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A B S T R A C T

This paper presents a numerical and experimental assessment of the static behaviour of thick
sandwich beams using the mixed {3,2}-Refined Zigzag Theory (RZT(m)

{3,2}). The displacement field

of the RZT(m)

{3,2} assumes a piecewise continuous cubic zigzag distribution for the axial contribution
and a smoothed parabolic variation for the transverse one. At the same time, the out-of-plane
stresses are assumed continuous a-priori: the transverse normal stress is given as a third-order
power series expansion of the thickness coordinate, whereas the transverse shear one is
derived through the integration of Cauchy’s equation. The equilibrium equations and consistent
boundary conditions are derived through a mixed variational statement based on the Hellinger-
Reissner (HR) theorem and a penalty functional to enforce the strain compatibilities between
the assumed independent stress fields and those obtained with the constitutive equations. Based
on the proposed model, a simple C0-continuous two-node beam finite element is formulated (2B −

RZT(m)

{3,2}). Firstly, the analytical and FE model accuracies of the presented formulation are
addressed, and comparisons with the available three-dimensional elasticity solutions are per-
formed. Subsequently, an experimental campaign is conducted to evaluate the static response of
various thick sandwich beam specimens in three- and four-point bending configurations. The
thick beam specimens are equipped with Distributed Fibre Optic Sensors (DFOS) embedded in the
sandwich layup to measure axial deformation at the sandwich interfaces directly. Finally, the
experimental data are compared with the available numerical models, highlighting the formu-
lated numerical model’s performances and limitations.

1. Introduction

Sandwich structures are frequently used in many engineering fields, such as aerospace, naval, civil and energy applications. They
typically consist of two stiff face-sheets (usually made of metallic laminates or multilayered composite) and a low-density thick core,
such as honeycombs, foams, auxetics or lattices. This particular layup configuration leads to an improvement of the mechanical
stiffness properties of its constituent materials, maintaining at the same time a reduced weight. Moreover, the recent advancements in
the sandwich manufacturing processes [1] enable a new generation of high-performance and customised sandwich structures.
However, the material heterogeneity intrinsically present along the transverse direction influences the mechanical response, and if not
adequately predicted, it could lead to catastrophic failures such as core ruptures and face wrinkles/indentation [2]. It is, therefore,

* Corresponding author.
E-mail address: matteo.sorrenti@polito.it (M. Sorrenti).

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

https://doi.org/10.1016/j.finel.2024.104267
Received 4 July 2024; Received in revised form 23 September 2024; Accepted 29 September 2024

Finite Elements in Analysis and Design 242 (2024) 104267 

Available online 7 October 2024 
0168-874X/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:matteo.sorrenti@polito.it
www.sciencedirect.com/science/journal/0168874X
https://www.elsevier.com/locate/finel
https://doi.org/10.1016/j.finel.2024.104267
https://doi.org/10.1016/j.finel.2024.104267
https://doi.org/10.1016/j.finel.2024.104267
http://creativecommons.org/licenses/by/4.0/


clear the need to correctly predict the complex sandwich behaviour, by providing computational affordable and accurate numerical
tools.

From a numerical point of view, sandwich structures have been widely investigated in the past years. Various researchers were able
to provide the exact solution to the three-dimensional elasticity problems for sandwich structures. However, these are limited to simple
configuration schemes and very specific load cases. For instance, among them are worthy to be cited the works of Pagano [3,4], Burton
and Noor [5] and Brischetto [6]. Due to the difficulty in reaching the exact analytical solution, an alternative is represented by
high-fidelity three-dimensional Finite Element (FE) models that can be adapted to a wide range of geometries and load configurations.
On the other hand, if the number of degrees of freedom rapidly increases, the computational cost becomes prohibitive, especially when
a more refined modelisation is required to describe a more complicated core geometry. As a matter of fact, a common procedure
adopted by engineers is to assume the complex core structure behaviour as an equivalent homogeneous isotropic/orthotropic material
whose properties can be determined using ad-hoc procedures [7–10].

Thanks to the homogenisation approaches, a sandwich structure can be easily analysed using the most famous displacement-based
theories available in the current literature. Depending on the sandwich beam geometry and/or lamination scheme, the Equivalent
Single Layer (ESL) or the Layer-Wise (LW) theories can be more/less suitable to predict accurately the structural response at a
competitive computational cost. The formers assume a displacement field described by few kinematic variables valid for the whole
laminate. This assumption guarantees a general accuracy on the global structural response (such as maximum displacements, critical
loads and fundamental frequency) and computational attractiveness. However, they are often unable to be accurate in strain/stress
predictions. On the other hand, the LW models, thanks to their displacement field description, which is assumed independently for
each layer, are generally more accurate than the ESL ones, but for lamination schemes with several layers, these models are signifi-
cantly more expensive in terms of computer resources. Among the ESL and LW models, in the sandwich framework, the Higher-order
SAndwich Panel Theory (HSAPT) introduced by Frostig et al. [11,12] can be seen as an alternative and relatively simple theory. It
assumes that the Bernoulli-Euler beammodel describes the kinematics of both face-sheets, whereas the core layer carries the transverse
shear and transverse normal deformability. The interested reader can find a more detailed overview of ESL, LW models and other
theories for sandwich applications in Birman and Kardomateas’s review [13].

In recent decades, the ZigZag Theories (ZZTs) have been widely adopted to address simple and complex sandwich problems. In
ZZTs, the displacement field is composed of two main contributions: the first one can reproduce the global laminate behaviour,
similarly to the ESL theories; the second one is a local refinement of the in-plane displacements, represented by appropriate zigzag
functions characterised by the satisfaction of the transverse shear stress continuity at the layer interfaces. Starting from the pioneering
works by Di Sciuva [14], whose zigzag functions ensured the full transverse shear stress continuity, other researchers have developed
various ZZTs by choosing how to describe the in-plane contribution differently (see, for instance, Cho and Parmerter [15], Loredo et al.
[16], Icardi [17]). Within this context, the Refined Zigzag Theory (RZT), introduced by Tessler et al. [18] to overcome some limitations
on Di Sciuva’s ZZT, has been demonstrated to accurately describe the response of sandwich structures, as reported in Refs. [19,20]. The
remarkable accuracy and computational advantages (e.g. C0-continuity requirement for FE formulations) offered by the RZT
formulation in analysing multilayered composite and sandwich structures is testified by the variety of works currently available in the
literature. For instance, Hasim and co-workers have applied the RZTmodel in conjunction with the Iso-Geometric Analysis [21–23] for
analysing multilayered beams and plate structures; the RZT has been used to investigate the delamination effects in composite
laminated beams by Groh et al. [24] and Eijo et al. [25]; an experimental-numerical comparison using the RZT to predict the fracture
beahviour of glass/carbon fiber hybrid composites has been reported in Tabrizi et al. [26]; the RZT has been combined with the
Peridynamic Differential Operator to determine the response of imperfect functionally graded porous sandwich beams [27]; for the
first time, Truong et al. [28] combined the RZT with a neural network algorithm to improve the static analysis of laminated composite
plates. More recently, the RZT has been applied in conjunction with the inverse-Finite Element Method (iFEM) for Structural Health
Monitoring of composites and sandwich structures in Refs. [29–31], highlighting the robustness of the model even for shape-sensing
applications. In addition to the linear formulations, higher-order RZT ones have been developed to address cases in which the
displacement non-linearities are more pronounced, such as thick structures. As an example, in Ref. [32], the in-plane and transverse
displacement components have been enriched with parabolic higher-order terms for the free and forced vibration of laminated plates.
In Yurtsever et al. [33] the RZT formulation takes into account only the transverse stretching effect in the laminated composite beams,
through a quadratic through-the-thickness variation of the transverse displacement component. The accuracy in predicting the
structural behaviour for thick sandwich structures using the RZT kinematics has been investigated using mixed variational formu-
lations, in which the displacement and transverse stress fields are assumed independently. For instance, Barut et al. [34] presented an
improved RZT that includes a parabolic distribution for both the in-plane zigzag and transverse displacements in conjunction with an
independent assumption of the transverse normal stress. Using Reissner’s Mixed Variational Theorem (RMVT), Iurlaro et al. [35] have
formulated a similar model by assuming a third-order distribution for the in-plane displacement and a parabolic one for the transverse
one. According to Ref. [35], the transverse normal and the transverse shear stresses are assumed a-priori: the former as a cubic function
valid across the laminate thickness, the latter obtained by integrating Cauchy’s equations. The use of RMVT ensured the transverse
shear and normal strain compatibilities, but due to its formulation, some inconsistencies arise when too many kinematic variables are
used to interpolate the assumed transverse shear stresses. As an alternative to using the RMVT, the Hellinger-Reissner (HR) theorem
has been combined with the RZT kinematics to improve the stress prediction accuracy and avoid numerical inconsistencies. For
example, in Groh andWeaver [36,37] work, a higher-order RZT-based formulation was implemented with transverse shear and normal
stress assumptions through the HR variational statement, enhancing the stress predictions in highly heterogeneous laminates. More
recently, Kutlu et al. [38] have applied the HR variational approach to linear RZT for the stress analysis of laminated composite plates,
demonstrating its robustness and applicability to heterogeneous and damaged plates.
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It should be noted that the earlier mentioned RZT formulations cannot address more general lamination schemes, such as angle-ply,
due to the limitations of the zigzag functions in predicting the transverse shear strain coupling typical of these lay-up configurations.
To overcome this limitation, an enhancement in the zigzag functions formulation for RZT has been presented in Ref. [39]. By taking
advantage of the intrinsic transverse anisotropy of general lamination schemes, the set of zigzag functions is reformulated and ehanced
with two additional coupling functions of the zigzag rotations. The enhanced-RZT (en-RZT) has demonstrated its validity in predicting
both static and dynamic structural performances and buckling loads of angle-ply structures [39–41]. Subsequently, the en-RZT has
been extended to the analysis of thick general multilayered composite and sandwich plates by Sorrenti and Gherlone [42]. Starting
from the displacement field introduced by Iurlaro [35], in the novel en − RZT(m)

{3,2} [42], a new set of strain variables is introduced to
expresse the assumed transverse shear stress distribution, in order to avoid the limitations of the RMVT. The transverse shear and
normal strain compatibilities have been ensured by the Hellinger-Reissner functional, whereas a penalty function is adopted to enforce
the compatibility between the new strain variables and those coming from the displacement field. The comparisons for cross-ply and
angle-ply laminates with the three-dimensional elasticity solutions provided in Ref. [42] have demonstrated good accuracy of en−
RZT(m)

{3,2} model in predicting displacements, strain and stress distributions even for the cases where the transverse normal deform-
ability is present.

Although not exhaustive, the provided references report, in most cases, only numerical comparisons with reference results coming
from exact elasticity solutions or, when unavailable, high-fidelity three-dimensional FE model solutions. Numerical comparisons with
experimental data are rarely found in the open literature. Yan et al. [43] determined the bending and failure characteristics of metallic
sandwich beams with corrugated cores through three-point bending tests. In Iurlaro et al. [19,20], a set of moderately thick sandwich
beam specimens are subjected to static and dynamic experimental tests whose results are compared with those coming from RZT. For
the first time, Ascione and co-workers [44] have experimentally assessed the RZT for the computation of the critical buckling loads of
multilayered composite sandwich beams, remarking the greatest accuracy of the RZT than the FSDT. The local and global experimental
response of sandwich beams made of GFRP faces and PET foam core has been assessed by Pyrzowski and Sobczyk [45]. Giordano et al.
[28] adopted the Digital Image Correlation (DIC) technique to experimentally measure a sandwich beam’s full displacement and strain
fields under three-point bending test. In Xia et al. [46], the bending performances of sandwich panels with different cores have been
assessed experimentally and numerically compared with the results using a FE model. For most of the cited papers, the considered
length-to-thickness ratio falls within the range from moderately thick to thin regimes, thus limiting the effect of transverse normal
deformability plays a little role. In addition, the numerical comparisons are made with experimentally measured deflections and
strains in some discrete points on the external beam surfaces. Moreover, in three-point bending tests for thick sandwich beams, the
effect of concentrated load and boundary conditions induce localised peak of strains at the facesheet-core interface that should be
monitored to prevent the most common failure mechanisms, e.g. indentation, core shear failure and debonding. For this reason, the
emerging use of Distributed Fibre Optic Strain (DFOS) sensors for Structural Health Monitoring (SHM) can be considered an accurate
and reliable system to evaluate the strain field at the interfaces in multilayered structures, as testified by Refs. [47–49].

The present paper aims to provide a new experimental assessment for the static analysis response of thick sandwich beams made of
aluminium face-sheets and soft foam core. A new mixed beam model for sandwich beams is formulated by taking advantage of the
promising mixed-variational procedure adopted in Ref. [42] for plate model. The higher-order displacement field, developed in the
en − RZT(m)

{3,2} to address thick plate structures, is adapted here for sandwich beams. Subsequently, a novel two-node finite element is
formulated using the Hellinger-Reissner variational statement and presented to evaluate the static structural performances of thick
sandwich beams. Then, the experimental static campaign on thick sandwich beam specimens with embedded DFOS sensors is reported.
Finally, a numerical comparison with the newly developed beam model and high-fidelity, three-dimensional and Timoshenko FE
results is presented to highlight the advantages and limitations of the model hypotheses.

Fig. 1. Beam geometry, reference frame and applied loads.
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2. The mixed-{3,2} Refined Zigzag Theory for beams

2.1. Geometrical preliminaries and basics

A multilayered sandwich beam of length L and cross-section area A = b× h is considered, where b is the width, and h is the
thickness. The beam points are referred to a Cartesian orthogonal reference system X = (x1, x2, x3), where x1 corresponds to the
coordinate of the beam longitudinal axis, with x1 ∈ [0, L] and x3, the transverse coordinate corresponds to the beam thickness, as shown

in Fig. 1, where x3 ∈

[

− h /2, + h /2

]

≡ [x3(B),x3(T)]. Let us indicate with the subscript (B) the quantities referred to the bottom surfaces/

interfaces, whereas with the subscript (T) those referred to the top ones. The beam is made of N perfectly bonded layers. The thickness
and width of each layer and the whole beam are assumed to be constant along the beam axis. The superscript (k) denotes the quantities
corresponding to the kth layer (with k=1, …,N), whereas the subscript (k) indicates the quantities corresponding to the kth interface, i.e.
between the kth and (k+1)th layer. Moreover, let be h(k) = x3(k)(T) − x3(k)(B) = x3(k+1) − x3(k) the thickness of the kth layer.

According to the cylindrical bending assumption, beam deformations are allowed only in the (x1, x3) plane, indicating that no out-
of-plane displacements are considered. Thus, as reported in Fig. 1, the mechanical loads (unit force/length), denoted with an overbar,
applied to the beam’s external bottom and top surfaces are the distributed transverse loads, p3(B)(x1) and p3(T)(x1), and the distributed
axial loads, p1(B)(x1) and p1(T)(x1).

In the paper, the symbol ( ⋅ ),i = ∂( ⋅ )/∂xi stands for the derivative of the function ( ⋅) with respect to the xi coordinate. The su-

perscript T, when associated to vectors and matrices, indicate the transpose operation. Along with the paper, the symbol 〈( ⋅)〉 =

b
∑N

k=1
∫ x(k)3(T)

x(k)3(B)

( ⋅)dx3 refers to the integral of the quantity ( ⋅) over the cross-section area.

Due to the limitations of the classical linear RZT models, which cannot capture the non-linear effects in the through-the-thickness
displacement distributions of thick sandwich beams (as observed the three-dimensional solution [3]), a higher-order displacement
field based on the RZT kinematics is chosen here to describe the structural response. Consistent with the en − RZT(m)

{3,2} kinematics (see
Ref. [42]), the orthogonal components of the displacement vector for beams read as follows:

U(k)
1 (x1, x3) = u(x1) + x3θ(x1) + μ(k)(x3)ψ(x1)

U3(x1, x3) = w(0)(x1) + x3w(1)(x1) + x23w
(2)(x1)

(1)

where, U(k)
1 and U3 are the displacements along x1 and x3 directions, respectively. As reported in Ref. [42], the transverse displacement

is assumed as a smeared parabolic function of the thickness coordinate independent of the layer. The kinematic variables that appear in
Eq. (1) are u(x1) and w(0)(x1) (the uniform axial and transverse displacements), θ(x1) (the average bending rotation), ψ(x1) (the zigzag
rotation), which are the same quantities of the linear RZT formulation. Moreover, w(1)(x1) and w(2)(x1) are new kinematic variables of
the transverse displacement for the linear and quadratic term, respectively. Moreover, in Eq. (1), μ(k) is the third-order piecewise
continuous zigzag function whose full expression for beam reads [35,42]:

μ(k)(x3)= − x23χ0 − x33ω0 + φ(k)(x3) (2)

with

χ0 =
2
(
β(1) + β(N) + 2

)

3h2
;ω0 =

1
2h
(
β(N) − β(1));

φ(k)(x3) = β(k)(x3 − x3(B)) +
∑k

q=1
h(q)
(
β(q) − β(k))(k = 1, ...,N)

(3)

φ(k)(x3) is the linear zigzag function and β(k) represents the zigzag slope of the kth layer, i.e. β(k) = φ(k)
,3 , obtained as a result of the

partial transverse shear stress continuity at each layer interface (see Ref. [42] for more details on the formulation). It can be noted that
the displacement field reported by Eq. (1) for a beam structure derived from the en − RZT(m)

{3,2} plate model is formally the same as those
introduced by Iurlaro et al. [35], except for a different interpretation for the kinematic variables for the transverse displacement.

Consistent with the linear strain-displacement relations, the strain components for the beam structure read:

ε(k)11 (x1, x3) = u,1(x1) + x3θ,1(x1) + μ(k)(x3)ψ ,1(x1)
ε33(x1, x3) = w(1)(x1) + 2x3w(2)(x1)
γ(k)13 (x1, x3) = w(0)

,1 (x1) + x3w(1)
,1 (x1) + x23w

(2)
,1 (x1) + θ(x1) + μ(k)

,3 (x3)ψ(x1)
(4)

Assuming that each layer is made of linear elastic and orthotropic material and assuming the transverse normal stress component to
be not negligible, the following beam strain-stress relations (for plane-stress condition) are written in an appropriate mixed form [50]:
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⎧
⎨

⎩

σ11
ε33
τ13

⎫
⎬

⎭

(k)

=

⎡

⎢
⎢
⎢
⎣

E1 ν13 0

− ν13
1 − ν13ν31

E3
0

0 0 G13

⎤

⎥
⎥
⎥
⎦

(k)
⎧
⎨

⎩

ε11
σ33
γ13

⎫
⎬

⎭

(k)

(5)

2.2. Transverse normal and shear stress assumptions

As anticipated, the transverse normal deformability cannot be neglected for thick sandwich structures. In this model, the transverse
normal stress is assumed to be a smeared cubic function that satisfies the traction conditions at the bottom and top external beam
surfaces. Its expression, which is equivalent to that obtained for the plate model (see Ref. [42]), is here reported for clarity:

σa
33(x1, x3)=Pσ(x3)qσ(x1) + Lσ(x3)qz(x1) (6)

where

Lσ(x3) =
[(

x3
h
−
1
2

) (
x3
h
+
1
2

)]

;Pσ(x3) =
[(

x23 −
h2

4

)

x3

(

x33 −
h2

4

)]

;

qz(x1)T = [ p3(B) p3(T) ];qσ(x1)
T
= [ σz

2 σz
3 ]

(7)

Additionally, in the present model, transverse shear stress is assumed a-priori to enhance the predictivity capabilities of the
transverse shear deformability. Following the methodology adopted in Ref. [42], the assumed transverse shear stress distribution is
derived by integrating Cauchy’s equations, specialised under the hypothesis of cylindrical bending assumptions while neglecting body
forces. For the sake of clarity, the equation reads:

τa13 = −

∫

h

σ(k)
11,1dx3 (8)

The axial stress that appears in Eq. (8) comes from the constitutive relation given by Eq. (5), with the strains quantities, i.e. the
derivatives of the kinematic variables (see Eq. (4)), assumed as new independent variables. According to this assumption, the axial
strain is rewritten as follows:

ε(k)11 (x1, x3)= u,1(x1)+ x3θ,1(x1)+ μ(k)(x3)ψ ,1 → e(x1)+ x3k(x1) + μ(k)(x3)kψ(x1) (9)

where, e(x1), k(x1) and kψ (x1) are the introduced new strain variables. Since in Eq. (5) the axial stress is also a function of the assumed
transverse normal stress, it cannot be used in Cauchy’s equation yet. An intermediate step given by the mixed variational statement is
required prior to perform the integration of Eq. (8) to obtain the expression of the assumed transverse shear stress distribution.

2.3. Mixed variational statement: the Hellinger-Reissner functional

In order to obtain the equilibrium equations and a FE formulation of the mixed-beammodel RZT(m)

{3,2}, a mixed-variational principle

is necessary due to the inclusion of two independent fields in the RZT(m)

{3,2} model: the displacement field (see Eq. (1)) and the transverse
stress ones (see Eqs. (6) and (8)). For this purpose, the Hellinger-Reissner (HR) functional [51] can be adopted. According to its
definition (see Ref. [51]), the HR functional allows displacements and stresses to vary independently, while still ensuring the strain
compatibility conditions between the quantities derived from the displacement and stress fields. This condition, enforced in an integral
(or weak) form, improves the accuracy of displacement predictions compared to the Principle of Virtual Displacements (PVDs), and
simultaneously provides accurate stress predictions in FE formulation, due to the independent stress field assumption.

By neglecting the work of inertial forces, its expression reads as follows:

δΠ= δΠint + δΠHR + δΛ − δΠext = 0 (10)

Defining the symbol δ as the virtual variation operator, δΠint is the virtual variation of the internal energy. It reads,

δΠint =

∫

V

[(
δε(k)11 σ(k)

11 + δγ(k)13 τa13 + δε33σa
33
)]
dV (11)

Moreover, δΠHR is the Hellinger-Reissner variational contribution reads:

δΠHR =

∫

V

[
δτa13

(
γ(k)13 − γ(k)a13

)
+ δσa

33

(
ε33 − ε(k)a33

) ]
dV =

∫

V

δτa13
(

γ(k)13 − γ(k)a13

)
dV + δΠσ33 (12)

From a mathematical point of view, in Eq. (12) the assumed stress quantities can be seen as Lagrangian multiplier in the
compatibility conditions, ensuring that the strains derived from the displacement field are consistent with the deformation state as

M. Sorrenti and M. Gherlone Finite Elements in Analysis & Design 242 (2024) 104267 

5 



given by the assumed stress field.
In Eqs. (11) and (12) the superscript “a” denotes the assumed stresses and the strains coming from the material constitutive law, i.e.

Eq. (5).
The penalty functional in Eq. (10), expressed by the symbol δΛ, enforces in a weak manner the compatibility conditions between

the set of new strain variables and the quantities coming from the displacement-strain relations, see Eq. (9). The introduced penalty
parameter, i.e. η, plays the role of a weight term in the overall governing functional (in this model η = 10− 3). Its expression, according
to the RZT(m)

{3,2} model, reads:

δΛ=
1
η

∫

V

[(
δu,1 − δe

)(
u,1 − e

)
+
(
δθ,1 − δk

)(
θ,1 − k

)
+
(
δψ ,1 − δkψ)( ψ ,1 − kψ)]dV (13)

At last, the virtual work done by the externally applied tractions, δΠext, reads:

δΠext =

∫

L

p1(T)U(N)
1 (x3(T))dx1 +

∫

L

p1(B)U(1)
1 (x3(B))dx1 +

∫

L

p3(T)U(N)
3 (x3(T))dx1 +

∫

L

p3(B)U(1)
3 (x3(B))dx1 (14)

As previously done for the plate en − RZT(m)

{3,2} theory [42], the first step of the beam model formulation is to enforce the transverse
normal strain compatibility in the Hellinger-Reissner functional. This condition reads:

δΠσ33 =

∫

V

δσa
33
(
ε33 − ε(k)a33

)
dV= 0 (15)

Due to the independent assumption of the normal stress field, the condition given by Eq. (15) results in a relationship between the
new stress variables and the kinematic ones. Adopting the constitutive material equations, i.e. Eq. (5), the assumed transverse normal
strain reads:

εa33(x1, x3)= S(k)33 σa
33(x1, x3) − R(k)

13 ε(k)11 (x1, x3) (16)

After substituting Eq. (16) into Eq. (15), the transverse normal stress is rewritten as a function of the kinematic variables:

σa
33(x1, x3)=Au

σ(x3)u,1(x1)+Aθ
σ(x3)θ,1(x1)+Aψ

σ (x3)ψ ,1(x1)+Aw
σ (x3)w(x1) + Aqz

σ (x3)qz(x1) (17)

wherewT =
⌊
w(0) w(1) w(2)

⌋
. Moreover, the functions of the transverse coordinate that appear in Eq. (17) are reported for the sake

of conciseness in Appendix A.
Taking into account the final expression of the transverse normal stress, i.e. Eq. (17) and substituting it into the constitutive re-

lations, i.e. Eq. (5), and adopting the new strain variables, the complete expression of the axial stress reads:

σ(k)
11 =

(
E(k)
1 +R13

(k)Au
σ(x3)

)
e(x1)+

(
x3E(k)

1 +R13
(k)Aθ

σ(x3)
)
k(x1)+

+
(
E(k)
1 μ(k)(x3)+R13

(k)Aψ
σ (x3)

)
kψ(x1)+R13

(k)Aw
σ (x3)w(x1)+R13

(k)Aqz
σ (x3)qz(x1)

(18)

Substituting Eq. (18) into (8), integrating along the thickness direction and enforcing the equilibrium with the prescribed tractions
we obtain:

τa13(x1, x3) = p1(B)(x1)
[

− 1+
1
h

(

x3 + h /2

)]

+
1
h

(

x3 + h /2

)

p1(T)(x1)+

+A
⌢z(x3)e,1(x1) + B

⌢z(x3)k,1(x1) + D
⌢z(x3)kψ

,1(x1) + E
⌢z(x3)∂w(x1) + F

⌢z(x3)∂qz(x1) =
= Zp(x3)qp(x1) + Zt(x3)qt(x1) + Zqz(x3)∂qz(x1)

(19)

where ∂qz(x1) represent the derivatives of the transverse distributed load, i.e. ∂qz(x1)T =
⌊
p3(B),1 p3(T),1

⌋
; qp(x1) is the vector of the

prescribed tractions at the bottom and top external surfaces, i.e. qp(x1)T =
⌊
p1(B) p1(T)

⌋
;

qt(x1)
T
=
⌊
e,1(x1) k,1(x1) kψ

,1(x1) ∂w(x1)T
⌋
is the vector of the derivatives of the strain unknowns and transverse displacement

variables. Moreover, ∂w(x1)T =
⌊

w(0)
,1 w(1)

,1 w(2)
,1

⌋
.

By substituting the expression of the displacement field, i.e. Eq. (1), into the strain-displacements relations and taking into account
the mixed material constitutive equations, i.e. Eq. (5), the assumed transverse normal, i.e. Eq. (17), and transverse shear, i.e. Eq. (19),
stresses into the variational statement Eq. (10) and integrating by parts, the governing equations of the RZT(m)

{3,2} model are obtained:
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δu : N,1 +
1
/η
(
u,11 − e,1

)
+ p1 = 0

δw(0) : Qw0
,1 − Nz

1 − Q
⌢w0 −

(
D̂

p
11p1(B),1 + D̂

p
13p1(T),1

)
−
(
D̂
q
11p3(B),11 + D̂

q
12p3(T),11

)
+ q3 = 0

δw(1) : Qw1
,1 − Nz

2 − Q
⌢w1 −

(
D̂

p
21p1(B),1 + D̂

p
23p1(T),1

)
−
(
D̂
q
11p3(B),11 + D̂

q
12p3(T),11

)
+
h
2
(p3(T) − p3(B)) = 0

δw(2) : Qw2
,1 − Nz

3 − Q
⌢w2 −

(
D̂

p
31p1(B),1 + D̂

p
33p1(T),1

)
−
(
D̂
q
31p3(B),11 + D̂

q
32p3(T),11

)
+
h2

4
q3 = 0

δθ : M,1 − Q+ 1
/η
(
θ,11 − k,1

)
+m1 = 0

δψ : Mϕ
,1 − Qϕ +

1
η

(
ψ ,11 − kψ

,1

)
= 0

δe : − 1/η
(
e − u,1

)
−
(
Â

p
11p1(B),1 + Â

p
13p1(T),1

)
−
(
Â

q
11p3(B),11 + Â

q
12p3(T),11

)
+ EHR = 0

δk : − 1/η
(
k − θ,1

)
−
(
B̂
p
11p1(B),1 + B̂

p
13p1(T),1

)
−
(
B̂
q
11p3(B),11 + B̂

q
12p3(T),11

)
+ KHR = 0

δkψ : − 1/η
(
kψ − ψ ,1

)
−
(
Ĉ
p
11p1(B),1 + Ĉ

p
13p1(T),1

)
−
(
Ĉ
q
11p3(B),11 + Ĉ

q
12p3(T),11

)
+ KHR

ψ = 0

(20)

along with the consistent boundary conditions:

u = u on x1 = 0, L ∨ N+ 1
/η
(
u,1 − e

)
on x1 = 0, L

w(0) = w(0) on x1 = 0, L ∨ Qw0
+ Qw0

1 HR on x1 = 0, L

w(1) = w(1) on x1 = 0, L ∨ Qw1
+ Qw1

1 HR on x1 = 0, L

w(2) = w(2) on x1 = 0, L ∨ Qw2
+ Qw2

1 HR on x1 = 0, L

θ = θ on x1 = 0, L ∨M+ 1
/η
(
θ,1 − k11

)
on x1 = 0, L

ψ = ψ on x1 = 0, L ∨Mϕ
+ 1

/η
(
ψ ,1 − kψ) on x1 = 0, L

e = e on x1 = 0, L ∨ Ee1HR on x1 = 0, L

k = k on x1 = 0, L ∨ Kk
1HR on x1 = 0, L

kψ = k
ψ

on x1 = 0, L ∨ Kkψ
1 HR on x1 = 0, L

(21)

where the resultant forces and moments are defined as:
(
N,M,Mϕ) = 〈

(
1, x3, μ(k)(x3)

)
σ(k)
11 〉;

Nz = 〈Hz
,3
Tσa

33〉;
(
Qw,Q,Qϕ) = 〈

(
HzT , 1, μ(k)

,3

)
τa13〉

(22)

Moreover, in Eq. (20) the sum of the distributed loads and moments appear that are defined as follows:

p1 = p1(B) + p1(T);

m1 = h /2 (p1(T) − p1(B));

q3 = p3(B) + p3(T)

(23)

By using the mixed material constitutive relations, i.e. Eq. (5), the assumed transverse normal and shear stresses, i.e. Eqs. (17) and
(19), the RZT(m)

{3,2} beam constitutive relations in terms of the kinematic and strains unknowns are expressed as follows:

N = Ãu,1 + B̃θ,1 + Ã
ϕ
ψ ,1 + Ã

w
w+ Ã

qz
qz

M = C̃u,1 + D̃θ,1 + B̃
ϕ
ψ ,1 + B̃

w
w+ B̃

qz
qz

Mϕ = Ẽ
ϕ
u,1 + F̃

ϕ
θ,1 + G̃

ϕ
ψ ,1 + C̃

w
w+ C̃

qz
qz

(24)

Nz =ANzu,1 + BNzθ,1 + CNzψ ,1 + DNzw+ ENzqz (25)
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Qw = Â
wT
e,1 + B̂

wT
k,1 + Ĉ

wT
kψ
,1 + D̂

wT
∂w+ Ê

w
∂qz + P̂

w
qp

Q = Â
θ
e,1 + B̂

θ
k,1 + Ĉ

θ
kψ
,1 + D̂

θT
∂w+ Ê

θ
∂qz + P̂

θ
qp

Qϕ = Â
ψ
e,1 + B̂

ψ
k,1 + Ĉ

ψ
kψ
,1 + D̂

ψ T
∂w+ Ê

ψ
∂qz + P̂

ψ
qp

(26)

For sake of clarity, the other quantities that appear in the governing equations, boundary conditions and constitutive relations are
reported in Appendix C.

3. Finite element formulation

This Section presents the formulation of a simple two-node beam element based on the RZT(m)

{3,2}.
The kinematic and strain variables that appear in the mixed variational statement (see Eqs. (11)–(13)) do not exceed the first spatial

derivative. Thus, efficient C0 – continuous shape functions can be adopted in the finite formulation. Since this work focuses on the
study of thick to very thick multilayered sandwich beams, the influence of shear-locking is not considered, and the well-known
strategies commonly adopted to mitigate its effect on slender beams are not addressed here. From a mathematical point of view,
the mixed-finite element formulation introduces a typical saddle-point problem governed by complex methematical relations, as
detailed by Babuska [52] and Brezzi [53]. This issue, also known as the Babuska-Brezzi condition, requires an appropriate selection of
the possible shape functions in the element formulation in order to avoid stability issues and inconsistencies on the final numerical
results. Thus, from a practical point of view, a condition necessary and sufficient to the problem solvability is that the number of the
kimeatic degrees of freedom (dof) must be equal or larger than the dofs’ number used for the stress approximations.

3.1. Interpolation scheme

In virtue of the previous considerations regarding the variational statement and the Babuska-Brezzi condition, the simplest and
lowest order beam element is the isoparametric one, which is formulated by approximating each unknown variable using the linear
Lagrangian polynomials. By grouping the kinematic and the strain unknown variables into two different vectors, i.e.

ddT =
⌊

u w(0) w(1) w(2) θ ψ
⌋
and dsT =

⌊
e k kψ

⌋
, we can write:

{
dd(x1)
ds(x1)

}

=

[
Nd(x1) 0
0 Ns(x1)

]{
q(e)
d

q(e)
s

}

(27)

where the shape function matrices, e.g. Nd(x1) and Ns(x1) that appears in Eq. (27), read as follows

Nd =

⎡

⎢
⎢
⎣

L 0 0 0
Lw 0 0

L 0
sym. L

⎤

⎥
⎥
⎦; Ns =

⎡

⎣
L 0 0

L 0
sym. L

⎤

⎦; Lw =

⎡

⎣
L 0 0

L 0
sym. L

⎤

⎦ (28)

Moreover, in Eq. (27), the vectors of the elemental nodal degree of freedoms reads:

q(e)
d

T
=
⌊

quT qwT qθT qψ T
⌋
; q(e)

s
T
=
⌊

qeT qkT qkψ T
⌋

(29)

and, for each sub-vector, we can write:

quT =
⌊
u1 u2

⌋
; qwT =

⌊

w(0)
1 w(0)

2 w(1)
1 w(1)

2 w(2)
1 w(2)

2

⌋
; qθT =

⌊
θ1 θ2

⌋
; qψ T

=
⌊

ψ1 ψ2

⌋
(30)

qeT =
⌊
e1 e2

⌋
; qkT =

⌊
k1 k2

⌋
; qkψ T

=
⌊
kψ
1 kψ

2

⌋
(31)

As anticipated, in Eq (28) the elemental shape functions matrices are constituted by the Lagrangian shape functions defined in the
natural coordinate system, i.e. ξ = 2x1/L(e) − 1 ∈ [ − 1,1], where L(e) represents the beam element length. The vector of the linear shape
functions is defined as follows,

L(ξ)=
⌊

L1(ξ) L2(ξ)
⌋

=

⌊
1
2
(1 − ξ)

1
2
(1+ ξ)

⌋

(32)

3.2. Elemental stiffness and force vector

The elemental stiffness matrix and load vector of the 2-noded mixed-{3,2}-RZT beam element, here named with 2B − RZT(m)

{3,2}, are
obtained by adopting the finite element approximation, i.e. Eq. (27), into the mixed variational statement given by Eq. (10). According
to this procedure, the linear strain-displacement relations, Eq. (4), for an eth element read as follows:
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ε(k)11
(e)

=

⎢
⎢
⎢
⎢
⎢
⎣L,1 x3L,1 μ(k)L,1

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎨

⎩

qu

qθ

qψ

⎫
⎬

⎭

(e)

; γ(e)13 =

⎢
⎢
⎢
⎢
⎢
⎣H

zLw,1 L ∂3μ(k)L

⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎨

⎩

qw

qθ

qψ

⎫
⎬

⎭

(e)

; ε(e)33 =Hz
,3L

wqw(e) (33)

whereas the elemental assumed transverse normal and shear stresses, i.e. Eqs. (17) and (19), follow

σa
33

(e)
=
⌊
Au

σL,1 Aw
σ L

w Aθ
σL,1 Aψ

σ L,1
⌋
q(e)
d +Aqz

σ qz (34)

τa13
(e)

=

⌊

E
⌢zLw,1 A

⌢zL,1 B
⌢zL,1 D

⌢zL,1

⌋{
qw

qs

}(e)

+ F
⌢z∂qz +Zpp (35)

The elemental assumed transverse shear strain in the Hellinger-Reissner term of the variational statement (see Eq. (12)) can be
related to Eq. (35) with the material constitutive relation Eq. (5). Similarly, the elemental axial stress is obtained by substituting the
elemental axial strain of Eq. (33) and the transverse normal stress, i.e. Eq. (34), into Eq. (5).

By proceeding with the appropriate substitutions and adopting the notation introduced by Eq. (27) to highlight the terms of the two
groups of unknown variables, the discretised equilibrium equations are expressed as follows:

K(e)q(e) =

[
K(e)
dd K(e)

ds

K(e)
ds

T
K(e)
ss

]{
q(e)
d

q(e)
s

}

=

{
F(e)d
F(e)s

}

= F(e) (36)

where the full expressions of the matrices and vectors in Eq. (36) are reported for clarity in Appendix D. Since no strategies to mitigate
the shear locking problem are implemented, given that the numerical model is designed to study thick structures, full integration of
stiffness matrix and load vector requires a two-point Gauss quadrature.

Note that if a concentrated force of intensity F (defined as positive if it agrees with x3 axis direction) is applied on the outer top/
bottom external beam surfaces in the correspondence of a generic nth node, the nodal load vector, expressed with the vector Fconc, for
that specific nth node reads:

FTconc =
⌊

0
F
2
±
h
2
F
2
h2

4
F
2
0000

⌋

(37)

where the sign ± in Eq. (37) indicates if the force is applied on the top (+) or on the bottom (− ) beam surfaces.
According to this formulation, this element involve eighteen dofs (nine dofs for each node), which could be computationally

expensive. Therefore, it is possible to adopt the static condensation technique to reduce the computational cost but maintaing the same
numerical accuracy.

The second line of Eq. (36) could be solved statically by making q(e)
s depending on the q(e)

d variables. It reads:

K(e)
ds

T
q(e)
d +K(e)

ss q
(e)
s = F(e)s →q(e)

s =K(e)
ss

− 1F(e)
s − K(e)

ss
− 1K(e)

ds
T
q(e)
d (38)

Substituting Eq. (38) into Eq. (36), it yields a new expression of the equations of motions:
(
K(e)
dd − K(e)

ds K
(e)
ss

− 1K(e)
ds

T)
q(e)
d =F(e)

d − K(e)
ds K

(e)
ss

− 1F(e)s (39)

Moreover,

K̂
(e)
ddq

(e)
d = F̂

(e)
d (40)

with K̂
(e)
dd =

(
K(e)
dd − K

(e)
ds K

(e)
ss

− 1K(e)
ds

T)
and F̂

(e)
d = F(e)d − K(e)

ds K
(e)
ss

− 1F(e)s .

This procedure reduces the overall number of elemental dofs from eighteen to twelve. Thus, the final topology of 2B− RZT(m)

{3,2}

element is resumed in Fig. 2.

Fig. 2. Topology of the 2B − RZT(m)

{3,2} element.
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For clarity, the procedure to formulate the 2B − RZT(m)

{3,2} element is summarized in the flowchart shown in Fig. 3.

4. Numerical assessment

In this section, the numerical and experimental results are presented and compared.
Firstly, a static analysis was performed to assess the predictivity capabilities of the 2B − RZT(m)

{3,2} finite elements, comparing them

with the results coming from the analytical RZT(m)

{3,2} solution and the three-dimensional exact one given by Pagano [3]. Subsequently,

the results coming from the experimental campaign are compared with those obtained by the 2B − RZT(m)

{3,2} elements and high-fidelity
FE NASTRAN models.

4.1. Convergence analysis and numerical comparison

A multilayered symmetric cross-ply sandwich beam (B0) is considered in this numerical assessment. By considering b=1 mm,
Tables 1 and 2 report the materials and the laminate stacking sequence.

The sandwich beam is simply supported on both edges and, according to the RZT(m)

{3,2} model, the boundary conditions are specified
as follows:

@x1 = 0, L

w(0) = w(1) = w(2) = e = k = kψ = 0

N+ 1
/η
(
u,1 − e

)
= M+ 1

/η
(
θ,1 − k

)
= Mϕ + 1

/η
(
ψ ,1 − kψ) = 0

(41)

The numerical results provided for this model assume a transverse distributed load applied to the bottom and top beam surfaces
having the following expressions:

p3(B)(x1) = q3(B) sin(π/Lx1)
p3(T)(x1) = q3(T) sin(π/Lx1)

(42)

where q3(B) and q3(T) are the maximum values. In this configuration, the axial bottom and top tractions are null, i.e. p1(B) = p1(T) = 0,
and the transverse load is applied only on the top beam surface, i.e. q3(B) = 0 and q3(T) = − 10 MPa.

For this load configuration, the exact analytical solution using the Navier’s method able to satisfy both governing equations and
boundary conditions of RZT(m)

{3,2} model involves the following trigonometric expansions:

Fig. 3. Flowchart of the 2B − RZT(m)

{3,2} element formulation.
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u1(x1) = U cos(λx1);
w(0)(x1) = W(0) sin(λx1);
w(1)(x1) = W(1) sin(λx1);
w(2)(x1) = W(2) sin(λx1);
θ(x1) = Θ cos(λx1);
ψ(x1) = Ψ cos(λx1);
e(x1) = E sin(λx1);
k(x1) = K sin(λx1);
kψ(x1) = Kψ sin(λx1);

(43)

where = π/L.
If not otherwise specified, the numerical results are expressed in non-dimensional quantities as follows:

U1 = 1000
E(1)
2 h2

p3L3
U1; U3 = 100

E(1)
2 h3

p3L4
U3;

{σ11, σ33} =
h2{σ11, σ33}

p3L2
; τ13 = 10

hτ13
p3L

;

(44)

where p3 = q3(B) + q3(T).

In this first numerical example, the convergence behaviour of the 2B − RZT(m)

{3,2} elements for beam B0 is examinated for the length-
to-thickness ratios (L/h): 4, 20 and 100. For reference, the analytical results of the non-dimensional maximum transverse displace-
ments evaluated at the mid-length of the beam on the top surface using the new RZT(m)

{3,2} model and the classical RZT [54], are reported
in Table 3. It is worth noting in Table 3 that for thin sandwich beams with a length-to-thickness ratio higher than 20, the difference in
the maximum transverse deflection between the RZT(m)

{3,2} new model and the RZT is minimal. In fact, in these cases, the effect of the

transverse normal deformability is neglibile, and the RZT(m)

{3,2} new model correctly converge to the RZT solution, as expected.
Indicating with Ne the number of elements along the beam axis, different discretizations are considered in this FE convergence

study: 16, 32, 64, 128, 256, 512, 1024, 2048 and 4096. Fig. 4 reports the convergence rates, expressed as ratio between the FE value
and the analytical one using the RZT(m)

{3,2} model (analytical reference values are given in Table 3).

Except for coarse FE discretizations, i.e. those with fewer than 16 element, Fig. 4 shows that the 2B − RZT(m)

{3,2} elements rapidly

converge to the analytical solution for all the length-to-thickness ratios investigated. It is also worth noting that the 2B− RZT(m)

{3,2}

elements perform well in thin regimes, where the shear locking may cause numerical problems.
Taking advantage of the convergence analysis and paying particular attention on thick regime, in this second example, a thick (L/h

= 4) sandwich beam with B0 lay-up is discretised using 1000 2B − RZT(m)

{3,2} elements. The through-the-thickness distributions of the
stress quantities are evaluated at the centroid of each element and considering that the mesh is highly refined, the accuracy of this
choice can be deduced acceptable. Moreover, the through-the-thickness distribution of axial and transverse displacements are

Table 1
Material nomenclature and properties. The elastic moduli are in MPa.

Material Name E1 E2 E3 ν12 ν 13 ν 23 G12 G13 G23

A 110000 7857 7857 0.33 0.33 0.49 3292 3292 1292
B 40.3 40.3 40.3 0.3 0.3 0.3 12 12 12

Table 2
Laminate stacking sequences and nomenclature. The orientations are in degree.

Laminate ID Normalised thickness h(k)/h Lamina materials Lamina orientations [◦]

B0 0.05/0.05/0.8/0.05/0.05 A/A/B/A/A 0/90/Core/90/0

Table 3
Analytical values for non-dimensional maximum transverse displacements (UAn.

3 ) for simply supported beam B0
under transverse sinusoidal load.

L/h

Model 4 20 100

RZT(m)

{3,2}
334.461 17.866 3.664

RZT [54] 313.204 17.809 3.640
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evaluated in points corresponding to a mesh discretization node.
The performances of the 2B − RZT(m)

{3,2} in predicting the distributions of displacements and stresses for a multilayered sandwich
beam are reported in Fig. 5. Additionally, for refence purposes, Fig. 5 presents the results obtained using the analytical solution of the
classical RZT formulation [54], in which the higher-order effects and the transverse normal deformations are neglected. In fact, no
results for the through-the-thickness distribution for the transverse normal stress, i.e. σ33, are reported in Fig. 5e. The
through-the-thickness distributions of axial displacement and axial stress obtained with RZT(m)

{3,2} and FE 2B − RZT(m)

{3,2} models are very

close with those obtained using classical RZT. However, the results obtained from analytical RZT(m)

{3,2} and FE 2B − RZT(m)

{3,2} models are
remarkably closer to those obtained using the reference three-dimensional exact solution provided by Pagano [3]. Moreover, the
classical RZT cannot predict the parabolic thickness-wise distribution of the transverse displacement, that is well predicted by both
RZT(m)

{3,2} model and 2B − RZT(m)

{3,2} elements. Thanks to its mixed formulation using the Hellinger-Reissner functional, the RZT
(m)

{3,2} and

2B − RZT(m)

{3,2} elements demonstrate superior predictive capabilities of the transverse shear stress distribution without using the
a-posteriori stress recovery procedure, as done in the classical RZT. These advantageous aspects and good convergence behaviour make
the novel RZT(m)

{3,2} formulation and 2B − RZT(m)

{3,2} suitable for experimental comparisons.

5. Experimental assessment

This Section describes the experimental assessment of the developed beam finite element with three- and four-point bending tests
performed on thick beam specimens. The experimental activity has been conducted at the LAQ-AERMEC laboratory of the Mechanical
and Aerospace Engineering Department (DIMEAS) of the Politecnico di Torino. The sandwich beam specimens have been manufac-
tured by the Department of Science and Aerospace Technology of Politecnico di Milano.

5.1. Beam specimens and material mechanical properties

The beam specimens present a multilayered sandwich scheme, typically adopted for aeronautical applications. Two face-sheets of
EN AW7075 (T6) Aluminium alloy (Ergal) have been separated by a thick IG-31 Rohacell® polymethacrylamide foam core. Each beam
specimen has a 3 mm face-sheet thickness bonded to the core layer with a 0.25 mm 3M® Scotch-Weld® Structural Adhesive Film AF
163-2K.

In order to investigate the effect of the length-to-thickness ratio in bending analysis, different lengths have been considered. Let us
denote with hf the thickness of each face-sheet, with hc the thickness of the core layer, obtained as the difference between the total
thickness h and the Ergal face-sheet thicknesses. Moreover, let us denote the beam length between the supported cylinders with the
symbol Leff. In this study, it has been chosen to leave 20 mm of beam length to each edge, i.e. Leff = L − 40 mm. Table 4 reports the
nomenclature and beam dimensions (average values of ten measures in different positions along the beam length).

In order to perform a proper comparison between the numerical models and the experimental results, a material characterisation of
the Ergal Aluminum alloy and Rohacell® foam has been conducted. For this purpose, a second group of beam specimens has been
manufactured to evaluate their mechanical properties experimentally through bending tests. Except for the adhesive layer, whose
properties have been taken from the producer datasheet (see, Ref. [55]), the details of the characterisation methodology can be found
in Ref. [56].

For the sake of brevity, the results of the experimental characterisation are reported in Table 5. In addition, these values are used in

Fig. 4. Convergence rates of 2B − RZT(m)

{3,2} elements for B0 beam, with length-to-thickness ratios of 4, 20 and 100.
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Fig. 5. Through-the-thickness distributions of normalised displacements (a–b) and stresses (c–e) for a simply-supported sandwich beam (B0) under
sinusoidal transverse load.
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the following comparisons between the experimental and the new numerical model results.

5.2. Sensors, acquisition system and numerical models

One of the novelty aspects of this experimental assessment is measuring the strains at both layer interfaces between the IG-31 core
and the Ergal Aluminium face-sheets. The Distributed Fibre Optic Strain (DFOS) sensors have been produced in-house by the
Department of Aerospace Sciences and Technologies at Politecnico di Milano and embedded in the sandwich layup during
manufacturing. The DFOS sensors are placed parallel to the beam’s longitudinal axis according to the configuration scheme reported in
Fig. 6.

Moreover, a groove guide on both the Ergal face-sheet has been added to keep the sensor in position during the curing process, and
subsequently, when the adhesive layer is placed, as shown in Fig. 7a. Finally, the bonding process and the following cure process have
been performed in the autoclave. Then, the sandwich beams were placed in a mechanical press to restore the planarity between the
Ergal face-sheets, modified due to the protecting supports for the optic fibre sensors, see Fig. 7b.

In addition to the DFOS sensors, some strain gauges were placed on the outer beam surfaces. Four strain gauges, here denoted with
the labels E1, E2, E3 and E4, were placed for each beam, two on top and two on bottom surfaces, to measure the axial strains. A further
strain gauge (E5) has been placed to verify the symmetry of the supporst and of the applied loading conditions during the test. The
transverse displacements at the top and bottom surfaces have been measured using three LVDTs. Two have been positioned where the
force is applied (W1 and W2), and the third is positioned on the bottom surface at the centre of the beam (W3). The load cell, LVDTs
and strain gauges positioned on the beam specimen are shown in Figs. 8 and 9.

Two semi-circular cylinders are used to provide the supported boundary conditions for the three- and four-point bending tests,
Fig. 10. The supported boundary condition typically adopted in numerical models prescribes a null transverse displacement on the
supported edge and no transverse normal deformability is allowed along the whole cross-section. However, in this experimental
assessment, the supported conditions are modelled differently in both 2B − RZT(m)

{3,2} and NASTRAN models. The vanishing condition
on the transverse displacement has been enforced only on the contact point between the beam specimen and the supporting cylinder, i.
e. on the bottom beam surface, as follows:

@x1 = −
Leff
2
,+

Leff
2

U3
(
x3 = x3(B)

)
= 0

@x1 = 0 U(k)
1 (x3) = 0→u = 0, θ = 0,ψ = 0

(45)

Table 4
Sandwich beam specimens nomenclature and dimensions (in mm).

Specimen ID L Leff b h hf L/h hc/hf Leff/h

B1 640.00 600.00 90.00 44.60 3.00 14.35 12.87 13.45
B2 490.00 450.00 90.00 43.30 3.00 11.32 12.40 10.39
B3 340.00 300.00 90.00 43.50 3.00 7.82 12.50 6.90
B4 280.00 240.00 90.00 43.10 3.00 6.50 12.37 5.57

Table 5
Experimental mechanical properties. Young’s and shear modulus are in MPa.

Material E G

EN-AW 7075 T6 (Ergal) 67545 25393
Rohacell® IG-31a 43.2± 2.0 12.1

a in the transverse direction, the compressive modulus is considered (E = 17 MPa), see
Ref. [57].

Fig. 6. Sensor components and top-view of the DFOSs positioning at the interface (data are given in mm, R = 15 mm).
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Note that in Eq. (45), a further condition on the axial displacement has been enforced on the mid-span point (symmetry condition).
For comparison purposes, alongside the 2B − RZT(m)

{3,2} and NASTRAN models, the Timoshenko-based elements (TIM), typically
implemented in the FE commercial codes, are included in this numerical-experimental assessment. The TIM elements selected to
discretize the sandwich beams are the simple linear Lagrangian two-node elements (with full integration). To better estimate the
transverse shear deformability, a shear correction factor was computed using the Raman-Davalos methodology [58]. The values for
each beam specimen are as follows: B1: 0.25732; B2: 0.25009; B3: 0.25120; B4: 0.24898.

The beammodels adopt a discretization using 0.5 mm 2B − RZT(m)

{3,2} and TIM elements for each specimen. Concerning the 2D high-
fidelity NASTRAN FE model, each sandwich is discretised using membrane QUAD4 elements able to simulate the beam flexural
beahviour in the plane (x1,x3). To achieve a good numerical representation of the bending beahviour, in the NASTRAN FE model, the

Fig. 7. a) Details of DFOSs placed on the Ergal face-sheets, adhesive layer (in red) and Rohacell® IG-31 foam; b) final manufactured sandwich
specimen (B2) after mechanical pressing.

Fig. 8. a) HBM strain gauge load cell (200 kg); strain gauges on beam top (b) and bottom (c) surfaces.

M. Sorrenti and M. Gherlone Finite Elements in Analysis & Design 242 (2024) 104267 

15 



average size of the mesh is 0.25 mm. This choice of QUAD4 element size guarantees at least 170 elements along the thickness direction,
which is useful to evaluate the transverse normal deformability in x3 direction. Within the aim to limit the computational cost of the
NASTRAN FE model, the symmetry boundary conditions are adopted on the sandwich beams’ mid-span. In both NASTRAN, TIM and
2B − RZT(m)

{3,2} FE models, the effect of the adhesive layer is considered. Due to the difficulty in measuring the adhesive layer thickness,
its value is considered constant along the beam length and equal to 0.25 mm, i.e. the nominal value taken from the producer datasheet
(see, Ref. [55]). For this reason, in both numerical models, the effective core thickness is the measured one subtracted by the sum of the
thickness of the two adhesive layers. In order to investigate the response even in the region closer to the supports, the span of the
sandwich beam outside the supports is modelled in both NASTRAN, TIM and 2B − RZT(m)

{3,2} FE models.
Table 6 reports the number of elements, the corresponding total dofs and the mesh discretisations for the sandwich beam models.

Fig. 9. LVDTs positioning and nomenclature for the top (a) and bottom (b) transverse displacements.

Fig. 10. Detail on the support condition for the sandwich beam specimens.
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The entire sandwich beams are discretised using TIM or 2B − RZT(m)

{3,2} FE elements. The same BCs given in Eq. (45) are applied to the
TIM FE models, with the expection of the varible ψ, that is not present in Timoshenko beam theory. Specifically, no boundary con-
ditions are applied on the strain dofs for 2B − RZT(m)

{3,2}.

5.3. Three- and four-point bending test configurations

The three- and four-point bending tests are performed according to the scheme given in Figs. 11 and 12, respectively. The
nomenclature for the transverse displacements and strains is also reported in Figs. 11 and 12. The experimental axial strains are also
evaluated across the thickness-wise direction, specifically at each layer interface in two beam sections xS1 = − 20 mm and xS2 = − 75
mm. The position of strain gauge E5 used to evaluate the symmetry condition of the load-supports configuration is x1 = +20 mm.

The measured axial strains along the axial coordinate of the three rectilinear lines of the DFOS sensors are averaged to obtain a
single strain function representative of the cylindrical bending beam behaviour. The reason is dictated by the high resolution of the
optic fibre sensors that are very sensitive to geometry imperfections.

The tests were performed by increasing the applied load and reaching four different load levels to measure the quantities
appropriately and verifying the linearity between applied force intensity and displacement/strain data for each beam specimen.

5.4. Experimental-numerical comparison

After validating numerically the accuracy of the proposed RZT(m)

{3,2} model, the results obtained by the experimental campaign are

resumed and compared with the numerical results using the 2B − RZT(m)

{3,2} and TIM elements and, for axial strain distribution, also with
2D high-fidelity NASTRAN model. The following presented results concerning transverse displacements and axial strains are nor-
malised with respect to the force intensity, taking advantage of the linearity of the problem.

5.4.1. Three-point bending case
Table 7 compares the experimental normalised displacements and those computed using the 2B − RZT(m)

{3,2} and TIM models.
Moreover, in brackets the percent errors of the numerical solution with respect to the experimental one are also reported. The
transverse displacement positions correspond to the three-point bending scheme shown in Fig. 11.

From Table 7 it is observed that in most cases, the percent errors of 2B − RZT(m)

{3,2} are bounded in the 10%, which is quite acceptable
for an experimental assessment. However, for sandwich beam B3, the discrepancies in the bottom and top transverse displacements
exceed 10 % due to the uncertainties in the IG-31 foam core characterisation, which is quite sensible to the mechanical pressisng phase
during the beam manufacturing process. As expected, the TIM FE model, even with the shear correction factor considered, un-
derestimates the transverse maximum deflection, since its formulation does not take into account the transverse normal deformability
present in thick sandwich structures and provides an inaccurate evaluation of the transverse shear deformability due to the high

Table 6
Number of elements, dofs and mesh discretization in 2B − RZT(m)

{3,2}, TIM and NASTRAN models for static analysis. In the NASTRAN mesh, the first
number is the element discretization along the x1 direction, the second one is the discretization in the x3 direction.

Beam ID TIM 2B − RZT(m)

{3,2}
NASTRAN

Ne Total dofs Ne Total dofs Mesh Total number of elements Total dofs

B1 1280 3843 1280 7686 1280 x 178 227840 458458
B2 980 2943 980 5886 980 x 173 169540 341388
B3 680 2043 680 4086 680 x 174 118320 236640
B4 560 1683 560 3366 560 x 172 96320 194106

Fig. 11. Scheme for three-point bending test and nomenclature for strain gauges and displacements (in mm).
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transverse anisotropy.
Figs. 13, 15, 17 and 19 report the axial strain distributions at the lower and upper interfaces between the core layer and the Ergal

face-sheets. The longitudinal strains at the sandwich interfaces are observed experimentally and compared with the numerical results
for the first time. The effect of concentrated forces and boundary conditions are observable as spikes in the strain distributions along
the beam axis.

As expected, the high-fidelity NASTRAN FE model can follow the experimental data. However, even though the 2B− RZT(m)

{3,2} FE
model can follow the experimental strain distributions, some spikes in the numerical axial strains are observable in the correspondence

Fig. 12. Scheme for four-point bending test and nomenclature for strain gauges and displacements (in mm).

Fig. 13. Axial strain distributions along the longitudinal axis for beam B1 at a) lower and b) upper interfaces between core and Ergal face-sheets
(three-point bending).

Fig. 14. Through-the-thickness distribution of axial strains in two beam sections (a–b) for beam B1 (three-point bending).
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Fig. 15. Axial strain distributions along the longitudinal axis for beam B2 at a) lower and b) upper interface between core and Ergal face-sheets
(three-point bending).

Fig. 16. Through-the-thickness distribution of axial strains at two beam sections (a–b) for beam B2 (three-point bending).

Fig. 17. Axial strain distributions along the longitudinal axis for beam B3 at a) lower and b) upper interface between core and Ergal face-sheets
(three-point bending).
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Fig. 18. Through-the-thickness distribution of axial strains at two beam sections (a–b) for beam B3 (three-point bending).

Fig. 19. Axial strain distributions along the longitudinal axis for beam B4 at a) lower and b) upper interfaces between core and Ergal face-sheets
(three-point bending).

Fig. 20. Through-the-thickness distribution of axial strains at two beam sections (a–b) for beam B4 (three-point bending).
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of the applied force and supported boundary conditions. The results obtained using the Timoshenko (TIM) beam elements are very far
from the real beam beahviour, which makes the 2B − RZT(m)

{3,2} elements more accurate in predicting the strain distributions.
Figs. 14, 16, 18 and 20 report the through-the-thickness distributions of the normalised axial strains across the two beam cross-

sections located at xS1 = − 20 mm and xS2 = − 75 mm. For the first time it can be observable experimentally the typical “zigzag”
distribution of axial strains in a sandwich multilayered structure. As expected, the numerical data computed from the high-fidelity
NASTRAN FE model are quite closer to those determined experimentally for each beam specimen. Even the 2B − RZT(m)

{3,2} estimates
correctly the strain values at both interfaces for xS1 section, whereas higher discrepancies are visible in xS2 section. A reasonable
explanation is the limitation of the 2B − RZT(m)

{3,2} elements and, in more generally, the RZT
(m)

{3,2} model to predict more complex dis-
tributions of the transverse normal stress. The third-power series expansion assumed here could not be sufficiently accurate to describe
the sandwich behaviour in some particular beam regions, such as near concentrated loads or in core regions with a transverse normal
deformability that influences the axial strain distribution, e.g. for three-point bending the xS2 section. Despite these concers, the TIM
elements cannot reach the same level of accuracy given by the zigzag model in through-the-thickness axial strain distribution, as
demonstrated in Figs. 14, 16, 18 and 20.

In order to better evaluate the role of the concentrated loads in the numerical FE predictions, a slightly different numerical load
configuration has been considered for beam B01. In this example, a distributed load equivalent to the concentrated force is applied on
the upper surface of the sandwich beam for a length of 1 mm, at the same point of the three-point load configuration. Note that the
same discretization adopted in Table 6 for beam B1 has been used to guarantee that the load is correctly distributed, i.e. a mesh with
1280 2B − RZT(m)

{3,2} elements. In Table 8 are reported, for comparison purposes with the previous numerical RZT(m)

{3,2} results, the
transverse displacements at the beam mid-span, evaluated at the top and bottom surfaces.

Table 8 reports a slightly improvement in predicting the central transverse displacement using the 2B − RZT(m)

{3,2} elements in the
second load configuration case (distributed load). However, the same numerical improvement is not obtained for the axial strain
distributions, as reported by Fig. 21.

As observable in Fig. 21, the strain distributions obtained considering a localized distributed load are almost identical with those
computed by considering a concentrated force. However, by taking a closer look at the region closer to the beammid-length, the strains
corresponding to the previous numerical model, i.e. that with the concentrated force, are better evaluated than those obtained with the
equivalent distributed load. In addition, the localised distributed force in the second numerical model shows an abrupt slope change in
the resulting strains which is not observed in the experimental data.

Although, some improvements in the numerical predictions are observed from a global point of view, e.g. transverse displacements,
a worsening effect has observed for the strain distributions. Thus, as a results of these considerations, the numerical model with
concentrated forces is adopted for the four-point bending analysis.

5.4.2. Four-point bending
Table 9 compares the experimental normalised transverse displacements and those computed using the 2B − RZT(m)

{3,2} model for the
four-point bending configuration, as reported in Fig. 12.

As shown in Table 9 for the four-point bending configuration, the transverse displacements obtained by the 2B− RZT(m)

{3,2} FE model
are closer to the experimental data, with errors bounded in+2.4/-10 %. In fact, for such load configuration, the force is not localised in
one single point, such as the three-point bending scheme, but it is divided into two separated points that distribute differently the effect
of the transverse normal deformability in the beam specimens. The 2B − RZT(m)

{3,2} still confirm its superior predictive capabilities for
the transverse displacements with respect to the TIM FE model, for each sandwich beam.

Figs. 22, 24, 26 and 28 report the axial strain distributions at the lower and upper interfaces between the core layer and the Ergal
face-sheets for the four-point bending case. The numerical results confirm the previous considerations. The high-fidelity NASTRAN FE
model is able to follow the experimental strain distributions along the beam axis at the inner sandwich beam interfaces; the dis-
crepancies observable are due to the uncertainties in the correct estimation of the IG-31 material properties probably caused by the
manufacturing process, e.g. mechanical pressing phase. The results provided by the 2B − RZT(m)

{3,2} FEmodel are generally able to follow

Table 7
Normalised displacements (in mm/N) for three-point bending test: experimental and numerical values, in brackets the percent errors.

Beam specimen ID Normalised transverse displacements Experimental values 2B-RZT(m)

{3,2}
TIM

B1 U3(x3(T))/F 3.354E-03 3.601E-03 (7.4) 6.527E-04 (− 80.5)
U3(x3(B))/F 3.009E-03 2.913E-03 (− 3.2) 6.527E-04 (− 78.3)

B2 U3(x3(T))/F 2.891E-03 2.737E-03 (− 5.3) 3.207E-04 (− 88.9)
U3(x3(B))/F 2.269E-03 2.051E-03 (− 9.6) 3.207E-04 (− 85.9)

B3 U3(x3(T))/F 2.283E-03 1.865E-03 (− 18.3) 1.183E-04 (− 94.8)
U3(x3(B))/F 1.713E-03 1.178E-03 (− 31.2) 1.183E-04 (− 93.1)

B4 U3(x3(T))/F 1.589E-03 1.544E-03 (− 2.9) 7.412E-05 (− 95.3)
U3(x3(B))/F 1.062E-03 8.571E-04 (− 19.3) 7.412E-05 (− 93.0)
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the experimental strain distribution with the expected differences due to the assumed transverse stress distribution. Moreover,
considering the upper beam interfaces, the 2B − RZT(m)

{3,2} model can match the experimental strain spikes that appear in the strain

distribution where the concentrated forces are applied. On the other hand, the 2B − RZT(m)

{3,2} FE models the same experimental strain
spikes in correspondence of the supporting cylinder at the lower sandwich interfaces. Even in this case, the Timoshenko model fails to
predict the axial strain distributions at the layer interfaces when compared to the high-fidelity solution and the experimental results.
The TIM results differ not only in magnitude but also in sign, making them less accurate from the 2B − RZT(m)

{3,2} predictions.

However, the numerical strain values provided by the 2B − RZT(m)

{3,2} are relatively close to the experimental ones, as reported in

Figs. 23, 25, 27 and 29. It is particularly interesting, in the four-point bending tests, that the 2B − RZT(m)

{3,2} is able to predict the
experimental "zigzag” pattern of the through-the-thickness axial distribution, evaluating correctly the extreme values and slopes for
the strains in the Aluminium face-sheets in the slender sandwich beam specimen, i.e. B1. As expected, the TIM FE results for top and
bottom strain values are very different from those experimentally observed, and confirm the superior accuracy of the 2B− RZT(m)

{3,2}

elements.
From the presented results it appears quite clear the inherent complexity behind the experimental study of thick sandwich beams

characterised by a soft core, such as the IG-31, that exhibits a pronounced transverse normal deformability. Moreover, the higher
discrepancies between experimental and numerical results, especially for beam B3, are probably due to the uncertainties of the

Table 8
Normalised displacements (in mm/N) for three-point bending test: experimental and numerical values for concentrated and distributed load (in
brackets the percent errors).

Beam specimen ID Normalised transverse displacements Experimental values 2B-RZT(m)

{3,2}

Concentrated force (see, Table 7) Distributed load

B1 U3(x3(T))/F 3.354E-03 3.601E-03 (7.4) 3.504E-3 (4.5)
U3(x3(B))/F 3.009E-03 2.913E-03 (− 3.2) 2.956E-3 (− 1.8)

Fig. 21. Comparison of axial strain distributions along the upper interface of sandwich specimen B1.

Table 9
Normalised displacements (in mm/N) for four-point bending test: experimental and numerical values, in brackets the percent errors.

Beam specimen ID Normalised transverse displacements Experimental values 2B-RZT(m)

{3,2}
TIM

B01 U3(x3 (T))/F 2.881E-03 2.938E-03 (2.0) 5.869E-04 (− 79.6)
U3(x3 (B))/F 2.886E-03 2.858E-03 (− 1.0) 6.103E-04 (− 78.9)

B02 U3(x3 (T))/F 2.238E-03 2.070E-03 (− 7.5) 2.664E-04 (− 88.1)
U3(x3 (B))/F 2.050E-03 1.991E-03 (− 2.9) 2.837E-04 (− 86.2)

B03 U3(x3 (T))/F 1.334E-03 1.209E-03 (− 9.4) 7.954E-05 (− 94.0)
U3(x3 (B))/F 1.226E-03 1.125E-03 (− 8.2) 8.911E-05 (− 92.7)

B04 U3(x3 (T))/F 9.176E-04 8.907E-04 (− 2.9) 4.096E-05 (− 95.5)
U3(x3 (B))/F 7.857E-04 8.047E-04 (2.4) 4.764E-05 (− 93.9)
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Fig. 22. Axial strain distributions along the longitudinal axis for beam B1 at a) inferior and b) superior interface between core and Ergal face-sheets
(four-point bending).

Fig. 23. Through-the-thickness distribution of axial strains at two beam sections for beam B1 (four-point bending).

Fig. 24. Axial strain distributions along the longitudinal axis for beam B2 at a) inferior and b) superior interface between core and Ergal face-sheets
(four-point bending).
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Fig. 25. Through-the-thickness distribution of axial strains at two beam sections for beam B2 (four-point bending).

Fig. 26. Axial strain distributions along the longitudinal axis for beam B3 at a) inferior and b) superior interface between core and Ergal face-sheets
(four-point bending).

Fig. 27. Through-the-thickness distribution of axial strains at two beam sections for beam B3 (four-point bending).
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material foam core characterisation. Clearly, a more detailed material characterisation that considers the degradation of the material
properties (Young’s modulus in the transverse direction) due to the manufacturing process (e.g. mechanical pressing phase) could lead
to a more realistic modelisation of these sandwich specimens. These last considerations suggest a possible explanation for the dis-
crepancies observed in the predicted numerical axial strain distributions in some core regions closer to the concentrated loads.

Generally speaking, experimental data for strain values determined for thick sandwich structures are rarely found in the current
literature, and further efforts to improve the accuracy of the transverse normal deformability are suggested in the future.

6. Conclusions

The paper presents an experimental campaign performed to assess the new mixed {3,2}-RZT beam model, i.e. RZT(m)

{3,2}. The ki-

nematic assumptions, the assumed stress fields, the governing equations, and the consistent boundary conditions of the RZT(m)

{3,2} model
are derived using a mixed variational statement based on the Hellinger-Reissner functional and on a penalty functional to enforce the
strain compatibilities. In virtue of the C0-continuity requirements, the linear Lagrangian shape functions are adopted to formulate a
simple low-order two-node beam element. Static condensation has been used at the element level to reduce the number of dofs. A first
numerical assessment has been performed to evaluate the accuracy of the present theory and formulated element to predict the
through-the-thickness quantities correctly for simply-supported sandwich beams with transverse load configuration. The results
demonstrate the present formulation’s accuracy in addressing the sandwich behaviour compared with the exact three-dimensional
solution.

A set of four thick sandwich beam specimens with different length-to-thickness ratios are manufactured. Each beam is made of two
7075 Aluminium alloy face-sheets (Ergal), whereas the core layer is made of soft foam Rohacell® IG-31. Each specimen is equipped
with Distributed Fibre Optic Strain (DFOS) sensor embedded at each layer interface. Furthermore, the beam deflection is measured at

Fig. 28. Axial strain distributions along the longitudinal axis for beam B4 at a) inferior and b) superior interface between core and Ergal face-sheets
(four-point bending).

Fig. 29. Through-the-thickness distribution of axial strains at two beam sections for beam B4 (four-point bending).
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two different positions, and the axial strains are evaluated in two different sections on the outer beam surfaces.
The experimental campaign’s first phase is dedicated to material characterisation. Then, three- and four-point bending tests are

conducted for each beam specimen, evaluating the transverse deflections and axial strains. The experimental results are compared with
those coming from the 2B − RZT(m)

{3,2} and TIM FE models and those from a high-fidelity NASTRAN FE model.
Thanks to the DFOS sensors embedded in the sandwich beam layup, it has been possible to measure the axial strains at the inner

interfaces and compare them with the available numerical models. The 2B − RZT(m)

{3,2} FE model is able to accurately predict the ex-
pected spikes in the axial strain distributions in the correspondence points of concentrated forces and/or supported boundary con-
ditions. On the contrary, the TIM model cannot correctly estimate the axial strain distributions, even with the use of an appropriate
shear correction factor. Additionally, the TIM fails also in predicting the transverse displacement quantities with respect to the
experimental results.

For the first time, the typical “zigzag” through-the-thickness distributions of the axial strains it has been observed experimentally in
for three- and four-point test configurations, confirming the accuracy of the developed 2B − RZT(m)

{3,2} model in predicting the strain
quantities at the inner and outer interfaces for the slender beam case. These results also confirm the superior capabilities of the RZT-
based models over the Timoshenko one, in represent the through-the-thickness strain distributions for thick structures with higher
accuracy. As observed by the experimental-numerical comparisons, this set of sandwich beam specimens exhibits a more pronounced
transverse normal deformability when concentrated forces are applied, mainly due to the soft foam core material adopted in the
stacking sequences and material property degradation in the transverse direction. For this reason, the assumed distribution of the
transverse normal stress in the RZT(m)

{3,2} model could exhibit higher discrepancies with respect to the real one.
The paper aims to present a new set of experimental data for thick sandwich structures in which the transverse deformability is not

negliglibe and influences the overall sandwich static response. The present mixed-model formulation offers an advantageous meth-
odology for formulating accurate and computational efficient simple beam finite elements for the analysis of thick sandwich structures.
Additionally, the mixed-formulation via the Hellinger-Reissner functional has demonstrated to achieve better results for transvese
shear and normal stress distributions without recurring to the a-posteriori stress-recovery typical of the PVDs-formulated elements.
However, the assumptions for the third-order zigzag and the transverse normal stress distributions still limit a finer description of the
thick sandwich response under concentrated forces. Future steps will be dedicated to considering a more accurate description of the
transverse normal deformability, more compatible with those encountered in sandwich configurations and capable to address the
trough-the-thickness material change.
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Appendix A. – Functions of the assumed transverse normal stress

Here are reported the through-the-thickness functions that appear in Eq. (17). These are formally the same as those obtained in
Ref. [35] with the distinction that a different set of functions approximates the parabolic distribution of the transverse displacement, i.
e. they differ in the definition of the Hz

,3 term.
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Au
σ(x3) = Pσ〈S(k)33Pσ

TPσ〉
− 1

〈Pσ
TR13

(k)〉;

Aθ
σ(x3) = Pσ〈S(k)33Pσ

TPσ〉
− 1

〈Pσ
TR13

(k)x3〉;

Aψ
σ (x3) = Pσ〈S(k)33Pσ

TPσ〉
− 1

〈Pσ
TR13

(k)μ(k)〉;

Aw
σ (x3) = Pσ〈S(k)33Pσ

TPσ〉
− 1

〈Pσ
THz

,3〉;

Aqz
σ (x3) =

[
Lσ − Pσ〈S(k)33Pσ

TPσ〉
− 1

〈S(k)33Pσ
TLσ〉

]

(A.1)

Appendix B. – Functions of the assumed transverse shear stress

In this appendix, the full expression of the assumed transverse shear stress is obtained by integrating Cauchy’s equation, i.e. Eq. (8),
after substituting the expression of the axial stress given by Eq. (18). Integrating along the thickness direction yields

τa13(x1, x3)= − p1(B)(x1)+Az(x3)e,1(x1)+Bz(x3)k,1(x1)+

+Dz(x3)kψ
,1(x1)+Ez(x3)∂w(x1)+ Fz(x3)∂qz(x1)+ a

͝
(

x3 +
h
2

) (B.1)

where, in Eq. (B.1) the through-the-thickness functions are defined as follows:

Az(x3) = −

∫x3

− h/2

(
E(k)
1 + R(k)

13A
u
σ
)
dx3

Bz(x3) = −

∫x3

− h/2

(
x3E(k)

1 + R(k)
13A

θ
σ
)
dx3

Dz(x3) = −

∫x3

− h/2

(
E(k)
1 μ(k) + R(k)

13A
ψ
σ
)
dz

Ez(x3) =

⌊

−

∫x3

− h/2

R(k)
13A

w
σ11dx3 −

∫x3

− h/2

R(k)
13A

w
σ12dx3 −

∫x3

− h/2

R(k)
13A

w
σ13dx3

⌋

Fz(x3) =

⌊

−

∫x3

− h/2

R(k)
13A

qz
σ11dx3 −

∫x3

− h/2

R(k)
13A

qz
σ12dx3

⌋

(B.2)

The a
͝
term in Eq. (B.1) is obtained by enforcing the axial traction conditions at the top surface of the beam.

τa13
(

x1, h /2

)

= − p1(B) − Ãe,1 − B̃k,1 − Ã
ϕ
kψ
,1 − Ã

w
∂w − Ã

qz
∂qz(x1)+ a

͝
h= p1(T)

It yields:

a
͝
=
1
h
(p1(B) + p1(T))+

1
h
Ãe,1 +

1
h
B̃k,1 +

1
h
Ã

ϕ
kψ
,1 +

1
h
Ã
w

∂w+
1
h
Ã
qz

∂qz (B.3)

Substituting Eq. (B.3) into Eq. (B.1) the complete final expression of the assumed transverse shear stress distribution is obtained:

τa13(x1, x3)= p1(B)(x1)
[

− 1+
1
h

(

x3 + h /2

)]

+
1
h

(

x3 + h /2

)

p1(T)(x1)+

+A
⌢z(x3)e,1(x1)+ B

⌢z(x3)k,1(x1)+D
⌢z(x3)kψ

,1(x1)+ E
⌢z(x3)∂w(x1)+ F

⌢z(x3)∂qz(x1)=
= Zp(x3)qp(x1)+Zt(x3)qt(x1)+Zqz(x3)∂qz(x1)

(B.4)

where
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A
⌢z(x3) = Az(x3) +

(

x3 + h /2

)
1
h
Ã

B
⌢z(x3) = Bz(x3) +

(

x3 + h /2

)
1
h
B̃

D
⌢z(x3) = Dz(x3) +

(

x3 + h /2

)
1
h
Ã

ϕ

E
⌢z(x3) = Ez(x3) +

(

x3 + h /2

)
1
h
Ã
w

F
⌢z(x3) = Fz(x3) +

(

x3 + h /2

)
1
h
Ã
qz

Zp(x3) =
[

− 1+
1
h

(

x3 + h /2

)
1
h

(

x3 + h /2

)]

Zt(x3) =
[
A
⌢z(x3) B

⌢z(x3) D
⌢z(x3) E

⌢z(x3)
]

Zqz(x3) = F
⌢z(x3)

(B.5)

Appendix C. – Full expressions of equilibrium equation terms of RZT(m)

{3,2}

This appendix reports the full expressions of some terms that appear in the governing equation and boundary conditions of the
RZT(m)

{3,2}.

Q
⌢w0 = −

(
D̂

w
11w

(0)
,11 + D̂

w
12w

(1)
,11 + D̂

w
13w

(2)
,11 + D̂

θ
11θ,1 + D̂

ψ
11ψ ,1

)
+ Â

kw
11e,11 + B̂

kw
11k,11 + Ĉ

kw
11k

ψ
,11 + D̂

kw
11w

(0)
,11 + D̂

kw
12w

(1)
,11 + D̂

kw
13w

(2)
,11 (C.1)

Q
⌢w1 = −

(
D̂

w
11w

(0)
,11 + D̂

w
12w

(1)
,11 + D̂

w
13w

(2)
,11 + D̂

θ
21θ,1 + D̂

ψ
21ψ ,1

)
+ Â

kw
12e,11 + B̂

kw
12k,11 + Ĉ

kw
12k

ψ
,11 + D̂

kw
21w

(0)
,11 + D̂

kw
22w

(1)
,11 + D̂

kw
23w

(2)
,11 (C.2)

Q
⌢w2 = −

(
D̂

w
31w

(0)
,11 + D̂

w
32w

(1)
,11 + D̂

w
33w

(2)
,11 + D̂

θ
31θ,1 + D̂

ψ
31ψ ,1

)
+ Â

kw
13e,11 + B̂

kw
13k,11 + Ĉ

kw
13k

ψ
,11 + D̂

kw
31w

(0)
,11 + D̂

kw
32w

(1)
,11 + D̂

kw
33w

(2)
,11 (C.3)

EHR = Â
w
11w

(0)
,11 + Â

w
12w

(1)
,11 + Â

w
13w

(2)
,11 + Â

θ
11θ,1 + Â

ψ
11ψ ,1 −

(
Â

e
11e,11 + Â

k
11k,11 + Â

kψ
11k

ψ
,11 + Â

kw
11w

(0)
,11 + Â

kw
12w

(1)
,11 + Â

kw
13w

(2)
,11

)
(C.4)

KHR = B̂
w
11w

(0)
,11 + B̂

w
12w

(1)
,11 + B̂

w
13w

(2)
,11 + B̂

θ
11θ,1 + B̂

ψ
11ψ ,1 −

(
Â
k
11e,11 + B̂

k
11k,11 + B̂

kψ
11k

ψ
,11 + B̂

kw
11w

(0)
,11 + B̂

kw
12w

(1)
,11 + B̂

kw
13w

(2)
,11

)
(C.5)

KHR
ψ = Ĉ

w
11w

(0)
,11 + Ĉ

w
12w

(1)
,11 + Ĉ

w
13w

(2)
,11 + Ĉ

θ
11θ,1 + Ĉ

ψ
11ψ ,1 −

(
Â

kψ
11e,11 + B̂

kψ
11k,11 + Ĉ

kψ
11k

ψ
,11 + Ĉ

kw
11w

(0)
,11 + Ĉ

kw
12w

(1)
,11 + Ĉ

kw
13w

(2)
,11

)
(C.6)

Furthermore, the terms shown in the boundary condition expression, i.e. Eq. (21), can read:

EeHR = Â
w

∂w+ Â
θ
θ + Â

ψ
ψ −

(
Â

p
qp + Â

e
e,1 + Â

k
k,1 + Â

kψ
kψ
,1 + Â

kw
∂w+ Â

q
∂qz

)

Kk
HR = B̂

w
∂w+ B̂

θ
θ + B̂

ψ
ψ −

(
B̂
p
qp + B̂

e
e,1 + B̂

k
k,1 + B̂

kψ
kψ
,1 + B̂

kw
∂w+ B̂

q
∂qz

)

Kkψ
HR = Ĉ

w
∂w+ Ĉ

θ
θ + Ĉ

ψ
ψ −

(
Ĉ
p
qp + Ĉ

e
e,1 + Ĉ

k
k,1 + Ĉ

kψ
kψ
,1 + Ĉ

kw
∂w+ Ĉ

q
∂qz

)

QHR =
⌊
Qw0
1 HR Qw1

1 HR Qw2
1 HR

⌋
= D̂

w
∂w+ D̂

θ
θ + D̂

ψ
ψ −

(
D̂

p
qp + Â

kwT
e,1 + B̂

kwT
k,1 + Ĉ

kwT
kψ
,1 + D̂

kw
∂w+ D̂

q
∂qz

)

(C.7)

Moreover,

Ã = 〈E(k)
1 + R13

(k)Au
σ〉; B̃ = 〈x3E(k)

1 + R13
(k)Aθ

σ〉; Ã
ϕ
= 〈E(k)

1 μ(k) + R13
(k)Aψ

σ 〉;

Ã
w
= 〈R13

(k)Aw
σ 〉; Ã

qz
= 〈R13

(k)Aqz
σ 〉; B̃

w
= 〈x3R13

(k)Aw
σ 〉; B̃

qz
= 〈x3R13

(k)Aqz
σ 〉;

C̃ = 〈x3E(k)
1 + x3R13

(k)Au
σ〉; D̃ = 〈x23E

(k)
1 + x3R13

(k)Aθ
σ〉; B̃

ϕ
= 〈x3E(k)

1 μ(k) + zR13
(k)Aψ

σ 〉;

Ẽ
ϕ
= 〈μ(k)E(k)

1 + μ(k)R13
(k)Au

σ〉; F̃
ϕ
= 〈x3μ(k)E(k)

1 + μ(k)R13
(k)Aθ

σ〉;

G̃
ϕ
= 〈μ(k)E(k)

1 μ(k) + μ(k)R13
(k)Aψ

σ 〉; C̃
w
= 〈μ(k)R13

(k)Aw
σ 〉; C̃

qz
= 〈μ(k)R13

(k)Aqz
σ 〉

ANz = 〈Hz
,3
TAu

σ〉; BNz = 〈Hz
,3
TAθ

σ〉; CNz = 〈Hz
,3
TAψ

σ 〉; DNz = 〈Hz
,3
TAw

σ 〉; ENz = 〈Hz
,3
TAqz

σ 〉;

P̂
w
= 〈Hz

,3
TZp〉; P̂

θ
= 〈Zp〉; P̂

ψ
= 〈μ(k)

,3 Zp〉;

(C.8)
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Remembering that S(k)t = 1/G(k)
13 , the remaining quantities are expressed as follows:

Â
w
= 〈A

⌢zHz〉; Â
θ
= 〈A

⌢z〉; Â
ψ
= 〈A

⌢zμ(k)
,3 〉; Â

p
= 〈A

⌢zS(k)t Zp〉; Â
e
= 〈A

⌢zS(k)t A
⌢z〉;

Â
k
= 〈A

⌢zS(k)t B
⌢z〉; Â

kψ
= 〈A

⌢zS(k)t D
⌢z〉; Â

kw
= 〈A

⌢zS(k)t E
⌢z〉; Â

q
= 〈A

⌢zS(k)t F
⌢z〉;

B̂
w
= 〈B

⌢zHz〉; B̂
θ
= 〈B

⌢z〉; B̂
ψ
= 〈B

⌢zμ(k)
,3 〉; B̂

p
= 〈B

⌢zS(k)t Zp〉; B̂
e
= Â

k
= 〈B

⌢zS(k)t A
⌢z〉;

B̂
k
= 〈B

⌢zS(k)t B
⌢z〉; B̂

kψ
= 〈B

⌢zS(k)t D
⌢z〉; B̂

kw
= 〈B

⌢zS(k)t E
⌢z〉; B̂

q
= 〈B

⌢zS(k)t F
⌢z〉;

Ĉ
w
= 〈D

⌢zHz〉; Ĉ
θ
= 〈D

⌢z〉; Ĉ
ψ
= 〈D

⌢zμ(k)
,3 〉; Ĉ

p
= 〈D

⌢zS(k)t Zp〉; Ĉ
e
= Â

kψ
= 〈D

⌢zS(k)t A
⌢z〉;

Ĉ
k
= B̂

kψ
= 〈D

⌢zS(k)t B
⌢z〉; Ĉ

kψ
= 〈D

⌢zS(k)t D
⌢z〉; Ĉ

kw
= 〈D

⌢zS(k)t E
⌢z〉; Ĉ

q
= 〈D

⌢zS(k)t F
⌢z〉;

D̂
w
= 〈E

⌢z
T
Hz〉; D̂

θ
= 〈E

⌢z
T
〉; D̂

ψ
= 〈E

⌢z
T
μ(k)
,3 〉; D̂

p
= 〈E

⌢z
T
S(k)t Zp〉; D̂

e
= Â

kwT
= 〈E

⌢z
T
S(k)t A

⌢z〉;

D̂
k
= B̂

kwT
= 〈E

⌢z
T
S(k)t B

⌢z〉; D̂
kψ

= Ĉ
kwT

= 〈E
⌢z

T
S(k)t D

⌢z〉; D̂
kw

= 〈E
⌢z

T
S(k)t E

⌢z〉; D̂
q
= 〈E

⌢z
T
S(k)t F

⌢z〉;

Ê
w
= 〈HzTF

⌢z〉; Ê
θ
= 〈F

⌢z〉; Ê
ψ
= 〈μ(k)

,3 F
⌢z〉

(C.9)

Appendix D. – Full expressions of elemental stiffness matrix and load vector

In this appendix, the full expressions of the elemental stiffness matrix and load vector that appear in Eq. (36) are reported.

K(e)
dd =

∫

L(e)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
L,1TÃL,1

+bh/ηL
T
,1L,1

) L,1TÃ
w
Lw L,1TB̃L,1 L,1TÃ

ϕ
L,1

LwTANzL,1

(
LwTDNzLw + Lw,1

T D̂
wT
Lw,1+

+Lw,1
T D̂

w
Lw,1 − Lw,1

T D̂
kw
Lw,1
)

(
LwTBNzL,1+

+Lw,1
T D̂

θ
L
)

(
LwTCNzL,1+

+Lw,1
T D̂

ψ
L
)

L,1TC̃L,1 LT D̂
θT
Lw,1 + L,1TB̃

w
Lw

(
L,1TD̃L,1+

+bh/ηL
T
,1L,1

) L,1TB̃
ϕ
L,1

L,1TẼ
ϕ
L,1 LT D̂

ψT
Lw,1 + L,1TC̃

w
Lw L,1TF̃

ϕ
L,1

(
L,1TG̃

ϕ
L,1+

+bh/ηL
T
,1L,1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dx1 (D.1)

K(e)
de =K(e)

ed
T
=

∫

L(e)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− bh/ηL
T
,1L 0 0

(
Lw,1

T Â
wT
L,1+

− Lw,1
T D̂

e
L,1
)

(
Lw,1

T B̂
wT
L,1+

− Lw,1
T D̂

k
L,1
)

(
Lw,1

T Ĉ
wT
L,1+

− Lw,1
T D̂

kψ
L,1
)

LT Â
θ
L,1

(
LT B̂

θ
L,1+

− bh/ηL
T
,1L
) LT Ĉ

θ
L,1

LT Â
ψ
L,1 LT B̂

ψ
L,1

(
LT Ĉ

ψ
L,1+

− bh/ηL
T
,1L
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dx1 (D.2)

K(e)
ee =

∫

L(e)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− L,1T Â
e
L,1 + bh/ηL

TL − L,1T Â
k
L,1 − L,1T Â

kψ
L,1

− L,1T B̂
e
L,1 − L,1T B̂

k
L,1 + bh/ηL

TL − L,1T B̂
kψ
L,1

− L,1T Ĉ
e
L,1 − L,1T Ĉ

k
L,1 − L,1T Ĉ

kψ
L,1 + bh/ηL

TL

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dx1 (D.3)
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F(e)d =

∫

L(e)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− L,1TÃ
qz
qz + LTp1

LTqZris + Lw,1
T D̂

q
∂qz − LwTENzqz − Lw,1

T Ê
w

∂qz + Lw,1
T D̂

p
qp − Lw,1

T P̂
w
qp

− L,1TB̃
qz
qz − LT Ê

θ
∂qz + LTm1 − LT P̂

θ
qp

− L,1TC̃
qz
qz − LT Ê

ψ
∂qz − LT P̂

ψ
qp

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dx1 (D.4)

F(e)s =

∫

L(e)

⎧
⎪⎨

⎪⎩

L,1T Â
q
∂qz + L,1T Â

p
qp

L,1T B̂
q
∂qz + L,1T B̂

p
qp

L,1T Ĉ
q
∂qz + L,1T Ĉ

p
qp

⎫
⎪⎬

⎪⎭
dx1 (D.5)

with qZris
T =

⌊

q3
h
2
(p3(T) − p3(B))

h2

4
q3

⌋

.
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