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Abstract

Point cloud processing is a crucial task in the field of computer vision and signal
processing. With the recent increase in 3-D sensing technology, large-scale 3-D point
clouds have become more and more available, providing a rich and comprehensive
representation of the geometry of real-world objects and scenes. However, processing
point clouds poses several challenges due to the irregular and unstructured nature of
the data, the imperfect acquisition methods and heavy memory requirements.

Feature extraction is a key challenge for point cloud processing, involving the
identification and description of important geometric and semantic features of a
point cloud. Dealing with the irregular and unstructured nature of the data makes
traditional processing techniques less effective or not applicable. Therefore, new
techniques such as geometric deep learning methods and graph-based representations
have been developed. Moreover, it has to be considered that all available techniques
able to acquire point clouds insert non-negligible noise into the data, changing the
global shape of the objects or scene. Therefore, it is particularly important design
deep learning methods able to restore the original data and to extract robust features
from noisy data. Notably, point clouds are characterized by a large amount of 3-D
points with additional attribute information, such as colors or normals to the surface.
The huge memory requirements are a critic aspect when it comes to processing
this type of data, and there has been a growing interest and necessity in founding
alternative memory-efficient data representation.

This thesis is focused on tackling and analyzing the critic aspects previously
introduced and two main themes are investigated: i) learning robust graph convolu-
tional features for point cloud processing in the presence of noise and ii) learning an
efficient and compact representation for point cloud attributes.

Regarding the first topic, a novel graph convolutional neural network is investi-
gated to learn meaningful features from raw noisy data. The focus of the research
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is to prove the suitability of the graph convolutional neural network for point cloud
processing tasks, particularly in the presence of noisy data. Moreover, the results
demonstrate the power of the proposed network for a restoration task such as denois-
ing.

Concerning the second topic, an efficient point cloud compression algorithm is
investigated to tackle the problem of memory occupation. Compression algorithms
can reduce the size of point cloud data, improving processing time and overall
performance while reducing costs associated with handling large data sets. In this
thesis, in particular the task of point cloud attribute compression is analyzed, and
a novel signal compression algorithm based on neural implicit representations is
proposed.

Overall, this thesis proposes novel deep learning-based techniques to address
some of the main challenges in point cloud processing and to improve tasks such
as denoising, surface normal estimation, and compression. The addressed problems
are usually part of a processing pipeline. For instance, denoising is typically a
pre-processing procedure used to improve downstream tasks, such classification,
segmentation or compression. The research demonstrates the power of graph con-
volutional neural networks for point cloud processing tasks and provides a new
approach for point cloud compression.
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Chapter 1

Introduction

1.1 Learning representations for point cloud process-
ing

A point cloud is an unordered set of points in 3-D coordinate system that represents
the geometry of an object or an entire scene. Each point of the cloud is defined
by its 3-D Cartesian coordinates (x, y, z) and by additional attributes such as color,
reflectance, surface normals or intensity, see few visual example in Fig. 1.1.

Fig. 1.1 Few visual example of well-known point clouds



2 Introduction

Point clouds are commonly used in computer vision, robotics, and 3-D sensing,
therefore point cloud processing is a crucial and intriguing task in the field of com-
puter vision and signal processing. In recent years, there has been a rapid increase
of 3-D sensing technology, leading to a tremendous increment in the availability of
large-scale 3-D point clouds. This type of data provides a rich and comprehensive
representation of the geometry of real-world objects and scenes, becoming an essen-
tial tool in many applications, including virtual and augmented reality, robotics, and
autonomous systems.

However, processing point clouds is not straightforward and it poses several
challenges due to the irregular nature of the data, the imperfect acquisition methods
and the large amount of data.

One of the key challenges in point cloud processing is to extract meaningful
and useful information from the raw data. This task, called feature extraction or
representation learning, involves identifying and describing important geometric
and semantic features of the point cloud, which can be used for tasks such as object
recognition, registration, and tracking. Another challenge in point cloud processing
is to deal with the irregular nature of the data, which makes traditional processing
techniques, designed for structured data such as images and videos, less effective or
not applicable. This has motivated the development of new techniques, such as deep
learning methods. There are different types of networks able to process point clouds
and they can be roughly divided into projection-based[4, 5], voxel-based [6, 7] and
point-based methods [8, 9]. Projection-based methods project points clouds into
2-D images in order to use 2-D convolutional neural networks to conduct various
analyses. Such approaches introduces some distortion and artifacts in the shape
of the point clouds, leading to sub-optimal results in several tasks. Voxel-based
methods perform a grid partition of each point cloud in order to obtain a regular 3-D
structure compatible with classic 3-D convolutional networks. Despite the inferred
regular structure, the performance of such methods highly rely on the resolution
of the voxels. Furthermore, both voxel and projection based methods need a post-
processing procedure for regression tasks, since such methods do not process all the
points of the original point cloud. Instead, point-based methods directly encode the
3-D positions of raw point clouds. Recently, among this last category, graph-based
representations have emerged as a promising approach which can handle the complex
and dynamic geometry of point clouds.This type of network is able to naturally deal
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with the irregular structure of the data and able to uncover latent local and non-local
similarities.

Moreover, it has to be considered that all acquisition methods are imperfect and
insert a non-negligible amount of noise into the data, changing the global shape of
the objects or scenes. Therefore, it is of paramount importance first design deep
learning methods able to restore the original data and then methods able to extract
robust features from noisy data.

Another critical aspect of point clouds processing is the large amount of data,
characterized by 3-D positions with additional attribute information, such as colors
or normals to the surface. Therefore, point clouds can be substantial in size and
complexity, making storage, transmission, processing and rendering challenging.
However, compression algorithms can mitigate these challenges by reducing the size
of the point cloud data, improving processing time and overall performance, and
reducing costs associated with handling large data sets.

This thesis is focused on two main themes: learning robust graph convolutional
features for point cloud processing in presence of noise and learning an efficient and
compact representation for point cloud attributes.

In the first topic of this thesis, a novel powerful graph convolutional neural
network is investigated to learn meaningful features from raw data. The primary
focus of the research is to prove the suitability of such network for a restoration task
as denoising. Furthermore, the ability of the proposed method is tested in different
challenging scenarios, such in presence of outliers, and for different tasks.Thanks
to the remarkable results obtained in our research, it is possible to demonstrate that
graph convolutional neural networks are the most promising and powerful tool for
point cloud processing tasks, especially in presence of noisy data.

Concerning the second topic, an efficient point cloud compression algorithm
is investigated to tackle the problem of memory occupation. In particular, in this
thesis the task of point cloud attribute compression in analyzed and a novel signal
compression algorithm based on neural implicit representations is proposed. In
the proposed paradigm the network, that is trained to fit the desired signal, can
be interpreted as the signal itself and it is able to provide a novel and compact
representation.



4 Introduction

1.2 Thesis organization

The thesis is organized as follows.

In Chapter 2 a general background on deep neural networks is provided, with a
special interest regarding graph-convolutional neural networks and implicit neural
representations. Moreover, the point cloud processing tasks addressed throughout
the thesis are introduced, focusing on the description of the problems and the main
motivations.

Chapter 3 starts to investigate deep learning methods to extract meaningful
features from point cloud data and proposes a novel graph-convolutional architecture
to tackle the task of point cloud denoising called GPDNet [10].

In Chapter 4, an extension of GPDNet, called GPOD [11], is presented. In this
research more complex scenarios are investigated, and a unique network able to
simultaneously tackle the task of outlier removal and denoising without any prior
knowledge about the inserted noise is proposed.

In Chapter 5 the robustness and representation ability of graph convolutional
neural networks are further explored to extract geometric features in presence of
noise. In particular, the task of surface normal estimation is analyzed and a novel
network based on graph convolutional layers is proposed [12].

Following, another essential aspect for point cloud processing is analyzed: found-
ing an efficient learnable point cloud representation. In Chapter 6, the signal compres-
sion task is considered and a novel algorithm based on implicit neural representation
[13] able to compress any type of signal is presented. The methodology is then
applied to the task of point cloud attribute compression.

Finally, in Chapter 7 final conclusions are reported and open questions are
discussed.

1.3 List of publications

In this section a list of publications is presented, which represents that well represent
the outcome of the research work carried out during the PhD program:
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Chapter 2

Background

2.1 Deep Learning for Point Cloud Processing

Deep learning is a subset of machine learning that is concerned with the development
of artificial neural networks that can learn from data, and perform a wide range of
tasks such as image recognition, speech recognition, and natural language processing.
One of the main characteristics of such networks is attributed to the fact that they
are composed by multiple layers of artificial neurons, which enables them to learn
increasingly complex features of the data, as the information is processed through
each layer.

Recently, deep learning has played a significant impact on point cloud processing.
Before, point cloud processing was typically performed using traditional methods
such as geometric algorithms [14–16], feature-based methods [17–19], and template
matching [20, 21].

The first big impact of deep learning to point cloud processing is the development
of PointNet [8], which is a neural network architecture specifically designed for point
cloud data. PointNet uses a shared-weight architecture to process all points indepen-
dently, allowing it to handle unordered point sets. This architecture has been used
for various tasks such as classification, semantic segmentation and 3-D object detec-
tion. Later, few extensions of PointNet has been proposed, such PointNet++[9] that
introduces a hierarchical structure, recursively applying a PointNet-like architecture
on patches extracted from the input point cloud.
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Recently, Graph Neural Networks (GNNs) have emerged as a promising tech-
nique to process point clouds in an unordered way by using graph structures that
represent the relationships between points. GNNs have been applied to tasks such as
object classification and semantic segmentation.

Overall, deep learning has greatly improved the performance of point cloud
processing, and have achieved many state-of-the-art results for several challenging
applications.

2.1.1 Neural Networks

A neural network is a type of machine learning model that is inspired by the structure
and function of the human brain. The fundamental building block of neural networks
is the “neuron” that receives inputs, performs a simple computation on them, and
produces an output. The inputs of a neuron are multiplied by a set of weights, the
sum of these weighted inputs is then passed through an activation function, which is
used to introduce non-linearity into the network generating the output, see Fig. 2.1.

A fully-connected neural network, the simplest neural network architecture,
is composed by several layers, each constituted by multiple neurons. Each layer
takes as input the output of the previous layer and provides as output a new feature
representation of the input:

hl+1 = σ(Wl+1,T hl +bl+1), (2.1)

where hl ∈ RM is the input of the layer l + 1, Wl+1 ∈ RMxN and bl+1 ∈ RN , the
weight matrix and bias vector respectively, are the learnable parameters of layer
l +1, σ is the activation function and finally hl+1 ∈ RN is the output of layer l +1.

A key aspect of deep learning is the ability of the network to learn from data.
This learning process is performed by adjusting the weights and biases of the neurons
such that the output of the network closely matches the desired output. This process
is known as training and, specifically during the back propagation, the error between
the desired output and the prediction of the model is propagated back through the
network, and the parameters are adjusted to minimize the error.
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Fig. 2.1 Example of a single neuron with three input signals.
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Fig. 2.2 Example of a fully connected neural network with one hidden layer.

Activation function

The activation function is used to add non-linearity to the neural network, and it
is applied to the outputs of a neuron. There are many different types of activation
functions, each with their own unique properties. The most common activation
functions used in deep learning are:

• the sigmoid function: f (x) = 1
1+e−x

• the hyperbolic tangent function: tanh(x) = ex−e−x

ex+e−x

• the ReLU function: f (x) = max(0,x)

• the leaky ReLU function: f (x) = max(α ∗ x,x), where α is a small value,
typically 0.01
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The choice of activation function can have a significant impact on the performance of
the network, and different activation functions are typically used for different types
of tasks.

2.1.2 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of deep learning model that is
particularly well-suited for processing data with a grid-like structure, such images
and videos. CNNs are able to take into account the spatial structure of the input data
thanks to the convolutional layer, the core building block of the network. This allows
CNNs to learn spatial hierarchies of features, such as edges, textures, and shapes,
from the input data. Furthermore, the convolutional layers help the network to learn
a compact representation of the data that is more efficient and more robust to small
translations and distortions of the input data. Moreover, CNNs use pooling layers to
reduce the spatial dimensionality of the feature maps produced by the convolutional
layer, allowing the network to learn features at different scales.

Convolutional layer

The convolutional layer is the core of a CNN. It performs a mathematical operation
called convolution, which is a way of combining input data with a set of learnable
weights, also called filters, to produce a new set of features, called feature map. A
set of filters are learned by the network during the training process. Each filter is a
small matrix of weights of generic dimension (K,L) that is applied to a small region
of the input data, known as a receptive field, to produce a single value in the output
feature map. The operation can be defined as follow:

hl+1
i, j =

K

∑
k=0

L

∑
l=0

hi+k, j+l ∗ f ilter(k, l), (2.2)

where hi, j is the value of the input data at position (i, j), f ilter(k, l) is the value of
the filter at position (k, l) and hl+1

i, j is the value of the output feature map at position
(i, j).

At high level the operation can be seen a sliding window over the input matrix:
the filters slides over the input isolating windows of data, and linearly combines the
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Fig. 2.3 Example of a convolution operation. 5x5 input data convolved with a 3x3 filter (top
left). Computation of the element (1,1) (top right), of the element (1,2) (bottom left), of
elements (2,1) and (3,3) (bottom right).

selected elements with the filter values. See Fig. 2.3 for an example of convolution
operation.

Pooling layer

The pooling layer is another key component of CNNs. It is used to reduce the spatial
dimensions of the feature maps produced by the convolutional layers and to introduce
some degree of translation invariance. Furthermore, it is used to enlarge the receptive
filed, i.e. the region of the input that each neuron is able to “see” and interact with.
There are several types of pooling layers, the most common ones are max-pooling
and average-pooling. Max-pooling selects the maximum value from a small region
of the feature map, known as a pooling window or kernel, and uses it as the output
value for the corresponding position in the pooled feature map. Average-pooling, on
the other hand, computes the average value of the elements in the pooling window
and uses it as the output value for the corresponding position in the pooled feature
map.
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2.2 Graph Convolutional Neural Networks

In the recent years, deep neural networks have obtained astonishing results on a
large variety of problems, especially for image processing tasks, thanks to the power
of convolutional neural networks. Although, the classic convolution operation can
only be applied on data characterized by a regular structure. Therefore, it became
tremendously interesting to formulate a general definition of a convolution operation
suitable for any type of signal. In particular, there has been a growing attention
to the not straightforward problem of extending CNNs to signals that can not be
represented by regular structures or lie on non-Euclidean domains but can be easily
defined on graphs.

A graph convolution operation can be formulated over different domains, and
according to the literature two main approaches can be identified. Several methods
[22–24] exploit the frequency domain and the graph Fourier transform. To limit the
high computational costs, polynomial approximations [23] have been introduced.
Among those methods, the most noticeable one is the Graph Convolutional Network
(GCN) [24], for semi-supervised problems, such semi-supervised node classification
or semi-supervised multi class classification. To clarify, semi-supervised node
classification is defined as training a neural network with a training dataset only
partially labeled to perform node classification uncovering similarities between the
nodes of the graph. However, a critical limitation of this formulation is the inability
to generalize the learned filters, computed over the spectrum of the graph Laplacian,
to a variable graph structure.
The second class of approaches defines the graph-convolution operation in the
spatial domain. In this scenario the graph convolution is defined as a local, i.e.
computed over a neighborhood, weighted aggregation of signals. Since it is defined
at neighborhood level, this formulation is suitable for any type of signal that can be
defined over a graph, even with a variable graph structure, solving one of the crucial
limitations of spectral approaches. Several definitions are present in the literature
[25–33]. One important difference among those methods is the computation of
the weights used in the aggregation. Many [25, 26, 29] use scalar weights or
matrices that do not depend from the input data [27, 30, 31, 33]. Instead [28]
proposes edge-dependent matrices as weights, leading to build an operation with
more representational power. For the above reasons a special interest is given to the
Edge-Conditioned Convolution (ECC) [28]
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Fig. 2.4 Example of graph aggregation. The neighborhood of the node 1 is shown and the
considered edges are highlighted with colors.

2.2.1 Edge-Conditioned Convolution

In this section the Edge-Conditioned Convolution [28], a powerful spatial graph
convolutions, is described.

We consider a generic graph G = (V ,E ), with n labeled vertices and m labeled
edges. The ECC is implemented as a feed-forward neural network with lmax number
of layers and the labeling functions H l : V −→ Rdl , where dl is the dimension of
the feature vector at layer l, that associates at each vertex a feature vector, and
L : E −→ Rs, where s is the dimension of the attributes, that associates to each edge
an attribute.

As previously stated, the ECC is defined as a local weighted aggregation of
points, therefore three different aspects play an important role: the locality, i.e. the
neighborhood, the computation of the weights and the type of aggregation.

The neighborhood Nl(i) related to the node i at layer l is defined as the collection
of the adjacent nodes and the node i itself:

Nl(i) = { j; ( j, i) ∈ E } ∪ {i}. (2.3)

The aggregation for each point employed in the operation is done at neighborhood
level, so just among the signals that belong to their neighborhood. See Fig. 2.4 as
an example of neighborhood. The ECC layer operation computes the feature vector
hl+1(i) related to the ith vertex as a weighted summation of signals hl( j) ∈ Nl(i)
belonging to its neighborhood, therefore it can be applied to different structures of
graphs without any constraints.



2.2 Graph Convolutional Neural Networks 13

Another topic worthy of discussion is the delineation of the weights matrix. We
consider a filter-generating network F l

wl :Rs −→Rdl+1×dl , implemented as a multilayer
perceptron with two layers and wl learnable weights. This function takes as input
the label associated to each edge L( j, i) and estimates the matrix ΘΘΘ

l
ji:

ΘΘΘ
l
ji = F l

wl(L( j, i)) ∈ Rdl+1×dl (2.4)

The edge labeling function considered is simply the difference between the features
associated to the two nodes that the edge connects together:

L( j, i) = hl
j −hl

i, j ∈ N(i)l, (2.5)

where the vector hl
i is the feature vector of node i at lth layer. Therefore the weight

matrix is computed as:
ΘΘΘ

l
ji = F l

wl(hl
j −hl

i) (2.6)

Finally the aggregation chosen is a summation.

In conclusion, the final equation that describes the ECC is defined as:

hl+1
i =

1
|N(i)l|

σ

(
∑

j∈N(i)l

ΘΘΘ
l
jih

l
j +bl

)
, (2.7)

where σ is the activation function of the neural network, typically a ReLu function.

2.2.2 Lightweight Edge-Conditioned Convolution

In this section the lightweight Edge-Conditioned Convolution [34], a modified
version of the original Edge-Conditioned Convolution [28] conceived in the context
of image denoising, is described.

The lightweight ECC introduces some approximations to address the problems of
vanishing gradients, over-parameterization and computation cost. The Lightweight
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ECC is defined as follow:

hl+1
i = Wlhl

i + ∑
j∈N(i)l

γ
l, j→i ΘΘΘ

l
jihl

j

|N(i)l|

= Wlhl
i + ∑

j∈N(i)l

γ
l, j→i ∑

r
t=1 ω

j→i
t φφφ

j→i
t ψψψ

j→iT
t hl

j

|N(i)l|
. (2.8)

The local weighted summation is divided into two components: a self-loop part,
with matrix Wl ∈ Rdl+1×dl which is shared among all points, and a neighborhood
part, with weight matrix ΘΘΘ

l
ji that is defined by vectors φφφ

j→i
t ∈ Rdl+1 , ψψψ

j→i
t ∈ Rdl

and scalar ω
j→i

t . The parameter γ l, j→i is an edge attention term which exponentially
depends on the Euclidean distance between feature vectors:

γ
l, j→i = exp

(
−∥hl

i −hl
j∥2

2/δ

)
, (2.9)

where δ is a decay hyperparameter. This term takes inspiration from the edge
attention mechanism introduced in [35] with the purpose of stabilizing the training
procedure by giving less importance to edges between nodes with distant feature
vectors.

The weights of the neighborhood aggregation play a crucial role in the original
definition of ECC. They are implemented through a two layer fully connected
network F l

wl : Rdl −→ Rdl+1×dl , a powerful definition that unfortunately brings some
limitations.
First of all, there is the risk of over-parameterization: assuming dl+1 = dl , the number
of weights has a cubic dependence on the number of features. This tremendous
amount of parameters may lead to vanishing gradients and overfitting. To overcome
this problem a circulant approximation is proposed. The weight matrix is forced to
be composed by circulant matrices, square matrices where all the rows have the same
elements shifted to the right by one position with respect to the previous combination.
In this way the only learnable parameters are the elements of the first row of each
matrix, leading to a decrement of parameters by a factor equal to the number of
possible shifts m.
Furthermore, a non-negligible aspect is the computation complexity related to the
weights matrices. Infact, a matrix ΘΘΘ

l
ji has to be computed for each node j in the

neighborhood N(i) of each node i present in the signal. The amount of computation
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required can quickly scale with the amount of input signal, leading to prohibitive
memory requirements. Therefore, to solve this issue a low-rank approximation is
introduced. According to the singular value decomposition of a matrix, a low rank
approximation of rank r can be obtained by keeping the top, i.e. largest, r singular
values:

AAA = ΦΦΦΛΛΛΨΨΨ
T = ∑

i
λiφφφ iψψψ

T
i ≈

r

∑
i=1

λiφφφ iψψψ
T
i (2.10)

where ΦΦΦ is a m x m orthogonal matrix and its columns φφφ i are the left singular vectors
of AAA; ΨΨΨ is a n x n orthogonal matrix and its columns ψψψ i are the right singular vectors
of AAA; ΛΛΛ is a m x n diagonal matrix and its non-negative entries λi are the singular
values of AAA. Therefore the weight matrix can be defined:

ΘΘΘ
l
ji =

r

∑
t=1

ωtφφφ
j→i
t ψψψ

j→iT
t , (2.11)

where φφφ
j→i
t ∈ Rdl , ψψψ

j→i
t ∈ Rdl+1 and ωt is a scalar.

Following this new definition the F l
wl network provide as output the components ωt ,

φφφ
j→i
t , and ψψψ

j→i
t in three parallel branches. This novel implementation drastically

reduce the memory occupation, the computational cost and the number of parameters.

2.3 Implicit Neural Representations

Recently, in computer vision and graphics, the new research field of neural im-
plicit representations has emerged. There has been a growing attention in finding
alternatives to the traditional discrete signal representations and continuous implicit
functions parameterized by neural networks arose as a promising solution.

To parameterize a continuous function a simple fully-connected neural network,
i.e. a multilayer perceptron (MLP), takes a low-dimension coordinated-based input
and provides as output the desired function. Some example of applications, specif-
ically 2-D image and 3-D shape regression, are analyzed to better understand the
paradigm. In the 2-D scenario, the network learns to map the pixel coordinates of
an image (x,y) to their corresponding rgb values (r,g,b). Instead, for 3-D shape
regression, the model learns the 3-D representation of a point cloud taking as input a
generic 3D coordinate (x,y,z) and learn to map it to a binary occupancy information
(0 if the point is outside of the shape, 1 otherwise) [36]. Neural implicit representa-
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Fig. 2.5 Generic implicit neural representation. The input signal (x,y,z) is processed by a
MLP with 3 hidden layers and the results of the function f (x,y,z) is provided as output.

tions have been widely used to address 3-D processing tasks, such to represent signed
distance [37, 38], occupancy fields [39, 36] or texture fields [40]. Furthermore, they
are able to achieve state-of-the-art results on a variety of tasks, such for 3-D shape
representation, texture synthesis and view synthesis[41].

However, the biggest limitation of such networks, when not applied to 3-D
processing task, is their incapacity of modeling signals with fine details. This is
partially cause by the utilization of ReLU as activation functions. Because of the
definition of such functions, their second derivative is always zero, consequently they
are not able to model information from higher-order derivatives of signals, especially
in the case of natural images. Therefore, the simple structure of standard MLPs is not
well suited to learn high-frequency functions, and even the task of fitting a real-world
image is challenging. Recently, few works [41–43] have started to investigate the
importance of sinusoidal mapping and following researches have proven periodic
activation functions [1] or Fourier features embedding layers [44] as a key ingredient
to successfully represent high-frequency content. Throughout this dissertation, a
particular attention is given to the work of Siltzmann et al [1] and their proposed
implicit neural representations based on sinusoidal functions.
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2.3.1 Implicit Neural Representations with Period Activation
Functions

The use of periodic activation functions for implicit neural representations has been
recently proposed in [1] and their ability to represent complex natural signals and
their derivatives is demonstrated.

Implicit neural representations have showed promising results in several appli-
cations, although they are not able to learn high-frequency signal component, as
described in Sec. 2.3. Moreover, they are not capable of representing the derivatives
of the desired signal, due to the utilization of ReLU activation functions in the
networks. The second derivative associated to this activation function is always null,
preventing the model to learn information contained in higher-order derivatives. To
overcome the aforementioned limitations, a fully-connected network with periodic
activation functions, called SIREN, is proposed:

Φ(x) = Wn(φn−1 ◦φn−2 ◦ ...◦φ0)(x)+bn, (2.12)

xi → φi(xi) = sin(Wixi +bi) (2.13)

where φi : RMi → RN
i is the ith fully-connected layer, with weights Wi ∈ RNi×Mi and

biases bi ∈ RNi and xi ∈ RMi is the coordinate input.

It is interesting to observe that the derivative of a SIREN, i.e. a MLP with sine
as activation function, is still a SIREN, because the derivative of a sine function is
a cosine, that can be seen as a shifted sine. Therefore, with little supervision the
network is able to successfully learn the derivative of a signal.

Consider as a simple application the task of image fitting. The task can be defined
as learning the continuous function Φ : R2 → R3 that maps the pixel coordinates
xi = (xi,yi) to their corresponding RGB values f (xi). The network is trained with
the Mean Squared Error (MSE) loss function between the reconstructed values Φ(xi)

and the real values f (xi):

L = ∑
i
||Φ(xi)− f (xi)||2 (2.14)

In Fig. 2.6 it is possible to see the results obtained by the SIREN network compared
to other architectures with different activation functions. First, it is possible to notice
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Fig. 2.6 Comparison of several comparable implicit network architectures with different
activation functions (from left to right: ReLU, Tanh, ReLU with Positional Encoding (P.E.),
Radial basis function (RBF) with ReLU and SIREN ) trained for the task of natural image
fitting (top left: ground truth image). The second and the third rows show first- and second-
order derivatives of the function fit. Image taken from [1] paper.

that only SIREN and ReLU P.E. [41], a ReLu network with a sinusoidal positional
encoding, are able to efficiently reconstruct the desired image. Moreover, SIREN
network is the only one able to reconstruct the second derivative of the signal (last
row of Fig. 2.6). One crucial point to obtain an effective training is the initialization
scheme. The input of each sinusoidal activation has to be normally distributed with a
unitary standard deviation in order to keep stable the distribution of the output of the
activation among the network and obtain high accuracy results and good speed of
convergence.

Recalling that given an input x ∼U(−1,1), i.e. uniformly distributed between -1
and 1, the output of a simple layer with sinusoidal activation function, defined as y =
sin(wT x+b), has an acsine distribution y ∼ arcsin(−1,1). It can be demonstrated
that having a weight matrix uniformly distributed keep the distribution of subsequent
SIREN layer acsine distributed.

Overall, this research contributed to novel discoveries in the field of neural
implicit representations and proved that the proposed SIRENs are able to obtain
remarkable results in a large variety of tasks, going from the simple image fitting to
solving Poisson equations.
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2.4 Transform Coding

Transform coding is a technique used in digital signal processing and in data com-
pression to represent a signal in a different domain. The general idea is to represent
the signal in a domain where the majority of the information is stored in only few
elements or coefficients, which can be quantized, encoded and saved or transmitted
more efficiently.

Given an input sequence xn divided into N blocks, a reversible function is cho-
sen to map each block into a transform sequence yn. After applying the transform
function, it can be observed that different elements have different statistical char-
acteristics, e.g. magnitude, which reflect the signal information stored in those
elements. The transformed elements are then quantized taking into account the
different statistics and the data loss. Finally the quantized elements are encoded with
an entropy coding technique, such Huffman or arithmetic coding.

The considered transforms are linear and reversible, and for 1-D data sequence
they can be represented as:

yn =
N−1

∑
i=0

xian,i, (2.15)

xn =
N−1

∑
i=0

yibn,i, (2.16)

where yn and xn are the output and input sequence and sequence and an and bn are
the transform coefficients. Another possible representation is in the matrix form:

y = Ax, (2.17)

x = By, (2.18)

where A and B are N ×N matrices where each element is a transform coefficient.

Transform coding is typically used for image compression, therefore particular
attention is dedicated to two dimensional transforms. Given an input image Xi, j,
where the indices (i, j) refer to the (i, j)th pixel, a generic 2-D transform can be
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defined for a NxN block size:

Y = AXAT , (2.19)

X = BYBT . (2.20)

It is important to notice that such 2-D transform is separable and orthonormal. Since
the transform is separable, it can be first computed the transform along one dimension
(e.g rows) and then to the other (e.g. columns). Moreover, orthonormal matrices
have their inverse matrix equal to their transpose, and Eq. 2.20 can be re-written as:

X = AT YA. (2.21)

Therefore, orthonormal transforms are energy preserving, or lossless.
In the following sections a well-known transform commonly used in transform
coding, the Discrete Cosine Transform, and the quantization stage are better de-
scribed. Finally a representative example of a standard image compression technique
is reported.

2.4.1 Discrete Cosine Transform

The most common 2-D transform used in image compression is the Discrete Cosine
Transform (DCT), that converts data from spatial to frequency domain.

The DCT is derived from the Discrete Fourier Transform (DFT), and based on
cosines functions. The N-point 1-D DCT is defined as:

ŷk =

√
2
N

N−1

∑
n=0

Λ(k)yn cos
(

kπ

N

(
n+

1
2

))
(2.22)

and the corresponding inverse form is

yn =

√
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N
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∑
k=0

Λ(k)ŷk cos
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kπ

N

(
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1
2

))
(2.23)

where

Λ(k) =

 1√
2

if k=0

1 otherwise
(2.24)
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Therefore the orthonormal DCT basis functions are

θk,n =


√

1
N if k=0

√
2
N cos

(kπ

N

(
n+ 1

2

))
otherwise

(2.25)

One of the most interesting property of the DCT is that it separates the image into
a set of frequency components such that the low-frequency are concentrated in
the upper-left corner of the transform and the high-frequency in the lower-right
corner. This compact distribution is exploited to obtain an efficient compressed
signal representation simply removing or reducing the high-frequency components.
Notably, the DCT is the core of the JPEG standard for image compression.

2.4.2 Quantization

In transform coding, quantization is the process of mapping a continuous range of
values, obtained after the transform, to a discrete set of values. This step is used to
reduce the number of bits needed to represent the data, while still preserving enough
information to accurately reconstruct the original signal.

To enhance the compression efficiency it is important to find algorithms able to
assign different number of bits according to the amount of information stored by
each transform coefficients. Some approaches are based on known properties of the
transform, and perform the bit allocation according to estimated variances of the
coefficients, where at higher variance correspond a higher number of bits. This is
a very simple algorithm, able to provide good results. However, it is not robust to
outlier, since local variations are lost considering just the average value. To avoid
this issue it is introduced the threshold coding, where the coefficients are quantized
and saved are chosen according to a specific threshold.

2.4.3 Image Compression Standard

The algorithm developed by the Joint Photographic Experts Group (JPEG) is the
most well-known standard for lossy image compression.
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The transform used in JPEG is the DCT described in Sec. 2.4.1. The image is
divided into 8×8 blocks, each transformed following Eq.2.22.

For instance, the first 8×8 block of Lena image, converted in Ybc format, is:

162 162 162 161 162 157 163 161
162 162 162 161 162 157 163 161
162 162 162 161 162 157 163 161
162 162 162 161 162 157 163 161
162 162 162 161 162 157 163 161
164 164 158 155 161 159 159 160
160 160 163 158 160 162 159 156
159 159 155 157 158 159 156 157


The corresponding DCT coeffients are:

103∗



1.2838 0.0058 0.0029 −0.0003 0.0003 −0.0003 −0.0054 0.0066
0.0082 −0.0003 0.0007 −0.0050 0.0019 0.0032 −0.0041 0.0034
−0.0052 −0.0006 −0.0016 0.0015 −0.0007 −0.0006 0.0020 −0.0019
0.0024 0.0013 0.0016 0.0013 −0.0007 −0.0013 0.0002 0.0005
−0.0011 −0.0014 −0.0003 −0.0017 0.0017 0.0010 −0.0014 −0.0001
0.0014 0.0008 −0.0017 −0.0000 −0.0021 0.0008 0.0015 0.0007
−0.0019 −0.0001 0.0029 0.0017 0.0017 −0.0024 −0.0009 −0.0012
0.0015 −0.0001 −0.0023 −0.0017 −0.0010 0.0021 0.0004 0.0009


After the transform, each block is quantized, following a uniform mid-tread quanti-
zation:

li, j =
⌊

ŷi. j

Qi, j
+0.5

⌋
, (2.26)

where ŷi, j is the transform coefficient at the ith row and jth column and Qi, j is the
corresponding quantization step. The quantization step values are taken from a fixed
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look-at-table. Example of quantization table for the luminance part:

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


Analyzing the quantization look-at-table it is possible to observe that the quantization
step increases moving from the top-left to the bottom-right of the matrix. Recalling
that on the top-left part of the DCT coefficient matrix are stored the low-frequency
coefficients, a higher step size is applied to higher order coefficients. Consequently,
more quantization error is introduced to high-frequency (AC) coefficients rather than
to the low-frequency (DC) ones. This design decision is based on the perception
from the human visual system. In particular, humans are more sensible to errors of
low frequency coefficients.

Finally the quantized coefficients are encoded. JPEG utilizes two different type
of encoding for DC and AC coefficients, based on Huffman coding and specifically
fine tuned for this specific compression algorithm. The details of such encoding
mechanism are out of the scope of this brief introduction on the JPEG algorithm.

Overall, the JPEG standard provides a way to compress digital images while
maintaining a good balance between file size and image quality.

2.5 Point Cloud Processing Tasks

In this section some general aspects of the problems addressed in this dissertation are
analyzed. In particular, the type of data involved along with the specific processing
tasks are described.
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2.5.1 Point Clouds

A point cloud is an unordered set of 3-D points that represents the geometry of an
object or an entire scene. Point clouds can be acquired by various types of sensors,
such as cameras, range scanners, or laser scanners. The obtained point cloud is
usually represented as a set of discrete points, which can be stored in a variety
of formats, such as ASCII, binary, or PLY. One of the most common method for
acquiring point clouds is via LIDAR (Light Detection and Ranging) sensors. To
obtain the 3-D location of the points, the distance between the sensor and the point
is computed. This type of sensor emits laser pulses and measure the time it takes
to bounce back. This method allows a high precise, long-range and fast acquisition,
making it suitable for outdoor environments and mobile applications.

Another popular method exploits stereo cameras, a system of two or more
cameras that capture images of the same scene from slightly different viewpoints.
The stereo correspondence problem, i.e. finding corresponding pixels in different
images, is used to retrieve the 3-D coordinates of the points. This method is suitable
for indoor environments, and it can produce both dense and sparse point clouds,
depending on the resolution and the quality of the cameras.

A third common method uses time-of-flight (ToF) cameras, such devices measure
the time it takes for a light pulse to travel from the camera to the point and back.
ToF cameras can be used in both indoor and outdoor environments and can produce
dense point clouds, but they are highly sensitive to the lighting conditions and can
suffer from motion blur.

Finally, structured light systems can be used. They project a pattern of lights
onto the scene and capture the deformed pattern using a camera. The correlation
between the projected pattern and the captured image is used to calculate the 3-D
coordinates of the points. This method can produce dense point clouds with high
precision, but it is sensitive to the texture and reflectance of the scene.
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Fig. 2.7 Example of well-known point clouds. Cup from Shapenet dataset [2] (left) and
outdoor lidar street with multiple objects from SematicKITTI dataset [3] (right).

Thanks to the great availability of instruments able to capture this type of data and
their ability to provide an accurate representation of real world scenarios, point clouds
are becoming increasingly popular. Overall, point clouds have many applications
in autonomous driving, robotics, 3-D sensing, and medical imaging, such as 3-
D modeling, surface reconstruction, object recognition, scene understanding, and
navigation. In addition, point clouds can be used to perform various types of
geometric and photometric processing tasks, such as surface normals estimation,
surface smoothing, and texture mapping. Therefore, recently there has been a
growing interest in founding always better methods to address point cloud processing
tasks.

2.5.2 Point Cloud Denoising

The great availability of instruments, such LIDARs, able to collect point clouds is
one of the fundamental reasons of the growing interest and utilization of this type
of data. However, all the acquisition methods are imperfect and perturb the data
adding an important amount of noise and outliers to the original shape. This data
disruption negatively affect the performance of several downstream tasks, such as
surface reconstruction, object segmentation or normal estimation. Therefore, it is of
paramount importance to tackle the task of point cloud denoising.

In the literature several approaches can be found and they can be roughly di-
vided in: local surface fitting methods [45–50], sparsity-based methods [51–53],
graph-based methods [54–56], and learning-based methods [57–61]. The first three
categories are traditional methods, i.e. optimization-based. Among the first category
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there are methods quite common, like Moving Least Square [45], that progressively
fit the surface upon the noisy data. They are able to obtain good performance when
the amount of noise is limited, otherwise they often suffer of oversmoothing. Instead,
sparsity-based methods are focused on first estimating the surface normals for each
point and then adjusting the point position accordingly. The performance of such
methods are inevitably linked to the ability to estimate the normals, that is limited at
high level of noise, worsening the overall results. The last traditional-based category
has its origin in the graph theory. Those methods build a graph upon the noisy data
and then apply graph-total variation based regularization for the restoration task.
Those methods are very effective at low level of noise, although at high level the
performance are degraded by the unstable graph construction.

Recently, learning-based approaches have gained attention due to the remarkable
results obtained by deep neural networks, and especially by convolutional neural
networks in restoration tasks, such as image denoising. Although, the extension
of such techniques to point clouds is not trivial, mostly due to the fact that such
data lie on irregular domains and are permutation invariant. One of the first neural
network able to efficiently deal with point clouds is PointNet [8] conceived to tackle
classification and segmentation tasks. PointNet proposes a network that processes
each point independently and then apply a global aggregation. PointCleanNet [57] is
an extension of this work to the task of point cloud denoising and outlier removal. In
this work, two different networks are proposed, one focused on the task of outlier
removal and another able to estimate the correction vectors for the noisy points.
Other learned-based methods derived from PointNet use alternative approaches;
[60] estimates the direction to the surface of the point clouds or [58] estimated the
reference plane. Although they are able to fulfill the denoising task, all those methods
inherited some limitations from the PointNet architecture. In particular, since they
process each point independently, they are not able to exploit any of the desirable
characteristics of convolutional neural networks, like the ability to build hierarchical
features and to exploit local structures. PointCleanNet is able to overcome the last
drawback, taking as input local patches and estimate the correction vector just for
the center point, forcing to the network some local information.

Recently, in the context of point cloud classification and segmentation, graph-
convolutional neural networks [62] have emerged as a novel and promising archi-
tecture. They are based on the graph convolution, an operation naturally able to
deal with irregular domain and to exploit some of the desirable properties of tra-
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ditional convolution. Therefore, such networks have been used to address some
basic point cloud processing tasks such as classification [28], segmentation [31],
shape completion [63] and generation [64]. In particular, DGCNN [31] is the first
implementation that introduced the idea of a dynamic graph update in the hidden
layers of a graph-convolutional network. However, the denoising problem is yet to
be addresses since it is significantly different from the classification and segmen-
tation tasks that rely more on global features instead of localized representations.
Therefore, in this thesis a deep graph-convolutional neural network is proposed
to denoise the point cloud geometry. The proposed architecture is characterized
by a fully-convolutional behavior that, by design, can build hierarchies of local or
non-local features to effectively regularize the denoising problem. The method is
further extended to manage the presence of outliers, and a novel architecture able to
simultaneously removes outliers and denoises the remaining points is proposed.

2.5.3 Point Cloud Normal Estimation

The task of point cloud surface normals estimation is a fundamental problem in the
field of computer vision and 3-D sensing, which aims to estimate the orientation of
the surface normals of a point cloud having as input just the 3-D coordinates of the
input cloud. The surface normals of a point cloud are an essential information for
many geometric and photometric processing tasks, such as surface reconstruction
[65], shading [66], and denoising [55].

Principal Component Analysis (PCA) [67] is a technique widely used for di-
mensional reduction and feature extraction in various fields, and it can be used to
estimate the surface normals of a point cloud. In this scenario, the PCA is applied
to a set of local neighborhoods around each point, where the normal vectors are
estimated based on the eigenvectors of the covariance matrix of the neighborhood
points. Several extensions have been proposed with more accurate surface fitting
techniques, such jet fitting [50], moving least squares [68], and spherical fitting [47].
However, PCA-based methods are sensitive to the density of the points and highly
depend on the dimension of the chosen patch and on the level of noise.

Another class of approaches [69–71] is based on the Voronoi diagram. A Voronoi
diagram of a point cloud provides a geometric representation of the space partitioned
into regions of closest points. Such representation is exploited to estimate the local
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geometric structure of the point cloud and the surface normals of the points. These
methods are robust and efficient techniques, particularly well suited for unstructured
and noisy point cloud data. However, they have some intrinsic limitation, they highly
rely on hyper-parameters and need pre-processing steps in presence of high levels of
noise.

Recently, deep learning methods [72–76] has emerged as novel and promising
direction. Although, as we already discusses in Sec. 2.5.2, it is not straightforward
directly apply deep learning techniques to point clouds. One method is to change the
original data structure of the point cloud in order to obtain a structured representation.
In this way, standard convolutional neural networks can be used on the preprocessed
data, at the expense of the some geometric infromation. Some methods [73, 75]
adopt this approach, and exploit a local neighborhood to estimate the normal of the
center point. Boulch et al. [75] use a Hough transform to obtain a 2-D representation
of each neighborhoods, allowing to directly use 2-D CNNs at the cost of loosing
data information. Instead, Nesti-Net [73] projects the local geometry on a grid with
a multi-scale structure, techniques that improves the performance but drastically
increase the computation time. Another noticeable approach is PCPNet [72], derived
from the well-know PointNet [8] architecture. In this approach, each point of the
selected patch is processed independently and after aggregate together in order to
estimate the normal of the center point. Even if this approach does not introduce any
data loss, it is not able to build hierarchical neighborhoods.

Thanks to the astonishing performance obtained by graph-convolutional neural
networks in several tasks, they have progressively gained more attention. Therefore,
in this thesis a graph-convolutional neural network is investigated to efficiently
estimate the surface normals of point clouds.

2.5.4 Point Cloud Attribute Compression

Point cloud attribute compression is a task that aims to efficiently represent and
transmit attributes, like color information, associated to each point of a point cloud.
Point clouds are a geometric data type that recently gained popularity. They consist in
a set of 3-D coordinates along with some attributes, like color information or surface
normals associated to each point, provide additional visual information about the
scene or object. Point clouds occupy a large amounts of storage space, making them
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difficult to process and transmit efficiently. Therefore, it is particularly important to
develop models able to reduce their memory occupation.

Most of the methods available in the literature are focused on compressing 3-D
point positions instead of their attributes. Nevertheless, these attributes are critical
information to obtain high-quality rendered point clouds and have a large memory
occupation. The Moving Picture Experts Group (MPEG) is the leader of standard
point cloud compression (PCC) techniques. They propose two main approaches:
Geometric-based PCC (G-PCC) and Video-based PCC (V-PCC). The first one is
based on the original 3-D coordinates and data structure of the point clouds. Instead,
the second approach project the 3-D data over a 2-D plane in order to use classic
video compression algorithms, such HEVC.

Other geometry-based methods exploit graph transform [77–80] or the Region-
Adaptive Hierarchical Transform (RAHT) [81], a method based on an hierarchical
transform based on Haar wavelets. Among the different type of point cloud at-
tributes, the point color information is extremely important for preserving the visual
quality of point clouds and plays a big role in the data transmission and storage.
Therefore, compression of color information can significantly reduce the data size
and bandwidth requirements for transmitting point clouds over networks and also
reduce the storage space required for point clouds. Moreover, it can improve the
performance of 3-D point cloud visualization systems, especially on devices with
limited computational resources.



Chapter 3

Learning Graph-Convolutional
Representations for Point Cloud
Denoising

3.1 Introduction

This study proposes a first deep graph-convolutional neural network that can ef-
fectively denoise point cloud geometry. The network has a fully-convolutional
architecture that can construct hierarchies of local or non-local features to regularize
the denoising problem. This is different from other methods that typically work on
fixed-size patches or use global operations. The graph is dynamically computed from
the high-dimensional feature-space representations of the points, allowing for the
discovery of more complex latent correlations. Extensive experimental results show
that this approach significantly outperforms state-of-the-art methods, particularly in
high-noise conditions. It is also robust to structured noise distributions found in real
LiDAR acquisitions.

The focus of the project is the investigation of the suitability of graph-convolutional
neural networks to deal with point clouds and a first set of challenging scenarios,
such as the presence of noise, is considered.
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3.2 Proposed method

In this section the proposed Graph-convolutional Point Denoising Network (GPDNet),
i.e., a deep neural network architecture to denoise the geometry of point clouds based
on graph-convolutional layers, is presented.

3.2.1 Architecture

x+n xDN 1x1 CONV
GCONV
GRAPH
RELU
BNORM

Legend:

Fig. 3.1 GPDNet: graph-convolutional point cloud denoising network. The network takes
as input the noisy point cloud x+n and provides as output the denoised point cloud xDN .
The network first projects the noisy point cloud into a feature space by means of 1-by-1
convolutions (1x1 CONV) and then with several graph convolutional layers (GCONV) it
estimates the additive noise that is projected back into the 3-D space by a single graph-
convolutional layer. The estimated noise is finally subtracted to the noisy input and the
desired denoised point cloud is obtained.

The proposed GPDNet architecture is illustrated in Fig. 3.1. It can be seen that, at
high level, It is a residual network that addresses the easier task of estimating the
noise in the input point cloud, rather than directly cleaning the data. This design
choice is justified by the fact that it has been shown [82] in the context of image
denoising that estimating the residual is a much easier task than directly cleaning the
data.

The network is divided into three blocks: point projection, noise estimation and
output reconstruction. First, a module constituted by three single-point convolu-
tions, each followed by a batch normalization layer and a Relu activation function,
gradually project the 3-D points into an F-dimensional feature space. The first 1x1
convolutional layer maps the 3-D noisy input, x + n in Fig. 3.1, into the feature space
of dimension F1, the second layer maps the features from dimension F1 to F2 and
finally the third one to dimension F that will be kept for the rest of the network. After
that, a cascade of two residual modules is inserted. Each residual block is constituted
by three graph-convolutional layers, each followed by batch normalization and Relu
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activation function, and a skip connection to limit the vanishing gradient problem.
All the operations performed in each residual block are in the F-dimensional space.
The goal of each residual block is to gradually better estimate the additive noise
component of the input, since the network exploit the residual learning strategy.
Finally the additive noise predicted in the feature space by the residual blocks is
projected back to the 3-D space by a final graph-convolutional layer and the denoised
version of the point cloud can be obtained.

A key concept of the architecture is the graph construction. At the beginning of
each residual block the graph is computed by selecting the k nearest neighbors to each
point in terms of Euclidean distances in the feature space. This graph construction
is called “dynamic”, since it is updated throughout the network. In the proposed
architecture, the dynamic graph construction is updated after each residual block,
but shared among the graph-convolutional layers within each block to reduce the
computational complexity. The dynamic graph construction is a powerful alternative
to the most common fixed graph, where the graph is created at the beginning of
the network using the original 3-D input data. In a dynamic graph construction the
graph is computed over the similarities among the high-dimensional feature-space
representations of the data points, which enables the discovery of more complex
and subtle relationships within the data that cannot be found by analyzing the noisy
3-D space, and allows identifying non-local self-similarities. This particular graph
construction has been shown [31, 64] to uncover the similarity between data and
promote more powerful and meaningful feature representation. It is particularly
beneficial in the context of a residual denoising network because it gradually reveals
relationships that have not been previously identified. Moreover, this design choice
is superior in presence of noisy input data, otherwise the graph built on top of the
noisy data would be unstable or not optimal.

3.2.2 Graph-Convolutional layer

The graph-convolutional layer is the core of the proposed architecture. The Lightweight
ECC [34], which is a modified version of the ECC presented in [28], is considered.
The details of the operation are extensively described in Sec. 2.2.2.

The graph-convolutional layer is designed to have two inputs: a matrix hl+1 ∈
RF l×N that contains a feature vector for each of the N points in the point cloud, and
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a graph that describes the connections between the points. The output feature vectors
hl+1 ∈RF l+1×N at layer l+1 are calculated by combining the local information of the
feature vectors according to the connections described in the graph. The combination
is computed by weighting the local feature vectors based on the connections:

hl+1
i = Wlhl

i + ∑
j∈N(i)l

ΘΘΘ
l
jihl

j

|N(i)l|
,

where hl
i is the input feature vector of node i at layer l, N(i)l is the set of its neighbors,

Wl ∈RF l+1×F l
is the self-loop matrix, ΘΘΘ

l
ji ∈RF l+1×F l

is the neighbors weight matrix
of node i containing the weights associated to each point j in the neighborhood of i,
N(i)l . To have more details on the computation of ΘΘΘ

l
ji see Sec. 2.2.2.

3.2.3 Loss functions

The proposed method has a supervised setting, i.e. the ground truth is available
during the training phase, and two loss functions are considered.

First, we investigated the Mean Square Error (MSE), that compute a per point
metric between the denoised point cloud x̂ and the noiseless version x:

LMSE =
1
N

N

∑
i=1

∥x̂i −xi∥2
2, (3.1)

being N the number of points in the point cloud. This is the most natural choice in
presence of Gaussian noise.

However, in order to obtain a good denoised version of the points it is not nec-
essary to recover their exact original position, but it is sufficient to move the point
to the original surface. Therefore, the tangential component of the noise is not as
relevant as the normal one. However, the MSE alone is not able to exploit this
characteristic. To incorporate this property a regularization term that measures the
distance between the denoised points and the ground truth surface can be inserted.
This measure can be approximated by the proximity to surface metric which com-
putes the distance between the denoised point and the closest ground truth point. In
general, two point clouds can be considered close if every point of either cloud is
close to some point of the other cloud. Therefore, to measure such closeness it is
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necessary to compute all the distances from each point of a cloud to some point, i.e.
the closest, of the other, and vice-versa. In this specific scenario, it is interesting just
half of such distance. Notably, PointCleanNet [57] already investigates and uses the
measure of surface distance between clouds, although it employs both terms in the
loss function. The addition of the second term, the distance between ground truth
points from the denoised surface, is used to ensure that the denoised points do not
collapse into filament structures. Although, in the proposed work the MSE has been
experimentally found to enforce this property with better results. Therefore a novel
loss function (MSE-SP) is defined as follow:

LMSE−SP =
1
N

N

∑
i=1

[
∥x̂i −xi∥2

2 +λ min
j
∥x̂i −x j∥2

2

]
(3.2)

with λ as the regularization hyperparameter. In Eq. 3.2.3 x j is the nearest point with
respect to the reconstructed xi point in the ground truth point cloud. The proposed
regularization is able to give more importance to the normal component of the
distance because it optimize the points to be on the original surface, where more than
one position have the same the normal component but different tangent one. In the
literature other works already considered proximity to surface in the loss function,
but it provoked some undesirable outputs, like clusterization of the points resulting
in filament structures. PointCleanNet [57] to mitigate this side effect combines the
surface proximity with a dual term measuring the distance between a ground truth
point and the closest denoised point. Instead, we found that using the MSE to enforce
this property provides better results.

3.3 Experimental results

In this section an experimental evaluation against state-of-the-art approaches as well
as an analysis of the proposed technique is performed. In this section, experiments
are conducted to evaluate the proposed technique and compare it with state-of-the-art
approaches. Extensive analysis of the proposed technique are also reported.
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3.3.1 Experimental setting

The training and testing data are obtained from the ShapeNet [2] database, which
contains 3-D models of 55 object categories represented by a collection of meshes.
To use this data, the points were sampled and normalized. Specifically, 30720
uniformly distributed points are sampled from each model, and the point clouds are
scaled so that they are all the same size. More than 100000 patches, each containing
1024 points, are randomly selected from the point clouds to create the training set,
which included point clouds from all categories except for ten reserved for the test
set. The initial number of points, 30720, is chosen to potentially have 30 patches
from each point cloud and ensure a sufficiently large a variegate training set. Each
patch is created by randomly selecting a point and collecting its 1023 closest points.
The test set consisted of 100 point clouds from ten different categories:: airplane,
bench, car, chair, lamp, pillow, rifle, sofa, speaker, table. Ten models are randomly
selected from each category, and 30720 uniformly distributed points sampled from
each model. Note that since the training of GPDNet is done at patch level, any
discrepancy between the number of points used in training and testing does not affect
the performance. The network is able to generalize, and it proven by our experiments
where input of 1024 points is used in training and 30720 points in testing. Instead,
an aspect of interest is the point distribution since the network is quite sensible to its
variation between training and testing data.

GPDNet was trained using a fixed noise variance for around 700000 iterations,
with each iteration consisting of a batch size of 16. The number of features used in
all layers was 99, except for the first three single-point convolutional layers, which
had gradually increased numbers of features (33, 66, and 99). The Adam optimizer
was used with a fixed learning rate of 10−4. In terms of the graph-convolutional
implementation, the rank was set to 11 for low-rank approximation, three circulant
rows were used for constructing the circulant matrix, and a value of 10 was set for
the graph-convolutional parameter δ . During testing, the entire point cloud was used
as input and each point in the point cloud was associated with a search area in which
neighbors were identified. By default, 16 nearest neighbors were used for graph
construction unless stated otherwise.
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3.3.2 Comparisons with state-of-the-art

In this section, the proposed approach is evaluated against state-of-the-art point cloud
denoising methods. The literature review in Sec. 2.5.2 suggests that there are various
categories of point cloud denoising methods, and at least one algorithm from each
category is taken into account for the experiments. Specifically, the MLS-based
surface fitting methods, APSS [47] and RIMLS [46], are tested using the MeshLab
software [83] , while AWLOP [49] is another surface fitting method and MRPCA [53]
is a sparsity-based method, both of which are implemented using the code provided
by their respective authors. GLR [54], a graph-based method, is implemented using
the authors’ code, and PointCleanNet (PCN) [57], a recent learning-based method,
is evaluated after being retrained with additive Gaussian noise at a specific standard
deviation to ensure a fair comparison. Moreover, a modified version of DGCNN
[31] is used as an additional baseline, which replaces the segmentation head with a
single-point convolution to regress the point displacement.

The proposed method performance is evaluated using the Chamfer measure, also
known as Cloud-to-Cloud (C2C) distance, as a metric. This metric is commonly
used in point cloud denoising as it calculates the average distance between denoised
points and the original surface. The Chamfer measure is computed by finding the
mean distance between each denoised point and its closest ground truth point, and
the mean distance between each ground truth point and its closest denoised point,
then taking their average:

C2C =
1

2N

[
N

∑
i=1

min
j
∥x̂i −x j∥2

2 +
N

∑
j=1

min
i
∥x̂i −x j∥2

2

]
. (3.3)

The results of the experiments at different noise levels are reported in Table 3.1,
3.2 and 3.3. As described in Sec. 3.2.3, in the proposed network we consider two
different loss functions obtaining two versions of the proposed method, namely
GPDNet MSE and GPDNet MSE-SP.
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Table 3.1 GPDNet: Denoising results evaluated in terms of chamfer measure (×10−6), for
σ = 0.01, network with 16-NN.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPDNet GPDNet
[31] [47] [46] [49] [53] [54] [57] MSE MSE-SP

airplane 50.32 44.82 28.22 39.73 31.27 28.19 19.56 26.36 17.22 17.58
bench 48.71 38.70 26.97 32.76 34.08 32.93 20.43 27.64 19.33 19.80

car 64.34 60.47 47.73 55.56 54.21 44.33 42.22 75.34 38.09 38.14
chair 60.78 59.69 37.31 45.65 47.91 38.41 34.98 55.10 29.50 29.69
lamp 59.73 52.54 24.57 34.02 35.23 31.51 19.67 20.58 16.17 17.15

pillow 69.79 64.28 15.64 21.23 46.36 23.95 17.59 21.07 17.11 19.04
rifle 38.97 26.99 36.01 49.37 27.79 23.49 15.84 15.09 14.45 14.00
sofa 69.63 65.05 22.27 28.04 53.08 32.14 30.88 43.36 25.87 27.21

speaker 73.50 68.72 26.50 30.19 58.92 47.57 40.78 76.09 34.87 35.81
table 56.21 50.17 27.45 32.63 41.26 34.78 27.12 43.02 24.27 24.64
avg. 59.20 53.14 29.27 36.92 43.01 33.73 26.91 40.36 23.69 24.31

Table 3.2 GPDNet: Denoising results evaluated in terms of chamfer measure (×10−6), for
σ = 0.015, network with 16-NN.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPDNet GPDNet
[31] [47] [46] [49] [53] [54] [57] MSE MSE-SP

airplane 97.78 84.40 86.42 106.33 73.32 67.39 36.76 35.27 28.47 27.62
bench 94.82 64.76 75.51 91.93 82.04 70.05 32.19 30.10 28.72 26.96

car 102.23 93.43 72.56 103.52 93.38 69.88 55.92 92.23 52.92 51.77
chair 105.16 94.45 81.47 104.38 92.47 73.45 48.62 69.18 46.28 43.73
lamp 120.65 112.06 65.79 82.40 88.78 77.09 39.93 30.59 27.37 28.60

pillow 132.57 113.32 22.74 42.54 112.54 73.67 31.38 29.02 23.32 27.25
rifle 80.40 61.04 92.14 110.51 69.35 55.65 31.81 21.45 28.43 22.48
sofa 121.02 99.63 42.80 69.92 107.58 72.62 51.12 61.15 40.10 42.04

speaker 123.27 114.12 46.45 58.28 110.29 77.95 53.75 87.68 49.20 49.57
table 103.50 84.95 62.64 78.21 89.33 70.87 37.94 43.88 36.06 33.89
avg. 108.14 92.22 64.85 84.80 91.91 70.86 41.94 50.05 36.09 35.39
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Table 3.3 GPDNet: Denoising results evaluated in terms of chamfer measure (×10−6), for
σ = 0.02, network with 16-NN.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPDNet GPDNet
[31] [47] [46] [49] [53] [54] [57] MSE MSE-SP

airplane 161.79 127.44 175.68 186.24 145.94 123.71 90.55 74.17 45.96 42.30
bench 161.52 99.36 166.85 182.42 157.29 127.51 83.99 90.34 41.24 36.77

car 148.74 113.94 141.69 167.78 145.51 109.49 77.56 160.08 72.06 67.43
chair 163.75 132.91 160.01 155.38 158.12 122.70 79.85 145.56 67.91 60.16
lamp 204.05 153.02 178.08 198.22 187.31 146.41 109.24 85.31 45.21 44.60

pillow 215.58 190.32 164.83 196.53 206.14 150.65 85.86 92.84 34.47 38.58
rifle 144.18 131.91 195.68 176.07 144.22 105.87 89.19 71.57 43.07 29.55
sofa 184.11 155.51 166.34 190.91 178.93 133.98 89.31 144.72 62.58 65.06

speaker 186.01 136.72 138.80 162.34 180.45 126.17 84.37 160.26 66.57 63.40
table 168.32 115.00 171.25 179.81 162.36 125.72 78.06 102.17 50.47 44.80
avg. 173.80 135.61 165.92 179.57 166.63 127.22 86.80 112.70 52.95 49.265

The results clearly indicate that both versions of the proposed method outperform
state-of-the-art methods, particularly at medium and high levels of noise, as demon-
strated in Table 3.2 withσ = 0.015 and Table 3.3 with σ = 0.02. However, at low
noise levels, other algorithms become more competitive, and the performance gap
decreases, but the proposed method still achieves the best results in most categories,
as reported in Table 3.1. This is due to the fact that most other methods involve
surface reconstruction or normal estimation, which cannot be computed with suffi-
cient accuracy at high levels of noise, while the proposed method directly estimates
the denoised point cloud. Furthermore, it is observed that the GPDNet MSE-SP
version is particularly effective at high levels of noise, outperforming GPDNet MSE
in almost all categories, as shown in Table Table 3.3. This is due to the regularizing
effect of the surface distance component of the loss, which is especially useful at
high noise variance because it can incorporate more prior knowledge about the data.
The performance difference between the two variants decreases at low noise levels,
as shown in Table 3.1. It is important to note that DGCNN shows poor performance
for denoising tasks, as it was originally designed for classification or segmentation.
This is consistent with the results presented in the PointCleanNet paper [57] em-
phasizing the importance of the proposed method design for denoising tasks. In
particular, there are several factors that make DGCNN unsuitable for point cloud
denoising. Firstly, the spatial transformer block used in DGCNN is not appropriate
for denoising because it seeks a global representation while denoising is focused on
local representations of point neighborhoods. Moerover, it significantly increases the
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computational complexity for large point clouds. Secondly, the graph convolution
operation in DGCNN uses a max operator for aggregation, which is not stable in the
presence of noise. Thirdly, the specific graph convolution definition used in DGCNN
is less general than the one presented in this research, which allows for adaptive
filters and edge attention terms that are especially important for denoising in the
presence of noise.

Furthermore, a different metric is used to evaluate the effectiveness of our de-
noising method. Specifically, we assess whether an existing algorithm for estimating
surface normals can produce more accurate results when applied to point clouds
denoised by our method. Since surface normals are important for many applications,
evaluating their quality extracted from denoised data is a relevant way to assess a
denoiser performance. A different test set is used for this experiment, consisting
of five well-known point clouds with available ground truth normals: Armadillo,
Bunny, Column, Galera and Tortuga. For each denoising method, we compute the
unoriented normal vector for each point in the denoised point cloud and compare it
to the ground truth normals using the built-in MATLAB function based on principal
component analysis. The unoriented normal angle error (UNAE) is computed as

UNAE =
1
N

N

∑
i=1

arcos

[
1− 1

2
min

(
∥n̂i∗ −ni∥2

2,∥n̂i∗ +ni∥2
2

)]
, (3.4)

where ni is the groud-truth normal vector at xi and n̂i∗ is the estimated normal vector
at the denoised point closest to xi. Table 3.4 shows the average error over the five
test point clouds. Note that the minimum error is around six degrees, which is
attributed to the estimation error introduced by the MATLAB algorithm used for
normal estimation, as shown in the first column of Table 3.4. The proposed denoising
method, particularly the variant that only employs Mean Squared Error (MSE) as
the loss function, improves the accuracy of normal estimation and performs better
than the state-of-the-art at each noise level examined. Moreover, it is interesting to
note that machine learning-based methods are more resilient to noise than model-
based methods, as their performance deteriorates more gradually as the noise level
increases.
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Table 3.4 GPDNet: Denoising results evaluated in terms of Unoriented normal angle error
(degrees), network with 16-NN.

σ Clean Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPDNet GPDNet
[31] [47] [46] [49] [53] [54] [57] MSE MSE-SP

0.01 6.44 31.13 30.83 22.60 24.52 29.79 31.40 21.90 26.85 20.11 22.33
0.015 6.44 32.77 32.52 31.83 37.35 32.17 39.97 25.99 27.54 21.16 24.46
0.02 6.44 33.77 32.31 42.42 45.86 33.41 42.45 31.30 28.65 22.78 27.06

Fig. 3.2 displays the denoised point cloud for each method at a medium level of
noise, along with the surface distance of each point for a better understanding of the
denoised points position relative to the ground truth. The root mean square value of
the surface distance (RMSD) can be calculated as:

RMSD =

√
1
N

N

∑
i=1

min
j
∥x̂i −x j∥2

2. (3.5)

On average, both versions of the proposed method show a lower points-surface
distance, indicating that the reconstructed point cloud is closer to the original one.
Another qualitative comparison is displayed in Fig. 3.3, which shows the unoriented
normal estimation error for each denoised point. The proposed method, particularly
the version with only MSE, demonstrates lower normal estimation errors, suggesting
that the denoised point cloud is of higher quality.
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Clean DGCNN APSS

RIMLS AWLOP MRPCA

GLR PCN

GPDNet MSE GPDNet MSE-SP

Fig. 3.2 GPDNet: Denosing results for σ = 0.015, network with 16-NN. Color represents
distance to surface (red is high, blue is low). Top left to bottom right: clean point cloud,
DGCNN (RMSD = 0.0091), APSS (0.0123), RIMLS (0.0127), AWLOP (0.0106), MRPCA
(0.0096), GLR (0.0070), PointCleanNet (0.0065), GPDNet MSE (0.0060), GPDNet MSE-
SP (0.0062).
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Clean DGCNN APSS

RIMLS AWLOP MRPCA

GLR PCN

GPDNet MSE GPDNet MSE-SP

Fig. 3.3 GPDNet: Denosing results for σ = 0.015, network with 16-NN. Color represents
unoriented normal angle error (red is high, blue is low). Top left to bottom right: clean
point cloud (UNAE = 3.75◦), DGCNN (29.73◦), APSS (26.29◦), RIMLS (33.63◦), AWLOP
(29.18◦), MRPCA (37.50◦), GLR (22.08◦), PointCleanNet (23.63◦), GPDNet MSE (16.62◦),
GPDNet MSE-SP (23.11◦).
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3.3.3 Ablation studies

It is examined how GPDNet performs based on some design choices. Initially, we
analyze the effect of dynamic graph computation, which involves updating the graph
from the hidden feature space, as shown in Fig. 3.1, as opposed to constructing a
fixed graph in which neighbors are determined in the noisy 3-D space and used for
all graph-convolutional layers. Table 3.5 reveals that dynamic graph update enhances
performance due to improved neighbor selection.

Table 3.5 GPDNet: Fixed vs. Dynamic graph, for σ = 0.015, network with 8-NN.

GPDNet MSE GPDNet MSE-SP
Dynamic Fixed Dynamic Fixed

C2C (×10−6) 35.68 37.00 36.99 38.45
UNAE (degrees) 23.56 23.75 26.29 26.65

The study also investigated the effect of neighborhood size on the denoising
performance. Increasing the number of neighbors in the graph convolution operation
can capture more context and potentially denoise smooth areas in the point cloud,
but at the cost of reduced localization and increased computational complexity. This
phenomenon is similar to the results in image denoising where the optimal receptive
field size depends on the noise variance. Results in Tables 3.6 and 3.7 demonstrate
that increasing the number of neighbors is advantageous up to a point of saturation.
Furthermore, it was observed that the impact of a larger receptive field is more
significant for the GPDNet MSE-SP variant.

Table 3.6 GPDNet: Number of neighbors (Chamfer measure ×10−6).

4-NN 8-NN 16-NN 24-NN

σ = 0.01
GPDNet MSE 28.27 24.43 23.69 23.84
GPDNet MSE-SP 30.38 25.54 24.31 24.44

σ = 0.015
GPDNet MSE 40.46 35.68 36.09 36.67
GPDNet MSE-SP 46.05 36.99 35.39 35.80

σ = 0.02
GPDNet MSE 58.88 50.34 52.96 55.45
GPDNet MSE-SP 64.63 51.82 49.26 50.43
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Table 3.7 GPDNet: Number of neighbors (UNAE - degrees).

4-NN 8-NN 16-NN 24-NN

σ = 0.01
GPDNet MSE 27.22 22.51 20.11 20.89
GPDNet MSE-SP 29.04 24.10 22.33 22.16

σ = 0.015
GPDNet MSE 28.03 23.56 21.16 21.18
GPDNet MSE-SP 31.31 26.29 24.46 23.80

σ = 0.02
GPDNet MSE 31.09 25.67 22.78 22.98
GPDNet MSE-SP 32.00 28.81 27.06 26.92

3.3.4 Feature analysis

In this section, the characteristics of the receptive field are examined, which refers
to the set of points that influence the features of a specific point due to the graph
convolutional layers. In Fig. 3.4 an example of the receptive field of a single point for
the output of the graph convolutional layers of a residual block is showed. It can be
observed that the receptive field is localized in the 3-D space, and its size increases as
the number of layers increases. Moreover, since the graph is dynamically constructed
in the feature space, the points of the receptive field are not just the spatially closest
ones but also among the ones with similar shape characteristics. For example, in Fig.
3.4 the considered point is on the lower side of the chair stretcher and all the points
of the receptive field belong to the same part of the surface.

Fig. 3.4 GPDNet: Receptive field (green) and search area (black) of a point (red) for the
output of the three graph-convolutional layers of the second residual block of the network
with respect to the input of the first graph-convolutional layer in the block. Effective receptive
field size: 16, 65, 189 points.
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To better analyze this non-local property of the receptive field the radius of
the receptive field in the 3-D space is measured and compared to a fixed graph
construction where the neighbors are determined by proximity in the noisy 3-D
space. Fig. 3.5 shows the radius of the receptive field of each point at the output of a
residual block with respect to the input of the residual block. he radius is evaluated
as the 90 percentile Euclidean distance in the 3D space on the clean point cloud (90
percentile is used since the maximum might be an unstable metric). They found that
when using dynamic graph construction, the radius is only slightly larger in the first
residual block but can be significantly larger in the second one. This implies that the
feature space is building and exploiting more non-local features with patterns similar
to those observed in Fig. 3.4.

0 0.005 0.01 0.015
Receptive field radius

0

0.01

0.02

0.03

0.04

0.05

0.06

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

Dynamic graph
Fixed graph

0 0.01 0.02 0.03 0.04
Receptive field radius

0

0.01

0.02

0.03

0.04

0.05

0.06

Pe
rc

en
ta

ge
 o

f p
oi

nt
s

Dynamic graph
Fixed graph

Fig. 3.5 GPDNet: Radius of receptive field of points at the output of residual block with
respect to its input. Left: first residual block. Right: second residual block. Neighbor
selection in the noisy 3D space for fixed graph and in the feature space for dynamic graph.
Radius is measured as the 90 percentile Euclidean distance to the points in the receptive field
on the clean 3D point cloud.

3.3.5 Structured noise

To test if the proposed architecture can work on other types of noise, the network
has been trained on a simulated LiDAR dataset using the Blensor software [84]..
The simulated scanning of the Shapenet objects with a Velodyne HDL-64E scanner
includes two types of noise: a laser distance bias with Gaussian distribution and a
per-ray Gaussian noise. Both distributions have a zero-mean and a standard deviation
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of 1% of the longest side of the object bounding box. Also PointCleanNet has been
trained on the simulated data for comparison with the proposed method. The results,
shown in Table 3.8, are consistent with those obtained with white Gaussian noise,
with the proposed method outperforming PointCleanNet. RMSD is used instead of
the Chamfer measure as the metric since the points are not uniformly distributed.

Table 3.8 GPDNet: Velodyne scan structured noise evaluated in term of RMSD, network
with 8-NN.

Noisy PointCleanNet GPDNet MSE GPDNet MSE-SP

0.1447 0.0966 0.0664 0.0602

3.4 Conclusions

This work introduced a new type of neural network for denoising point clouds. The
network utilized graph-convolutional layers and was able to learn complex features
in a fully convolutional manner. The results of the experiments showed that the
proposed method outperformed existing state-of-the-art techniques and demonstrated
robustness against high levels of noise and structured noise distributions commonly
found in real-world LiDAR scans.



Chapter 4

GPOD: Graph convolutional neural
networks for robust point cloud
outlier removal and denosing

4.1 Introduction

In this research the method described in Chapter 3 is significantly expanded and
graph convolutional neural network are further investigated for restoration tasks.
First, it is considered the problem of simultaneous denoising and outlier detection
and removal instead of simple denoising of white Gaussian noise. A novel neural
network architecture able to efficiently create a shared feature space both for the
outlier detection and denoising tasks is proposed. Notably, in contrast to [10], the
denoising method is blind, and therefore it does not require variance-specific training,
creating a generic framework that can be applied to a large variety of challenging
restoration scenarios.

The main contributions of this research when compared to previous works are:

• A new architecture for improving the geometry of point cloud data that is able
to identify and remove outliers as well as denoise the remaining data points in
a single model.

• An architecture that is able to efficiently perform the denoise task without any
prior knowledge of the amount of noise.
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• A graph convolutional layer that is robust to noise and able to adapt to the data
by dynamically updating the graph.

• State-of-the-art performance in denoising point cloud data.

4.2 Proposed method

This section presents the proposed Graph-convolutional Point Outlier removal and
Denoising (GPOD) network. The goal is to create a model that can effectively
remove noise from point clouds that are impacted by both outlier and geometry noise.
First a brief overview of the system is given and then a more in-depth description of
the primary components is reported.

4.2.1 Architecture overview

x+n+o

1x1 CONV GCONV GRAPH RELU BNORMLegend:

x̂

FEATURE EXTRACTION OUTLIER
REMOVAL

DENOISING

SIGMOID SAMPLING

x+n+o

1x1 CONV GCONV GRAPH RELU BNORMLegend:

x̂

FEATURE EXTRACTION OUTLIER
REMOVAL

DENOISING

SIGMOID SAMPLING

Fig. 4.1 Graph-convolutional Point Outlier removal and Denoising (GPOD) architecture.
The network takes as input the noisy point cloud with outliers x+n+ o and provides as
output the denoised point cloud x̂. The network first projects the noisy point cloud into a
feature space by means of 1-by-1 convolutions (1x1 CONV) and extract useful geometric
features with several graph convolutional layers (GCONV) in the feature extraction step.
Then the learned features are fed into the outlier removal module and the outliers are detected
by means of a simple binary classifier made of 1-by-1 convolution. Then, the features are
sampled to remove points that are classified as outliers (SAMPLING) and the remaining
points are passed to the denoising module. This module estimates the additive noise for
each point that is projected back into the 3-D space by a single graph-convolutional layer.
The estimated noise is finally subtracted to the sampled noisy input (the points classified as
outliers are excluded) and the desired denoised point cloud is obtained.

The proposed method, shown in Fig. 4.1, is a single model able to simultaneously
tackle the task of outlier removal and denoising, sharing a common feature space.
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The network exploits as core building blocks a graph-convolutional layer that im-
plement the Lightweight ECC [34], described in Sec. 2.2.2. The graph-convolutional
layer is designed as the one proposed and described in Sec. 3.2.2. At high-level the
network can be divided into three sections: the shared feature extraction, the outlier
detection and removal and finally the denoising.

The first step of the method is to extract features from the point cloud data
that captures the local characteristics of the data. These features are used for both
identifying and removing outliers points and denoising the remaining data points
and are robust to noise in the input data. This stage consists of three layers of
convolutional operations using single-point convolutions and a block of three graph-
convolutional layers with residual connections.

Then, the process of identifying data points outside if the original shape, the
outliers, is implemented by using the features extracted from the point cloud, and
feeding them into a point-by-point binary classifier, which is simply designed as a
single-point convolution. Then, the point cloud is down-sampled by removing all
the points that are classified as outliers, based on a pre-determined threshold for the
classifier’s probability output. Note that the threshold is not an information related
the amount of noise inserted in the data that has to be known, but it is simply chosen
to maximize the F1 score on the validation set where different levels of outlier noise
are considered. Therefore, since the threshold is automatically determined it is not
in contrast with the blind training.

After the outlier removal process, the remaining points are processed by the rest
of the network, which is responsible for denoising task. This is done by using two
residual blocks of graph-convolutional layers with residual connections.

One of the strength of the method is that it is able to perform outlier removal and
denoising with a single model, differently to other methods available in the literature,
such PointCleanNet [57]. Furthermore, this design choice as several advantages.
Sharing a common parameterization for both tasks increases efficiency, which is a
benefit. Moreover, removing outliers early is advantageous because it helps produce
better final results by returning outlier probabilities and denoised data. Outliers
can have a negative impact on the network’s feature space and reduce performance.
Outlier points don’t contain any useful information, and if not removed, they can
interfere with graph-convolution operations and affect displacement estimation,



50
GPOD: Graph convolutional neural networks for robust point cloud outlier removal

and denosing

especially when there’s a high level of noise. Therefore, it’s important to disregard
outlier points to avoid these issues.

4.2.2 Outlier detection

This part of the network is composed of two building blocks: the feature extraction
and the outlier removal block, as reported in Fig. 4.1. The feature extraction process
is performed by using three convolutional operations that gradually project the input
data from 3-D space to a feature space of F dimensions, and a residual block. A
residual block is a fundamental component of the proposed network and is composed
of three graph-convolutional layers followed by normalization to improve the stability
of the training process, and a skip-connection between the input and output to reduce
the risk of vanishing gradients. The graph is shared among the graph-convolutional
layers inside the residual block to limit computational complexity. Then, the learned
features are processed by a binary classifier, which is implemented as a single-point
convolution that returns the probability of each point being an outlier. All the points
that are considered as outliers according to a specific detection threshold are removed
from the feature representation of the original point cloud. The feature vectors of the
remaining points are then fed as the input for the denoising block. The threshold is
chosen to maximize the F1 score on the validation set. The loss function considered
for the outlier detection task is the weighted cross entropy (WCE). This function is a
measure of the dissimilarity between the predicted probability distribution and the
true distribution. It is commonly used in supervised machine learning tasks, such as
classification, where the goal is to minimize the dissimilarity between the predicted
class probabilities and the true class labels. The weighted cross-entropy loss function
is a variant of the standard cross-entropy loss function that assigns different weights
to each sample or class, depending on their importance or rarity in the dataset. This
is done by multiplying the cross-entropy loss for each sample by a weight factor.
This weight factor can be used to balance the loss for each class and to give more
importance to some class or to under-represented samples. In the proposed scenario
the number of outliers is typically far less compared to the total number of points in
the point cloud, therefore the weighted cross entropy is the most reasonable choice
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to supervise the task for outlier removal:

LWCE =−∑
i
[β · pi log(p̂i)+(1− pi) log(1− p̂i)] , (4.1)

where β is a positive weight, pi is the true label of the i-th point and p̂i is the
predicted probability of being an outlier. The parameter β is a weight able to
penalize or increment the cost of positive error with respect to negative errors. If
β > 1, the number of false negatives decreases increasing the recall, otherwise the
number of false positive decreases increasing the precision. In the proposed network
the parameter β is set to a value larger than one in order to increase the chance of
capturing the outliers, avoiding false negatives that would highly penalize the overall
denoising performance.

4.2.3 Denoising with outlier removal

The denoising block reported in Fig. 4.1 takes as input the feature representations
of all the points except those classified as outliers, and returns as output the final
denoised point cloud in 3-D space without outliers.

The overall structure of the block architecture is based on a residual network.
Instead of estimating the denoised point cloud, the network estimates the additive
noise component of the input because previous research has demonstrated [82] that
predicting the residual is easier than directly denoising the data. The noise estimation
is performed in the feature space using two residual blocks, and the estimated noise
is projected to the 3-D space by a single graph-convolutional layer. Finally, the
estimated noise is removed from the noisy point cloud. A more detailed explanation
of this block can be found in Sec. 3.2. At the beginning of each residual block,
the graph is created by choosing k nearest neighbors for each point based on the
Euclidean distances in the feature space. The dynamic graph construction, where
the graph is updated after each residual block, has been demonstrated [31, 64] to
generate more effective feature representations. Furthermore, it has been shown to
be particularly beneficial in the context of a residual denoising network since it helps
to uncover latent correlations that may not have been removed yet.

The loss function used for denoising combines two terms: mean squared error
(MSE) and surface proximity (SP) regularization. The surface proximity term
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measures the distance between each denoised point and the closest ground truth
point. The loss function is then defined as follow:

LMSE−SP =
1
N

N

∑
i=1

[
∥x̂

′
i −xi∥2

2 +λ min
j
∥x̂

′
i −x j∥2

2

]
, (4.2)

where N is the number of points in the original point cloud, x̂′
is the denoised point

cloud without the outliers, x is the original point cloud without additive noise and
outliers, and λ is a regularization hyperparameter. The possible remaining outliers,
which are not detected by the outlier classifier, are not considered in the loss function
since its purpose is to constrain the denoising performance in presence of additive
Gaussian noise. The loss function reported in Eq. 4.2 is designed just to constrain
the denoising task, and the outliers points, whether they are correctly recognized or
not, are excluded. This design choice is made in order to let the network to solely
focus and learn to denoise points and not be disturbed by points that are outliers
not correctly classified that constitute much more challenging points to denoise.
Moreover, the proposed method is in a supervised setting and the ground truth
original positions for outliers are not available since they are artifacts.

4.2.4 Training procedure

The final loss for denoising with outlier removal combines the losses for the two
previously described tasks as:

LOR−DN = LMSE−SP +αLWCE, (4.3)

where α is a regularization parameter.

This work’s training process involves three steps:

• Initially, only the feature extraction and outlier removal block’s parameters are
optimized using Eq. (4.1) as the loss function.

• Then, the feature extractor and the outlier removal blocks are freezed and just
the parameters of the denoising block are optimized using Eq. (4.2) as the loss
function. In such way the denoising branch can specialize on his specific task.
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• Finally, all the parameters of the proposed network are fine-tuned using Eq.
(4.3) as the loss function. In this phase the network is trained end-to-end and
all the branches learn to work together, especially the feature extractor can
learn a feature space useful for both the outlier detection and denoising task.

This approach allows each module to specialize for its own tasks while reducing
overall computational complexity. Additionally, it provides the benefits of end-to-end
optimization in the final fine-tuning step.

4.3 Experimental results

4.3.1 Experimental setting

The training, validation and test sets are collections of post-processed point clouds
from the Shapenet [2] repository. This database is composed of 3D models of 55
object categories, each described as a collection of meshes. The dataset creation
pipeline is similar to the one implemented for GPDNet, described in Chapter 3. The
point clouds are obtained by sampling 30720 points from each selected models,
which are then scaled and normalized. The training set consists of over 100000
patches of 1024 points each, randomly selected from point clouds across different
categories, except for those reserved for testing and outlier validation sets. Each
patch is created by selecting a point and its 1023 closest points. The test set contains
100 point clouds from ten different categories:airplane, bench, car, chair, lamp,
pillow, rifle, sofa, speaker, and table. It is divided into two subsets: one with only
Gaussian noise and the other with additional outliers. The validation set consists of
10 point clouds from five different categories: bath, clock, laptop, tower and train.
It is used to set the threshold for outlier detection. The threshold is determined by
maximizing the F1 score over the validation set and is used in the subsequent training
stages. For the following experiments the threshold is set to 0.03.

The obtained sets used for training, validation and testing are artificially corrupted
with noise to simulate real-world scenarios. To do this, Gaussian noise is added to
the original data with different levels of standard deviation ranging from 0.01 to 0.02.
The proposed method is designed to handle blind denoising, meaning that it does not
require knowledge of the standard deviation of the noise. Therefore, data corrupted
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by all standard deviations in this range are used for training. In the denoising with
outlier removal task, outliers are modeled as points corrupted by Gaussian noise
with a standard deviation of 0.2, which is 10 times higher than the highest level of
Gaussian noise added to the data. These outliers are added to 10% of the noiseless
data points. If an outlier is is closer than one noise standard deviation to the original
position, it is resampled.

The suggested training process consists of three stages, with each stage trained
for around 50000, 80000, and 100000 iterations, respectively, using a batch size
of 16 patches. Most layers use 99 features, except for the first three single-point
convolutional layers of the feature extraction block, which gradually increase from
33 to 66, then finally to 99. The Adam optimizer is used, with a fixed learning rate
of 10−5 for the first two stages and 10−6 for the last one. In the graph-convolutional
implementation, a rank of 11 is set for low-rank approximation, and a circulant
matrix is constructed with three circulant rows. During testing, the entire point
cloud is fed as input to the network, and each point is associated with a search
area for identifying neighbors. By default, 16 nearest neighbors are used for graph
construction.

4.3.2 Outlier detection performance

This section evaluates the GPOD networks ability to detect outliers and compares
it to other methods. The comparison includes a statistical method (STM) based on
[85], as well as two learning-based methods: PointCleanNet [57] and DGCNN [31].
PointCleanNet is a recent method that addresses both denoising and outlier removal
tasks using two separate networks. However, in this section, only the performance of
the outlier detection network is considered. DGCNN is a point cloud segmentation
and classification method that has been modified for outlier detection. It’s worth
noting that both PointCleanNet and DGCNN only perform outlier detection, while
GPOD is a single model that performs both outlier detection and denoising.

The performance of different outlier detection techniques is evaluated using
Receiver Operating Characteristic (ROC) and precision/recall curves, which are
presented in Fig. 4.2 and 4.3, respectively. Moreover, the F1-score, recall, and
precision of the ten categories in the test set are reported in Table 4.1. To ensure a
fair comparison, the detection threshold is chosen as the one that maximizes the F1
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score over the validation set for all the methods. For instance, the threshold is 0.8 for
PointCleanNet, 4.4×10−6 for DGCNN, and 0.61 for STM.

The findings indicate that all techniques demonstrate similar performance, which
is noteworthy because GPOD is not solely designed for outlier removal. It is
important to note that PCN has a tendency to have a high recall at the expense of
lower precision, which is a consequence of its design.

Table 4.1 GPOD: Outlier detection performance (%).

F1
σ STM DGCNN PCN GPOD

[85] [31] [57]

0.02 89.58 ± 3.07 89.69 ± 3.57 81.01 ± 1.36 89.43 ± 3.29
0.015 92.21 ± 2.51 92.12 ± 2.80 85.67 ± 1.65 91.41 ± 2.68
0.01 94.10 ± 2.07 93.81 ± 2.26 90.99 ± 2.08 92.50 ± 2.34

Recall
σ STM DGCNN PCN GPOD

[85] [31] [57]

0.02 84.61 ± 4.76 85.36 ± 4.33 88.27 ± 4.75 83.88 ± 4.48
0.015 86.67 ± 4.27 87.09 ± 4.08 90.05 ± 4.20 85.29 ± 4.23
0.01 88.54 ± 3.98 88.76 ± 3.85 91.53 ± 3.77 86.30 ± 4.02

Precision
σ STM DGCNN PCN GPOD

[85] [31] [57]

0.02 94.55 ± 1.45 94.54 ± 2.97 75.06 ± 2.17 95.87 ± 2.31
0.015 97.73 ± 0.82 97.83 ± 1.60 81.85 ± 2.15 98.59 ± 0.99
0.01 99.66 ± 0.18 99.56 ± 0.36 90.57 ± 2.12 99.76 ± 0.22
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Fig. 4.2 GPOD: ROC curves. Left σ = 0.02, center σ = 0.015, right σ = 0.01.
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Fig. 4.3 GPOD: Precision-Recall curves. Left σ = 0.02, center σ = 0.015, right σ = 0.01.

4.3.3 Denoising performance without outliers

In this section, the focus is on evaluating the denoising performance of various
methods when the test point clouds contain only additive Gaussian noise without
outliers.

Different classes of point cloud denoising methods, as discussed in Section
2.5.2, are considered, including MLS-based surface fitting methods like APSS [47]
and RIMLS [46], the edge-aware surface fitting method AWLOP [49], the sparsity-
based method MRPCA [53], and the graph signal processing method GLR[54].
Furthremore, the state-of-the-art learning-based method PointCleanNet (PCN) [57]
and a modified version of the DGCNN [31] method are included as baselines. The
performance is compared using the chamfer distance or the Cloud-to-Cloud (C2C)
distance, which computes the average distance of the denoised points from the
original surface. The chamfer distance is computed as the average distance between
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each denoised point and its closest ground truth point, and the average distance
between each ground truth point and its closest denoised point:

C2C=
1
2

[
1

N1

N1

∑
j=1

min
i
∥x̂i −x j∥2

2+
1

N2

N2

∑
i=1

min
j
∥x̂i −x j∥2

2

]
, (4.4)

where N1 and N2 are respectively the number of points in the original and in the
denoised point cloud, x̂ the denoised points and x the original points. The average
C2C is computed over all the models of each category in the test set and the results
of the experiments at different noise levels are reported in Table 4.2, 4.3 and 4.4.

The results indicate that GPOD performs better than state-of-the-art methods for
denoising point clouds with medium to high levels of noise, as presented in Tables
4.2 and 4.3 with noise variances of σ = 0.02 and σ = 0.015, respectively. On the
other hand, traditional model-based methods are more competitive for denoising
at low noise variances (σ = 0.01). The reason of this behaviour is that most of
the other methods involves surface reconstruction or normal estimation, which are
not accurate at high levels of noise. In contrast, GPOD and other learning-based
methods can use more complex features that are more robust at high noise levels. It
is important to note that GPOD was trained blindly, without any information about
the noise levels, which explains why its performance is better at higher noise levels
and average at lower levels. Therefore, it is reasonable to consider the method highly
competitive, since it achieves high performance at higher level of noise, which is the
most critical scenario, and average results at lower level of noise. However, if more
information about the noise variance is available, non-blind models can be trained to
improve performance, particularly at low noise levels. In Table 4.5, GPOD and other
learning-based methods, DGCNN and PCN, are trained using point clouds corrupted
by Gaussian noise with a specific standard deviation (σ = 0.01), and the proposed
method clearly outperforms the others.
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Table 4.2 GPOD: Denoising performance evaluated in terms of chamfer distance (×10−6)
for σ = 0.02.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[31] [47] [46] [49] [53] [54] [57]

Airplane 161.79 131.11 175.68 186.24 145.94 123.71 90.55 74.17 53.65
Bench 161.52 122.55 166.85 182.42 157.29 127.51 83.99 90.34 48.26

Car 148.74 137.25 141.69 167.78 145.51 109.49 77.56 160.08 74.50
Chair 163.75 159.69 160.01 155.38 158.12 122.70 79.85 145.56 66.52
Lamp 204.05 273.24 178.08 198.22 187.31 146.41 109.24 85.31 63.72
Pillow 215.58 198.95 164.83 196.53 206.14 150.65 85.86 92.84 64.84
Rifle 144.18 86.67 195.68 176.07 144.22 105.87 89.19 71.57 35.60
Sofa 184.11 155.88 166.34 190.91 178.93 133.98 89.31 144.72 78.79

Speaker 186.01 172.84 138.80 162.34 180.45 126.17 84.37 160.26 74.00
Table 168.32 144.88 171.25 179.81 162.36 125.72 78.06 102.17 53.47

Average 173.80 158.31 165.92 179.57 166.63 127.22 86.80 112.70 61.33

Table 4.3 GPOD: Denoising performance evaluated in terms of chamfer distance (×10−6),
for σ = 0.015.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[31] [47] [46] [49] [53] [54] [57]

Airplane 97.78 77.18 86.42 106.33 73.32 67.39 36.76 35.27 29.14
Bench 94.82 70.17 75.51 91.93 82.04 70.05 32.19 30.10 27.62

Car 102.23 94.82 72.56 103.52 93.38 69.88 55.92 92.23 54.53
Chair 105.16 100.93 81.47 104.38 92.47 73.45 48.62 69.18 47.07
Lamp 120.65 173.83 65.79 82.40 88.78 77.09 39.93 30.59 28.57
Pillow 132.57 120.43 22.74 42.54 112.54 73.67 31.38 29.02 27.27
Rifle 80.40 45.26 92.14 110.51 69.35 55.65 31.81 21.45 23.30
Sofa 121.02 101.30 42.80 69.92 107.58 72.62 51.12 61.15 43.91

Speaker 123.27 114.86 46.45 58.28 110.29 77.95 53.75 87.68 51.12
Table 103.50 87.84 62.64 78.21 89.33 70.87 37.94 43.88 35.30

Average 108.14 98.66 64.85 84.80 91.91 70.86 41.94 50.05 36.78
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Table 4.4 GPOD: Denoising performance evaluated in terms of chamfer distance (×10−6)
for σ = 0.01.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[31] [47] [46] [49] [53] [54] [57]

Airplane 50.32 39.80 28.22 39.73 31.27 28.19 19.56 26.36 31.64
Bench 48.71 36.88 26.97 32.76 34.08 32.93 20.43 27.64 33.03

Car 64.34 60.77 47.73 55.56 54.21 44.33 42.22 75.34 54.06
Chair 60.78 58.00 37.31 45.65 47.91 38.41 34.98 55.10 50.75
Lamp 59.73 112.13 24.57 34.02 35.23 31.51 19.67 20.58 31.79
Pillow 69.79 62.97 15.64 21.23 46.36 23.95 17.59 21.07 29.21
Rifle 38.97 22.20 36.01 49.37 27.79 23.49 15.84 15.09 36.38
Sofa 69.63 57.87 22.27 28.04 53.08 32.14 30.88 43.36 40.99

Speaker 73.50 69.39 26.50 30.19 58.92 47.57 40.78 76.09 56.03
Table 56.21 47.44 27.45 32.63 41.26 34.78 27.12 43.02 40.38

Average 59.20 56.74 29.27 36.92 43.011 33.73 26.91 40.36 40.43

Table 4.5 GPOD: Denoising performance evaluated in terms of Mean chamfer distance
(×10−6), for σ = 0.01. Variance-specific trained network.

Class Noisy DGCNN APSS RIMLS AWLOP MRPCA GLR PCN GPOD
[31] [47] [46] [49] [53] [54] [57]

Average 59.20 53.14 29.27 36.92 43.011 33.73 26.91 40.36 24.68

The denoised point clouds for each method are presented in Fig. 4.4 to provide a
visual comparison of their performance at a medium noise level. To better understand
the position of the denoised points in relation to the ground truth, the surface distance
of each point is also visualized in the figure. The root mean square value of the
surface distance (RMSD) can be calculated to further evaluate the performance of
each method:

RMSD =

√
1
N

N

∑
i=1

min
j
∥x̂i −x j∥2

2. (4.5)

On average, it can be seen that GPOD produces a point-surface distance that is lower,
and the reconstructed point cloud is more similar to the original shape compared to
the other methods.
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MRPCA GLR

PCN GPOD

Fig. 4.4 GPOD: Denosing results for σ = 0.015. Color represents distance to surface (red is
high, blue is low). Top left to bottom right: clean point cloud, noisy point cloud, DGCNN
(RMSD = 0.0091), APSS (0.0123), RIMLS (0.0127), AWLOP (0.0106), MRPCA (0.0096),
GLR (0.0070), PointCleanNet (0.0065), GPOD (0.0062).

4.3.4 Denoising performance with outlier removal

In this section, the performance of denoising methods with outlier removal is eval-
uated. The comparison is made between various denoising methods that include
outlier removal. PointCleanNet [57] and DGCNN [31] are considered as learning-
based methods and STM [85] + GLR [54] as a traditional model-based approach.
For both PointCleanNet and DGCNN two networks are used, first outlier detection
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networks are used to identify and remove the outliers, and then the remaining points
are fed into the denoising network to obtain the final denoised results. The same
thresholds exploited in Sec. 4.3.2 are applied. The chamfer distance is again used to
evaluate the denoising performance in the presence of outliers. In this scenario, the
number of points in the denoised and original point clouds, N2 and N1 in Eq. (4.4),
will differ depending on the number of the detected outliers. The median C2C values
for the categories in the test set are reported in Tables 4.6, 4.7, and 4.8 for different
levels of standard deviation.

Table 4.6 GPOD: Denoising with outlier removal performance evaluated in terms of chamfer
distance (×10−6) for σ = 0.02.

Class Noisy STM + GLR DGCNN PCN GPOD
[85] [54] [31] [57]

Airplane 2888.50 95.99 132.06 55.52 59.80
Bench 2947.12 89.6 122.16 55.53 50.73

Car 2508.31 83.35 137.46 133.41 81.53
Chair 2381.04 92.90 162.18 108.63 75.07
Lamp 2958.91 120.40 194.73 59.56 66.29
Pillow 2816.90 91.48 198.14 56.05 74.42
Rifle 3958.87 102.18 81.72 49.73 38.92
Sofa 2527.52 97.00 162.54 122.23 82.63

Speaker 2328.51 87.21 155.96 134.34 77.36
Table 2720.44 85.77 144.75 81.58 52.10

Average 2803.61 94.59 149.17 85.66 65.88
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Table 4.7 GPOD: Denoising with outlier removal performance evaluated in terms of chamfer
distance (×10−6) for σ = 0.015.

Class Noisy STM + GLR DGCNN PCN GPOD
[85] [54] [31] [57]

Airplane 2849.51 40.05 81.18 39.54 29.60
Bench 2865.19 37.90 70.71 33.73 28.01

Car 2476.96 64.21 95.72 107.50 59.25
Chair 2367.17 56.78 110.92 69.48 48.68
Lamp 2818.64 45.77 129.65 35.78 32.36
Pillow 2799.90 33.37 124.37 51.33 30.04
Rifle 3968.17 40.52 44.02 27.99 24.40
Sofa 2408.57 60.29 108.48 74.87 49.91

Speaker 2323.95 50.08 120.01 85.31 43.16
Table 2580.49 42.66 88.69 55.13 35.81

Average 2745.86 47.16 97.37 58.07 38.12

Table 4.8 GPOD: Denoising with outlier removal performance evaluated in terms of chamfer
distance (×10−6) for σ = 0.01.

Class Noisy STM + GLR DGCNN PCN GPOD
[85] [54] [31] [57]

Airplane 2765.50 26.38 41.50 28.51 33.28
Bench 2790.02 26.36 36.32 27.53 34.80

Car 2425.01 50.87 63.01 74.52 54.56
Chair 2358.60 43.66 63.19 57.44 52.01
Lamp 2830.85 24.98 67.12 36.52 33.21
Pillow 2692.34 19.76 67.69 24.59 28.85
Rifle 3845.30 23.91 19.92 17.01 39.33
Sofa 2431.10 38.04 60.89 48.030 42.04

Speaker 2330.73 37.17 75.36 51.30 41.54
Table 2610.38 36.42 47.88 41.56 39.78

Average 2707.98 32.75 54.29 40.70 39.94
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Table 4.9 GPOD: Denoising with outlier removal performance evaluated in terms of Mean
chamfer distance (×10−6) for σ = 0.01. Variance-specific training.

Class Noisy STM + GLR DGCNN PCN GPOD
[85] [54] [31] [57]

Average 2707.98 32.75 62.24 48.46 29.77

The results show that the proposed method outperforms state-of-the-art denoising
methods at medium and high levels of noise, as seen in Tables 4.6 and 4.7. However,
at low levels of noise, the model-based approach (STM+GLR) is more effective.
Nevertheless, GPOD still outperforms other learning-based methods even being a
single model. The reason for this behavior is similar to what was observed in the
denoising experiments discussed in section 4.3.3. If more information about the
noise is available, the model performance can be improved further by performing
a variance-specific training. Specifically, at low levels of noise, our method outper-
forms STM+GLR, as shown in Table 4.9. Tables 4.10 and 4.11 report the results
using the Cloud to Plane metric [86] and exhibit a similar behavior to the results
discussed above.

Table 4.10 GPOD: Denoising with outlier removal performance evaluated in terms of Mean
Point to Plane distance (×10−6).

σ Noisy STM + GLR DGCNN PCN GPOD
[85] [54] [31] [57]

0.02 2110.32 61.86 110.2 41.58 41.93
0.015 2058.11 24.41 68.39 25.09 17.32
0.01 2050.00 14.39 35.61 19.80 19.98

Table 4.11 GPOD: Denoising with outlier removal performance evaluated in terms of Mean
Point to Plane distance (×10−6) for σ = 0.01. Variance-specific training.

Noisy STM + GLR DGCNN PCN GPOD
[85] [54] [31] [57]

Average 2050.00 14.39 39.27 22.65 11.30

The denoising with outlier removal task qualitative results are presented in Fig.
4.5. The figure shows the denoised point clouds without outliers and the surface
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distance of each point. To measure the point-surface distance, the RMSD metric
introduced earlier for Fig. 4.4 is used. Compared to other methods, GPOD has
a lower point-surface distance on average. Furthermore, GPOD is more effective
in reconstructing the original shape and surfaces of the point cloud without losing
important details or thinning the shape.

Clean Noisy DGCNN

GLR PCN GPOD

Fig. 4.5 GPOD: Denosing results for σ = 0.015 and outliers. Color represents distance to
surface (red is high, blue is low). Top left to bottom right: clean point cloud, noisy point
cloud, DGCNN (RMSD = 0.011), STM + GLR (0.0077), PointCleanNet (0.0063), GPOD
(0.0064).

4.3.5 Real noise removal

In order to check if the proposed architecture can generalize beyond white Gaussian
noise, the proposed model is tested on two realistic denoising settings. For the exper-
iment the process of scanning Shapenet objects using a Velodyne HDL-64E scanner
is simulated via the Blensor software [84]. Two sources of noise are considered: a
laser distance bias with Gaussian distribution and per-ray Gaussian noise. Both have
zero-mean and a standard deviation equal to 1% of the longest side of the object
bounding box. The study also compares the proposed method with PointCleanNet,
as representative state-of-the-art model, that has been retrained on the simulated data.
Table 4.12 presents the results, which are consistent with those obtained for white
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Gaussian noise. The proposed method outperforms PointCleanNet in this case as
well. Since the points are not uniformly distributed, RMSD is used instead of the
chamfer distance.

Table 4.12 GPOD: Velodyne scan structured noise evaluated in terms of RMSD, network
with 8-NN.

Noisy PCN GPOD

0.1447 0.0966 0.0602

In the second experiment, real point clouds generated by image-based 3D recon-
struction techniques are used. These point clouds are usually very noisy and contain a
lot of outliers due to image imperfections. The multiple-view plane-sweep algorithm
is used for the image-based reconstruction method, and a point cloud generated by
the algorithm implementation in a previous study is considered for the denoising
task. The noisy point cloud is shown in Fig. 4.6 on the left, and it is denoised using
GPOD and PointCleanNet. Since the ground truth is not available, qualitative results
are reported in Fig. 4.6 as benchmark. GPOD produces a denoised point cloud with
fewer diffused outliers than PointCleanNet, as seen in the bottom-right portion of the
point clouds in Fig. 4.6, where PointCleanNet presents a cluster of points outside of
the main shape of the torch that cannot be easily removed without compromising the
entire shape. Overall, GPOD is able to reconstruct sharper object details, as seen in
the body of the torches.

Noisy PCN GPOD

Fig. 4.6 GPOD: Denoising results for real noise.
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4.4 Method analysis

4.4.1 Low-rank approximation analysis

In Section 2.2.2, the implementation of the aggregation weight matrix in the graph-
convolution operation is described, with an emphasis on enforcing a low-rank ap-
proximation of maximum rank r to limit memory and computation complexity, as
well as reduce vanishing gradient effects. Several tests were conducted to analyze the
network’s behavior as a function of the chosen maximum rank, and the results of the
denoising with outlier removal and pure denoising tasks are presented in Tables 4.13
and 4.14. The chosen value for the previous experiments, r = 11, was compared to a
low-rank value (lowest complexity) and the highest rank that fit the GPU memory.
Interestingly, it was found that a higher rank does not necessarily lead to better
performance. Instead, it was observed that r = 11 not only provides a desirable
working point in terms of complexity but also achieves the best performance.

Table 4.13 GPOD: Denoising with outlier removal performance. Experiments for maximum
rank.

F1 C2C (×10−6)
r 0.02 0.015 0.01 0.02 0.015 0.01

3 89.01±0.05 90.30±0.06 91.05±0.05 69.75±0.09 41.56±0.31 43.91±0.13

11 89.43±0.04 91.37±0.05 92.56±0.04 65.96±0.11 38.20±0.09 39.97±0.14

18 89.22±0.04 90.69±0.05 91.65±0.05 72.03±0.30 39.74±0.19 40.05±0.14

Table 4.14 GPOD: Denoising performance. Experiments for maximum rank.

C2C (×10−6)
r 0.02 0.015 0.01

3 61.75±0.05 37.35±0.04 41.46±0.08

11 61.48±0.13 36.88±0.05 41.47±0.04

18 64.21±0.07 37.11±0.07 39.51±0.06
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4.4.2 Dynamic graph

This section describes a study on the impact of the graph computation on the per-
formance of the network. Two different approaches are compared: dynamic graph
construction, where the graph is computed in the feature space, and fixed graph
construction, where the neighbors are identified in the noisy 3-D space. For fixed
graph construction, neighbors are computed from the original noisy input for feature
extraction and outlier removal blocks, and from the noisy input without the detected
outliers for the denoising block. The graph was used for all graph-convolutional
layers inside the corresponding block. The results presented in Table 4.15 indicate
that the use of dynamic graph update improves the performance of the network due
to the ability to find and exploit latent feature correlations.

Table 4.15 GPOD: Fixed vs. Dynamic graph, for σ = 0.015.

Denoising with outlier removal Denoising
Dynamic Fixed Dynamic Fixed

C2C (×10−6) 38.12 53.23 36.78 49.08

4.4.3 Neighborhood size

The effect of neighborhood size is an interesting study to analyze. When a larger
number of neighbors is selected for the graph-convolutional layer, it increases
the receptive field’s size and can assist in denoising smooth areas in the point
cloud by capturing more context. However, this comes at the cost of losing some
localization and increased computational complexity. This is similar to findings
in image denoising, where the optimal receptive field size depends on the noise
variance. Tables 4.16 and 4.17 show that increasing the number of neighbors is
beneficial up to a certain point and that the optimal number of neighbors actually
depends on the noise variance. GPOD faces a tradeoff between good performance at
high or low variance since it is a blind method.
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Table 4.16 GPOD: Denoising with outlier removal performance. Experiment number of
neighbors (NN).

F1 C2C (×10−6)
NN 0.02 0.015 0.01 0.02 0.015 0.01

4 86.72 91.08 93.68 81.59 49.12 35.00
8 89.85 91.47 92.45 69.40 41.16 35.62
16 89.43 91.41 92.50 65.88 38.12 39.94
24 89.28 90.98 92.06 61.95 39.09 43.52

Table 4.17 GPOD: Denoising performance. Experiment number of neighbors (NN).

C2C (×10−6)
NN 0.02 0.015 0.01

4 80.18 49.33 34.87
8 65.93 39.80 35.40

16 61.33 36.78 40.43
24 57.27 37.68 44.12

4.5 Conclusion

In this research, we introduce GPOD network, a new graph-convolutional architecture
that can effectively identify and remove outlier data points and denoise point cloud
data in a single model without prior knowledge of the noise level. The backbone
of the network is the graph-convolutional layer that gives the architecture a fully
convolutional behavior and enables the network to learn multiple levels of features,
similar to a classic CNN. The experimental results show that the proposed network
performed well at all noise levels and particularly showed significant improvements
over existing methods when dealing with high levels of noise. Additionally, it
has been shown that when additional information about the noise is provided, the
performance of the network can be further improved.



Chapter 5

Point Cloud Normal Estimation with
Graph-Convolutional Neural
Networks

5.1 Introduction

One of the main themes of this thesis is to investigate the use of graph convolutional
neural networks to learn powerful features from raw point clouds, whose points
can be often corrupted by noise. In the research proposed in this chapter, graph
convolutional neural networks are explored in a different context with respect to
restoration. Here, the ability of learning features able to predict geometric character-
istics is studied. In particular, the task of estimation of unoriented surface normals
from 3-D point clouds is considered. An in depth description of the task and the
relative state-of-the-arts methods can be found in Sec.2.5.3. A graph-convolutional
neural network is proposed to estimate unoriented surface normals from raw point
clouds. Thanks to graph convolutions, the network can create complex hierarchies of
features with a dynamically expanding receptive field, allowing the proposed method
to achieve state-of-the-art performance, providing robust estimates even in presence
of noise.
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5.2 Proposed method

In this section, the proposed network to estimate the normal vector associated to
each point of an input point cloud is described.

5.2.1 Architecture
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Fig. 5.1 Point Cloud Normal Estimation: Proposed architecture. The network takes as input a
patch of N points x and provides as output the corresponding unoriented normal vectors n̂ per
point. The network first projects the noisy point cloud into a feature space by means of one
1-by-1 convolution (Conv1D) and then with several graph convolutional layers (GCONV)
it estimates the unoriented normal vectors that are projected back into the 3-D space by a
single 1x1 convolutional layer.

An overview of the architecture is shown in Fig. 5.1. The network takes as input
a patch of N points of a point cloud and estimates the unoriented normal vector
associated to all the points in the input patch.

At high level, the network first project the 3-D input data into the feature space,
then several graph convolutional layers are used to uncover latent geometric infor-
mation of the data to directly estimate the desired geometric feature, the unoriented
normal vectors.

The patches are extracted from a point cloud selecting a point and its k-nearest
neighbors and they are standardized to have a zero mean and unit standard deviation.
Then, the 3-D coordinates of each patch are projected onto an F-dimensional feature
space using a single-point convolutional layer, followed by batch normalization
and an activation function. The network has two residual blocks, which use skip
connections to combine feature vectors from the input and output of the block.
Residual connections are well-known for mitigating vanishing gradient problems
and improving convergence during training. The residual blocks are responsible
for extracting the geometrical information, and each block contains three graph-
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convolutional layers, each followed by batch normalization and activation functions.
The graph convolutional layer exploits the lightweight-ECC, see Sec. 2.2.2 to have
more detail. In addition to the feature vectors of the points, the graph-convolutional
layer requires a graph that describes connections between points. This graph is
constructed dynamically as a nearest neighbor graph using Euclidean distances
between the feature vectors of the points at the beginning of each residual block. This
dynamic construction helps to promote more powerful feature representations and
exploit self-similar patterns. More details of this design choice and the description
of the graph convolutional layer can be found in Sec. 3.2. Finally, a single-point
convolutional layer is used to project the estimated normals features to the 3-D space
after the two residual blocks. This network can estimate the normal for each point
in the patch, unlike other methods such as PCPNet [72], which only estimates the
central point’s normal. However, estimates for points at the patch’s edges may not
be very accurate due to highly skewed neighborhoods.

5.2.2 Loss Function

For the supervision during training we compute the discrepancy between the pre-
dicted normals vectors n̂ aand the actual ground truth normal vectors n. We con-
ducted preliminary experiments with angular losses, such as cosine similarity or
angular distance, and Euclidean distance and the latter always proved to be more
effective, similar findings are also reported in [72]. The chosen loss function is
defined as follow:

L =
1
P ∑

i∈SP

min
(
∥n̂i −ni∥2

2,∥n̂i +ni∥2
2

)
, (5.1)

where SP is the set of the P closest nodes to the central point of the patch. Only the P
closes points to the center are considered in the loss function because nodes that are
far from the center of the patch can be affected by border effects that result in highly
skewed receptive fields. Therefore, even though our method estimates normals for
all points in the patch, we only consider the P nodes closest to the patch center to
avoid these border effects. We use more points than just the central point, unlike the
PCPNet approach, to improve training efficiency and convergence. Additionally, our
method aims to estimate the unoriented normals associated with the points, so we
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use the minimum function in Eq. (5.1) to select the normal orientation that provides
the minimum error for each point.

5.3 Experimental results

In this section, a series of experiments to assess how well the proposed method
performs in comparison to model-based baselines and cutting-edge deep learning
approaches are conducted. Specifically, we evaluate PCA [67], jet fitting [50],
HoughCNN [75], PCPNet [72], and Nesti-Net [73].

5.3.1 Training and testing details

The datasets used for training and testing are the same as those used by PCPNet
and Nesti-Net for a fair comparison. The training dataset consists of eight point
clouds with 100000 points, which are divided into 10000 patches of 800 points each.
During training, the network takes a batch of 16 patches as input and estimates a
normal vector for each point in the patch. However, only the normals of the 250
points closest to the center of the patch are used in the loss function, as previously
explained.

The proposed method and PCPNet are variance-specific trained. A particular
focus is given on their robustness to white Gaussian noise and three different standard
deviation levels are considered: 0.012, 0.006, and 0.00125 relative to the bounding
box. To construct the graphs for our proposed method, 15 nearest neighbors are used
for noiseless and low noise levels, and 35 nearest neighbors for medium-high noise
levels. The number of neighbors has been cross-validated on a validation dataset,
and the edge attention hyperparameter is set to δ = 10. The network is trained
for approximately 100 epochs with an initial learning rate of 10−4, which is then
decreased to 10−5 after 60 epochs.

The testing dataset consists of 19 point clouds with 100000 points. As in previous
works, we choose a subset of 5000 points per point cloud for evaluation of the error
metric. For each of these points, a patch of the nearest 800 points is given as input to
the network.
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5.3.2 Quantitative results

To evaluate how well the proposed method performs, a quantitative measure called
the root mean squared (RMS) angle error for unoriented normal estimation is used
on 5000 points from the test set. The RMS angle error (measured in radians) for
unoriented estimation is calculated as follows:

E=

√
1
N

N

∑
i=1

[
arcos

(
1−1

2
min(∥n̂i−ni∥2

2,∥n̂i+ni∥2
2)

)]2

,

where ni the ground-truth normal vector at point i, n̂i the corresponding estimated
normal vector and N the number of points.

Table 5.1 presents the RMS angle error achieved by different methods, with
the best-performing scale selected for methods with multi-scale variants, for each
standard deviation. The proposed method achieves lower average errors and is
comparable to or better than state-of-the-art results. Table 5.2 provides further
information on the distribution of errors, including the percentiles of the angle error
distribution across the entire test set, along with a one-standard-deviation confidence
interval. For example, the 99th percentile value of 24.04 degrees indicates that 99%
of the points have a normal estimation error below 24.04 degrees. The angle error
(in radians) at point i is computed as

Ei = arcos
(

1− 1
2

min(∥n̂i −ni∥2
2,∥n̂i +ni∥2

2)

)
.

The results indicate that the proposed method has lower error values, which implies
that it has fewer points with high normal estimation errors and a shorter tail in the
error distribution. This is more desirable than having a lower average error because
outliers with high errors can significantly affect the performance of algorithms that
rely on high-quality normal estimation. Figure 5.2 shows the high-error tail of the
cumulative error distribution for point cloud “star sharp” for the proposed method,
Nesti-Net, and PCPNet.
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Table 5.1 Point Cloud Normal Estimation: Unoriented RMS angle error (degrees).

Proposed Nesti-Net PCPNet PCA Jet HoughCNN

Noiseless 6.47 6.99 8.49 8.31 7.60 10.02
Low Noise 10.73 10.11 11.08 12.00 12.36 11.21
Med Noise 17.53 17.63 18.26 18.38 18.33 22.66
High Noise 22.09 22.28 22.80 23.50 23.41 33.39

Table 5.2 Point Cloud Normal Estimation: Angle error percentiles.

90 percentile
Proposed Nesti-Net PCPNet

Noiseless 8.50 10.07 12.35
Low noise 15.61 15.39 17.28
Med noise 27.17 26.84 28.67
High noise 35.16 35.17 36.90

95 percentile
Proposed Nesti-Net PCPNet

Noiseless 12.43 15.13 17.02
Low noise 22.30 21.46 22.91
Med noise 35.37 35.42 37.19
High noise 45.57 45.59 47.33

99 percentile
Proposed Nesti-Net PCPNet

Noiseless 24.04 25.86 29.66
Low noise 38.34 34.73 36.51
Med noise 56.28 58.92 57.08
High noise 65.33 67.66 66.83
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Fig. 5.2 Point Cloud Normal Estimation: Cumulative distribution of angle errors for point
cloud “star sharp”.

5.3.3 Qualitative results

TFig. 5.3 provides a visual representation of the per-point angle error of the estimated
normals in comparison to the ground truth for the proposed method, Nesti-Net,
PCPNet, and PCA at all noise standard deviations. It is evident from the figure that
the proposed method outperforms the other methods, as it has a smaller number of
points with high estimation errors. Moreover, the proposed method shows lower
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errors in the challenging area at the center junction of the star shape, where PCPNet
is particularly vulnerable to higher errors.

(a) Proposed (b) Nesti-Net (c) PCPNet (d) PCA

Fig. 5.3 Point Cloud Normal Estimation: Angle errors for point cloud “star sharp” at different
level of noise: from a high level of noise (top) to noiseless (bottom).

5.4 Conclusions

A novel approach for estimating surface normals from point clouds using a graph-
convolutional neural network is introduced. The results of the proposed method
showed significant improvements over existing state-of-the-art techniques, demon-
strating its ability to estimate surface normals robustly even in the presence of
noise.



Chapter 6

Signal Compression via Neural
Implicit Representations

6.1 Introduction

In previous chapters, founding a powerful backbone able tot extract meaningful and
robust feature, that is one of the key challenges of point cloud processing, is analyzed
for several tasks. Another aspect of paramount importance for point cloud processing
is founding efficient and compact point cloud representations, that is analyzed in this
chapter.

Although traditional compression methods have relied on model-based tech-
niques, there is a growing interest in using neural networks for compression. These
end-to-end compression methods aim to use neural networks throughout the en-
tire compression process without any preconceived notions, allowing for optimal
representations to be learned from the data. The most common approach involves
using auto-encoder structures[87–92], where an encoder network learns to extract a
compact vector from the input signal, and a decoder network produces an estimate
of the original signal from the compressed information. This allows for universal
encoder and decoder networks, with the compressed information being represented
as a quantized and entropy-coded compact vector. While some works have used
generative models to obtain compact representations, they are similar in concept to
autoencoders. There have also been some attempts to use convolutional dictionary
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learning and deep learning extensions, but these methods have not been widely
applied to compression.

In this research a novel approach for signal compression using neural networks is
examined. Instead of using traditional autoencoder structures or dictionary learning,
the proposed method uses a neural network that takes one coordinate from the signal
domain as input and outputs the corresponding signal value. The network shares
parameters across all input coordinates. During training, the network is trained to
overfit to the signal, resulting in the network’s weights, biases, and architecture
serving as a compact representation of the signal. The motivation for this work is
given by the recent success of neural implicit representations with periodic activation
functions [1] or specific embedding layers [44]. We then present a novel compression
paradigm, called NIC (Neural Implicit Compression), that can be applied to any
type of signal and we prove its performance on the task of point cloud attribute
compression as an example application. In NIC, the network takes in a single
coordinate from the signal domain and returns the corresponding value of the signal,
while sharing parameters for all input coordinates. The importance of efficient coding
of the weights of the network is demonstrated, as the rate of representation depends
solely on that. It is discussed the use of priors through meta-learning, which involves
a universal pretraining of the network for a given class of signals. The final value of
the weights is then obtained through finetuning on the signal of interest, allowing for
differential encoding with respect to their universal initializations and significant rate
savings compared to random initialization. Furthrmore, the connection between NIC
and transform coding are formalized. This study is an initial investigation into a new
compression approach, which raises several research questions that can enhance the
design. Despite this, the research demonstrates very positive experimental outcomes
on a sample application, specifically the compression of point cloud attributes. This
application makes full use of the new approach’s benefits, as traditional compression
methods are challenging to design due to the irregularity of the domain, while our
framework can handle it easily and achieve performance similar to the most advanced
MPEG G-PCC standard.
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Fig. 6.1 NIC: Connections between transform coding and implicit neural representations.

6.2 Proposed method

6.2.1 Neural Implicit Representations of signals

As described in Sec. 2.3, the idea behind neural implicit representations is to use a
neural network, typically a multilayer perceptron (MLP), to represent continuous
functions. In this approach, the input to the neural network is a coordinate x from
the domain of the function, and the output is the corresponding value of the function
f (x). In other words, as it can be seen from Fig 6.1, the network creates a set of
optimized basis functions for the signal and combines them in the final layer, similar
to transform coding (see Sec. 6.2.2).

Previous research has mainly used neural implicit representations to solve 3-D
rendering problems, but this work is aimed to study their effectiveness as compressed
signal representations. It is explored how well these representations can compress
signals while maintaining a certain level of accuracy.

In particular, the proposed algorithm is based on SIREN implicit representations
[1], which are an MLP with sinusoidal activation functions.

6.2.2 Connections with transform coding

The following result establishes a connection between neural implicit representations
and transform coding by demonstrating that there is a direct relationship between the
lowest possible value of a two-layer SIREN neural network with enough capacity
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and the discrete cosine transform (DCT)[93], which is a widely used technique in
signal processing.

Proposition 6.2.1. A two-layer SIREN approximating a continuous function f : R→
R with N hidden features is equivalent to an N-point 1D-DCT.

Proof. Given an input scalar coordinate x, we can define the corresponding output y
of the two-layer SIREN as

y =
N−1

∑
k=0

w(2)
k sin(w(1)

k x+b(1)k )+b(2)k

where b(i) is the bias of the i-th layer, and w(1) ∈ RN and w(2) ∈ RN are the weights
of the first and second layer of the network, respectively. Assuming that the input
coordinates of the SIREN are regularly sampled on a grid (i.e., x = n where 0 ≤ n ≤
N −1), and the loss function is the mean squared error between the output of the
network y and the corresponding values of the continuous function f (x) sampled on
that grid, it can be shown that the SIREN will converge to the inverse of the N-point
1-D DCT, resulting in the global minimum of the loss function. The 1-D DCT is
defined as:

yn =
N−1

∑
k=0

ŷk cos
(

π

N
k
(

n+
1
2

))
with 0 ≤ n ≤ N −1,

where ŷk is the k-th DCT coefficient of the signal y. Therefore, the two-layer SIREN
reaches the global minimum (zero MSE), i.e., converges to the inverse of the N-point
1-D DCT, when w(2)

k = ŷk, w(1)
k = π

N k, b(1)k = π

2N k+ π

2 , and b(2)k = 0.

This suggests that the initial layer of the neural network generates a set of basis
functions, and the final layer learns how to combine them with appropriate weights,
similar to transform-domain coefficients. However, it should be noted that this
interpretation only holds for shallower networks when fewer features are used.

6.2.3 Signal compression

Compressing a signal with a neural implicit representations requires to perform the
following basic operations:
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1. Define the architecture of the coordinate-based MLP to be used; this step
requires the choice of a network design (e.g, SIRENs), as well as suitable
sizing of the model in terms of number of parameters and layers. The size
of the model directly affects the accuracy of signal fit, but scaling laws are
still unclear (e.g., whether depth or width is more important) as this is the first
work looking at the efficiency of such representations. Preliminary empirical
evidence from our experiments seems to suggest a preference for width instead
of depth. The choice of the network architecture has to be made finding a
trade-off between the desired performance and the desired rate requirements.
In general, the bigger is the the network the higher accuracy is possible to
achieve, also same performance can be achieved by different networks but at
different rate, as reported and better described in the esperimental section.

2. Train the network by minimizing a suitable regression loss. For example,
denoting as x a sampled input coordinate and with yx the signal value at that
coordinate, the network parameters θ can be learned by minimizing the MSE:

θ̂ = argmin
θ

∑
x
∥ fθ (x)− yx∥2

2

3. Compactly represent the weights of the network. Since the rate of the com-
pressed representation entirely relies on coding the values of the weights and
biases, they must be represented in the most efficient way. Techniques like
network sparsification [94] and quantization [95] can be used to reduce the
number of parameters and/or their precision. As an example, a uniform scalar
quantizer can be applied to the parameters of each layer.

4. Use an entropy encoder on the quantized weights and biases and save any
required side information (e.g., sparsification pattern, or quantization step
sizes)

Decoding the compressed signal simply amounts to performing a forward pass
through the sparse/quantized network, for all the coordinates of interest (e.g., all
the pixels in a grid of arbitrary resolution). This “random access” property, where
any coordinate can be queried for the corresponding signal value, also implies that
decoding at different resolutions or on irregular grids is trivial.
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6.2.4 Priors via Meta Learning

Implicit neural networks have the ability to learn any signal, but they cannot use any
prior knowledge about the data properties. To overcome this limitation, the authors
propose using meta-learning techniques. Meta-learning [96] is a framework used
to solve few-shot learning problems by using prior experience to improve future
learning performance. In this case, the network is first trained on a collection of
data to find a good initialization point that improves the results for unseen data
over the same task. The goal is to learn low-level properties of the data, such as
smoothness over the domain or common characteristics of a specific class of data.
In [97] the authors propose using well-known meta-learning algorithms to learn the
initial weight parameters of coordinate-based neural representations, with the aim of
speeding up convergence.

The novel idea presented in this research is to utilize a meta-learned initializa-
tion to enhance the efficiency of the representation in terms of rate-distortion. For
example, consider a simple class of signals, such as images of faces from a public
dataset like FFHQ[98]. The meta-learning pretraining on this dataset ideally learns
common patterns in the class, such as eyes, nose, or mouth, and provides an initial-
ization that already includes these features. Finetuning the network on a new image
would benefit from this informative initialization, and the final values of the network
weights would not deviate much from their initial values. To exploit this, a novel
compression method is proposed where the difference between the final weights of
the network and their meta-learned initialization is quantized and used to recover
the signal instead of directly quantizing the final values. This approach achieves
significant rate savings because the meta-learned initialization is a strong predictor
of the final weight value. Furthermore, the meta-learned initialization is universal
and can be created from the public dataset or written in a standard format, so it does
not need to be encoded.

There are various meta-learning algorithms[96, 99] described in literature, and in
this research a simplified version of Model-Agnostic Meta Learning (MAML) is used.
The proposed algorithm operates on one signal at a time, such as an image, which is
passed through the coordinate-based network. A few rounds of inner optimization
are carried out, followed by an update to the outer optimizer. This process is repeated
for each new input signal.
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6.3 Experiments

In this section, the effectiveness of the NIC approach is assessed in compressing point
cloud attributes, which is used as an illustrative example application. To achieve this,
the implicit neural network used is a SIREN that takes as input the 3-D coordinates
of a point cloud as input and outputs the corresponding RGB values.

6.3.1 Experimental setting

To prepare the SIREN neural network for point cloud attribute compression, we first
selected a suitable design for the number of layers and parameters. We then pre-
trained the network using a meta-learning algorithm from Sec. 6.2.4. Specifically,
Stochastic Gradient Descend (SGD) with a learning rate of 0.01 as the inner optimizer
and Adam with a learning rate of 10−5 as the outer optimizer have been used. During
pre-training, we ran 10 inner steps for 1000 iterations on a collection of point clouds
from the Microsoft Voxelized Upper Bodies dataset [100]. After pre-training, we
fine-tuned the network for each point cloud in the test set. We used the Adam
optimizer with a fixed learning rate of 10−5 for this step.

Each network is trained for 20000 iterations by minimizing a loss function that
is based on the MSE between the original colors and the predicted ones in the YUV
space:

LTot = αMSEY +βMSEU + γMSEV, (6.1)

where α , β and γ are coefficients aimed modulating the relative importance of
luminance and chrominance. In the proposed experiments α = 0.6,β = 0.2,γ = 0.2
are used in order to slightly promote luminance, as common practice in traditional
codecs. After finetuning, the network parameters are differentially encoded with
respect to the meta-learned intialization. The differences are quantized with a
uniform scalar quantizer, where the quantization step size is adapted layer-by-layer
on the basis of the dynamic range of the parameters belonging to each layer, and
entropy-coded with an arithmetic encoder.
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Table 6.1 NIC: BD-Rate over the total PSNR of NIC versus RAHT.

Loot Longdress Redandblack Soldier
-10.23 % -38.88 % -22.10 % -33.39 %

6.3.2 Experimental results

The test set used for compression consists of four point clouds from the 8i Voxelized
Full Bodies dataset[101]: Loot_vox10_1200, Longdress_vox10_1300,
Redandblack_vox10_1550, Soldier_vox10_0690. Notice that these point clouds
are different from the data used for meta-learning. To achieve different rate-distortion
points, several networks are trained with different numbers of layers, features, and
quantization step sizes. In particular, networks with 60, 80, 130 and 170 features per
layer, with 5, 7 or 9 hidden layers, and quantization step sizes corresponding to a
number of levels from 22 to 212 are tested.

The proposed method performance is compared to the latest version of the MPEG
G-PCC standard (v12.0 test model) and the Region-Adaptive Hierarchical Transform
algorithm (RAHT), a recent algorithm that exploits a hierarchical transform based
on Haar wavelets. It i possible to notice from Fig.6.2 that the proposed method
significantly improves over RAHT and reaches performance close to G-PCC v12.0,
especially at low rates. This is especially significant because the method is not
extensively optimized, and there are possibilities for further improvements.

The proposed training method directly promotes the luminance channel over the
chrominance, as shown in Eq.(6.1). Total PSNR is also evaluated, and the results
reported in Table 6.1 confirm that the proposed method still improves over RAHT
even when the distortion on chrominance is taken into account.
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Fig. 6.2 NIC: Attribute compression rate-distortion performance. Average BD-Rate: NIC vs.
RAHT= -32.07%, NIC vs. G-PCC v12.0 = 47.21%.

6.3.3 Effectiveness of differential meta-learning

In this section the effectiveness of meta-learning is studied by examining the rate-
distortion performance achieved by various weight coding options.

First, the distribution of finetuned weights is compared to the distribution of their
difference with respect to the meta-learned initialization. The relative results for a net-
work with 80 features and 9 hidden layers trained over the Redandblack_vox10_1550
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point cloud are showed in Fig.6.3. The advantage of differential weight compression
is evident, as it results in a distribution with significantly lower variance, leading to
increased rate-distortion efficiency.

In Fig.6.4, different methods are compared through rate-distortion curves, includ-
ing the proposed method with differential compression, classic network compression,
i.e., directly quantizing the final values of the weights, and a network with random
initialization and quantization of the final values of the weights. The results show that
differential coding strategy increases the rate-distortion efficiency, indicating that
meta-learning effectively provides prior information about the signal characteristics.
However, meta-learning alone without differential compression does not significantly
improve performance over random initialization. This is because both networks
reach similar quality levels, although they may do so at different rates. Finally,
differential coding also has a positive effect on quality, as the distortion introduced
on weights is nonlinearly related to the final distortion on the point cloud attributes.
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Fig. 6.3 NIC: Distribution of weight values against weight differences.
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Fig. 6.4 NIC: Rate-distortion effectiveness of differential meta-learning.

6.4 Discussion and future developments

This research introduces a new paradigm for compressing signals using neural
networks, which involves representing the signal through the weights and biases of a
neural implicit representation. This approach is attractive because it can simplify and
optimize the design of compression schemes for challenging data types. There are
still several open questions regarding this approach that could lead to further research
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and improved performance. For instance, can the early portion of the network be
pre-trained to be more universal, similar to dictionary learning, and potentially save
rate? How can network weights be pruned and quantized while maintaining high
quality? Can priors be incorporated in new ways besides meta-learning, such as
through new architectures that still allow for single-coordinate input?



Chapter 7

Conclusions

In this thesis, the challenges in point cloud processing have been explored focusing
on two main themes: learning robust graph convolutional features for point cloud pro-
cessing in the presence of noise and learning an efficient and compact representation
for point cloud attributes.

Firstly, a novel graph convolutional neural network was introduced. The proposed
network can effectively learn features from noisy raw data, achieving remarkable
results in denoising, surface normal estimation, and outlier removal tasks. The
proposed research demonstrated that graph convolutional neural networks are the
most promising and powerful tool for point cloud processing tasks, especially in the
presence of noisy data.

Related to the second main topic of this dissertation, a novel signal compression
algorithm based on neural implicit representations for point cloud attribute com-
pression was proposed. This approach is able to obtain a compact representation
of point cloud attributes that can be efficiently compressed, facilitating storage and
transmission, improving processing time and overall performance, and reducing
costs associated with handling large data sets.

Overall, the results of the presented research show the potential of deep learning
and graph-based representations for point cloud processing and signal compression.
These techniques have the potential to enable new applications in virtual and aug-
mented reality, robotics, and autonomous systems, and we expect them to play a
critical role in the future development of these fields.
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7.1 Open problems

Given the rapid progress and increasing interest in the field of point cloud processing,
several open problems and challenges remain to be addressed. First of all, the
robustness to more complex noise models. In this thesis, the focus was on learning
robust features for point cloud denoising in the presence of Gaussian noise. Even
if the proposed method has been tested also for real-world simulated noise, the
extension to real data is not straightforward. Different and generally difficult to
model type of corruption affect real point clouds, such as sensor-specific noise and
missing data. Future research could explore the use of graph convolutional networks
and test the generalization ability of the model for denoising in these more complex
scenarios.

Moreover, real point clouds acquisition are usually characterized by a large
number of points. The experiments in this thesis were conducted on relatively small
point clouds due to computational constraints. However, as larger point clouds
become more prevalent, it will be important to investigate methods for effective
scaling of graph convolutional networks.

Furthermore, the compression efficiency of point cloud attributes can be im-
proved. The proposed compression algorithm for point cloud attribute compression
is a proof of concept of a generic paradigm that can be further improved and adapted
to the specific chosen task. Finally, a joint compression of point cloud geometry and
attributes can be investigated. Most existing compression techniques for point clouds
either focus on compressing the geometry or the attributes separately. A promising
research direction is to develop joint compression techniques that can compress both
the geometry and attributes of a point cloud simultaneously, while maintaining their
interdependence.
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