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Abstract: The abilities of quantitative description of noise are restricted due to its origin, and only
statistical and spectral analysis methods can be applied, while an exact time evolution cannot
be defined or predicted. This emphasizes the challenges faced in many applications, including
communication systems, where noise can play, on the one hand, a vital role in impacting the
signal-to-noise ratio, but possesses, on the other hand, unique properties such as an infinite en-
tropy (infinite information capacity), an exponentially decaying correlation function, and so on.
Despite the deterministic nature of chaotic systems, the predictability of chaotic signals is limited
for a short time window, putting them close to random noise. In this article, we propose and ex-
perimentally verify an approach to achieve Gaussian-distributed chaotic signals by processing the
outputs of chaotic systems. The mathematical criterion on which the main idea of this study is
based on is the central limit theorem, which states that the sum of a large number of independent
random variables with similar variances approaches a Gaussian distribution. This study involves
more than 40 mostly three-dimensional continuous-time chaotic systems (Chua’s, Lorenz’s, Sprott’s,
memristor-based, etc.), whose output signals are analyzed according to criteria that encompass the
probability density functions of the chaotic signal itself, its envelope, and its phase and statistical and
entropy-based metrics such as skewness, kurtosis, and entropy power. We found that two chaotic
signals of Chua’s and Lorenz’s systems exhibited superior performance across the chosen metrics.
Furthermore, our focus extended to determining the minimum number of independent chaotic
signals necessary to yield a Gaussian-distributed combined signal. Thus, a statistical-characteristic-
based algorithm, which includes a series of tests, was developed for a Gaussian-like signal assess-
ment. Following the algorithm, the analytic and experimental results indicate that the sum of at
least three non-Gaussian chaotic signals closely approximates a Gaussian distribution. This allows
for the generation of reproducible Gaussian-distributed deterministic chaos by modeling simple
chaotic systems.

Keywords: chaotic models; chaotic circuits; Gaussian noise; central limit theorem

1. Introduction

Chaos theory has radically revolutionized our understanding of the potential for
complex, unpredictable behavior within seemingly simple deterministic systems. This
phenomenon, known as chaos, arises in nonlinear systems and is characterized by extreme
sensitivity to initial conditions, often leading to the iconic “butterfly effect”. Chaotic dy-
namics are remarkably pervasive, manifesting in diverse domains such as social, biological,
and technical systems [1–6].

Security threads and challenges prompt scientists to research how chaotic signals are
suitable to resolve these issues. Numerous applications have been proposed, including
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secure and covert communication, pseudo-random number generators (PRNGs) and cryp-
tography [7–14]. Despite the diverse applications and varying advantages and drawbacks
in each of these scopes, chaotic systems are used as sources of entropy, a fundamental
property crucial for security applications.

Chaos generators, present in both hardware and software implementation, produce
time series that either mask information-bearing signals or undergo postprocessing for
various cryptographic purposes. Chaotic trajectories form strange attractors in phase space,
which, in contradiction to the limit cycle that represents regular behavior, have fractional or
fractal dimensions [1]. There are several variants of fractal dimensions, generally measuring
the average closeness, density, and distribution of points on chaotic attractors in phase space.
Chaos sources are categorized into two groups, including continuous time and discrete map
systems. Due to differences in attractor properties, the trajectories of a chaotic system exhibit
different statistics reflected in their probability density functions (PDFs). Chaos applications
necessitate a high-quality entropy source, emphasizing the necessity to maximize the
entropy of chaotic signals. Statistical analyses have been proposed by Yong Wang et al. to
increase the quality of chaos for the same purpose as in this paper [15]. Concerning PDFs,
the most important are a number with a uniform PDF and Gaussian-distributed signals
with a bell-shaped PDF. The first requirement is common in cryptography; the second is
useful in communication. Both of them maximize the uncertainty of range-limited and
variance-limited signals, respectively [16].

A two-dimensional discrete-time white Gaussian noise generator was proposed in [17].
To obtain an independent time series with a Gaussian probability density function, a
special transformation was used on the tent map. A similar approach to the same tent map
demonstrated the efficiency of the transformation method [18].

A Gaussian distribution is not the sole target widely sought in signal processing.
Contributions in this direction also focus on achieving a uniform probability density.
In [19], it is proven that the folding sums of chaotic trajectories, bounded within a given
interval by modulus operation, tend to approach uniformity. It is worth noting that certain
discrete chaotic systems yield series with a uniform probability density function without
requirement of additional transformations [20–25].

Significant achievements have been attained in the realm of optical chaos gener-
ators [26–31]. Wideband optical chaos exhibits a heightened propensity for Gaussian-
distributed probability density functions. This characteristic has prompted suggestions
for harnessing optical chaos generators as high-quality, ultra-fast entropy sources [28,29].
A recently reported experimental technique focuses on generating a Gaussian-invariant
distribution [32]. Such sources hold potential for diverse applications spanning communi-
cation [33,34], random number generation [26,27], and cryptography [30,35].

Covert communication, originally designed to conceal and render the transmission
undetectable, is now being harnessed for commercial and private applications to provide
physical-level protection. In contrast to conventional communication, where Gaussian
white noise diminishes the signal-to-noise ratio, covert communication employs it as a coun-
termeasure against eavesdroppers. Thermal noise is utilized to randomize the transmitted
signal in a Gaussian-distributed spread spectrum [36]. Additionally, extending this concept,
the utilization of artificially generated Gaussian-distributed noise has been proposed across
diverse scenarios [37–40]. Despite the fact that hundreds of chaotic systems have been
designed and studied, few of them can produce Gaussian-distributed signals. Therefore,
finding an approach for obtaining the most complex chaotic signal based on simple and
well-studied nonlinear systems is important. In this paper, we propose a method to obtain
Gaussian-distributed signals. To achieve this, we study the statistical properties of some
chaotic signals to find out how much of them are necessary to form a Gaussian-distributed
waveform with the following experimental investigation and achievement verification that
allow for an implementation of “deterministic noise” generators. With this aim, we have
suggested an algorithm that combines the most valued statistical characteristics for the
considered signal assessment.
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The manuscript is organized as follows. In Section 2, we describe the quality metrics used
to evaluate and compare chaotic signals. The properties of time series produced by mathematic
models of Chua’s circuit and the Lorenz system are studied in Section 3. Experimental
verification of the results is provided in Section 4. The discussion and conclusion are presented
in Section 5. Appendix A presents the results of computing the statistical properties of more
than 40 continuous-time chaotic systems found in the literature.

2. Materials and Methods
2.1. Central Limit Theorem

The central limit theorem (CLT) relates to probability theory and explains why Gaus-
sian noise is widespread in nature. For identically distributed independent samples, the
standardized sample mean tends towards the standard normal distribution even if the
original variables themselves are not normally distributed. There are several variants of
the CLT. In its common Lindeberg–Lévy form, the CLT is as follows [41,42]:

Theorem 1. Suppose {X1, . . . , Xn} is a sequence of independent and identically distributed random
variables with expectation E[Xi] = µ and variance Var[Xi] = σ2 < ∞. Then, as n approaches
infinity, the random variables

√
n( 1

n ∑n
i=1 Xi − µ) converge in distribution to a normal N (0, σ2).

The CLT shows a way to obtain a variable with a Gaussian-like distribution from
several others by summation. The key condition for particular components is their limited
variance, which chaotic signals satisfy due to the existence of their attractors in bounded
phase space. The question is to find how many independent chaotic signals are necessary
and which criteria the resulting signal should meet to be considered Gaussian-like. There-
fore, the following consideration of the basic distributions will present the possibility to
develop an algorithm for testing chaotic signals.

2.2. Basic Distributions

As a reference signal, we chose white Gaussian noise whose statistical properties can
be described by three basic distributions which are the PDF of the shape, the envelope and
the phase of the signal.

The term “Gaussian noise” or “Gaussian signal” refers to a normal or bell-shaped prob-
ability density function of a signal. Such signals can be either random noise or information-
bearing. A Gaussian variable has the following PDF

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , (1)

where σ—standard deviation; µ—mathematical expectation or mean.
The envelope of white noise has a Rayleigh distribution

p(x, σ) =
x

σ2 e−
x2

2σ2 , (2)

where σ—standard deviation of the Gaussian distribution (1).
A uniform distribution describes the phase of a signal

p(ϕ) =
1

2π
, (3)

where 0 ≤ ϕ ≤ 2π.

2.3. Measures of Similarity of Probability Density Functions

To evaluate the similarity of any signal to WGN, normality tests that include computing
of skewness and excess kurtosis are conventionally utilized [43].
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Skewness is a measure of the asymmetry of a PDF around its mean and is defined as
the normalized third central moment of a signal

µ̃3 = E
[(

x − µ

σ

)3
]

, (4)

where E—expectation operator.
Excess kurtosis is the metric of the height and sharpness of a PDF relative to that of a

standard bell curve

µ̃4 = E
[(

x − µ

σ

)4
]
− 3. (5)

For WGN, both the skewness and excess kurtosis are equal to zero.
It is worth noting that if a signal exhibits a symmetric distribution with zero excess

kurtosis, it by no means guarantees that its probability density function is normal. There are
non-Gaussian distributions with µ̃3 = 0 and µ̃4 = 0 [44,45]. Therefore, at least a graphical
analysis is necessary to confidently assert the normality of the distribution, or confirmation
should be achieved through more sophisticated tests.

The envelope and phase of a signal can be found by using the Hilbert transform [46].
For a given function x(t), the Hilbert transform is given as

x̂(t) = H(x(t)) =
1
π

∫ ∞

−∞

x(t)
t − τ

dτ. (6)

Then, the envelope and phase of x(t) are

a(t) =
√

x2(t) + x̂2(t), (7)

ϕ(t) = arctan
x̂(t)
x(t)

. (8)

If x(t) is WGN, the envelope a(t) has a Rayleigh PDF (2), and the phase ϕ(t) has a
uniform PDF (3).

The informational properties of signals can be assessed by their differential entropy.
For a variable x with a probability density function p(x), the differential entropy is
given by

h = −
∫ ∞

−∞
p(x) log p(x)dx. (9)

The Gaussian distribution (1) attains the maximum differential entropy, which, for
µ = 0 and variance σ2, is equal to

hg =
1
2

ln 2πeσ2. (10)

For any other signal with the same variance σ2, the differential entropy h(x) does not
exceed the value given in (10), i.e., h(x) ≤ hg(x).

Entropy power, a concept pioneered by Shannon [47], allows us to compare the
probability density functions of a signal and Gaussian noise:

k1 =
e2h

2πe
, 0 ≤ k1 ≤ 1, (11)

where h—entropy of signal.
The entropy power of a distribution coincides with the variance of a Gaussian distri-

bution possessing an identical entropy.
To compare two arbitrary PDFs, we used the entropy power ratio, mathematically de-

fined as follows for distributions p1(x) and p2(x) bearing entropies h1 and h2, respectively:
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k1(h2)

k1(h1)
= e2∆h, (12)

where ∆h = h1 − h2—the difference between differential entropies of two distributions.
To restrict the value of ratio (12) into interval 0 ≤ k1 ≤ 1, the following expression can

be applied:
k = e−2|∆h|. (13)

The entropy power (13) increases when the difference between entropies of distribu-
tions becomes smaller.

To evaluate the similarity of probability density functions with an amplitude and a
phase with the reference distributions, we utilize the entropy power relative to these baseline
distributions. Thus, the entropy power of the envelope of the signal is determined as:

k2 = e−2|he−hR |, (14)

where he—entropy of the envelope of signal; hR = 1 + ln σ√
2
+ γ

2 —entropy of a Rayleigh
PDF (2) [44]; and γ ≈ 0.577—Euler–Mascheroni constant.

The entropy power for evaluating the similarity of the phase distribution of the signal
and a uniform one would be determined as:

k3 = e−2|hph−hu |, (15)

where hph—entropy of the phase of the signal; hu = ln 2π—entropy of a uniform PDF (3) [44].
Furthermore, the cross-entropy and Kullback–Leibler divergence can serve as addi-

tional metrics within the considered algorithm [48]. While not explicitly highlighted in the
text, their analysis has been performed preliminarily, revealing clear results that they do
not hold a decisive role in characteristic assessments for this type of study.

3. Properties of Sums of Chaotic Signals

The approach for generating a Gaussian-distributed chaotic signal is schematically
illustrated in Figure 1. Selected chaotic outputs undergo normalization, followed by
summation, to achieve a transformation from their original probability density function to
a Gaussian PDF. The normalization step may be omitted depending on the properties of
the original chaotic signals and the desired variance of the resulting sum.

There are lots of different nonlinear systems exhibiting chaotic behavior. We investi-
gated more than 40 mostly three-dimensional chaotic systems through computing the PDFs,
skewness, excess kurtosis, and entropy power of their output signals. Before estimation
of the characteristic mentioned in the algorithm, each chaotic signal was centered around
its zero mean and normalized to have unit variance. The results show that the majority
of the studied chaotic systems exhibit characteristics that are far from being considered
Gaussian-like signals.

The obtained results for a variety of chaotic systems appear in Appendix A, and a
detailed description of the algorithm is analytically and experimentally demonstrated
below with examples from two widely used and extensively studied systems: Chua and
Lorenz. They were specifically chosen since their signals, among all examined, possess
the most favorable parameters to serve as a platform for generating deterministic chaotic
Gaussian signals.
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Figure 1. Schematic representation of the suggested algorithm for forming Gaussian-distributed
signals. Simple chaotic systems with different initial conditions and/or system parameters suffer
normalization (an optional stage depending on the conditions) and are added in the summation
block. The number of chaotic systems (n) can vary until the output signal successfully passes the
suggested algorithm’s tests, resulting in the achievement of a Gaussian-distributed signal.

3.1. Chua’s Circuit

Chua’s circuit is one of the most well-known systems that generate deterministic chaos
and can be easily implemented as an electrical circuit [49]. Moreover, various types of
nonlinearities can be utilized in this circuit [50,51].

The mathematical model of Chua’s circuit in dimensionless form is a three-differential
equation system

ẋ = α(y − x − f (x))
ẏ = x − y + z

ż = −βy
(16)

where x, y, z—output variables; α, β—parameters of the model; and f (x) = m2x +
0.5((m0 − m1)(|x + a1| − |x − a1|) + (m1 − m2)(|x + a2| − |x − a2|))—nonlinear function,
where a1 = 1, a2 = 6.88, m0 = −1.238, m1 = −0.6665, m2 = 500. The connection between
the circuit’s and the model’s parameters can be found in [49,52].

A key requirement to obtain independent chaotic systems is the absence of any con-
nection between them. In analytical analysis, the independence of chaotic systems is
achieved through different initial conditions of the systems; in experiments, it occurs
due to the difference between the system parameters and the initial conditions, which
appears naturally.

We studied Chua’s circuit with a piecewise linear characteristic in the nonlinear part,
which provides various dynamical modes, including a single- or double-scroll chaotic
attractor. As shown in Figure 2, the circuit consists of inductance, two capacitors, and
nonlinearity and is implemented on two operational amplifiers [52].

Figure 2. Chua’s circuit.
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When α = 10 and β = 14.6, the circuit operates in double-scroll mode and all the
outputs possess a symmetric PDF with skewness close to zero. The y output produces a
low excess kurtosis µ̃4 = 0.1421, which also has the highest entropy power of k1 = 0.9039,
k2 = 0.9756, and k3 = 0.998. Nevertheless, there are distinct visual differences between the
PDFs of chaotic and basic distributions, which can be seen in Figure 3a,e,i and numerically
from Table A1.

The central limit theorem states that the summation of two or more chaotic signals
yields a PDF of the sum that exhibits a greater resemblance to a Gaussian PDF compared
to that of a single signal. The evolution of the PDFs when the number n of independent
chaotic signals increases is shown in Figure 3. To minimize the number of chaotic signal in
the total signal, it is efficient to use the variable y. When only three independent outputs
of y are added, the PDF of the sum, along with its envelope and phase, closely resembles
the basic PDFs, i.e., normal, Rayleigh, and uniform PDFs. The entropy powers of the sum
k1, k2, k3 exceed 0.99.

n = 1 n = 2 n = 3 n = 4

x,y,z

P
D

F

p(x)

p(y)

p(z)

normal PDF

(a)
x,y,z

P
D

F

p(x)

p(y)

p(z)

normal PDF

(b)
x,y,z

P
D

F

p(x)

p(y)

p(z)

normal PDF

(c)
x,y,z

P
D

F

p(x)

p(y)

p(z)

normal PDF

(d)

x,y,z

P
D

F

p
env

(x)

p
env

(y)

p
env

(z)

Rayleigh PDF

(e)
x,y,z

P
D

F

p
env

(x)

p
env

(y)

p
env

(z)

Rayleigh PDF

(f)
x,y,z

P
D

F

p
env

(x)

p
env

(y)

p
env

(z)

Rayleigh PDF

(g)
x,y,z

P
D

F

p
env

(x)

p
env

(y)

p
env

(z)

Rayleigh PDF

(h)

x,y,z

P
D

F

p
ph

(x)

p
ph

(y)

p
ph

(z)

uniform PDF

(i)
x,y,z

P
D

F

p
ph

(x)

p
ph

(y)

p
ph

(z)

uniform PDF

(j)
x,y,z

P
D

F

p
ph

(x)

p
ph

(y)

p
ph

(z)

uniform PDF

(k)
x,y,z

P
D

F

p
ph

(x)

p
ph

(y)

p
ph

(z)

uniform PDF

(l)

Figure 3. The PDFs of the sum of n chaotic signals generated by Chua’s circuit: PDF of signals (a–d),
PDF of envelope of signals (e–h), PDF of the phase of signals (i–l).

The quality metrics of the sum of signals are contingent upon the number of signals
incorporated, as illustrated in Figure 4. The excess kurtosis decreases to zero, and all
entropy powers converge to 1 with an increasing value of n. This suggests that achieving
chaos resembling Gaussian noise necessitates the addition of a minimum of three original
chaotic signals from Chua’s circuit.

A change in circuit parameters with preservation of the chaotic double-scroll mode
causes significant changes in the quality metrics, particularly the excess kurtosis and
entropy power. For example, when α = 9.273 and β = 16.8, Chua’s circuit has the
following metrics, which are quite different from ones mentioned above: E = −0.9334,
k1 = 0.8739, k2 = 0.5006 and k3 = 0.999. This result suggests that the PDFs of signals are
sensitive to the parameters of the chaotic system.
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Figure 4. Quality metrics of the sum of n signals x, z generated by Chua’s circuit for different n:
excess kurtosis (a), entropy power of the amplitude of signals (b), entropy power of the envelope of
signals (c) and entropy power of the phase of signals (d).

3.2. Lorenz System

While the previously considered Chua’s circuit is one of the simplest both as an
analytical model and an experimental implementation, the Lorenz system is a well-known
and extensively investigated source of deterministic chaos. The system was originally
developed to model atmospheric convection in meteorology and allows for the description
of different atmospheric phenomena [53]. The Lorenz system is usually applicable in its
mathematical representation (a system of three differential equations with nonlinearity (17))
and has found widespread use in diverse fields such as physics, engineering, biology,
economics, and even art. However, its hardware implementation is inherently more
complex than Chua’s circuit due to the involvement of analog multipliers (Figure 5) [54].

Figure 5. Electronic implementation of a Lorenz system.

ẋ = σ(y − x)
ẏ = (r − z)x − y
ż = xy − bz

(17)

where x, y, z—system variables; σ = 10, r = 28, and b = 8
3 —parameters.

We simulated system (17) with two different values of the parameter r, r = 28 and
r = 60, keeping other parameters constant. The statistic parameters of the Lorenz system
are shown in Table A2. Two of the three outputs in the Lorenz system, namely x and y,
exhibit symmetric PDFs. Similarly to Chua’s circuit, the results indicate a significant impact
of the model parameters on the appearance and characteristics of the PDFs of the output
signals. For the investigated parameter values, the signal most resembling Gaussian noise
is y, with σ = 10, r = 28, and b = 8

3 , featuring coefficients µ̃4 = −0.1573, k1 = 0.9013,
k2 = 0.9368, and k3 = 0.8877.

The original histograms of normalized output signals from the Lorenz system are
shown in Figure 6. Despite the asymmetry in the output signal z, combining all three
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outputs can yield a normal PDF when summing only three–four signals. The relationship
between the excess kurtosis coefficient and entropy powers for different values of n is
presented in Figure 7 and confirms this conclusion.
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Figure 6. The PDFs of the sum of n chaotic signals generated by a Lorenz circuit: PDF of signals (a–d),
PDF of envelope of signals (e–h), PDF of the phase of signals (i–l).
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Figure 7. Quality metrics of the sum of n signals x, y, and z generated by a Lorenz circuit for different
n: excess kurtosis (a), entropy power of the amplitude of signals (b), entropy power of the envelope
of signals (c) and entropy power of the phase of signals (d).

The entropy power values (k1, k2, k3) for the sum of three and four y variables exceed
0.98 and 0.99, respectively. Furthermore, a comparison of the PDFs in Figure when n = 4
suggests there are no significant discrepancies between the PDFs of the sum and the
basic PDFs.

Analyses of Chua’s circuit and the Lorenz system reveal that the summation of chaotic
non-Gaussian signals proves to be an effective method for obtaining deterministic chaotic
Gaussian signals.
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4. Experimental Verification
4.1. Experiment with Chua’s Circuit

The following results were obtained for the Chua circuit with a piecewise linear–
nonlinear element implemented using TL082CP operational amplifiers, as depicted in
Figure 2. Four circuits were assembled with slightly different parameters. The parameter
difference was determined by the used components’ features—for the used capacitors,
C1 = 100 µF and C2 = 10 µF; for the inductor, L = 18 mH; and they both have a tolerance of
±5%. The parameters of the nonlinear element were as R2, R3 = 220 Ohm, R4 = 2.2 kOhm,
R5, R6 = 22 kOhm, and R7 = 3.3 kOhm.

Additionally, a potentiometer was utilized to provide a resistance R1 = 1580 Ohm,
the value of which could be adjusted in increments of ±100 Ohm to change the chaotic
circuit behavior. The voltages across the capacitors C2, corresponding to the variable y in
the model of the circuit, were recorded and processed for further analysis. A set of signal
records (50 samples of voltages across the capacitors C2) was obtained, where each record
contained 2 × 106 sweep points.

The experimental results confirmed the theoretical assumptions and analytical out-
comes. As depicted in Figure 8, increasing the number of chaotic systems rapidly drives
the distribution of their summed signals towards a normal distribution. This observation
extends to the envelope and phase of the signal, where Rayleigh and uniform distributions
were observed, respectively.
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Figure 8. The experimental PDFs of the sum of n chaotic signals generated by a prototype of Chua’s
circuit: PDF of signals (a–d), PDF of envelope of signals (e–h), PDF of the phase of signals (i–l).

4.2. Experiment with a Lorenz System

An experimental investigation was performed using a simplified electronic realization
of a Lorenz oscillator, constructed in accordance with the specifications outlined in [54,55]
and the circuit in Figure 5. We used an AD633 analog multiplier and a TL084CN oper-
ational amplifier. The other circuit elements were as follows: R1, R2 = 100 kOhm, R3,
R6 = 10 kOhm, and R7 = 1 MOhm, with a tolerance of 5%, and R4 = 370 Ohm, with a
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tolerance of 0.5%. The variable resistor R5 allows for tuning of the parameter r and was set
at R5 = 35.72 kOhm.

Four circuits were assembled on a breadboard, and the appropriate oscillograms were
recorded. Subsequently, they were subjected to the suggested set of tests. The probability
density functions of the normalized output x from the electronic circuit of the Lorenz
system are illustrated in Figure 9. A comparison between Figures 9 and 6 reveals a good
agreement between the analytic and experimental results.
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Figure 9. The experimental PDFs of the sum of n chaotic signals generated by a prototype of a Lorenz
circuit: PDF of signals (a–d), PDF of envelope of signals (e–h), PDF of the phase of signals (i–l).

5. Discussion and Conclusions

The results underscore a promising approach for generating deterministic Gaussian-
like signals using an optimal number of chaotic systems. The PDFs of the original chaotic
signals exhibit essential deviations from a normal distribution, indicating their inherently
lower information capacity compared to fully random Gaussian noise. This observation
prompts the need to establish criteria for selecting chaotic systems to achieve Gaussian
signal formation through the summation of chaotic signals. This requires an optimization
process to minimize the number of independent simple chaotic signals. The performed
analysis demonstrates that adherence to the following guidelines significantly enhances
the likelihood of a successful chaotic system and signal selection:

i. Prioritize signals possessing symmetric probability density functions.
ii. Minimize the excess kurtosis of the selected signals, ideally aiming for µ̃4 < 1.
iii. Ensure that all three entropy powers (k1, k2, k3) of the original chaotic signal surpass a

value of 0.85.

While strict adherence to these guidelines does not ensure Gaussian signal achieve-
ment, it substantially increases the probability of generating a Gaussian chaotic signal
with the desired entropy coefficients k1, k2, k3 > 0.95. Although, theoretically, there are no
limitations to the number of chaotic signals that can be summed to achieve a Gaussian dis-
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tribution, practical implementation has restrictions due to the lack and value of resources
and the size limitation of devices. The lowest limit is defined by using the algorithm
considered in this paper to merely sum three or four independent chaotic signals.

It is crucial to underscore that chaotic signals are generated by deterministic systems,
rendering their summation equally deterministic. This underscores the capability of simple
summation to yield intricate, noise-mimicking chaotic signals that retain their deterministic
nature. The most innovative aspect of this method is the possibility of attributing the output
voltage and the current of random chaotic circuits of a well-known signal as Gaussian
noise, the properties of which are well known and exploitable in many applications. The
possibility of obtaining a Gaussian-like signal description presents the opportunity to
design and model chaotic circuits’ output voltages, preserving all the general properties
of the Gaussian distribution. Moreover, since many chaotic circuits do not have output
signals linked to Gaussian noise, this method allows for widening the field of investigation,
even to those circuits that apparently do not have these properties. It is also considerable
that more than 40 chaotic systems have been evaluated, leading to the confirmation of this
theory and confirming the validity of this method.

The output signals obtained via this process hold considerable value across a variety
of applications, including generating deterministic Gaussian noise, electronic warfare
systems, coherent and/or covert communication systems, radars, statistical modeling,
machine learning, cryptography, and more.

The possibility of obtaining a pseudo-random number generator through the simple
sum of chaotic signals predisposes this method to a wide range of applications, bypassing
any possible complications of chaotic signal processing. All the possible applications
mentioned can support both hardware and software implementation of chaotic circuits,
with the addition in this case of greater properties and guidelines that can be exploited
during the implementation guaranteed by the traceability to Gaussian noise. Since the main
aim is to present more known laws of circuits that in certain conditions are dominated by
chaos, other aspects and elaborations of the output signals of the proposed chaotic circuits
are also being investigated, which could lead back to the properties of pseudo-Gaussian
noise. Future investigations will aim at trying to reconstruct more well-known properties
of apparently chaotic signals, trying to make it easier to implement the chosen application.

The results of the study can find applications in the enhancement of security in
communication systems. These include:

i. Covert communication—there are approaches based on thermal noise or AI noise;
therefore, our recommendation is to use artificial Gaussian-distributed chaotic signals
for hidden communication;

ii. Radio countermeasure purposes—the deterministic nature of chaotic systems can be
used to reproduce and compensate for the influence of chaos in “friendly devices” and
remains incomprehensible for “enemies”. This means that the same signal can be at
least neutral for one device and harmful to others;

iii. PRNG for cryptography purposes—a huge number of scientific studies are concerned
with this question. By increasing the number of chaotic signals, we increase the
keyspace of the encrypted information.

The Gaussian noise model serves as a foundational and widely applicable framework
for analyzing signal randomness. However, it is important to recognize that while Gaussian
noise is a common and versatile model, quite a few diverse noise models exist that can be
useful. Examples include pink noise, brown noise, and various others, which are rather a
special case of the Gaussian noise model, but require additional consideration to use them
as a reference for the development of a random signal testing algorithm.
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Appendix A

Tables A1–A3 present the results of passing the suggested algorithm tests, including
skewness µ̃3, excess kurtosis µ̃4, and entropy power for signal k1, its envelope k2, and phase
k3. The initial conditions for the majority of chaotic systems were randomly selected from
the interval (0, 1). In cases where the chaotic mode demonstrates dependence on the initial
conditions, the specific values are indicated in Table A3. Signals suitable for summation are
highlighted in green, while those that successfully passed the suggested algorithm’s tests
are highlighted in blue.

Table A1. Statistical properties of signals of Chua’s circuit.

Chaotic System Output
Variable µ̃3 µ̃4 k1 k2 k3

Chua’s circuit [49]
ẋ = 10(y − x − f (x)) x −0.0116 −1.6609 0.3626 0.4754 0.8435
ẏ = x − y + z y −0.0028 −0.1421 0.9039 0.9756 0.9980
ż = −14.6y z 0.0084 −1.1152 0.7541 0.8128 0.9056
where
f (x) = m2x + 0.5((m0 − m1)(|x + a1| − |x − a1|) + (m1 − m2)(|x + a2| − |x − a2|));
a1 = 1; a2 = 6.88; m0 = −1.238; m1 = −0.6665; m2 = 500.

Pairwise sum of two signals
x1 + x2 0.0033 −0.8287 0.7040 0.9349 0.9696
y1 + y2 0.0029 −0.0717 0.9961 0.9604 0.9989
z1 + z2 −0.0007 −0.5581 0.9648 0.9976 0.9965

Pairwise sum of three signals
x1 + x2 + x3 −0.0059 −0.5519 0.8741 0.8897 0.9873
y1 + y2 + y3 0.0015 −0.0367 0.9996 0.9893 0.9986
z1 + z2 + z3 0.0089 −0.3715 0.9901 0.9798 0.9987

Pairwise sum of four signals
x1 + x2 + x3 + x4 −0.0090 −0.4088 0.9467 0.9783 0.9982
y1 + y2 + y3 + y4 0.0009 −0.0034 0.9998 0.9908 0.9985
z1 + z2 + z3 + z4 0.0105 −0.2700 0.9955 0.9907 0.9994
Experiment with Chua’s circuit
y1 y −0.0518 −0.4249 0.9437 0.9381 0.9950
y1 + y2 0.0339 −0.3837 0.9897 0.9192 0.9986
y1 + y2 + y3 0.0511 −0.2393 0.9962 0.9629 0.9986
y1 + y2 + y3 + y4 0.0420 −0.1846 0.9979 0.9720 0.9985

Chua’s circuit [49]
ẋ = 9.273(y − x − f (x)) x −0.0763 −1.4807 0.5463 0.6532 0.9087
ẏ = x − y + z y −0.0070 −0.9334 0.8739 0.5006 0.9989
ż = −16.8y − 0.0042z z 0.0465 −0.8164 0.8676 0.8860 0.9808
where
f (x) = m2x + 0.5((m0 − m1)(|x + a1| − |x − a1|) + (m1 − m2)(|x + a2| − |x − a2|));
a1 = 1; a2 = 6.88; m0 = −1.238; m1 = −0.6665; m2 = 500.
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Table A2. Statistical properties of signals of Lorenz systems.

Chaotic System Output
Variable µ̃3 µ̃4 k1 k2 k3

Lorenz [53]
ẋ = 10(y − x) x 0.0003 −0.7093 0.8989 0.8535 0.9830
ẏ = (28 − z)x − y y 0.0005 −0.1573 0.9013 0.9368 0.8877
ż = xy − 8

3 z 0.2023 −0.8499 0.8974 0.5618 0.9731

Pairwise sum of two signals
x1 + x2 −0.0102 −0.3529 0.9893 0.9587 0.9995
y1 + y2 −0.0103 −0.0801 0.9938 0.9580 0.9865
z1 + z2 0.0014 −0.4291 0.9852 0.9921 0.9983

Pairwise sum of three signals
x1 + x2 + x3 −0.0053 −0.2393 0.9966 0.9677 0.9989
y1 + y2 + y3 −0.0059 −0.0570 0.9993 0.9857 0.9978
z1 + z2 + z3 0.0397 −0.2867 0.9946 0.9631 0.9994

Pairwise sum of four signals
x1 + x2 + x3 + x4 −0.0031 −0.1840 0.9981 0.9759 0.9987
y1 + y2 + y3 + y4 −0.0040 −0.0468 0.9997 0.9937 0.9999
x1 + x2 + x3 + x4 0.0002 −0.2122 0.9975 0.9852 0.9987
Experiment with Lorenz system
x1 x 0.0131 −0.5906 0.9292 0.8454 0.9606
x1 + x2 0.0150 −0.1978 0.9937 0.9995 0.9976
x1 + x2 + x3 0.0204 −0.0523 0.9989 0.9996 0.9993
x1 + x2 + x3 + x4 0.0246 0.0499 0.9995 0.9886 0.9996
Lorenz [53]
ẋ = 10(y − x) x −0.0034 −0.9328 0.8961 0.7523 0.9649
ẏ = (60 − z)x − y y −0.0038 −0.3519 0.9801 0.9247 0.8355
ż = xy − 8

3 z z 0.0821 −0.4826 0.9736 0.7515 0.9786

Table A3. Statistical properties of signals of chaotic systems.

Chaotic System Output
Variable µ̃3 µ̃4 k1 k2 k3

Bhalekar and Gejji [56]
ẋ = −2.677x − y2 x −0.4940 −0.3912 0.8739 0.5924 0.9420
ẏ = 10(z − y) y −0.0029 −0.2152 0.9362 0.7205 0.7675
ż = −27.3y − z + xy z −0.0029 −0.0071 0.9586 0.9157 0.6919

Chen and Lee [57]
ẋ = −yz + 5x x −0.0009 −1.3013 0.7086 0.2180 0.9371
ẏ = xz − 10y y 0.0027 −0.7711 0.9037 0.3269 0.8813
ż = 1

3 xy − 3.8z z 0.4027 −0.6617 0.7847 0.5387 0.9838

Cheng et al. [58]
ẋ = y x 0.0042 −0.7241 0.8544 0.7317 0.9969
ẏ = −0.2y −
(0.25x sin x)(10 cos 2t + 0.1)

y 0.0002 −0.6388 0.9540 0.7494 0.9792

Colpitts chaotic oscillator [59,60]
ẋ = 1

C1
(z − β f (x)) x −1.3378 1.5271 0.5924 0.7753 0.7510

ẏ =
1

C2
( 1

Re
(ve − y)− z − f (x))

y −0.9897 0.0021 0.4836 0.6179 0.9102

ż = 1
L (vce − x − rLz + y) z 1.0142 0.3489 0.6171 0.9408 0.8144

where C1 = 15 × 10−9; C2 = 9.7 × 10−9; L = 30 × 10−6; ve = 2; Re = 400;

β = 300; vce = 7; rL = 40; f (x) =

{
0, x ≤ 0.75,
x−0.75

200 , x > 0.75.
.
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Table A3. Cont.

Chaotic System Output
Variable µ̃3 µ̃4 k1 k2 k3

Dong et al. [61], [x0, y0, z0] = [0.78, 0.52, 0.30]
ẋ = a1x − a2x2 − a3(y + z) x 1.3143 15.2455 0.1413 0.2982 0.7632
ẏ = −b1y − b2z + b3x y −1.5546 1.4611 0.1139 0.6076 0.7315
ż = c1(z − c2)(x − c3) z 1.6361 1.9200 0.0925 0.6168 0.7312
where a1 = 0.09, a2 = 0.05, a3 = 0.15, b − 1 = 0.06, b2 = 0.085, b3 = 0.07,
b4 = 0.07, c1 = 0.1, c2 = 0.041, 0.042

Flux controlled memristor [62]
ẋ = 1

C1
[

y−x
R − rx] x −0.0145 3.7663 0.6712 0.8624 0.9455

ẏ = 1
C2
[

x−y
R − z] y −0.0000 0.3748 0.8951 0.8874 0.9883

ż =
y
L z 0.0017 0.2822 0.8733 0.8835 0.9959

ẇ = − x
ζ w −0.0916 −1.8739 0.1006 0.3087 0.6974

where ζ = 8200 × 47 × 10−9; R = 2000; C1 = 6.8 × 10−9; C2 = 68 × 10−9; L = 18 × 10−3;
α = −0.667 × 10−3; β = 0.029 × 10−3; r = −α + 3βy2.

Genesio and Tesi [63,64]
ẋ = y x 0.1377 −1.1867 0.6227 0.2463 0.9980
ẏ = z y 0.3478 −1.2245 0.5156 0.1004 0.9931
ż = −ax − by − cz + x2 z 0.1864 −1.1514 0.6580 0.2095 0.9697
where a = 6; b = 2.92; c = 1.2.

Li et al. [65]
ẋ = −16x + 20yz x −0.0051 −0.2485 0.7872 0.8415 0.8433
ẏ = 10y − 6xz y −0.0003 −0.6939 0.8603 0.7182 0.9157
ż = −5z + 18y2 z −0.0980 −0.9221 0.8613 0.7934 0.9360

Li and Sprott [66]
ẋ = yz x 0.0023 −0.2196 0.8567 0.9277 0.8624
ẏ = 1 − z2 y −0.2622 0.1621 0.9575 0.9152 0.9130
ż = x + yz z 0.0094 0.3070 0.9607 0.5493 0.8597

Liu and Chen [67]
ẋ = 1.5x − yz x 0.0132 0.9226 0.9241 0.9580 0.7826
ẏ = −10y + xz y −0.0007 11.7760 0.3050 0.9763 0.5337
ż = −4z + xy z −0.0449 5.0172 0.5013 0.8873 0.7990

Lü and Chen [68]
ẋ = 36(y − x) x −0.0002 −0.4949 0.9266 0.8457 0.8685
ẏ = −xz + 20y y −0.0006 −0.3236 0.9422 0.9108 0.8483
ż = xy − 3z z 0.2535 −0.3539 0.9408 0.7114 0.9495

Lü et al. [69,70]
ẋ = 0.4x − yz x 0.0113 0.2948 0.9342 0.8041 0.5401
ẏ = −12y + xz y −0.1063 41.3350 0.0006 0.1884 0.0019
ż = −5z + xy z −0.0601 23.7057 0.0011 0.6488 0.0110

Memristive circuit [12,71]
ẋ = y x −0.8235 0.0391 0.7455 0.6689 0.9496
ẏ = − 1

3 [x + 1.52(z2 − 1)y] y 0.4986 0.5598 0.8316 0.9146 0.8807
ż = −y − 0.6z + yz z −0.8277 −0.2585 0.6046 0.4188 0.9038

Özoǧuz et al. [72]
ẋ = y x 0.0039 −0.8260 0.8818 0.8230 0.9784
ẏ = z y −0.0032 −0.6363 0.9356 0.7480 0.9489
ż = −0.25(y + z)− a f (x) z −0.0048 −1.0010 0.8591 0.6947 0.9769
where f (x) = ∑5

j=−3(−1)j−1 tanh k(x − 2j).

Qi et al. [73]
ẋ = 14(y − x) + 4yz x −0.0313 0.6421 0.9562 0.8812 0.9000
ẏ = −x + 16y − xz y 0.0158 0.9269 0.9554 0.9238 0.9044
ż = −43z + xy z 0.0375 4.1904 0.7527 0.8528 0.9239
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Table A3. Cont.

Chaotic System Output
Variable µ̃3 µ̃4 k1 k2 k3

Ring oscillating systems [74]
ẋ = α(M f (z)− x) x −0.0003 −0.7734 0.8992 0.7333 0.9900
ẏ = 4π2(x − z) y 0.0012 −0.5155 0.9619 0.9643 0.9762
ż = y − βz z 0.0014 −1.1498 0.7992 0.7124 0.9259
where α = 2.1; β = 1.38; M = 5; f (z) = |z + 1| − |z − 1|+ 0.5(|z − 4| − |z + 4|).

Rössler [75]
ẋ = −y − z x 0.2261 −0.7120 0.8709 0.5620 0.9958
ẏ = x + 0.2y y −0.1768 −0.8174 0.8565 0.5895 0.9958
ż = 0.2 + z(x − 6.5) z 5.3359 31.4457 0.0007 0.1869 0.4920

Sprott [76], system A
ẋ = y x 0.4457 0.1407 0.7233 0.8802 0.9472
ẏ = −x + yz y 0.0004 0.6015 0.9336 0.8052 0.8718
ż = 1 − y2 z −0.0003 −0.7692 0.9357 0.5446 0.9792

Sprott [76], system B
ẋ = yz x −0.0854 0.6461 0.9488 0.9882 0.8560
ẏ = x − y y −0.0859 −0.4976 0.9265 0.7967 0.9309
ż = 1 − xy z 0.0550 1.0485 0.9573 0.9551 0.9124

Sprott [76], system C
ẋ = yz x −0.0285 −0.1891 0.9670 0.9618 0.9479
ẏ = x − y y −0.0333 −0.9804 0.8582 0.8341 0.9715
ż = 1 − x2 z −0.6070 3.6133 0.8816 0.6143 0.9590

Sprott [76], system D, [x0, y0, z0] = [0.05, 0.05, 0.05]
ẋ = −y x −1.4687 1.7451 0.5122 0.9302 0.8719
ẏ = x + z y −0.2164 0.4422 0.8908 0.9015 0.9176
ż = xz + 3y2 z 1.4479 1.8039 0.5215 0.8628 0.9014

Sprott [76], system E
ẋ = yz x 0.4423 0.7410 0.8625 0.6111 0.8678
ẏ = x2 − y y 7.8746 203.4464 0.2325 0.4360 0.8765
ż = 1 − 4x z −0.2077 −1.1366 0.7000 0.3984 0.9822

Sprott [76], system F, [x0, y0, z0] = [0.3196, 0.4268, 0.5159]
ẋ = y + z x −0.2414 −0.3601 0.9374 0.8712 0.9195
ẏ = −x + 0.5y y −0.7451 −0.4105 0.6865 0.8476 0.9080
ż = x2 − z z 1.5488 1.9861 0.3528 0.7115 0.8282

Sprott [76], system G, [x0, y0, z0] = [1.0755, 0.0291, 0.0274]
ẋ = 0.4x + z x −0.4155 −0.4738 0.7584 0.6293 0.8725
ẏ = xz − y y −1.3171 1.9318 0.5137 0.7544 0.8240
ż = −x + y z −0.2177 −0.4342 0.8068 0.8614 0.9355

Sprott [76], system H, [x0, y0, z0] = [0.9767,−0.6578, 0.1281]
ẋ = −y + z2 x −0.9067 1.0592 0.8259 0.8943 0.9268
ẏ = x + 0.5y y 0.8846 0.1870 0.7236 0.8897 0.9088
ż = x − z z −0.2380 −0.3583 0.9374 0.8753 0.9163

Sprott [76], system I, [x0, y0, z0] = [0.05, 0.05, 0.05]
ẋ = −0.2y x −0.6289 −0.6397 0.5727 0.5888 0.9878
ẏ = x + z y −0.4225 −0.8321 0.7032 0.3328 0.9710
ż = x + y2 − z z −0.1394 0.1985 0.7051 0.8696 0.8300

Sprott [76], system J
ẋ = −2z x 0.6591 −0.5538 0.6268 0.6359 0.9792
ẏ = −2y + z y −0.4453 −0.7307 0.7934 0.5190 0.9716
ż = −x + y + y2 z −0.7874 −0.2111 0.7026 0.5675 0.9482
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Table A3. Cont.

Chaotic System Output
Variable µ̃3 µ̃4 k1 k2 k3

Sprott [76], system K
ẋ = xy − z x −0.6564 −0.1459 0.8233 0.5426 0.9263
ẏ = x − y y −0.1882 −0.8507 0.8653 0.5430 0.9624
ż = x + 0.3z z 0.9667 0.1361 0.5752 0.6775 0.9612

Sprott [76], system L, [x0, y0, z0] = [−7.3474, 30.4894,−5.4293]
ẋ = y + 3.9z x −0.4581 −1.0074 0.6298 0.2881 0.9741
ẏ = 0.9x2 − y y 0.6651 −0.4800 0.6865 0.7803 0.9235
ż = 1 − x z −0.4601 −0.4952 0.6950 0.6331 0.9728

Sprott [76], system M, [x0, y0, z0] = [−1.6768,−0.8718, 1.4698]
ẋ = −z x 0.1887 −1.0776 0.6689 0.4527 0.9901
ẏ = −x2 − y y −1.0221 0.2497 0.5754 0.7964 0.8224
ż = 1.7 + 1.7x + y z −0.6044 −0.7847 0.6011 0.2816 0.9553

Sprott [76], system N
ẋ = −2y x −0.6613 −0.5537 0.6247 0.6483 0.9790
ẏ = x2

z y −0.7877 −0.2074 0.7006 0.5577 0.9483
ż = 1 + y − 2z z −0.4452 −0.7278 0.7912 0.5151 0.9716

Sprott [76], system O, [x0, y0, z0] = [−0.4120,−0.5758,−0.7232]
ẋ = y x −0.1672 −0.9803 0.7362 0.4725 0.9929
ẏ = x − z y −0.3632 −1.1061 0.5690 0.2467 0.9963
ż = x + xz + 2.7y z −0.0199 −1.1439 0.7198 0.2928 0.9920

Sprott [76], system P, [x0, y0, z0] = [−0.0115, 0.5545,−0.2078]
ẋ = 2.7y + z x 0.9197 0.1877 0.7137 0.9358 0.9261
ẏ = −x + y2 y −0.2534 −0.5963 0.8894 0.8862 0.9202
ż = x + y z 0.7941 −0.1643 0.7097 0.8449 0.8992

Sprott [76], system Q
ẋ = −z x −0.4461 −0.1058 0.8224 0.8859 0.9232
ẏ = x − y y −0.3738 −0.6333 0.7944 0.7859 0.9237
ż = 3.1x + y2 + 0.5z z 0.6820 0.1400 0.7650 0.8623 0.9857

Sprott [76], system R
ẋ = 0.9 − y x −0.4423 −0.4140 0.8797 0.6456 0.9681
ẏ = 0.4 + z y 0.8124 0.9527 0.8116 0.5035 0.8950
ż = xy − z z −1.9040 6.0313 0.4899 0.7703 0.6918

Sprott [76], system S
ẋ = −x − 4y x −0.5469 −0.5727 0.7623 0.6349 0.9775
ẏ = x + z2 y 0.5628 −0.4412 0.7384 0.8145 0.9541
ż = 1 + x z −0.4298 −0.7253 0.7986 0.7416 0.9527

Wu and Wang [77], [x0, y0, z0] = [0, 0, 0]
0.2x + y x −0.3147 −1.0386 0.7434 0.3887 0.9940
− 1

3 (x − z2y) y 0.4113 −0.7459 0.8099 0.4452 0.9695
−0.4y − 0.4z + yz z −1.0675 0.0421 0.3894 0.6262 0.9119

Zhang et al. [78]
ẋ = y x −0.0022 −0.4024 0.8803 0.7467 0.9745
ẏ = −x − (−1 + z + 2z2)y y 0.0166 −0.1566 0.9239 0.6519 0.9363
ż = −2z + (0.5 + z + 2z2)y2 z 1.8648 2.9939 0.2449 0.7947 0.8099
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