offline stage we can assemble and store all
the µ-independent quantities together with the reduced spaces basis functions, while, in the online
phase, we compute the µ-dependent quantities for a specific parametric instance and the reduced
optimality system is assembled and solved.
In our context, this assumption does not hold. Indeed, the bilinear form c(·, ·; µ) does not admit an
affine decomposition, since the boundary integration over Γµu

C changes at each µ and it has to be
assembled for each parameter.
In order to recover the affine assumption, one can rely on several techniques, such as Empirical
Interpolation Method (EIM) or Discrete Empirical Interpolation Method (DEIM). We refer the
interested reader to [8, 20] and [35, Chapter 5]. We stress that in some of the results we are going to
present in Section 4, we exploited DEIM to guarantee offline-online decomposition and, consequently,
computational efficiency. We briefly recall DEIM process in Section 3.3.

3.2. The rational behind tailored reduced strategy for vbOCP(µ). We observe from the
numerical simulations of Section 4.1, that the solution drastically changes with respect to µu and the
problem might feature very complicated structures as transport-wave-like phenomena, i.e. moving
fronts. The detail are described in Section 4, together with the test cases.

Namely, when dealing with vbOCP(µ), standard reduced approaches may lead to inefficient
reduced solution. Indeed, vbOCP(µ)s need many basis functions to provide and accurate represen-
tation of the high-fidelity approximation. A large number of modes, combined with the non-affine
structure of the problem, translates into unbearable reduced simulations, i.e. the reduced model is
not competitive with respect to the high-fidelity one.

For this reason we decide to exploit strategies that are usually related to the field of nonlinear
manifold reduction. In the last years, many approaches have been conceived to solve this kind
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of issues and much effort has been done to develop techniques capable to decrease the number of
basis functions needed to efficiently reduce the system. They rely on pre-processed snapshots before
applying the reduction algorithm [41, 59, 58, 61, 68, 80] or on adapting the bases to the moving
features [62, 87]. Other approaches employ a transformation map of the solution in a reference
domain to avoid the nonlinear features of the solution manifold, we refer the interested reader to
[17, 59, 81] and the reference therein. These strategies have been successfully employed for advection-
dominated phenomena, most of all in a time-dependent setting.

Other strategies build local reduced basis since global structure may lead to inaccurate results if
few modes are exploited. We postpone the discussion on local ROMs to Section 3.5. Here, we report
a far from exhaustive list of useful references on the topic [2, 3, 14, 26, 27, 28, 29, 34, 52].

Moreover, we want to stress that a novel and successful research field focuses on the use of ROMs
enhanced by artificial intelligence techniques to deal with nonlinear model order reduction, the
interested reader may refer to [30, 31, 49, 69] and the reference therein.

3.3. DEIM. The DEIM approach overcomes the problem of dealing with a non-affine system, as in
our case. We follow the seminal paper [20]. We approximate the bilinear form c(·, ·, µ) applying a
projection onto a subspace of dimension NDEIM ≪ Nh. We recall that the bilinear form related to
the control is:

c(u, q; µ) =
∫

Γµu
C

uq ds =
∫

Γ0
C

χµu
uq ds,

where χµu = 1 where the control is applied and χµu = 0 elsewhere, while Γ0
C ⊂ ∂Ω is the maximum

portion of the boundary that can feature the control action. All the quantities are meant in the
sense of traces. To apply the DEIM algorithm, we consider a discrete version of χµu

, i.e. χχχµu
∈ RNh :

the FE coefficient array. The goal is to approximate the characteristic function χχχµu
as

(15) χχχµu
=

NDEIM∑
q=1

Θq(µ)zq,

with zq ∈ RNh basis vectors that do not depend on the parameter and Θq(µ) are real coefficients
for each value of the parameters. The basis vectors {zq}NDEIM

q=1 are built through a POD approach
over the evaluation of several instances of χχχµu

.
We call the basis matrix related to the DEIM approximation as

ZDEIM = [z1, . . . , zNDEIM
].

Algebraically, (15) can be written as

χχχµu
= ZDEIM Θ(µ),

where Θ(µ) = [Θ1(µ), . . . , ΘNDEIM (µ)]T is the column vector of the coefficients. To complete the
offline procedure we need to find a set of interpolation indices I ⊆ {1, . . . , Nh} which will be used in
the online phase to find the specific coefficients Θq(µ∗) for a given µ∗ ∈ P. The set I is computed
by the magic point algorithm, see e.g. [9, 51].

In the online phase, for a specific parameter µ∗, we select the NDEIM rows given by the indices
in I to determine the coefficient Θ(µ∗). Thus, defining the matrix

P = [eI1 , . . . , eINDEIM ] ∈ RNh × RNDEIM ,

where eIi ∈ RNh , eIi
j = δij and δij stays for the Kronecker delta, the vector Θ(µ) can be found

solving the following system:
PTχχχµu

= (PT ZDEIM )Θ(µ).
Namely,

χχχµu
= ZDEIM Θ(µ) = ZDEIM (PT ZDEIM )−1PTχχχµu .

Once we are provided of this representation, the affine structure of the problem is recovered and the
online-offline paradigm holds.
In the numerical results of Section 4, we will see the benefits of enhancing ROMs by DEIM technique.
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3.4. POD. We focus on the building process based on POD-Galerkin strategy. The interested
reader may refer to [16, 19, 35] for a detailed discussion on this algorithm. We here summarize the
main features of it together with its generalization to OCP(µ)s (that it is suited for vbOCP(µ), too).
We start sampling (µ1, . . . , µNmax) ∈ P and computing the related high-fidelity approximations

(yNh(µ1), . . . , yNh(µNmax) and (pNh(µ1), . . . , pNh(µNmax).

From now on, we describe the process for the state variable only, since we apply a separate POD for
the two variables: the procedure repeats for the adjoint variable, analogously.
We aim at building N < Nmax basis functions by means of snapshots manipulation, to discard
redundant information from the sampled parametric solutions.
We assume that the number of samples Nmax is large enough to well represent the solution manifold
(12). The process provides the N−dimensional reduced space Y y

N (and not YN ) that minimizes the
following quantities: √√√√ 1

Nmax

Nmax∑
i=1

min
ζN ∈Y y

N

∥yNh(µi) − ζN ∥2
Y .

To reach the minimization goal, we define the correlation matrix Cy ∈ RNmax×Nmax of state snapshots
and we solve the eigenvalue problem Cyωy

n = λy
nωy

n for 1 ≤ n ≤ Nmax, with ∥ωy
n∥Y = 1. Due to the

definition of correlation matrix, we can order the all-positive eigenvalues as λy
1 > · · · > λy

Nmax
> 0

and retain the first N eigenpairs (λy
n, ωy

n) for 1 ≤ n ≤ N . Finally, the basis are built as [35, 64], i.e.

(16) ξy
n = 1√

λy
n

Nmax∑
m=1

(ωy
n)myNh(µm), 1 ≤ n ≤ N.

The choice of Nmax and N can be made by studying the behaviour of λy
n for 1 ≤ n ≤ Nmax. Indeed,

defining as PN : Y → Y y
N the projector from Y onto Y y

N , the following relation holds [35, 64]:

(17)

√√√√ 1
Nmax

Nmax∑
i=1

∥yNh(µi) − PN (yNh(µi))∥2
Y =

√√√√ Nmax∑
i=N+1

λy
m.

Namely, a fast decay of the eigenvalue magnitude guaratees a good representation of the high-fidelity
solution with a few basis functions.
The application of the POD to the adjoint variable leads to another reduced space Y p

N . In principle,
it can be different from Y y

N and this does not guarantee the well-posedness of the problem as proposed
in Section 2.2. Thus, we need a post-processing step over the basis. We apply the aggregated space
technique to build a common space for state and adjoint, a standard approach when dealing with
OCP(µ)s, see e.g. [5, 6, 22, 32, 43, 44, 56, 57, 66] as references.
The final reduced space is of the form

YN = {(ξy
n, ξp

n), n = 1, . . . , N}.

In this way, we can define the basis matrix Q = [ξy
1 , · · · , ξy

N , ξp
1 , · · · , ξp

N ] ∈ RNh×2N and employ a
Galerkin projection over the high-fidelity quantities of (11) we stored in the offline phase, dealing
with a 4N × 4N system of the form

(18)
[
MN DT

N

DN CN

] [
yN

pN

]
=

[
ydN

fN

]
,

where MN = QT Mo(µ)Q, DN = QT Da(µ)Q, CN = QT C(µ)Q, ydN = QT ydN and fN = QT f. We
stress that if the affine decomposition holds, the high-fidelity matrices inherit the affine property
from their continuous counterpart (14) and the reduced µ-independent part of the matrices can be
stored once and for all in the offline phase.
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3.5. L-POD. To increase the accuracy of the reduced order model, the sampled solution manifold
MNh is divided into different snapshot regions and for each region a reduced model is built. The
idea of local POD is not new in literature. Indeed, building separate sets of basis functions for a
subspace of the parametric solution manifold turns out to be beneficial to reduce the dimensionality
of complicated problems. The interested reader may refer to several papers, such as [2, 3, 14, 26,
27, 28, 29, 34, 52]. Local reduced order modelling has been successfully employed in many fields of
applications, for example in cardiac models [60, 84], computational fluid dynamics and aerodynamics
[83]. The accuracy of the local bases is higher with respect to a global approach when one is dealing
with nonlinear and non-affine problems. Let us assume to have clustered the Nmax snapshots (we
postpone the discussion on how cluster them later on) in J groups. In this way, we divide MNh

in sub-regions {MNh
i }J

i=1 and we want to separately reconstruct the local solution manifolds MNh
i

for i = 1, . . . , J . The new offline phase consists in the application of the POD strategy enhanced
with aggregated spaces for each of the sub-manifold. This translates in J basis matrices Qi for
i = 1, . . . , J , that are able to locally represent the system. Indeed, the online procedure first sorts
a specific parameter, say µ∗, into a group and, then, applies the specific POD-Galerkin procedure
over the selected local space.

Algorithm 1 Pseudo-code for L-POD (Offline phase)
1: Nmax, N, τ, LIST = [Iµu

], M, i = 0, [µ1, · · · , µNmax ], J = 0 ▷ Inputs
2: for µ ∈ [µ1, · · · , µNmax ] do
3: Solve (11) and store y(µ) and p(µ)
4: end for
5: while LIST ̸= ∅ or i < M do
6: for I ∈ LIST do
7: LIST = LIST\I
8: for µu ∈ [µu1, · · · , µuNmax ] do
9: if µu ∈ I then

10: Enrich local state and adjoint covariance matrices
11: end if
12: end for
13: Solve the N−eigenvalue problem over the local covariance matrices
14: if λy

N > τ then
15: i = i + 1
16: Halve I in I1 and I2
17: LIST = LIST ∪ I1 ∪ I2
18: else
19: J = J + 1
20: Build the local N−dimensional basis (aggragated spaces)
21: Build the local reduced operators
22: end if
23: end for
24: end while

It remains to understand how to cluster the snapshots and how to sort the online parameters. In
literature, many strategies have been employed. For time dependent problems, a classical approach
is to divide the considered time interval in time windows and build a reduced space for each one
of them, as done in [14, 26, 27]. Another strategy relies on the division of the parametric space P
adaptively, see e.g. [28, 29, 34]. Last, one can use classification algorithms to cluster the snapshots
in a beneficial way, as done in [60].
We propose a tailored algorithm for this specific problems, guided by the numerical results we are
going to show in Section 4.
As we already specified in Section 3.2, the change of µu plays a crucial role in the complexity of the
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problem. Thus, our choice was to adaptively divide the geometrical parameter interval Iµu , where
µu lives. First of all, we fix a tolerance τ , a maximum value of divisions M and a basis number
N . We applied a first POD on the whole interval Iµu

for a given basis number N . If the state
eigenvalue λy

N ≥ τ , we halve Iµu
in I1

µu
and I2

µu
. We proceed analogously for the two sub-intervals.

If the criterion is verified we stop. If not, we continue halving once again the interval we are dealing
with. The procedure ends when all the intervals meet the criterion, or when Iµu is divided in M
sub-intervals. This procedure leads to a partition of the geometrical parametric interval as

Iµu
=

J⋃
i=1

Ii
µu

,

and to the creation of J reduced spaces, one for each of the sub-intervals, with J ≤ M . Summing
up, in the offline phase:

◦ we generate all the high-fidelity solutions and we apply a first POD;
◦ if the criterion over λy

N is not verified, we halve Iµu
and we separate the snapshots, conse-

quently. We perform the POD operation on each sub-interval. We iteratively repeat this
process;

◦ when we meet the criterion over λy
N for a sub-interval, we build and store the local basis

functions.
If the tolerance on the state eigenvalues is not reached, the procedure stops after a maximum number
of iterations.
In the online phase, it suffices to sort µ with respect to the sub-interval it belongs to. We recap the
offline procedure in Algorithm 1. We took inspiration from the time-windowed strategies presented
in [14, 26, 27] adapting them to the vbOCP(µ). We recall that the partition of Iµu

looks a natural
choice, since the transport phenomena are directly related to µu, as we will discuss in Section 4.

Remark 1. The strategy we propose is only one path one can take to build local spaces. We believe
that many different adaptive strategies, even more efficient, can be found to deal with vbOCP(µ), as
we stressed out in the beginning of this section. However, our goal is to underline the main features
of the vbOCP(µ) model as a first step towards a more complete and deeper analysis. Thus, we did
not try other techniques since such an experimental study is beyond the scope of the contribution.
Furthermore, we stress that the adaptive strategy is only related to the geometrical parameter interval
Iµu

. The extension to three-dimensional (3D) problem is natural, since the vbOCP(µ) can be rep-
resented by a characteristic function χµu

(x1, x2, x3), where xi for i = 1, 2, 3 denotes the coordinates
of the domain Ω.

3.6. Geo-R. When dealing with simple settings, it is possible to recast the problem as formulated
in [70]. The strategy, in the standard OCP(µ) framework, was already exploited in several works,
see e.g. [7, 56, 57, 77, 78]. The aim is to solve the optimality FE systems (8) and the reduced one (13)
in a reference domain Ωo := Ω(µo

u). In our case, this means to recast the problem in a framework
where the control boundary and, consequently, the Neumann boundary, are “fixed”, simplifying the
setting at hand. In the following, we indicate with Ξ̊ and Ξ the internal part and the closure of a
spatial domain Ξ, respectively.
We assume that the domain Ωo is the union of R non-overlapping subdomains Ωr

o, i.e.

(19) Ωo =
R⋃

r=1
Ωr

o with Ω̊r′

o ∩ Ω̊r̄
o = ∅ for 1 ≤ r′ < r̄ ≤ R.

The same assumption holds true for the domain Ω, i.e.

(20) Ω =
R⋃

r=1
Ωr with Ω̊r′

∩ Ω̊r̄ = ∅ for 1 ≤ r′ < r̄ ≤ R.

We want to define a piece-wise affine map Tµu
: Ωo → Ω such that Ω = Tµu

(Ωo). The map Tµu
is

made by local maps T r
µu

defined over the subdomains Ωr
o and on each subdomain T r

µu
is invertible.
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We remark the T r
µu

(Ωr
o) = Ωr. Moreover, the local maps glue continuously, namely, given a point

x ∈ Ωo:

(21) T r′

µu
(xo) = T r̄

µu
(xo) ∀xo ∈ Ωr′

o ∩ Ωr̄

o, for 1 ≤ r′ < r̄ ≤ R.

The last assumption is that the local maps are affine transformations. Indeed, for every r = 1, . . . , R
we require T r

µu
(xo) = cr(µu) + Gr(µu)xo, where cr(µu) ∈ R2 is a translation vector and Gr(µu) ∈

R2×2 is a linear transformation matrix. Once defined the map, it is clear that the continuous version
of the optimality system (7), together with the FE one (8) and the reduced one (13), can be solved
in the new reference domain after a change of variables over the integral forms using the inverse of
the local maps. We refer the reader to [70] for the details. As already specified, the main advantage
is that we work with a reference Γµo

u

C , i.e. all the snapshots are taken in a new framework where the
control boundary stays unchanged. Once the change of variable is performed, one can proceed with
standard ROM techniques, as POD. Once the map is found, after the change of variable problem
(7) becomes: given µ ∈ P, find (y, p) ∈ Y × Y such that

(22)

 m(y − yd, w; µ) + a(w, p; µ) = 0 ∀w ∈ Y,

a(y, q; µ) − 1
α

c(p, q; µ) = ⟨G(µ), q⟩Y ∗,Y ∀q ∈ Y,

where Y = H1
0 (Ωo) is this framework.

4. Numerical Results

In this section we present two different tests over different geometries. The governing PDE(µ)
is an advection-diffusion equation for both the experiments. The problem reads: given µ ∈ P, find
the pair (y, p) ∈ Y × Y such that

(23)



yχΩobs − 1
µ1

∆p − x2(1 − x2) ∂p

∂x1
= µ2χΩobs in Ω,

− 1
µ1

∆y + x2(1 − x2) ∂y

∂x1
= 0 in Ω,

1
µ1

∂y

∂n
= 0 on Γµu

N ,

1
µ1

∂p

∂n
+ x2(1 − x2)n1p = 0 on Γµu

N ,

1
µ1

∂y

∂n
= 1

α
p on Γµu

C ,

y = 1 and p = 0 on ΓD,

where (x1, x2) denotes the spatial coordinates of the domain Ω and n1 is the first component of the
outer vector to Γµu

N . We also refer to the vector of spatial coordinates as x := [x1, x2]T .
We recall that, despite the same constraint, the geometry of the test cases drastically changes. This
is the key aspect of the numerical results we are going to show: for standard and simple geometries
the problem simplifies and reference-domain-based techniques can be exploited in order to achieve
satisfactory results. This is not the case for complex geometries (nonlinear boundaries, holes...),
where these techniques can be hardly applied.

4.1. Test Case 1: POD, L-POD and Geo-R over a standard geometry. We propose a
vbOCP(µ) governed by (23) with two physical parameters and the control boundary that changes
with respect to µu, as depicted in Figure 3. The observation domain is Ωobs = Ω3 ∪ Ω4 where
Ω3 = [1, 2] × [0.8, 1], Ω4 = [1, 2] × [0, 0.2], while Ω1 is the unit square and Ω2 = [1, 2] × [0.2, 0.8].
The control acts on the boundary Γµu

C = ([1 + µu, 2] × {0}) ∪ ([1 + µu, 2] × {1}). Also the portion
of the domain where Neumann boundary conditions are applied changes with respect to µu: Γµu

N =
([1, 1 + µu) × {0}) ∪ ([1, 1 + µu) × {1}) ∪ ({2} × [0, 2]).

The parameter is µ := (µ1, µ2, µu) ∈ P = (6.0, 20.0) × (0.5, 3.0) × (0.0, 1.0), where µ1 is related
to the Péclet number, µ2 describes the constant desired state we want to reach in Ωobs and µu,
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Ω1 Ω2

Ω3

Ω4

ΓD

Γµu

C

Γµu

N

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Ω1 Ω2

Ω3

Ω4

ΓD

Γµu

C

Γµu

N

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Figure 3. (Test 1). Domain Ω. Observation domain: Ωobs = Ω3 ∪ Ω4, Control domain:
Γµu

C (red dashed line). Blue solid line: Dirichlet boundary conditions. Black dotted line:
Neumann boundary conditions. We represent the domain for µu = 0.3 (left) and µu = 0.7
(right).
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Figure 4. (Test 1: POD). Left. Averaged relative log-error for the two variables. Right.
Decay of the eigenvalues for the two variables.

as already specified, changes the boundary portion where the control acts. In analogy with the
numerical results shown in [44, 57, 77, 78], we choose α = 0.07. We now describe the performances
of standard POD.

First of all, we recover the affine decomposition through a DEIM approach applied to a training
set of 350 uniformly distributed parameters. The method stops when the DEIM approximation is
a good representation of the actual problem (the stopping criterion over the eigenvalue decay is set
to be lower then 10−5 and leads to NDEIM = 80). Thus, a standard POD is performed on other
300 snapshots picked by means of uniform distribution. The high-fidelity dimension of the P1 − P1

approximation is 2Nh = 10366. In Figure 4 (left plot) we show the averaged relative errors for the
state and the adjoint variable between the high-fidelity and reduced solutions. We plot the average
value over a testing set of 150 uniformly distributed parameters in P of the quantities

ey = ∥yNh − yN ∥Y

∥yNh∥Y
and ep = ∥pNh − pN ∥Y

∥pNh∥Y
.

We denote these averaged quantities with Ey and Ep, respectively. It is clear that, too many basis
functions are needed in order to reach acceptable values for Ey, say N = 80 to reach Ey ∼ O(10−3).
We remark that N = 80 translates in a reduced system of dimension 4N ×4N to be solved, by means
of the aggregated space technique. The adjoint error Ep takes only N = 20 to reach such a threshold.
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Figure 5. (Test 1: POD). Some high-fidelity solutions for fixed physical parameters (µ1 =
12, µ2 = 2.5) and varying µu = 0.1, 0.5, 0.99, from left to right. The state solutions and
the adjoint ones are represented on the top and on the bottom of the Figure, respectively.
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pNh for µu = 0.1
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Figure 6. (Test 1: POD). Left. State solution yNh for fixed physical parameters µ1 = 12
and µ2 = 2.5 and varying µu ∈ {0.1, 0.5, 0.99} over the segment s = [0, 2] × {0.5}. Right.
Analogous representation for the adjoint solution.

This behaviour is not unexpected if one looks at the eigenvalue decay related to the POD modes,
depicted in Figure 4 (right plot). It is clear that the POD modes are struggling in representing the
state variable, that has a slower decay of the eigenvalues with respect to the adjoint variable. The
reason is clearer if we look at Figure 5. We fix the physical parameters to µ1 = 12 and µ2 = 2.5 and
we study the behaviour of the solution with respect the “vanishing” action of the control, represented
in this case by µu ∈ {0.1, 0.5, 0.99}, from left to right. The top plots describe the state solution yNh .
Here, we can observe that changing Γµu

C causes a transportation of the temperature fields. On the
upper and lower boundaries, we see a peak due to the action of the control that heats the system.
As one can see, the peak magnitude increases and shifts from left to right. The transport issue is
verified by the left plot of Figure 6, too: it represents yNh over the segment s = [0, 2] × {0.5}. Also
in this case we fix µ1 = 12 and µ2 = 2.5 and µu ∈ {0.1, 0.5.0.99}. From the plot we see the solution
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Figure 7. (Test 1: approaches comparison). Left. Averaged relative log-error for the two
variables for all the approaches. Right. Decay of the eigenvalues for the two variables for
all the approaches.

moving and transporting itself along the x1−axis almost unchanged. This behaviour is expected for
all the points in Ω2 ∪ Ωobs. This is not the case for the adjoint solution (compare the bottom plots
of Figure 5 and the right plot of Figure 6).

Namely, letting the control boundary Γµu

C change makes the problem a very difficult task to tackle
with standard POD (and in general with ROM, as we specified in Section 3.2). This is confirmed
also from the fact that in [44, 57, 77, 78], works where the control boundary was fixed, a few basis
functions were necessary to represent the whole phenomenon. The real issue is the moving boundary.
We tried two ways to overcome this problem: (i) the L-POD and (ii) the Geo-R. In the following we
compare the results of the approaches.

4.1.1. L-POD. The L-POD approach, as specified in Section 3.5, is capable to reach more accurate
results with respect to the high-fidelity approximation. The setting is the same proposed for the
standard POD. We recall that µ := (µ1, µ2, µu) ∈ P = (6.0, 20.0)×(0.5, 3.0)×(0.0, 1.0) and α = 0.07.
Also in this case, the affine decomposition is recovered by means of a DEIM strategy applied over 350
uniformly distributed parameters. The DEIM is applied with a tolerance of 10−5 over the eigenvalue
decay and leads to 79 basis functions (this number may not coincide with the standard POD since
the 350 parameters are different with respect to the ones used in the standard POD). We stress that
the DEIM is applied globally, for all the parametric space P. We exploit Algorithm 1. We set the
maximum number of iteration M = 10 and τ = 10−3 with N = 30. We computed 300 snapshots
and they are collected in the J = 4 groups determined by the adaptive algorithm. Namely, we did
not reach the value of M and Iµu

is partitioned as follows:
Iµu = (0, 0.25] ∪ (0.25, 0.5] ∪ (0.5, 0.75] ∪ (0.75, 1).

Thanks to the application of four separate PODs, we were able to provide (locally), a faster decay
of the eigenvalues.

In the right plot of Figure 7, we show the decay of the averaged eigenvalues λ̄y
n and λ̄p

n for
n = 1, . . . , N , defined, in the setting of L-POD, as

(24) λ̄y
n = 1

J

J∑
j=1

λy
n

j and λ̄p
n = 1

J

J∑
j=1

λp
n

j .

For N = 30, the L-POD eigenvalues are two orders of magnitude smaller than the ones related to
standard POD, both for state and adjoint variables. Finally, the state eigenvalues decay is faster
for Geo-R with respect to L-POD, while the adjoint eigenvalues have an opposite behaviour. This



16 POD-based ROMs for vbOCP(µ)s

Ω1 Ωl2

Ωl3

Ωl4

Ωr2

Ωr3

Ωr4

ΓD

Γ
µo
u

C

Γ
µo
u

N

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Figure 8. (Test 1). Domain Ωo for µo
u = 0.5. Observation domain: Ωobs = Ωl

3 ∪ Ωr
3 ∪

Ωl
4 ∪ Ωr

4, Control domain: Γµo
u

C (red dashed line). Blue solid line: Dirichlet boundary
conditions. Black dotted line: Neumann boundary conditions.

reflects onto the average error over 150 uniformly distributed parameters depicted in the left plot of
Figure 7. Each µ in the online phase is sorted in the respective sub-interval and the respective POD
basis are used for the Galerkin projection. This local reconstruction gives very accurate results: for
N = 30, Ey ∼ 2 · 10−3 and Ep ∼ 2 · 10−4. We stress that the standard POD is not capable to reach
these values neither with N = 80. We postpone the comparison between the L-POD and Geo-R
relative errors in the next section.

4.1.2. Geo-R. As described in Section 3.6, we are going to solve the vbOCP(µ) in a reference domain
Ωo. We recall that in the examples usually proposed in literature, the control was “fixed” and the
geometrical parameter did not change its nature as in our case.

In Figure 8 we show the geometrical domain used in the Geo-R framework. Here, we consider,
once again, µ := (µ1, µ2, µu) ∈ P = [6.0, 20.0] × [1.0, 3.0] × (0, 1). The fixed configuration Ωo refers
to the spatial domain Ω of Figure 3 for a reference parameter µo

u = 0.5: we choose the middle point
as the most representative case.

In the Geo-R framework, a new mesh was used, thus, in this case, the high-fidelity fidelity
dimension is 2Nh = 10356. The POD is performed in the reference framework over a uniformly
distributed training set of 100 samples. Indeed, the problem is simpler and less snapshots can
be explored to reach good results. Defining the vector of coordinates in the reference domain as
xo = [xo

1, xo
2], the affine map Tµu

: Ωo → Ω is explicitly defined as follows:

(25) Tµu
(xo) = x =



xo in Ω1,[
(1 + 2(µu − 0.5))(xo

1 − 1) + 1
xo

2

]
in Ωl

i, i = 2, 3, 4,[
(1 − 2(µu − 0.5))(xo

1 − 2) + 2
xo

2

]
in Ωr

i , i = 2, 3, 4.

It is clear that the map Tµu
verifies the assumptions of Section 3.6 and thus the optimization problem

can be solved in this new reference domain with numerous benefits.
Indeed, solving the problem in Ωo allows the state eigenvalues to decay faster than those of the
standard POD, as one can see from the right plot of Figure 7. Consequently, the average relative
error is capable to reach values around 10−4 for both the variables with only N = 30 , as depicted
in the left plot of Figure 7. This result outperforms the standard POD. With respect to L-POD,
the state variable is better recovered, while L-POD better reconstructs the adjoint variable up to
N = 15: above that value, the two approaches are totally comparable.

Concluding:
◦ standard POD combined with hyper-reduction techniques is an accurate, yet time consum-

ing, way to solve vbOCP(µ)s. Indeed, a critical amount of basis functions should be used to
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Table 1. Comparison of POD, L-POD and Geo-R in terms of offline computational costs
and speed-up.

Strategy Offline Costs (time in seconds) Speed-up
POD 935.94s (DEIM ∼ 668s) 6
L-POD 1011.49s (DEIM ∼ 668s) 17
Geo-R 68.35s (NO DEIM needed) 92

recover a good representation of the high-fidelity solution. However, no issues are encoun-
tered for the adjoint variable.

◦ The L-POD helps in reaching accurate results in the online stage. The strength of this
strategy is its versatility. It can be applied to every problem one is dealing with. However,
it still relies on hyper-reduction techniques as DEIM.

◦ A valid option is to recast the problem into an affine decomposed system through Geo-R.
Indeed, it allows one to reach more accurate results in a smaller amount of time. The
drawback is related to the choice of the reference domain and of the transformation Tµu . In
our case, the choice is made a posteriori once observing the physical behaviour of the optimal
solutions. We stress that other maps and transformations can be employed. However, this
technique can be hardly applied to more complicated geometries.

Remark 2. We remark that, in our parametric setting, the Geo-R strategy is morally equivalent
to the Arbitrary Lagrangian Eulerian formulation proposed in [81]. The reference problem aligns
the wave-like phenomenon in the center of the domain and builds a low-dimensional framework
eliminating the nonlinear features of the solution manifold. For the sake of completeness, we want
to stress that we also tried the shifted-POD approach proposed in [58]. Despite the promising results
they obtain for fluid-structure interaction problems, in our specific context, the performances of the
strategy in terms of accuracy were disappointing. We noticed large errors when we studied limit
cases, i.e., µu → 0 and µu → 1. This phenomenon was possibly related to interpolation errors and
to the naive shift map we used: it aligned the peak at µu = 0.5 and extends the solution with the same
values along the shifted side. This choice was natural. Nevertheless, it creates fictitious information
on the behaviour of the solution and might compromise the accuracy of the ROM solver. For this
reason we decide not to show the results and we strongly believe that a deeper analysis of such an
approach is needed for vbOCP(µ). However, this is beyond the scope of this contribution.

We stress that the Geo-R allows an affine decomposition of the system and thus and efficient
offline-online decoupling of the process. The speed-up index, i.e. the number of reduced problem
one can perform in the time of high-fidelity solution is around 92, while for the standard POD
with N = 80, after the DEIM approximation, the speed-up index is 6. The Geo-R approach is more
convenient also with respect to the L-POD: indeed with the same value of N = 30, L-POD features a
speed-up of 17 (the DEIM approach in the online phase affects on the computational performances).
Moreover, the advantages of using Geo-R approach for simple geometries is also highlighted from
the offline computational costs, since no DEIM is needed in the recast framework. We underline
that the small offline cost is also due to the fact that only 100 snapshots are employed in the GEO-R
context. We refer the reader to Table 1 for a recap on the computational times. We stress that,
as expected, even if L-POD has larger offline costs with respect to standard POD, they are still
acceptable and lead to more accurate and faster results in the online phase.

4.2. Test Case 2: POD and L-POD over a complex geometry. Despite its capabilities, the
Geo-R approach cannot be applied in more complicated settings and it is strictly problem dependent.
Therefore, we propose here a case test where no Geo-R can be employed. This test is of interest for
real-life applications, since the vbOCP(µ)s can be related to the simulation of systems characterized
by complex geometries, as we said in the Introduction. The governing PDE(µ) is always equation
(23).
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The spatial domain is represented in Figure 9. We define Γib as the boundary of the dolphin
hole in a unit square geometry1. In this test case, Γµu

C ⊂ Γib. A homogeneous Neumann condition
is imposed on the right border of the square and Dirichlet boundary conditions are applied on
the other external boundary of the unit square domain. The parameter is µ := (µ1, µ2, µu) ∈
P = [6.0, 20.0] × [0.5, 3.0] × (0.27, 0.74). The parameter µ1 represents the Péclet number and µ2
describes the desired constant state. This time, the observation is taken all over the domain. The
parameter µu ranges from the minimum and the maximum x1 values of Γib. For this test case,
Γµu

C = ((µu, 0.74) × [0, 1]) ∩ Γib and Γµu

N = (Γib \ Γµu

C ) ∪ ({1} × [0, 1]). We set the penalization
parameter as the previous experiment: α = 0.07.

Ω

ΓD
Γ
µu
N

µu

Γ
µu
C

Γ
µu
N

Figure 9. (Test 2). Domain Ω. Observation domain: Ωobs = Ω, Control domain: Γµu
C

(red dots). Blue line: Dirichlet boundary conditions. Thin black dashed line: Neumann
boundary conditions. We represent the domain for µu = 0.33.

Let us focus on the POD performances. In order to recover the affine decomposition we exploited
a DEIM approximation over 350 uniformly distributed parameters to reach a tolerance of 10−5 for
the eigenvalue decay (i.e. 170 DEIM basis). The POD algorithm is ran over another 300 uniform
distributed snapshots. The high-fidelity system is tackled through a P1 − P1 approximation of
dimension 2Nh = 5736. Figure 10 (left plot) shows the relative errors Ey and Ep averaged over a
testing set of 150 uniformly distributed parameters in P. The complexity of the problem is visible
from the plot. Indeed, 80 basis functions are not enough to reach an accurate state representation,
with Ey ∼ 10−2. While Ep ∼ 10−3 already for N = 30. The claim is confirmed by the decay of the
eigenvalues represented in the right plot of Figure 10, which is faster for the adjoint variable.
The main features of the problem can be observed in the plots of Figure 11: we have multiple
“peaks” around the dolphin for small values of µu and they transfer from left to right for the state
variable, while the adjoint variable features a very complex behaviour. In this case, there is no
symmetry and the geometrical properties are too complex to perform Geo-R. However, we employ
L-POD also in this case. As in the previous test case, we built a global DEIM approximation to
recover the affinity assumption. As usual, we used 350 uniformly distributed parameters with the
usual tolerance of 10−5. The basis number of the DEIM approximation is 168 (different from the
standard POD since the 350 parameters for the hyper-reduction are different from the ones of the
standard POD). We run algorithm 1 with M = 10, τ = 10−3 and N = 30: the interval Iµu is divided
in J = 7 sub-intervals as

Iµu
=

J⋃
i=1

Ii
µu

,

1We are deeply thankful to the contributors who provided this specific geometry which is open access to the
following link https://fenicsproject.org/pub/data/meshes/dolfin fine.xml.

https://fenicsproject.org/pub/data/meshes/dolfinfine.xml
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Figure 10. (Test 2: POD). Left. Averaged relative log-error for the two variables. Right.
Decay of the eigenvalues for the two variables.

where I1
µu

= (0.27, 0.32875], I2
µu

= (0.32875, 0.3875], I3
µu

= (0.3875, 0.44635], I4
µu

= (0.44635, 0.505],
I5

µu
= (0.505, 0.6225], I6

µu
= (0.6225, 0.68125] and I7

µu
= (0.68125, 0.74).

Figure 11. (Test 2: POD). Some high-fidelity solutions for fixed physical parameters
(µ1 = 12, µ2 = 2.5) and varying µu ∈ {0.3, 0.5, 0.7}, from left to right. The state solutions
and the adjoint ones are represented on the top and on the bottom of the Figure, respec-
tively.
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Table 2. Comparison of POD and L-POD in terms of offline computational costs and
speed-up.

Strategy Offline Costs (time in seconds) Speed-up
POD 1844.84 (DEIM ∼ 1247s) 2
L-POD 1941.68s (DEIM ∼ 1247s) 9
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Figure 12. (Test 2: approach comparison). Left. Averaged relative log-error for the two
variables for all the approaches. Right. Decay of the eigenvalues for the two variables for
all the approaches.

Thanks to the local approach, if we look at the average eigenvalues in the right plot of Figure 12,
we can observe a better behaviour for both the variables. For this reason, the averaged errors on 150
uniformed distributed parameters is lower with respect to standard POD. With L-POD we reach
Ey ∼ 2 · 10−3 and Ep ∼ 7 · 10−5, as depicted in the left plot of Figure 12. We stress that neither
N = 80 suffices to reach these values of the relative errors. With a comparable offline phase, the
L-POD is also convenient in terms of online costs, with a speed-up around 9. The standard POD
features a speed-up of only 2 using N = 80. We stress that with comparable online costs, i.e. for
N = 30, L-POD outperforms standard POD in accuracy. We recap the computational times in
Table 2.

5. Conclusions

In this work we deal with ROM techniques to deal with vbOCP(µ)s, i.e. boundary optimal control
problems where the geometrical action of the control is related to a parameter. Namely, a specific
parameter changes the portion of the Neumann boundary where the control plays a role. To the
best of our knowledge, it is the first time that this kind of parametric optimal control problem is
investigated.

The problem turned out to be difficult to be reduced, since features very complex parametric
behaviours. Moreover, the vbOCP(µ)s does not verify the affine assumption. We recover it by
means of a DEIM algorithm when needed. Guided by the numerical results, we propose tailored
approaches inspired by classical methods used in wave-like phenomena and we compared them to
standard POD: the Geo-R and the L-POD. The advantages of such strategies have been tested on two
numerical experiments: a vbOCP(µ) over a simple geometry (where the Geo-R can be applied) and
a vbOCP(µ) over a complex one (where only L-POD can be performed and compared to standard
POD). The proposed tailored strategies outperform standard POD.
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We observe that the reduction of vbOCP(µ)s is a though task due to the transportation of
“peaks” arising for the control action. The diversity of the behaviour of snapshots does not allow a
good representation of the physical phenomenon with an acceptable number of basis functions with
standard POD technique. In simple cases, one can rely on Geo-R approximation to tackle a simpler
problem, where the control boundary is fixed and thus good performances with a smaller amount
of basis are guaranteed. Geo-R guarantees good speed-up results, due to the affine structure of the
reference problem. However the choice of the reference domain and the map Tµu is strictly problem
dependent and made a posteriori once observed the problem at hand. To overcome this limitation,
L-POD can be employed. Indeed, L-POD gives more accurate results with respect to standard POD
not paying much effort in the offline computation phase. This approach is very general and can
be applied to complicated problems characterized by high complex geometries. We stress that L-
POD still needs hyper-reduction techniques, as standard POD. However, L-POD is beneficial since
it recovers the solution variables more accurately with respect to standard POD for the same values
of N (i.e. for online comparable computational costs).

This contribution is a first step towards many further developments. A possible advance is rep-
resented by the analysis of error certification for this specific optimal control formulation. Indeed,
the problem complies with the error analysis proposed in [57] and [78], however, it suffers large
estimator values for the limit case scenarios. Thus, an investigation of a tailored certification can
be important for this particular application.
A further interesting advancement would be the analysis of 3D complex geometries. We are aware
that the adaptive L-POD strategy (even if generalizable to 3D structures) might suffer higher geo-
metrical complexity resulting in many reduced subspaces and many basis functions to deal with. We
are confident that intrusive ROM strategies enhanced by cutting-edge techniques (based on machine
learning, for example) might be helpful in this context.
Nevertheless, we believe that the present contribution paves the way to some interesting applications
in interdisciplinary fields as geophysics, faults and fractures analysis and energy engineering where
the need of fast and reliable simulations for forecast intents is daily increasing.
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[24] L. Dedè. Adaptive and reduced basis method for optimal control problems in environmental applications. PhD
thesis, Politecnico di Milano, 2008. Available at http://mox.polimi.it.

[25] M. C. Delfour and J. Zolésio. Shapes and geometries: metrics, analysis, differential calculus, and optimization,
volume 22. SIAM, Philadelphia, 2011.

[26] M. Dihlmann, M. Drohmann, and B. Haasdonk. Model reduction of parametrized evolution problems using the
reduced basis method with adaptive time partitioning. pages 156–167, 2012.

[27] M. Drohmann, B. Haasdonk, and M. Ohlberger. Adaptive reduced basis methods for nonlinear convection–
diffusion equations. In Finite Volumes for Complex Applications VI Problems & Perspectives, pages 369–377.
Springer, 2011.

[28] J. Eftang, D. Knezevic, and A. Patera. An hp certified reduced basis method for parametrized parabolic partial
differential equations. Mathematical and Computer Modelling of Dynamical Systems, 17(4):395–422, 2011.

[29] J. Eftang, A. Patera, and E. Rønquist. An hp certified reduced basis method for parametrized parabolic partial
differential equations. Lecture Notes in Computational Science and Engineering, 76 LNCSE:179–187, 2011.

[30] S. Fresca, L. Dede’, and A. Manzoni. A comprehensive deep learning-based approach to reduced order modeling
of nonlinear time-dependent parametrized pdes. Journal of Scientific Computing, 87(2), 2021.

[31] S. Fresca and A. Manzoni. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear
parametrized pdes by proper orthogonal decomposition. Computer Methods in Applied Mechanics and Engineer-
ing, 388, 2022.

[32] A. L. Gerner and K. Veroy. Certified reduced basis methods for parametrized saddle point problems. SIAM
Journal on Scientific Computing, 34(5):A2812–A2836, 2012.

[33] G. V. Grenkin, A. Y. Chebotarev, A. E. Kovtanyuk, N. D. Botkin, and K.-H. Hoffmann. Boundary optimal control
problem of complex heat transfer model. Journal of Mathematical Analysis and Applications, 433(2):1243–1260,
2016.



POD-based ROMs for vbOCP(µ)s 23

[34] B. Haasdonk, M. Dihlmann, and M. Ohlberger. A training set and multiple bases generation approach for param-
eterized model reduction based on adaptive grids in parameter space. Mathematical and Computer Modelling of
Dynamical Systems, 17(4):423–442, 2011.

[35] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for parametrized partial differential
equations. SpringerBriefs in Mathematics, 2015, Springer, Milano.
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