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Abstract: Electrochemical micromachining (EMM) is a plausible method for manufacturing high
accuracy and precision microscale components in a broad range of materials. EMM is commonly
utilized to manufacture turbine blades for automobiles and aircrafts. In this present study, the EMM
process was performed with a heat-treated copper tool electrode on aluminum 8011 alloy. The
process parameters such as voltage, concentration of electrolyte, frequency, and duty factor were
varied to analyze the effect of a heat-treated electrode on material removal rate (MRR), overcut,
conicity, and circularity. It was observed that high MRR was obtained with lower overcut with an
annealed electrode. The better conicity and circularity were obtained with a quenched electrode
compared to other heat-treated and untreated tool electrodes. The artificial bee’s colony (ABC)
algorithm was used to identify the optimum parameters and, finally, the confirmation test was carried
out to evaluate the error difference on the machining process. The optimum combination of input
process parameters found using TOPSIS and ABC algorithm for the EMM process are voltage (14 V),
electrolyte concentration (30 g/L), frequency (60 Hz), and duty cycle (33%) for the annealed tool
electrode and voltage (14 V), electrolyte concentration (20 g/L), frequency (70 Hz), and duty cycle
(33%) for the quenched tool electrode. It was confirmed that 95% of accurate response values were
proven under the optimum parameter combination.

Keywords: EMM; surface; optimization; machining; ABC

1. Introduction

Due to increased demand for miniaturized and portable equipment, the need for preci-
sion parts has severely proliferated; and to fulfill these needs, various advanced machining
techniques have been developed. One such technique is electrochemical machining (EMM),
which leads to a great development and demand due to its versatile applications and bene-
fits. It offers outstanding machinability, negligible tool wear, featureless surface finish, and
economic efficiency. EMM has potential to machine any complicated shape on a workpiece
which is capable of conducting electricity [1,2]. EMM is considered as a leading noncon-
ventional machining technique as the machining rate is high and amount of precision is
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high [3]. EMM is very frequently used in aerospace, automotive, defense, electronic, and
biomedical industries to produce miniaturized components [4]. The EMM process works on
the principle of Michael Faraday’s laws of electrolysis. It involves the eroding of the anode
by dissolution in the electrolyte. In the EMM process, the workpiece acts as the anode and
the tool acts as the cathode. The dissolution of the workpiece starts when voltage is applied
on the electrolytic cell by the movement of negative ions to the anode and positive ions to
the cathode. The material which is removed from the workpiece forms a precipitate in the
electrolyte [5]. A lot of research [6–8] was performed to analyze the effect of electrolytes
while very little has been carried out to study the behavior of the tool and its effects on the
EMM process. The interelectrode gap (IEG) equilibrium is sustained using sensing and
control of potential difference across electrode and specimen [9,10]. Carbon fiber could be
used as tool electrodes in the EMM process. It was found that a tool made up of PAN-based
fiber is most suitable for the EMM process as it produces minimum defects [11]. A dual
pole tool was employed to enhance the accuracy due to the localization of the electric field
in between the electrode gap [12]. The effect of the shape of the tooltip was studied on
the EMM process and concluded that a truncated tip increases the rate of machining by a
factor of 4.4 while a rounded tip decreases the overcut by a factor of 1.7 when compared
against a flat-tipped tool [13]. The coated tool has improved the performance of both the
traditional and nontraditional machining process. It was observed that higher material
erosion is possible with a nickel-coated copper electrode, whereas lower surface roughness
is possible with a chromium-coated electrode [14–16]. The influence of the size of the tool
was examined during the EMM process and a reduction in machining rate with an increase
in the size of tool was reported [17]. It was concluded that the semicylindrical tool with
ultrasonic vibrations offered better precision and rate of machining when compared to the
conventional tool cathode [18]. The effects of copper and brass tools were examined in the
EMM process and it was deduced that the copper tool produced 20.91% more MRR and
29.65% more radial overcut than the brass tool [19]. The process mechanism of electrochem-
ical anodic dissolution can be modified by many approaches such as changing pulse pulses,
the utilization of unconventional tools, and controlling of the processes. In the present
study, an endeavor was made to utilize the optimization approaches in the electrochemical
machining process. Since the process contains more than one response parameter, multire-
sponse decision making (MCDM) needed to be implemented [20]. To examine the data for
interpretation using the RSM technique, a solid knowledge is required [21]. The assignment
of weights is a simple procedure that is very simple to use. Its forecast accuracy is, however,
not very good. According to the capacity of the process control variables, TGRA requires
the lengthy and difficult procedure of selecting the grey coefficient [22]. Better performance
prediction accuracy is offered by the ANN technique. However, it necessitates intricate
computations and the use of optimization techniques, both of which have a significant
computational cost [23]. Taguchi-data-envelopment-analysis-based-ranking (DEAR) could
not applied for a study which contains only lower than better response parameters [24,25].
The proposed problem is involved with multiparameters and multiresponses in different
scale levels and contradictory objectives which turns the problem into nonpolynomial hard
nature. Hence, we introduced one of the metaheuristic algorithms, the ‘ABC algorithm’,
in the present study due to its ease of use and high degree of accuracy. The present study
focused on the effect of heat-treated tool electrodes on machining aluminum 8011 and the
process parameters were optimized using the artificial bee’s colony algorithm.

The detailed survey illustrated that only few multiresponse decision-making (MCDM)
were available with the machining of aluminum alloy using the EMM process. It was also
found that little attention was given to optimizing the surface quality performance measures
related to the EMM process on machining such an alloy. Hence, the present investigation
was performed. In the present attempt, the artificial bee colony (ABC) methodology was
performed for enhancing the surface performance measures on drilling aluminum 8011
alloy in the EMM process. The important aims of the investigation on machinability using
different process factors were as follows:
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1. To calculate the optimal factors for obtaining better multiple surface quality measures
using the ABC technique.

2. To assess the influence of input factors on surface measures.
3. To inspect the surface quality at optimal levels in the process.

2. Materials and Methods

The EMM setup comprises the electrical power unit, the machining chamber, the
computer control system, and the electrolyte pumping system. The machining chamber
contains the workpiece (anode) and tool (cathode). The workpiece is fixed using a holder
in a machining chamber which is airtight and resistant to corrosion. It is equipped with a
window to monitor the machining. The tool is made to move near the job with the help of a
control panel equipped with press buttons and table lifting arrangement which helps in the
interelectrode gap maintenance. A microcontroller governs the progress and maneuvers
the tool vertically with the help of a servo motor. A control unit was used to vary the
process parameters such as voltage, current, and feed rate. The selection of process factors is
described in Table 1. Due to the electrochemical and chemical reactions occurring between
anode and cathode, the removal of metal takes place in the form of sludge [26–28]. The
workpiece used in this study was aluminum 8011, since it has high corrosion resistance, heat
resistance, and high loading capacity [29–31]. The tool used for this study was copper due
to its properties such as chemical inertness, good conductivity, and resistance to corrosion.
The heat treatment involved performing annealing, normalizing, and quenching on the
tool. Heat treatment processes were carried out at a temperature of 400 ◦C for the soaking
time of 60 min. An aqueous solution of NaNO3 was chosen as an electrolyte due to its
lower throwing power, high metal removal rate (MRR), and passivity of the alloy [32–34].

Table 1. Selection of process factors.

Process Parameters Level I Level II Level III

Voltage (V) 10 12 14

Concentration of
Electrolyte (g/L) 20 25 30

Frequency (Hz) 50 60 70

Duty Factor (%) 33 50 66

MRR is expressed as metal removed per unit time and can be denoted by g/min.

MRR =
Difference in the weight of workpiece pre and post EMM process

Machining Time
(1)

Overcut is the space between the tool and the machined hole measured in micrometers.

Overcut =
Diameter of the hole at entry − Tool Diameter

2
(2)

Conicity is the variation between a real and ideal cylindrical surface. It is a blanket
tolerance that results in a feature lying between concentric cylinders or coaxial cylinders. It
is expressed in percentage as follows:

Conicity =
Diameter at entry−Diameter at exit

2× thickness of workpiece
(3)



Materials 2022, 15, 4831 4 of 25

Circularity is the cross-sectional evaluation of the feature to determine if the circu-
lar surface lies between the tolerance zone indicated by two concentric circles, which is
measured in micrometers.

Circularity = Maximum Diameter − Minimum Diameter (4)

ABC Algorithm

In this present work, the influence of voltage (V), electrolyte concentration (EC),
frequency (F), and duty cycle (DC) on different response values such as the material
removal rate (MRR), overcut (OC), conicity (CC), and circularity (CL) were studied for an
annealed and a quenched tool electrode using Taguchi’s L9 orthogonal array. Apart from
that, multiple linear regression equations were established for the above responses and
the optimum parameters and their corresponding response values have been obtained by
implementing the ABC algorithm. Since four different responses/objective values were
involved in this work, it was treated as a multiobjective optimization problem. Moreover,
the objectives were of both a maximization and a minimization nature and of different
magnitudes. The TOPSIS method was proposed in this work to convert multiobjectives
into a single objective value. This converted single objective value was considered as the
fitness function for the ABC algorithm. The lower and upper limits mentioned below for
each parameter were considered as constraints in this algorithm.

10 ≤ V ≤ 1420 ≤ EC ≤ 3050 ≤ F ≤ 7033 ≤ DC ≤ 66 (5)

Table 2 illustrates different levels of parameter values based on which of the ex-
periments were conducted and the response values were measured for the annealed
tool electrode.

rvj = C0 + C1V + C2EC + C3F + C4DC (6)

Table 2. Details of experiments (E)—parameters and responses—annealed.

E.No. V EC F DC MRR OC CC CL

1 10 20 50 33 8.767 0.0405 134.0 0.269
2 12 20 60 66 13.804 0.2770 160.0 0.325
3 14 20 70 50 6.354 0.0145 50.5 0.100
4 10 25 60 50 3.076 0.2205 156.5 0.313
5 12 25 70 33 4.444 0.0875 119.0 0.238
6 14 25 50 66 12.345 0.3105 44.5 0.089
7 10 30 70 66 5.181 0.2430 38.5 0.077
8 12 30 50 50 13.453 0.0335 93.5 0.187
9 14 30 60 33 8.695 0.0335 138.0 0.276

Equation (6) represents a linear regression equation (LRE) used in this work which
was constructed for the data provided in the above Table 2 using Minitab software. The
coefficients of regression equations for the different response values are listed in Table 3.
The experimental details and the coefficients of LRE for the quenched tool electrode are
presented in Tables 4 and 5, respectively. The lower and upper limits of each parameter are
represented in Table 6.
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Table 3. Coefficients of linear regression equations—annealed.

rvj
Coefficients

C0 C1 C2 C3 C4

MRR 13.3151 0.8642 −0.0532 −0.3098 0.0944
OC 0.0102 −0.0121 −0.0007 −0.0007 0.0067
CC 400.31 −8 −2.4833 −1.0667 −1.4979
CL 0.8074 −0.0162 −0.0051 −0.0022 −0.003

Table 4. Details of experiments—parameters and responses—quenched.

E.No. V EC F DC MRR OC CC CL

1 10 20 50 33 6.231 0.1895 16.5 0.032
2 12 20 60 66 11.5700 0.3475 36.0 0.069
3 14 20 70 50 11.020 0.3765 23.5 0.047
4 10 25 60 50 6.000 0.4625 73.0 0.146
5 12 25 70 33 5.600 0.0675 24.5 0.048
6 14 25 50 66 2.612 0.7355 27.0 0.054
7 10 30 70 66 9.800 0.1745 90.0 0.090
8 12 30 50 50 7.294 0.2605 47.0 0.095
9 14 30 60 33 6.122 0.1465 44.5 0.090

Table 5. Coefficients of linear regression equations—quenched.

rvj
Coefficients

C0 C1 C2 C3 C4

MRR 0.9682 −0.1897 −0.1868 0.1714 0.0616
OC 0.2874 0.036 −0.0111 −0.0094 0.0087
CC −42.5712 −7.0417 3.5167 0.7917 0.6866
CL 0.0192 −0.0064 0.0042 0.0001 0.0005

Table 6. Limits of parameters.

Limits V EC F DC

Lower 10 20 50 33
Upper 14 30 70 66

The implementation flow diagram for obtaining the optimum response values is pre-
sented in Figure 1, and the step-by-step procedure is demonstrated [35,36] in Appendix A.
Table 7 represents the list of ABC parameters and their value considered in this work.

Table 7. Parameters of ABC algorithm.

Parameters Value

No. of Bees (Population Bees) 30

No. of Employed Bees 15 (50% of total bees)

No. of Unemployed Bees 15 (50% of total bees)

Termination Criteria 50 iterations
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Figure 1. Implementation of ABC algorithm.

3. Results and Discussion
3.1. Influence of Heat Treatment on Copper Tool Electrode

Figure 2 shows the microstructure of the bare and heat-treated copper tool electrode
used for the electrochemical micromachining process. A lack of uniformity in grain struc-
ture was observed in the bare copper tool electrode. The occurrence of pits was seen after
normalizing because pitting resistance reduced due to the exposure of the material to
the atmosphere during cooling. Formation of long lines was observed in the annealed
specimen along with some uniformity [37,38]. Smaller grain size was also observed in
the annealed specimen due to the slow rate of cooling which leads to better compression
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in the material. Line indents were observed on the quenched specimen. Clustered line
formation was visible on the surface of the specimen as a consequence of rapid cooling
due to which solute atoms that precipitate on the grain force the vacancies to migrate into
disordered regions. The loss of vacancies on the structure leads to a clustered grain struc-
ture [39,40]. Figure 3 shows the scanning electron microscope (SEM) and energy dispersive
X-ray (EDAX) analysis of the tool electrode before and after the drilling process. The EDAX
analysis was performed under area mode. It was observed that the percentage of copper
tool electrode could be reduced owing to the presence of newer substances released from
the workpiece specimens.
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3.2. Influence of Process Parameters and Heat-Treated Tool Electrode on MRR

From Figure 4 (main effect plot), the maximum deviation was observed in the bare and
normalized copper tool electrode was applied voltage. It is the most influential parameter
in these cases. MRR increased as applied voltage increased. In the case of the annealed
tool electrode, the frequency showed the most deviation in the machining process. The
frequency depends upon the duration of the pulse on and pulse off time. Therefore, current
will be supplied for a longer period of time leading to high MRR as machining occurs only
when current is being supplied. This statement is further supported by the main effect plot
of the annealed tool as the MRR could be decreased with higher frequency.
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In the case of the quenched tool electrode, electrolyte concentration showed the
most deviation, thus suggesting that it was the most influential parameter because a
higher electrolyte concentration leads to the generation of a larger number of ions during
electrochemical machining. This leads to a larger ionization which causes high erosion and
conductivity for creating larger material removal [41,42]. It was seen that the annealed tool
has the highest MRR because the annealed tool has the smallest grain structure compared
to other electrodes which facilitates a faster dissolution and removal of particles from the
workpiece, resulting in the increase in MRR. The bare tool was noticed to have a lesser
MRR because the bare tool has a large grain size among all the electrodes due to which the
dissolution and eroding of material from the work specimen takes a longer time. It was
found that a 57% higher material removal was obtained with the annealed tool than the
bare tool.

3.3. Influence of Process Parameters and Heat-Treated Tool Electrode on Overcut

It is apparent from Figure 5 that electrolyte concentration shows the most deviation in
the main effect plots of bare and normalized tool electrode. The quantity of NO3− in the
solution was increased due to the higher concentration of electrolyte which increases the
localization of ions resulting in less overcut. Duty cycle shows the most deviation for the
annealed and quenched tool electrodes. It can be seen from the main effect plot that the
overcut was high when the duty cycle was high because, as the pulse on time increases, the
current flow between the electrode and workpiece increases. A higher current flow leads to
a higher dissolution of ions. This limits the magnitude of the current, thereby decreasing
the dissolution rate. This leads to achieving a higher overcut owing to a higher side current
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and lower localization effect [43,44]. It is evident that the annealed tool had a lesser overcut
which is desirable in EMM as low overcut indicates higher precision in machining. This is
because the annealed tool has a fine grain structure due to furnace cooling which improves
the surface finish of the tool electrode. The quenched tool has a nonuniform grain structure
which leads to a higher erosion rate during machining. The overcut of the annealed tool
electrode was 26.05% less than the bare tool.
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3.4. Influence of Process Parameters and Heat-Treated Tool Electrode on Conicity

The electrolyte concentration was observed to be the most influential parameter for the
bare and quenched tool electrodes as shown in Figure 6. When the electrolyte concentration
is less, the ionization rate reduces due to the large grain size of the material which in turn
leads to an increase in conicity. For the normalized and annealed tools, the frequency was
observed to be the most influential parameter. It is evident from the main effect plot that
conicity increases with an increase in frequency which implies a decrease in pulse duration.
It is noted that the duty cycle ratio is also high when the frequency is high. This shows
that the larger pulse could, in time, lead to a higher conicity [45]. It can be seen that the
quenched tool had a better conicity due to rapid cooling which leads to a more uniform
structure, thus improving its conicity of the machined through hole. The quenched tool
electrode had 36.38% better conicity than the untreated tool electrode.
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3.5. Influence of Process Parameters and Heat-Treated Tool Electrode on Circularity

It is observed from Figure 7, the most influential parameter was electrolyte concen-
tration for the bare and quenched tool electrode. When the electrolyte concentration is
lower, then the ionization rate reduces due to the large grain size of the material, which in
turn leads to an increase in the circularity of the hole machined. For the normalized and
annealed tool, the frequency was inferred to be the most influential parameter. It can be
seen from the main effect plot that with the raise in frequency, the circularity increased
because an increment in frequency implies a decrease in pulse duration and an increase in
the ionization which improves the circularity [46]. It is evident that the normalized tool and
the quenched tool electrode had a low circularity deviation. This is because the quenched
and normalized tools were rapidly cooled which leads to a more uniform structure, thus
bettering its circularity of the machined through hole. The quenched tool electrode had
44.13% lesser circularity than the untreated tool electrode.
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4. Analysis of Variance

Analysis of variance is a statistically based decision-making tool used to detect any
deviations in the mean performance of a group of items that have been tested. ANOVA
compares the mean square against the estimate of the experimental errors at set confi-
dence levels, thus aiding in the identification of significance of the main factors and their
interactions in a study [47,48].

SST =
n

∑
i=1

(
〖 ni 〗 − nm

)2 (7)

where n is the no. of experiment and ni is the mean S/N ratio

4.1. ANOVA for MRR

From Table 8, the most influential parameter for MRR in EMM using an annealed
tool electrode was the frequency as it contributes to 44.61% of the sum of squares value.
With an increase in frequency, the current supplied per cycle increases which leads to
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better machining. The table has been computed for the MRR of the annealed tool as it has
performed a better MRR out of all the tool electrodes. The annealed tool electrode that was
computed had an MRR that was 57% better than the untreated tool [49].

Table 8. ANOVA of MRR for annealed tool.

Source DF Adj SS Adj MS F-Value p-Value Contribution

Regression 4 90.482 22.6205 2.35 0.214

Applied voltage 1 17.923 17.9228 1.86 0.244 13.89

Electrolyte concentration 1 0.425 0.4245 0.04 0.844 0.32

Frequency 1 57.573 57.5732 5.97 0.071 44.61

Duty cycle 1 14.561 14.5614 1.51 0.286 11.28

Error 4 38.552 9.6380

Total 8 129.034

4.2. ANOVA for Overcut

From Table 9, the most influential parameter for overcut was duty cycle. Duty cycle
contributed 45.91% to the sum of squares value. Duty cycle also determines the ratio of
pulse ON and pulse OFF times which determines the duration of the current supplied per
cycle. With an increase in duty cycle ratio, the machining rate increases as the duration of
current supplied per cycle increases. The annealed tool had an overcut which was 26.05%
less than that of the bare tool.

Table 9. ANOVA of overcut for annealed tool.

Source DF Adj SS Adj MS F-Value p-Value Contribution

Regression 4 0.077419 0.019355 2.01 0.258

Applied voltage 1 0.003528 0.003528 0.37 0.578 3.04

Electrolyte concentration 1 0.000081 0.000081 0.01 0.932 0.06

Frequency 1 0.000260 0.000260 0.03 0.878 0.22

Duty cycle 1 0.073550 0.073550 7.62 0.051 45.91

Error 4 0.038601 0.009650

Total 8 0.116020

4.3. ANOVA for Conicity

From Table 10, the most influential parameter for conicity was electrolyte concentration.
This is because electrolyte concentration determines the rate of ionization in an EMM
process. When the electrolyte concentration increases, the ionization rate increases due to
the presence of free ions which aids in machining. The quenched tool provided a conicity
36.06% better than the bare tool electrode.

4.4. ANOVA for Circularity

From Table 11, the electrolyte concentration was the most influential parameter for
circularity. This is because a higher electrolyte concentration generates a larger ionization
rate which in turn leads to a high circularity. When electrolyte concentration increases, the
number of free ions present in the solution increases and results in better machining and
localization of the current. The quenched tool electrode had a circularity that was 44.13%
better than bare tool electrode.
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Table 10. ANOVA for conicity of quenched tool.

Source DF Adj SS Adj MS F-Value p-Value Contribution

Regression 4 4191.3 1047.8 6.32 0.051

Applied voltage 1 1190.0 1190.0 7.18 0.055 24.56

Electrolyte concentration 1 1855.0 1855.0 11.19 0.029 38.28

Frequency 1 376.0 376.0 2.27 0.206 7.76

Duty cycle 1 770.2 770.2 4.65 0.097 15.89

Error 4 662.9 165.7

Total 8 4854.2

Table 11. ANOVA for circularity for quenched tool.

Source DF Adj SS Adj MS F-Value p-Value Contribution

Regression 4 0.004016 0.001004 0.70 0.629

Applied voltage 1 0.000988 0.000988 0.69 0.452 10.156

Electrolyte concentration 1 0.002688 0.002688 1.88 0.242 27.63

Frequency 1 0.000003 0.000003 0.00 0.968 0.03

Duty cycle 1 0.000337 0.000337 0.24 0.653 3.46

Error 4 0.005713 0.001428

Total 8 0.009728

5. Optimum Process Parameters and Their Responses

The program executed 25 runs and the statistical analysis of the results is shown in
Figure 8. It is confirmed by the p-Value of 0.049 that the fitness values obtained by 25 runs
were in the normal distribution range; hence, the optimum parameters obtained by ABC
algorithms are acceptable. The normality test of 25 runs is represented in Figure 9 which
also supports the acceptability of the ABC algorithm’s results and the model proposed is
adequate to demonstrate the relationship between various inputs to response values.

Materials 2022, 15, x FOR PEER REVIEW 14 of 25 
 

 

the number of free ions present in the solution increases and results in better machining 
and localization of the current. The quenched tool electrode had a circularity that was 
44.13% better than bare tool electrode. 

Table 11. ANOVA for circularity for quenched tool. 

Source DF Adj SS Adj MS F-Value p-Value Contribution 
Regression 4 0.004016 0.001004 0.70 0.629  

Applied voltage 1 0.000988 0.000988 0.69 0.452 10.156 
Electrolyte concentra-

tion 1 0.002688 0.002688 1.88 0.242 27.63 

Frequency 1 0.000003 0.000003 0.00 0.968 0.03 
Duty cycle 1 0.000337 0.000337 0.24 0.653 3.46 

Error 4 0.005713 0.001428    
Total 8 0.009728     

5. Optimum Process Parameters and Their Responses 
The program executed 25 runs and the statistical analysis of the results is shown in 

Figure 8. It is confirmed by the p-Value of 0.049 that the fitness values obtained by 25 runs 
were in the normal distribution range; hence, the optimum parameters obtained by ABC 
algorithms are acceptable. The normality test of 25 runs is represented in Figure 9 which 
also supports the acceptability of the ABC algorithm’s results and the model proposed is 
adequate to demonstrate the relationship between various inputs to response values. 

 
Figure 8. Statistical analysis of 25 runs. Figure 8. Statistical analysis of 25 runs.



Materials 2022, 15, 4831 15 of 25Materials 2022, 15, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 9. Normality test of 25 runs. 

Figure 10 represents the normal probability plot drawn for the output of response 
values obtained by implementing the ABC algorithm. Figure 11 shows the convergence 
plot of the ABC algorithm. It shows that quick convergence of the algorithm was obtained 
in both the annealed and the quenched tool electrode. The optimum values of V, EC, F, 
and DC for the maximum value of the MRR and the minimum values of OC, CC, and CL 
are shown in Table 12. 

  
(a) Bare tool (b) Normalized tool 

(c) Annealed tool  (d) Quenched tool 

Figure 10. Normal probability plot for response values. (a) Bare tool; (b) Normalized tool; (c) An-
nealed tool; (d) Quenched tool. 

Figure 9. Normality test of 25 runs.

Figure 10 represents the normal probability plot drawn for the output of response
values obtained by implementing the ABC algorithm. Figure 11 shows the convergence
plot of the ABC algorithm. It shows that quick convergence of the algorithm was obtained
in both the annealed and the quenched tool electrode. The optimum values of V, EC, F, and
DC for the maximum value of the MRR and the minimum values of OC, CC, and CL are
shown in Table 12.
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Table 12. Optimum parameter values for annealed and quenched process.

Type V EC F DC MRR OC CC CL

Annealed 13.9947 29.9974 59.0402 33.0503 8.64425 0.00136 101.379 0.20152
Quenched 13.4648 20.004 66.4348 33.0107 8.09388 0.20939 8.21947 0.03688

Table 13 represents the response values obtained through the confirmation test con-
ducted for the optimum parameter setting provided in Table 12. It was confirmed that less
than 5% variation in the response values is proved and the proposed MCDM models and
the optimum parameter values are acceptable.

Table 13. Confirmation test for annealed and quenched process.

Type V EC F DC MRR OC CC CL

Annealed 14 30 60 33 8.82265 0.00122 96.582 0.18526
Quenched 14 20 70 33 8.42349 0.22548 7.8254 0.05125

6. Conclusions

In this present study, aluminum 8011 was machined by the EMM process using
various heat-treated copper tool electrodes and the process parameters were optimized
by TOPSIS and ABC algorithm. The input characteristics such as voltage, concentration
of electrolyte, frequency, and duty factor were suitably varied to analyse their effect on
the response characteristics such as MRR, overcut, circularity, and conicity. From the
experiment conducted and the results obtained, the following conclusions were drawn.

(i) The annealed tool electrode created a higher MRR than the untreated, normalized,
and quenched tool electrodes because the annealed tool electrode has a fine grain
structure due to the slower rate of cooling and easily dissolves in the electrolyte.

(ii) The annealed tool electrode generated better overcut than the untreated, normalized,
and quenched tool electrodes because the annealed tool has a smaller grain structure
due to furnace cooling which improves the surface finish of the tool electrode.

(iii) Electrolyte concentration was the most influential parameter for the bare tool as it
determines the rate of ionization due to the presence of free ions in the electrolyte.

(iv) The optimum combination of input process parameters found using TOPSIS and
the ABC algorithm for the EMM process are voltage (14 V), electrolyte concentration
(30 g/L), frequency (60 Hz), and duty cycle (33%) for the annealed tool electrode and
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voltage (14 V), electrolyte concentration (20 g/L), frequency (70 Hz), and duty cycle
(33%) for the quenched tool electrode.
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Nomenclature

rvj jth Response value
j Index for response value
C0, C1, C2, C3 and C4 Coefficients of regression equation
SST Sum square total
Oij ith bee’s jth response value
i Index for bee
Nij Normalized value of ith bee’s jth response
Aij Performance value of ith bee’s jth response
Wj Weight of jth response
Pj Positive ideal solution of jth response
Mj Negative ideal solution of jth response
SPi Positive ideal separation value of ith bee
SMi Negative ideal separation value of ith bee
OVi Relative closeness value of ith bee
B.No. Bee number
EBNo. Employed bee number
UBNo. Unemployed bee number
nb Number of bees
Pri Probability of ith bee
CPri Cumulative probability of ith bee

Appendix A

Appendix A.1. Step 1: Initialization

First, a set of random values between the lower and upper limits of each parameter are
generated and assumed as initial artificial bees. For the demonstrated purpose, 10 bees are
considered and illustrated in Table A1. Using Equation (5) and the coefficients presented in
Table 6, the response values such as MRR, OC, CC, and CL are calculated for the generated
initial values provided in Table A2. It is demonstrated for the first bee and the calculated
response values are provided below.

MRR1 = 13.3151 + 0.8642× 13.26− 0.0532× 21.58− 0.3098× 63.11 + 0.0944 × 56.30 = 9.389

OC1 = 0.0102− 0.0121× 13.26− 0.0007× 21.58− 0.0007× 63.11 + 0.0067× 56.30 = 0.1698

CC1 = 400.31− 8× 13.26− 2.4833× 21.58− 1.0667× 63.11− 1.4979× 56.30 = 89.0072
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CL1 = 0.8074− 0.0162× 13.26− 0.00051× 21.58− 0.0022× 63.11− 0.003× 56.30 = 0.1791

Table A1. Initialization of artificial bees.

B.No. V EC F DC

1 13.26 21.58 63.11 56.30
2 13.62 29.71 50.71 34.05
3 10.51 29.57 66.98 42.14
4 13.65 24.85 68.68 34.52
5 12.53 28.00 63.57 36.21
6 10.39 21.42 65.15 60.17
7 11.11 24.22 64.86 55.93
8 12.19 29.16 57.84 43.46
9 13.83 27.92 63.11 64.36
10 13.86 29.59 53.42 34.14

Similarly, all other bees’ response values are determined and shown in Table A2.

Table A2. Response values of bees.

B.No.
Objectives Matrix–Oij

MRR OC CC CL

1 9.389 0.1698 89.0072 0.1791
2 11.0122 0.0183 112.4572 0.2241
3 4.0514 0.0997 108.2449 0.216
4 5.7761 0.0128 104.392 0.2082
5 6.3774 0.0388 108.491 0.2163
6 6.6521 0.2293 104.3681 0.2104
7 6.8185 0.1902 98.2969 0.1975
8 8.4807 0.0945 103.5985 0.2069
9 10.3072 0.2122 56.6152 0.1135
10 10.3912 0.0143 107.8225 0.2147

Appendix A.2. Step 2: Evaluation

In this present work, the four objective values shown in the above Table A2 are
involved and each in different scales and different objective types such as maximizing
MRR and minimizing OC, CC, and CL. Hence, in this work, the TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) method has been adopted to convert the
multiobjectives into a single objective [50]. The step-by-step procedure of the algorithm is
provided below.

Read alternate and objectives matrix—Oij with weights (Wj) and types of objectives
(2—maximization and 1—minimization) where i represents bee numbers and j represents
objective/response numbers.

Normalized value of Oij is computed using Equation (A1).

Nij =
Oij√

∑m
i=1 O2

ij

(A1)

Performance matrix (Aij) is calculated based on Equation (A2). Table A3 represents
the normalized values of objectives and its performance matrix.

Aij = Nij ∗Wj (A2)
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The positive ideal (Pj) and negative ideal solution (Mj) based on either the maxi-
mization (Equation (A3)) or minimization (Equation (A4)) objective are determined and
presented in Table A4.

Pj =
m

max
i=1

(Aij)

Mj =
m

min
i=1

(Aij)
(A3)

Pj =
m

min
i=1

(Aij)

Mj =
m

max
i=1

(Aij)
(A4)

By using Equations (A5) and (A6), the positive ideal (SPi) and negative ideal separation
(SMi) are determined and shown in Table A4.

SPi =

√√√√ n

∑
j=1

(Aij − Pj)
2 (A5)

SMi =

√√√√ n

∑
j=1

(Aij −Mj)
2 (A6)

The relative closeness (OVi) value is calculated based on Equation (A7) and listed in
Table A5.

OVi =
SMi

SPi + SMi
(A7)

Rank bees based on OVi in descending order and select the best one and its parameter
in a file. The relative closeness value (OVi) expressed in Equation (A7) is considered as the
fitness value in the ABC algorithm.

Table A3. Normalized and performance matrix.

B.No.
Normalized Value (Nij) Performance Matrix (Aij)

MRR OC CC CL MRR OC CC CL

1 0.3609 0.3962 0.28 0.2817 0.0902 0.099 0.07 0.0704
2 0.4233 0.0427 0.3537 0.3525 0.1058 0.0107 0.0884 0.0881
3 0.1557 0.2326 0.3405 0.3398 0.0389 0.0582 0.0851 0.0849
4 0.222 0.0299 0.3284 0.3275 0.0555 0.0075 0.0821 0.0819
5 0.2451 0.0905 0.3413 0.3402 0.0613 0.0226 0.0853 0.0851
6 0.2557 0.535 0.3283 0.331 0.0639 0.1338 0.0821 0.0827
7 0.2621 0.4438 0.3092 0.3107 0.0655 0.1109 0.0773 0.0777
8 0.326 0.2205 0.3259 0.3255 0.0815 0.0551 0.0815 0.0814
9 0.3962 0.4951 0.1781 0.1785 0.0991 0.1238 0.0445 0.0446

10 0.3994 0.0334 0.3392 0.3377 0.0999 0.0083 0.0848 0.0844

Table A4. Positive and negative ideal solutions.

P/M MRR OC CC CL

Pj 0.1058 0.0075 0.0445 0.0446
Mj 0.0389 0.1338 0.0884 0.0881
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Table A5. Ideal, negative ideal and relative closeness values.

B.No. SPi SMi OVi

1 0.0997 0.067 0.4019
2 0.0619 0.1401 0.6936
3 0.1016 0.0757 0.4271
4 0.073 0.1277 0.6362
5 0.0742 0.1134 0.6044
6 0.1434 0.0263 0.1552
7 0.1204 0.0382 0.2409
8 0.0747 0.0899 0.5463
9 0.1165 0.0868 0.4269
10 0.0569 0.1395 0.7102

Appendix A.3. Step 3: Selection of Employed Bees

The employed bees are selected based on the relative closeness values provided in
Table A5. Out of 10 bees, the top 5 bees are considered as employed bees. Table A6
represents the employed bees’ objective values.

Table A6. Employed bees.

B.No. V EC F DC MRR OC CC CL OV EBNo.

10 13.86 29.59 53.42 34.14 10.3912 0.0143 107.8225 0.2147 0.7102 1′

2 13.62 29.71 50.71 34.05 11.0122 0.0183 112.4572 0.2241 0.6936 2′

4 13.65 24.85 68.68 34.52 5.7761 0.0128 104.392 0.2082 0.6362 3′

5 12.53 28.00 63.57 36.21 6.3774 0.0388 108.491 0.2163 0.6044 4′

8 12.19 29.16 57.84 43.46 8.4807 0.0945 103.5985 0.2069 0.5463 5′

Appendix A.4. Step 4: Searching of New Food by Employed Bees

In this phase, the new values (nij) are generated using the following Equation (A8)
where the difference between the current (oij) and selected bee (okj) values are multiplied by
a random value (Rij) between −1 and 1. Table A7 illustrates the selected bees and random
number for generating the new solutions. By substituting the values provided in Table A7
in Equation (A8), the new solutions are generated for employed bees and represented in
Table A8.

nij = oij + Rij(oij − okj) (A8)

Table A7. Random number and selected bee for new solution.

EBNo.(i)
Rij

V EC F DC REBNo.(k)

1′ −0.1225 −0.0205 −0.4479 −0.0033 4′

2′ −0.2369 −0.1088 0.3594 0.9195 5′

3′ 0.531 0.2926 0.3102 −0.3192 1′

4′ 0.5904 0.4187 −0.6748 0.1705 5′

5′ −0.6263 0.5094 −0.762 −0.5524 2′



Materials 2022, 15, 4831 21 of 25

Table A8. New food by employed bees.

NEBNo.
New Parameter Value by Employed Bees New Objective Values

nV nEC nF nDC nMRR nOC nCC nCL

n1 13.70 29.56 57.97 34.14 10.3912 0.0143 107.8225 0.2147
n2 13.28 29.65 60.94 37.57 11.0122 0.0183 112.4572 0.2241
n3 13.54 23.47 55.15 34.40 5.7761 0.0128 104.392 0.2082
n4 12.73 27.52 59.71 34.97 6.3774 0.0388 108.491 0.2163
n5 13.09 28.88 52.41 38.26 8.4807 0.0945 103.5985 0.2069

Data from both Tables A6 and A8 are combined together and then a new single
objective is calculated using TOPSIS for each bee and sorted from maximum to minimum
based on the single objective (Table A9) and the top 50% of bees are selected for next process.
This is shown in Table A10 and considered as the outcome of the employed bees.

Table A9. New single objective values.

B.No. V EC F DC MRR OC CC CL OV

1′ 13.86 29.59 53.42 34.14 10.3912 0.0143 107.8225 0.2147 0.9362
2′ 13.62 29.71 50.71 34.05 11.0122 0.0183 112.4572 0.2241 0.899
3′ 13.65 24.85 68.68 34.52 5.7761 0.0128 104.392 0.2082 0.7696
4′ 12.53 28.00 63.57 36.21 6.3774 0.0388 108.491 0.2163 0.6226
5′ 12.19 29.16 57.84 43.46 8.4807 0.0945 103.5985 0.2069 0.1669
n1 13.70 29.56 57.97 34.14 8.8443 0.0133 104.3467 0.2077 0.8875
n2 13.28 29.65 60.94 37.57 7.8853 0.0393 99.1354 0.1973 0.6552
n3 13.54 23.47 55.15 34.40 9.9347 0.0232 123.3294 0.2468 0.8084
n4 12.73 27.52 59.71 34.97 7.6584 0.0309 114.0552 0.2276 0.7182
n5 13.09 28.88 52.41 38.26 10.4647 0.0525 110.6841 0.2209 0.543

Table A10. Outcome of employed bees.

B.No. V EC F DC MRR OC CC CL OVi OEBNo.

1′ 13.86 29.59 53.42 34.14 10.3912 0.0143 107.8225 0.2147 0.9362 1′′

2′ 13.62 29.71 50.71 34.05 11.0122 0.0183 112.4572 0.2241 0.899 2′′

n1 13.70 29.56 57.97 34.14 8.8443 0.0133 104.3467 0.2077 0.8875 3′′

n3 13.54 23.47 55.15 34.40 9.9347 0.0232 123.3294 0.2468 0.8084 4′′

3′ 13.65 24.85 68.68 34.52 5.7761 0.0128 104.392 0.2082 0.7696 5′′

Appendix A.5. Step 5: Searching of New Food by Unemployed Bees

In this phase, the unemployed bees are selected from outcome of employed bees
based on roulette wheel selection. The probability and cumulative probability of each bee
provided in Table A11 are determined using Equations (A9) and (A10) and presented in
Table A11. The details of unemployed bees are provided in Table A12.

Pri =
OVi

∑nb
i=1 OVi

(A9)

CPri =
i

∑
j=1

Prj (A10)
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Table A11. Selection of unemployed bees (UeNo).

OEBNo. Pr CP Rno SOEBNo. UBNo.

1′′ 0.2177 0.2177 0.8143 4′′ u1
2′′ 0.209 0.4267 0.2435 2′′ u2
3′′ 0.2064 0.6331 0.9293 5′′ u3
4′′ 0.188 0.8211 0.35 2′′ u4
5′′ 0.1789 1 0.1966 1′′ u5

Table A12. Unemployed bees (UBNoi).

UBNo. V EC F DC MRR OC CC CL

u1 13.54 23.47 55.15 34.40 9.9347 0.0232 123.3294 0.2468
u2 13.62 29.71 50.71 34.05 11.0122 0.0183 112.4572 0.2241
u3 13.65 24.85 68.68 34.52 5.7761 0.0128 104.392 0.2082
u4 13.62 29.71 50.71 34.05 11.0122 0.0183 112.4572 0.2241
u5 13.86 29.59 53.42 34.14 10.3912 0.0143 107.8225 0.2147

Similar to the searching of new food by the employed bees (step d), the procedure
is followed by the unemployed bees to find the new solutions. Table A13 represents the
random values of each bee between −1 and 1 and the selected onlooker bee number
to calculate the new solution. Table A14 shows the new solutions obtained using the
unemployed bees. Each objective value of the unemployed bees shown in Table A12 is
compared with the objective values of the new food identified by the unemployed bees
shown in Table A14 after converting the multiobjective into a single one. A new solution
is generated from the lower and upper limit of the parameter when 50% of the single
objective value of the new one is better than the old one. It is shown in Table A15. Two
newly generated parameters are obtained because more than 50% of the new solutions
(nu2, nu3, nu4 and nu5) are better than the old solutions. It is represented in Table A15.

Table A13. Random number and selected unemployed bee for new solution (SUeNo.).

UBNo.
Rij

RUBNo(k)
V EC F DC

u1 −0.4978 0.1705 0.5075 0.0616 u3
u2 0.2321 0.0994 −0.2391 0.5583 u1
u3 −0.0534 0.8344 0.1356 0.868 u2
u4 −0.2967 −0.4283 −0.8483 −0.7402 u1
u5 0.6617 0.5144 −0.8921 0.1376 u4

Table A14. New food by unemployed bees (NueNo.).

NUBNo. nV nEC nF nDC nMRR nOC nCC nCL

nu1 13.60 23.23 56.22 34.39 9.6633 0.0219 122.3431 0.2448
nu2 13.64 25.29 51.77 33.86 10.9167 0.0193 122.448 0.2448
nu3 13.65 20.81 53.31 34.93 10.7876 0.0287 130.2479 0.2611
nu4 13.60 27.03 54.48 34.31 9.9926 0.0198 114.8823 0.2293
nu5 12.99 29.54 51.01 34.15 10.3917 0.0265 117.4701 0.2343
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Table A15. Comparison of new values with unemployed bees.

UBNo. NUBNo.
Cnt V EC F DC MRR OC CC CL

B.No. OV B.No. OV

u1 0.668 nu1 0.332
u2 0 nu2 1 1
u3 0.4261 nu3 0.5739 2
u4 0 nu4 1 3 12.41 22.63 63.08 55.7441 8.5554 0.1756 94.066 0.1892
u5 0.0006 nu5 0.9994 4 11.80 20.84 54.58 63.1401 11.4591 0.2395 101.3516 0.2047

Appendix A.6. Step 6: Replacement of Initial Solution of Bees

The outcome of the employed bees (Table A10) and the outcome of the unemployed
bees (Table A16) are combined together and completely replaced with the initialization
solution (Tables A1 and A2). Table A17 represents the replaced solution details. The best
parameters and their objective values are stored in the file corresponding to the maximum
OV value.

Table A16. Outcome of unemployed bee solutions.

OUBNo. V EC F DC MRR OC CC CL

1′′′ 13.54 23.47 55.15 34.40 9.9347 0.0232 123.3294 0.2468
2′′′ 13.64 25.29 51.77 33.86 10.9167 0.0193 122.448 0.2448
3′′′ 13.65 20.81 53.31 34.93 10.7876 0.0287 130.2479 0.2611
4′′′ 12.41 22.63 63.08 55.7441 8.5554 0.1756 94.066 0.1892
5′′′ 11.80 20.84 54.58 63.1401 11.4591 0.2395 101.3516 0.2047

Table A17. Replaced solution.

B.No. V EC F DC MRR OC CC CL OV

1′′ 13.86 29.59 53.42 34.14 10.3912 0.0143 107.8225 0.2147 0.9995
2′′ 13.62 29.71 50.71 34.05 11.0122 0.0183 112.4572 0.2241 0.9986
3′′ 13.70 29.56 57.97 34.14 8.8443 0.0133 104.3467 0.2077 0.9998
4′′ 13.54 23.47 55.15 34.40 9.9347 0.0232 123.3294 0.2468 0.9954
5′′ 13.65 24.85 68.68 34.52 5.7761 0.0128 104.392 0.2082 0.9998
1′′′ 13.54 23.47 55.15 34.40 9.9347 0.0232 123.3294 0.2468 0.9954
2′′′ 13.64 25.29 51.77 33.86 10.9167 0.0193 122.448 0.2448 0.9971
3′′′ 13.65 20.81 53.31 34.93 10.7876 0.0287 130.2479 0.2611 0.9907
4′′′ 12.4079 22.6297 63.0816 55.7441 8.5554 0.1756 94.066 0.1892 0.1382
5′′′ 11.8022 20.8382 54.5795 63.1401 11.4591 0.2395 101.3516 0.2047 0.002

Appendix A.7. Step 7: Stopping Criteria

During this phase, starting from step c to step g, they are repeated for the given
number of iterations or until reaching the specified objective value or no further change in
the consecutive specified number of iterations. The implementation of the ABC algorithm
is shown in Figure 6.
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