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Abstract
Radiomics-based systems could improve themanagement of oncological patients by supporting
cancer diagnosis, treatment planning, and response assessment. However, one of themain limitations
of these systems is the generalizability and reproducibility of results when they are applied to images
acquired in different hospitals by different scanners. Normalization has been introduced tomitigate
this issue, and twomain approaches have been proposed: one rescales the image intensities (image
normalization), the other the feature distributions for each center (feature normalization). The aimof
this study is to evaluate howdifferent image and feature normalizationmethods impact the robustness
of 93 radiomics features acquired using amulticenter andmulti-scanner abdominalMagnetic
Resonance Imaging (MRI) dataset. To this scope, 88 rectalMRIswere retrospectively collected from3
different institutions (4 scanners), and for each patient, six 3D regions of interest on the obturator
muscle were considered. Themethods appliedweremin-max, 1st-99th percentiles and 3-Sigma
normalization, z-score standardization,mean centering, histogramnormalization, Nyul-Udupa and
ComBat harmonization. TheMann-WhitneyU-test was applied to assess features repeatability
between scanners, by comparing the feature values obtained for each normalizationmethod,
including the case inwhich no normalizationwas applied.Most image normalizationmethods
allowed to reduce the overall variability in terms of intensity distributions, while worsening or
showing unpredictable results in terms of feature robustness, except for the z-score, which provided a
slight improvement by increasing the number of statistically similar features from9/93 to 10/93.
Conversely, feature normalizationmethods positively reduced the overall variability across the
scanners, in particular, 3sigma, z_score andComBat that increased the number of similar features (79/
93). According to our results, it emerged that none of the image normalizationmethodswas able to
strongly increase the number of statistically similar features.

1. Introduction

In the past decades, the field of medical image analysis
has grown exponentially and is gainingmore andmore
importance in disease diagnosis and patient care
(Gillies et al 2016, Lu et al 2019). A great role is played
by radiomics, that involves the extraction and analysis
of quantitative image features describing the patterns
of pixel intensity variations within an image, through
the use of a series of mathematical algorithms
(Haralick et al 1973, Lambin et al 2012, 2017). Several

efforts have been made towards the development of
radiomics-based systems for supporting cancer diag-
nosis, treatment planning, and response assessment,
that could be applied to routinely acquired medical
images (Stanzione et al 2022). Despite the spread of
studies involving this kind of systems, one of the main
limitations of their introduction in clinical practice is
the poor reproducibility, generalizability, and robust-
ness of radiomics features, especially in multi-center
setting (Fusco et al 2022, Stamoulou et al 2022). The
main reason is due to the unavoidable image variability
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caused by both biological and non-biological factors,
e.g., scanners, acquisition protocols, pre-processing
software, etc, whichmay lead important bias.

Currently, several efforts have been made for
solving this issue, and twomain approaches have been
developed: image normalization and feature normal-
ization (Alrahawy et al 2022, Stamoulou et al 2022,
Stanzione et al 2022). The first approach consists in
applying a normalization method to each image or
volume to bring pixel intensities into a common range
or distribution before extracting features. Conversely,
during feature normalization the values of features are
rescaled to obtain ranges or distributions similar for all
centers. With respect to the first approach, in this case
a subgroup of training samples for each center is
needed to estimate the normalization parameters.
However, in the last years few studies proposed
standardized pipelines or guidelines to harmonize
differences among patients and scanners for both
positron emission tomography (PET) and computed
tomography (CT) (Traverso et al 2018, Ly et al 2019,
Da-Ano et al 2020, Kociołek et al 2020). Conversely,
no standardized procedures have been proposed for
magnetic resonance imaging (MRI) (Stamoulou et al
2022). Therefore, further researches are needed to
define possible procedures for MRI, in which pro-
blems related to feature robustness are accentuated
since intensities are non-standardized and highly
dependent on manufacturer and acquisition protocol
parameters (Scalco andRizzo 2017).

Some studies have been done in this direction,
analyzing the effects of different normalizations on the
radiomics features extracted on MRI: some of them
consider databases related to the brain (Reinhold et al
2019, Carré et al 2020), other consider MRI sequences
related to different body parts (thorax and abdomen)
acquired by the same scanner in different times (before
and after radiotherapy) (Chatterjee et al 2019, Schwier
et al 2019, Upadhaya et al 2019, Isaksson et al 2020,
Scalco et al 2020, Mchugh et al 2021, Campello et al
2022, Granzier et al 2022), and others on phantom
databases (Buch et al 2018, Rai et al 2020). However,
most of their insights might be biased by the choices
made in terms of model selected and related para-
meters. Furthermore, they do not truly assess how to
reduce the variability among different scanners, since
most of their databases aremono-scanner.

To the best of our knowledge, only two studies
focusedon the robustness of the features across different
centers in a generalizablemanner (Crombé et al 2020, Li
et al 2021), evaluating the differences between normal-
ization methods on multi-center brain MRI datasets.
Unfortunately, there are not similar studies related to
the abdominal area in amulti-center setting.

The aim of this study is to evaluate how different
image and features normalization methods impact the
robustness of radiomics features acquired using a
multicenter and multi-scanner abdominal MRI
dataset.

2.Material andmethods

2.1.MRI dataset
Clinical rectal scans were retrospectively collected from
patients with histologically confirmed stage II/III
Locally Advanced Rectal Cancer (LARC) in three
different hospitals: Candiolo Cancer Institute, FPO-
IRCCS of Candiolo (Italy) (Center A); Mauriziano
hospital of Turin (Italy) (Center B); Molinette hospital
A.O.U. Città della Salute e della Scienza of Turin (Italy)
(CenterC). The followingMRI scannerswere adopted:

• Scanner A.1: 1.5 T GE scanner using an 8-channel
phased-array surface coil (HDx Signa Excite, GE
HealthCare,Milwaukee,WI,USA) in center A;

• Scanner A.2: 1.5 T GE scanner using a 32-channel
phased-array surface coil (Optima MR450w, GE
HealthCare,Milwaukee,WI,USA) in center A;

• Scanner B: 1.5 T Philips scanner using a 32-channel
body phased-array coil (Ingenia, Philips Medical
Systems, Eindhoven, TheNetherlands) in center B;

• Scanner C: 1.5 T Philips scanner using a 32-channel
body phased-array coil (Achieva, version 2.6, Philips
Medical Systems, Eindhoven, The Netherlands) in
center C.

All standard sequences were collected, according
to MRI guidelines for reporting rectal cancer staging
(Beets-Tan et al 2018), however in this study we
considered the fast spin-echo T2 weighted (T2w)
sequence acquired on the axial plane perpendicular to
the longest tumor diameter. Parameters of T2w
sequence are reported in table 1 for each institution.

The study was approved by the institutional review
boards in each institution, with a waiver for require-
ment of informed consent as de-identified patient data
were utilized.

2.2. Normalization approaches
In this study we compared two different normalization
approaches, one based on image normalization and
the other based on features normalization. For each
approach, themostwidely usedmethodswere applied to
our sequences.The studyflowchart is depicted infigure 1
and each step is detailed below for both approaches.

2.3. Image normalization approach
2.3.1. Image crop
First, all slices of each patient were centered cropped to
obtain the same Field Of View (FOV), i.e. 220× 220×
100 mm3 that is the smallest among the four scanners
and includes the abdominal area. In this way, we
obtained images that include approximately the same
anatomical structures to ensure that, whenwewill apply
image normalization methods based on image inten-
sities, results were not biased by the inclusion of
different organs that have different signal intensities. An
exampleof the result of the crop is shown infigure 2.
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2.3.2. Image normalization

Seven image normalization methods were applied to
each cropped volume (Stamoulou et al 2022, Stanzione
et al 2022):

• Min-Max (min_max) that rescales the intensities
into the range [0, 1], using equation (1):

z
x x

x x
1i

i min

max min

( )=
-
-

Figure 1. Flow-chart of the approaches followed in the study: a) image normalization steps, b) feature normalization steps.

Figure 2.Example of the preprocessing applied to T2-weighted rectalMRI.On the left there is the original image from center C
(FOV= 250 mm× 250 mm), and on the right the cropped one (FOV= 220 mm× 220 mm).

Table 1.Characteristics of the T2w sequences of each scanner.

Scanner

Parameters A.1 A.2 B C

TR/TE 3740/110ms 7660/110ms 3231/90ms 5085/100ms

Acquisitionmatrix 416× 224 416× 224 320× 311 512× 512

Slice thickness 4.4mm 4mm 3.5mm 3mm

Slice spacing 4.4mm 4mm 3.85mm 3.3mm

Pixel size 0.43× 0.43 mm2 0.43× 0.43 mm2 0.47× 0.47 mm2 0.49× 0.49 mm2

Pixel bandwidth 162.773Hz 244.14062Hz 328Hz 126Hz

FOV 220 mm× 220 mm 220 mm× 220 mm 240 mm× 240 mm 250 mm× 250 mm

NEX 2 3 1 2

Flip angle 90° 90° 90° 90°
T2wdimension 512× 512 512× 512 512× 512 512× 512

T2w=T2weighted, TR=Repetition time, TE=EchoTime, FOV= FieldOfView.
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where zi is the i-th voxel’s normalized intensity, xi is
the i-th voxel’s original intensity, xmin and xmax are
respectively the minimum and the maximum
intensity within the volume.

• p1-p99 (p1p99) that rescales the intensity range
using the 1st and 99th percentile of the intensity
distribution, using equation (2):

z
x x

x x
2i

i p1

p99 p1

( )=
-

-

where zi is the i-th voxel’s normalized intensity, xi is
the i-th voxel’s original intensity, xp1 and xp99 are
respectively the 1st and 99th percentiles of the
intensities within the volume.

• 3-Sigma (3sigma) that rescales the intensity range
using the mean and the standard deviation multi-
plied by three, using equation (3):

z
x x 3

x 3 x 3
3i

i (¯ )
(¯ ) (¯ )

( )s
s s

=
- -

+ - -

where zi is the i-th voxel’s normalized intensity, xi is
the i-th voxel’s original intensity, x̄ and σ are
respectively the mean and the standard deviation of
the intensities within the volume.

• Z-Score (z_score) that standardizes the intensities
distribution to have zero-mean and unit-variance,
using equation (4):

z
x x

4i
i ¯ ( )
s

=
-

where zi is the i-th voxel’s normalized intensity, xi is
the i-th voxel’s original intensity, x̄ and σ are
respectively the mean and the standard deviation of
the intensity distribution of the volume.

• Mean Centering (mean_cent) that standardizes the
intensity values by subtracting themean value of the
volume intensities, using equation (5):

z x x 5i i ¯ ( )= -

where zi is the i-th voxel’s normalized intensity, xi is
the i-th voxel’s original intensity and x̄ is the mean
of the intensity distribution of the volume.

• HistogramNormalization (hist_norm) that reshape
the volumes histogram using the histogram of a
specific volume as reference. This process consists
of three steps:

1. Compute the histogram of the volume (Himg) and
the reference (HRef).

2. Compute the discrete cumulative distribution
functions (CDFs) of both histograms, CDFimg and
CDFref.

3. Compute a mapping that transforms the intensity
distribution of the volume so that it matches the

intensity distribution of the reference. This is
obtained by minimizing the following equation
(equation (6)):

M x argmin

CDF x CDF x x Volume

6

img

img img ref ref img

( )
∣ ( ) ( )∣

( )

=
- " Î

In this study, we evaluated the effects of histogram
normalization changing the reference sequence.
Therefore, we repeated this analysis 4 times using
iteratively one sequence randomly selected from each
scanner as reference.

• Nyul-Udupa Normalization (NyulUdupa), that was
first presented by Nyul et al (Nyú and Udupa 1999)
and it is composed of two steps:

1. Training, where the parameters (landmarks) of a
‘standard’ histogram are estimated from the
training volumes. In case of a bimodal distribution,
the landmarks are: the minimum and maximum
intensities, the 1st and the 99th percentile of the
intensities, and the second mode of the histogram.
In this study, we evaluated the effects of this image
normalization changing the training set. Therefore,
we repeated this analysis 4 times, using all
sequences from each scanner for the training.

2. Transformation, where volume v is transformed so
that its histogram parameters match those of the
‘standard’ one. This step is performed by a non-
linear intensity transformation in which two
separate mappings are applied according to the
voxel’s original intensity xi (equation (7)):

7z

x
s

p
, if m x

x
s

p
, if x m

i
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1 s
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m

=
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-
-
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-
-

 
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where zi is the voxel’s normalized intensity, m1v and
m2v are the minimum and maximum intensities on
the volume v, p1v and p2v are the 1st and the 99th
percentile of the intensities on the volume v, s1 and s2
are the minimum and the maximum intensities of the
standard histogram, and μv and μs are the second
mode of the histogram of the original volume v and
that of the standard histogram respectively.

2.3.3. Regions of Interest (ROIs) selection
For each patient, we manually selected six different
regions of interest (ROIs) (10× 10× 3 voxels) belonging
to the obturator muscle using ITK-SNAP (http://www.
itksnap.org/pmwiki/pmwiki.php) (Yushkevich et al
2006) on different slices (figure 3). These ROIs were
identified on the original sequences and identically
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selectedon eachnormalized sequence.We choose to take
into account the obturator muscle since it is a clearly
identifiable homogeneous healthy structure, with similar
characteristics between men and women of different
ages. Moreover, since it is not adjacent to the tumor, its
signal intensities are not affected by the presence and
characteristics of the tumor (Wang et al 2008, Giannini
et al2016).Due to these stable properties, it has beenused
as reference tissue to normalize intensities on T2w
images (Engelhard et al2000,Dikaios et al2015,Giannini
et al2016).

2.3.4. Feature extraction
Ninety-three features were computed on each ROI for
all normalized sequences and for the original
sequences for comparison. Feature extraction was
performed using the IBSI compliant open-source
platform PyRadiomics (Breiding 2014), implemented
in Python 3.7. In particular, the following classes of
first and second order features were considered:

• First Order Statistics (18 features): they describe
the distribution of voxel intensities within theROI.

• Gray Level Co-occurence Matrix– GLCM (24
features): it describes the second-order joint prob-
ability function of a ROI definied as P(i,j|δ,θ), where
the (i,j)th element of this matrix represents the
number of times the combination of levels i and j
occur in two pixels in the image, that are separated
by a distance of distance δ along the angle θ.

• Gray Level Dependence Matrix—GLDM (14
features): it quantifies the gray level dependencies in
a ROI. A gray level dependency is defined as the
number of connected voxels within a given distance
δ that are dependent on the center voxel.

• Gray Level Run Length Matrix—GLRLM (16
features): it quantifies the gray level runs, which are
defined as the length of consecutive voxels that have
the same gray level value.

• Gray Level Size Zone Matrix– GLSZM (16
features): it quantifies the gray level zones in a ROI.
A gray level zone is defined as the number of
connected voxels that share the same gray level
intensity.

• Neighbouring Gray Tone Difference Matrix—
NGTDM (5 features):it quantifies the difference
between a gray value and the average gray value of its
neighbors within a given distance δ.

The discretization was performed considering a
fixed bin count, thus allowing a direct comparison of
the feature values across multiple analyzed ROIs
(Zwanenburg et al 2016). In particular, we used 32 bins
due to the expected ranges of the pixel intensity values.
The features extraction was performed in 2.5D to
avoid using interpolated isotropic voxels (Zwanen-
burg A, Leger S, Vallières M 2016). Finally, we used
δ= 1 for all matrices andα= 0 for GLDM, to consider
the nearest neighborhoods, given the small ROIs sizes.

2.4. Feature normalization approach
2.4.1. ROIs selection
Starting from the original sequences, for each patient
we selected exactly the six ROIs used for the image
normalization approach.

2.4.2. Feature extraction
For each of the six ROIs, the 93 features already used
for the image normalization approach were
computed.

2.4.3. Feature normalization
Six features normalization methods were applied on
the features extracted from the original sequences. As
suggested by (Chatterjee et al 2019), all normalizations
were applied to each center separately. To avoid
overfitting, the normalization parameters (minimum,
maximum, mean value, etc) were extracted from a
subgroup of 60% of sequences for each center and
applied to the entire set of features from the same
center.

The following features normalization methods
were compared:

• Min-Max (min_max) that rescales the feature into
the range [0, 1], using equation (1), where zi is the
i-th feature’s normalized value, xi is the i-th feature’s
original value, xmin and xmax are respectively the
minimum and the maximum feature value within
the scanner subgroup.

Figure 3.Examples of labeled ROIs onT2w sequence of patient id. 2032. EachROIwas labelledwith a number: 1 - dark blue, 2 –pink,
3 – green, 4 – yellow, 5 – light blue, 6 – red.
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• p1-p99 (p1p99) that rescales the feature range using
the 1st and 99th percentile of the feature value
distribution, using equation (2), where zi is the i-th
feature’s normalized value, xi is the i-th feature’s
original value, xp1 and xp99 are respectively the 1st
and 99th percentiles within the scanner subgroup.

• 3-Sigma (3sigma) that rescales the feature range
using the mean and the standard deviation multi-
plied by three, using equation (3), where zi is the i-th
feature’s normalized values, xi is the i-th feature’s
original value, x̄ and σ are respectively the mean
and the standard deviation of the values within the
scanner subgroup.

• Z-Score (z_score) that standardizes the feature
values distribution to have zero-mean and unit-
variance, using equation (4), where zi is the i-th
feature’s normalized value, xi is the i-th feature’s
original value, x̄ and σ are respectively the mean
and the standard deviation of the values within the
scanner subgroup.

• Mean Centering (mean_cent) that standardizes the
intensity values by subtracting themean value of the
scanner subgroup (x̄), using equation (5), where zi is
the i-th feature’s normalized value, xi is the i-th
feature’s original value.

• ComBat (ComBat), an harmonization method,
originally developed for genomics, which corrects
the differences in radiomics features due to the so-
called batch effects, i.e., different scanners and
acquisition protocols (Horng et al 2022, Orlhac et al
2021). It is a data-driven realignment transforma-
tion following equation (8):

y
y

8
ij
ComBat ij i

i

ˆ
ˆ ( )


=

- a - g

d
+ a

where ,â ig and i
d are estimators of the feature

average value, additive batch effect and multiplicative
batch effect, respectively, and y

ij
ComBat is the trans-

formed yij j-th feature devoid of the i-th scanner effect
(Orlhac et al 2021). For the evaluation of the
estimators, all subgroups from each center were
pooled together. For the ComBat application, we used
the neuroComBat Python package(Fortin et al 2018).

2.5. Statistical analysis
In order to assess whether the features from different
scanners have the same distributions, the Mann-
WhitneyU-test (Nachar 2008)was applied to compare
the values obtained in the 6 ROIs for all patients using
two different scanners. Therefore, since we considered
4 different scanners, a total of 6 pairwise comparisons
were obtained. The Bonferroni correction was applied
to take into account the presence of multiple ROIs
belonging to the same patient (Curtin and Schulz
1998). A p-value lower than 0.05 was considered as
significant. This procedure was repeated for each

normalization method, and for the case in which no
normalizationwas applied (no_norm) for comparison.

3. Results

88 patients (56 men and 32 women) were retro-
spectively collected, having an average age of 64 years
(range 37–83): 24 patients from scanner A.1, 15 from
A.2, 22 fromB and 27 fromC.

3.1. Image normalization
Figure 4 shows the heatmap representing the percent-
age of not statistically different features before
(no_norm) and after applying image normalization.
Without applying image normalization, first order
features are the least similar, which is consistent with
literature, however also NGTDM features showed the
lowest percentage of similar features. This behavior
can be due to the sample size of this group of features
(N= 5) that could affect the values of the percentages.
However, when using a similar protocol on different
scanners of the samemanufacturer (A.1 versus A.2), all
second order features are stable also without any
normalization. Despite we have applied different
normalization methods based on either image inten-
sities rescaling or standardization or histogram remap-
ping, we observed that any of themwas able to strongly
increase the number of similar features, as we expected
at least on first order features. Considering the total
number of similar features across all comparisons, we
observed different and interesting behaviors: the
highest increase of similar features, compared to
no_norm, was obtained with hist_norm but only when
center B was used as reference (194 versus 162 similar
features across all comparisons). Conversely, the use
of other centers as reference has unpredictably caused
either an increase (178 with center A.2 taken as
reference) or decrease (144 and 147 with center C and
A.1 as reference, respectively) in similar features.
However, if we consider each pairwise comparison of
centers (figure 5, panel B), we can see that the increase
in similar features obtained by hist_normB is caused by
a substantial increase between centers A2 versus C, A2
versus B and B versus C, offset by a decrease between
A1vsA2 and A1vsB. On the other side, 3_sigma and
Z_score obtained the second and the third highest
number of similar features (176 and 175 respectively),
without being dependent on the choice of a reference.
The worst results were obtained with the NyulUdupa
producing from 159 to 165 similar features across all
comparisons, depending on the reference used.

Figure 5 shows the total number of not statistically
different features grouped by normalization method
(panel A) and comparison among scanners (panel B).
Focusing on the results obtained with NyulUdupa, it
emerged that the reference sequences does not affect
the number of similar features, however none of
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reference allowed to obtain an increase of similar
features.

Figure 5 panel B confirms that a similar protocol
allows to obtain the best results (A.1 versus A.2), except
for hist_norm, even if no methods allow to increase the
number of similar features obtained without any image
normalization. Vice versa, all comparisons with center
B and C, except for hist_norm, produce the worst
results, also when images are acquired with different
protocols on scanners produced by the samemanufac-
turer (B versus C). Analyzing the acquisition para-
meters reported in table 1, it emerges that images from
center B are characterized by lower signal to noise ratio
(SNR) due to, for example, lower number of excitations
(NEX) and higher pixel bandwidth that may have
affected the quality of the images.

In Supplementary figure 1 we reported the number
of times for which each feature is not statistically
different among the four scanners. Interestingly,
features resulting statistically similar for at least five
comparisons show the same behavior with andwithout

normalizations, except hist_norm. In particular, these
features are: Skewness (First Order); ClusterShade,
JointAverage, and SumAverage (GLCM); HighGrayLe-
velEmphasis (GLDM); HighGrayLevelRunEmphasis
and ShortRunHighGrayLevelEmphasis (GLRLM);
GrayLevelVariance and HighGrayLevelZoneEmphasis
(GLSZM). Of note, among all normalizations, z-score
slightly increases the number of similar features with
respect to the no-norm case (10/93 versus 9/93), while
hist_norm heavily decreases it (4/93 versus 9/93). This
is in line with we previously said about hist_norm
because we showed that this method obtained different
results depending on the pairwise comparisons, caus-
ing a decrease of similar features for at least 5
combinations. Even if the NyulUdupa method affects
the histogramdistribution of the images like hist_norm,
the results of the comparisons are similar to the no-
norm case, since it maintains the meaning of tissue
intensities (Nyú andUdupa 1999).

The impact of each image normalization method
on the image histograms is shown in figure 6. Among

Figure 4.Heatmap of the percentage of not statistically different features resulting from theMann-Whitney test, related to the image
normalizationmethods.

7

Biomed. Phys. Eng. Express 9 (2023) 055002 VGiannini et al



Figure 5.Total number of not statistically different features grouped by normalizationmethod (panel A) and comparison among
scanners (panel B).

Figure 6. Image histograms of abdominalMRI, acquiredwith 4 different scanners. The subfigures show the image histograms of the
MRI images without apply any normalizationmethod (a), and after themin-max (b), the p1p99 (c), the 3sigma (d), the z-score (e), the
mean centering (f), the histogram (g), andNyul-Udupa (h)normalizationmethods. The solid lines represent themedian histograms
across all patients acquiredwith a given scanner, whereas the colored areas represent the correspondingmax-min ranges.
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methods which do not use a histogram reference, both
3sigma and p1p99 obtained better results, since they
allow both to obtain more similar median histograms
and to reduce the variability among scanners (see the
colored areas in figure 6). Considering the other
methods based on histogram references, i.e., hist-norm
andNyulUdupa, they both allow to obtain very similar
median histograms, although there are still some
variabilities due to borderline cases in each scanner.

3.2. Feature normalization
Figure 7 shows the heatmap based on the percentage of
not statistically different features before (no_norm)
and after applying features normalization. Since for
the ComBat method the average across all centers is
taken as the reference batch (Fortin et al 2018), results
obtained by applying different harmonization refer-
ences are identical. Therefore, we will report only the
results related to the ComBat_A1 (ComBat). All

Figure 7.Heatmap of the percentage of not statistically different features resulting from theMann-Whitney test, related to the feature-
based normalizationmethods.
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methods produce an increase of the number of similar
features with respect to the no_norm condition, for all
comparisons. In particular, 3sigma, z_score and
ComBat provided the highest number of similar
features across all comparisons (516, 516, and 515
respectively). Themean_cent provided good results for
all second order features, except for the comparison
between A.1 and A.2 and between A.2 and C. Also in
this case, the first order features are the most difficult
to make similar among different centers, in fact they
presented the lowest number of similar distributions.
However, when using a similar protocol on different

scanners of the same manufacturer (A.1 versus A.2),
also the first order features are positively affected by
feature normalization methods based on 3sigma,
z_score and ComBat since they heavily impact the
feature distribution rescaling mean and standard
deviation and reducing differences among scanners.
In figure 8 we show the distributions of three radio-
mics features (Uniformity_firstorder, Imc1_glcm, and
LargeAreHighGrayLevelEmphasis_glszm) obtained
with and without feature normalization. In particular,
it is possible to observe how the distributions are
affected by each method: min-max and p1p99 only

Figure 8.Values distributions of three radiomic features, acquired by the four scanners, considering: (a)nonormalization, (b)min-
max, (c) p1p99 scaling, (d) 3sigma, (e) z-score, (f)mean centering, (g) andCombat.
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impact the feature range values, while 3sigma, z-score,
mean-cent and ComBat positively impact all distribu-
tions, reducing the differences among scanners.

Figure 9 shows the total number of not statistically
different features grouped by normalization method
(panel A) and comparison among scanners (panel B).
From both panels it emerged thatmin_max and p1p99
methods provided a slightly improvement for most
comparisons, except for A.1 versus A.2 and A.1 and B,
while mean_cent provided poorer results with respect
to 3sigma, z_score andComBat, due to the fact that this
normalization simply rescales the mean, not affecting
the shape of the distribution.

In Supplementaryfigure 2we reported the number
of times for which each feature is not statistically
different among the four scanners. It is possible to
notice that the number of similar features in at least 5
comparisons is increased by 3sigma, z-score and
ComBat, with respect to the no-norm case (79/93
versus 9/93). In particular, they reduced the differ-
ences across the scanners for almost all texture
features, except for LargeDependenceLowGrayLeve-
lEmphasis (GLDM) and LargeAreaLowGrayLevelEm-
phasis (GLSZM). Regarding the first order group, only
six features out of 18 resulted similar in at least 5
comparisons, i.e., entropy, kurtosis, maximum, range,
skewness and uniformity.

4.Discussion

In this study we assessed the effect of two normal-
ization approaches and relatedmethods on a set offirst

and second order radiomics features extracted from an
abdominal multicenter MRI dataset. In particular, we
evaluated if the internal variability of a multi-vendor
and multicenter database could be reduced by
applying either image or feature normalizations.

According to our results, it emerged that none of
the image normalization methods was able to strongly
increase the number of statistically similar features.
The best improvement was obtained by the z-score that
brought the number of features statistically similar for
at least five comparisons from 9/93 to 10/93. Indeed,
the median number of statistically similar features
among all normalization methods was 9/93 (IQR:
5–9). In addition, some normalizations methods have
slightly worsened the results in specific comparisons
(e.g., hist_norm for the comparison A2 versus C). The
reason of this behavior is not fully explainable, and it
might depend also on the initial differences between
the histogram of the original sequence and that used as
reference. Even if the features distributions were not
heavily affected by the image normalizations, we
observed a slight improvement in similarity on
histograms when using 3sigma, and p1-p99. This
insight could be helpful in particular during the
development of deep learning models, which learn
directly from images. However, since the tissues
included in the sequences heavily influence the
normalization parameters in case of image normal-
ization, we strongly recommend ensuring similar
FOVs for all analyzed images, as presented in the
paper.

Conversely, normalizing features rather than
images allows to reduce their variability, providing

Figure 9.Total number of not statistically different features grouped by normalizationmethod (panel A) and comparison among
scanners (panel B).
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good reproducibility among different centers and
scanners. The best results were obtained with 3sigma,
z_score and ComBat rather than with methods based
on rescaling the values, i.e., min-max. These findings
are in accordance with those by (Chatterjee et al 2019),
that compared the effects of feature rescaling and
standardizing proving the improvement of the pre-
dictive radiomics model given by standardizing the
features separately for each independent set. More-
over, these results are consistent with theory, since
these methods are based on parameters (i.e., mean,
standard deviation, the estimators of the ComBat
algorithm) describing the overall data distribution on
the training set rather than on the extreme values such
asmin-max and p1-p90.

The highest increase of similar features after
normalization was reached by first-order’s group with
some features normalization methods (3sigma, zscore,
mean_cent and ComBat). Conversely, image normal-
ization was not able to increase reproducibility across
centers neither for first order features. These results
brought an advance in knowledge, since theory
suggests that image normalization should impact first
order features, however to the best of our knowledge
no previous studies proved this point on a clinical
multicenter dataset.

Previously, (Rai et al 2020) and (Buch et al 2018)
assessed, using phantoms, the reproducibility of first
and second order features as MRI scanners and
acquisition parameters change. In particular, (Rai et al
2020) obtained that, using a controlled protocol and a
phantom developed for that purpose, first order
features were the most robust among scanners. This
seems to be in contrast with our results, but if we
compare A1 versus A2 scanners (two scanners in the
same center with very similar acquisition protocols)
we obtained an increase of similar first order features
with some image and features normalization methods
(i.e., mean_centering, hist_norm, 3sigma, z_score and
ComBat). Focusing on the texture features, they found
substantial changes in the robust features subset due to
use of different phantoms, suggesting that it is not
possible to develop a common normalization
approach for all MRI-based radiomics algorithms if
they will be applied on different organs. Similarly,
(Buch et al 2018) evaluated differences in radiomics
features using the same phantom and changing
scanner platform and scan parameters such as magnet
strength, flip angle, and NEX, which is a more
representative situation of the available clinical
datasets. The most substantial changes in the features
were encountered with differences in MRI scanner
manufacturer and NEX and these results are consis-
tent with our findings. In our study, the strongest
differences were found between A.1/A.2 and B, in
which both parameters were different, and between B
and C scanners that share the same manufacturer but
using differentNEX.

Other similar studies were conducted assessing the
impact of normalization on radiomics features,
yielding almost similar results. In particular, (Scalco
et al 2020) carried the analysis on abdominal MRIs
acquired on two different times (before and after
radiotherapy) with the same scanner whereas (Gran-
zier et al 2022) performed a similar analysis on amulti-
scanner breast MRI dataset. Both studies concluded
that z-score image normalization method provides the
most reproducible features on MRI sequences. Simi-
larly to us, (Li et al 2021) compared six image
normalization methods and the ComBat on brain
radiomics features, assessing that the latter positively
affected the feature robustness across different acquisi-
tion scanners. Moreover, they underlined that, even if
the feature robustness was not significantly affected by
the image normalizations, they allow to obtain
comparable brain MRI images by bringing the image
intensities into a common scale, thus overcoming the
non-standardize and interpretableMRI intensities.

Amore comprehensive comparisonwith literature
is difficult because of the limited number of studies
evaluating the impact of image and feature normal-
ization on abdominal MRI and the lack of multicenter
analysis. Moreover, most previously mentioned stu-
dies used either the Intraclass Correlation Coefficient
(ICC) or the Student t-test to assess features reprodu-
cibility. However, the ICC, similarly to the Student
t-test, is subject to statistical assumptions such as
normality and/or stable variance, which are rarely
considered in health applications (Bobak et al 2018).
In addition, ICC assesses the reliability of a measure,
defined as the extent to which measurements can be
replicated (Koo and Li 2016). This means that exactly
the same element or patient must be evaluated by
different raters or using different devices. In this study
we compared the feature values calculated on different
sets of patients (those acquired by each center),
therefore ICC results not appropriate for this purpose.
Only (Li et al 2021) used theWilcoxon test, similarly to
us, to measure the similarity between the distributions
of features extracted by the healthy white matter
regions, which are not affected by gender, age, and the
tumor’s presence and characteristics. In literature,
researchers almost unanimously agree on the impor-
tance of a normalization step for radiomics-based
system development, above all in multicenter studies.
However, no common and clear indications can be
found about what kind of normalization method is
better for a given application. This work aimed to fill
this gap, giving evidence of what can happen in clinical
situations, in order to make more conscious choices.
In fact, compared to previous studies, results of our
analysis better reflect what could happen when
developing radiomics-based systems for the clinical
practice, since multicenter images acquired using
different protocols should bemanaged. In this context,
we demonstrated that image normalization methods
do not allow to overcome the issue of features
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reproducibility across different centers. Conversely,
using a proper features normalization method, i.e.,
3sigma, zscore, mean_cent and ComBat can strongly
affect the number of similar features. This behavior
might positively impact the transability of these
systems in clinical practice, allowing the development
of more robust radiomics signature. However, all
feature normalizations have been obtained by using a
training set from each center, meaning that, if an
additional center will be added, a training phase
should be performed to extract normalization para-
meters using at least 20 patients.

This study has limitations. First, the lack of the
assessment of feature reproducibility when ROIs are
segmented by different operators or at different
timepoints. Nevertheless, we took into account both
inter- and intra-reader variability by using six ROIs
with the same dimensions on the same tissue. Second,
no normalization methods based on healthy tissue
intensities were included in our analysis, even if they
were demonstrated as useful in reducing feature
differences (Isaksson et al 2020). However, this kind of
approach requires the manual segmentation of the
reference areas, which is unfeasible for large and
multicenter studies and could not bridge the gap
between research and clinical applications.

Even if our results provide several insights on the
reduction of the feature differences among centers
using some normalization methods, further analyses
could be carried out, even tailoring ondifferent clinical
tasks related to the abdominal area.

5. Conclusions

In this study we evaluated the impact of normal-
ization on radiomics features extracted from an
abdominal multicenter MRI dataset involving three
different centers and four different scanners. From
our findings it emerged that some feature normal-
ization methods could substantially improve the
feature reproducibility, while image ones have almost
no impact or, in some cases, they may worsen it.
However, the image normalization methods, which
may reduce the histogram distributions variability,
could be a useful step when developing deep learning
models. Despite we demonstrated that it exists a
subgroup of reproducible features, we recommend to
carefully select the proper normalizationmethod also
depending on the intended classification task to be
achieved and the effect on the prognostic power of
the features.
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