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Abstract
Despite the high accuracy offered by state-of-the-art deep natural-language models (e.g.,
LSTM, BERT), their application in real-life settings is still widely limited, as they behave
like a black-box to the end-user. Hence, explainability is rapidly becoming a fundamental
requirement of future-generation data-driven systems based on deep-learning approaches.
Several attempts to fulfill the existing gap between accuracy and interpretability have been
made. However, robust and specialized eXplainable Artificial Intelligence solutions, tai-
lored to deep natural-language models, are still missing. We propose a new framework,
named T- EBAnO, which provides innovative prediction-local and class-basedmodel-global
explanation strategies tailored to deep learning natural-language models. Given a deep
NLP model and the textual input data, T- EBAnO provides an objective, human-readable,
domain-specific assessment of the reasons behind the automatic decision-making process.
Specifically, the framework extracts sets of interpretable features mining the inner knowl-
edge of the model. Then, it quantifies the influence of each feature during the prediction
process by exploiting the normalized Perturbation Influence Relation index at the local level
and the novel Global Absolute Influence and Global Relative Influence indexes at the global
level. The effectiveness and the quality of the local and global explanations obtained with
T- EBAnO are proved on an extensive set of experiments addressing different tasks, such
as a sentiment-analysis task performed by a fine-tuned BERT model and a toxic-comment
classification task performed by an LSTM model. The quality of the explanations proposed
by T- EBAnO, and, specifically, the correlation between the influence index and human
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judgment, has been evaluated by humans in a survey with more than 4000 judgments.
To prove the generality of T- EBAnO and its model/task-independent methodology, exper-
iments with other models (ALBERT, ULMFit) on popular public datasets (Ag News and
Cola) are also discussed in detail.

Keywords eXplainable artificial intelligence · Natural language processing ·
Text classification · Black-box classifier · Neural network

1 Introduction

Nowadays, more and more deep learning models such as BERT [11] and LSTM [18] are
exploited as the ground basis to build new powerful automatic decision-making systems to
automatically address complex natural language processing (NLP) tasks, e.g., text classifi-
cation, question answering (QA), and sentiment analysis. Although deep learning models
are often very accurate, even exceeding human performance (e.g., in [4, 36, 39, 49]), they
are very opaque and defined as “black-boxes”: given an input, deep learning models provide
an output, without any human-understandable insight about their inner behavior. The huge
amount of data required to train these black-box models is usually collected from people’s
daily lives (e.g., web searches, social networks, e-commerce), increasing the risk of inher-
iting human prejudices, racism, gender discrimination, and other forms of bias [5, 26]. For
these reasons, new eXplainable Artificial Intelligence (XAI) solutions are needed to produce
more credible and reliable information and services. XAI components will become, shortly,
a design requirement in most data-driven decision-making processes [10], and they will be
rewarded by increased trust, interaction, and access to new forms of data.

Table 1 shows a clear example of amisleading prediction provided by an LSTMmodel1. In
the example, both sentences expressClean language. However, the predictions are extremely
contradictory, and the black-box nature of the LSTM model does not allow us to understand
why. Thus, the complexity and the opacity of the learning process significantly reduce the
adoption of those neural networks in real-life scenarios where a higher level of transparency
is needed. The new eXplainable Artificial Intelligence (XAI) field of research is currently
trying to close the gap between model accuracy and model interpretability to effectively
increase the adoption of those models in real-life settings.

ThisworkproposesT- EBAnO (Text-ExplainingBlAck-boxmOdels), a novel explanation
framework that allows understanding the decisions made by deep neural networks in the
context of Natural Language Processing.

Human-readable prediction-local and model-global explanations are offered to users to
understand why and how a prediction is made, hence allowing them to consciously trust
the model’s outcomes. With the term prediction-local explanation, we mean to provide the
relation of a specific input text with the predicted label: the explanation is local to the label
and the input, and it aims at identifying which regions of the inputs, i.e., the tokens for NLP
models or pixels for computer vision models, are mostly impacting/influencing the output
prediction of the model. Instead, with the term model-global explanation, we mean to obtain
general insights about the model behavior by globally analyzing many local explanations
over different input texts.

1 Details on the experiments leading to the reported result are provided in Sect. 6.1 trained to distinguish
between Clean and Toxic comments.
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Table 1 Misleading prediction
example of a clean/toxic
comment classification. The
surname of a well-known
politician is anonymized

Sentence P(Toxic)

Politician-1 is an awesome man 0.17

Politician-1 is an intellectual 0.89

T- EBAnO produces prediction-local explanations through a perturbation process applied
on different sets of interpretable features, i.e., parts of speech, sentences, andmulti-layerword
embedding clusters, which are accurately selected to be meaningful for the model and under-
standable by humans. Then,T- EBAnO evaluates the model’s performance in the presence of
the perturbed inputs, quantifying the contribution that each feature had in the prediction pro-
cess through qualitative and objective indexes. The proposed explanations enable end-users
to decide whether a specific local prediction made by a deep learning model is reliable and
to evaluate the general behavior of the global model across predictions. Prediction-local and
model-global explanations are summarized in reports consisting of textual and quantitative
contributions, allowing both expert and non-expert users to understand the reasons why a
certain decision has been taken by the model under analysis.

Experimentally, T- EBAnO has been applied to explain: (i) the well-known state-of-the-
art transformer-based language model BERT [11] in a sentiment analysis task, (ii) a custom
sequence LSTM [18] model trained to solve a toxic comment binary classification task, i.e.,
detecting whether a document contains threats, obscenity, insults, or hate speech, and (iii)
additional models like ALBERT [24] and ULMFit [19] on other two classification tasks
of popular public datasets (Ag News topic classification and Cola sentence acceptability).
Experimental results show the effectiveness of T- EBAnO in providing human-readable,
local vs global interpretations of different model outcomes.

The novel contributions of the current work are provided in the following.

• The design and development of a new XAI methodology, named T- EBAnO, tailored to
NLP tasks, to produce both prediction-local and model-global explanations, consisting
of textual and numerical human-readable reports.

• The design of effective strategies to describe input textual documents through a set of
model-wise interpretable features exploiting specific inner-model and domain-specific
knowledge (Sect. 4.1).

• The definition of a cutting-edge model-global explanation strategy, analyzing the influ-
ence of inter- and intra-class concepts, based on two new metrics, the Global Absolute
Influence and the Global Relative Influence scores (Sect. 5.2).

• A thorough experimental evaluation on many state-of-the-art black-box deep learning
models, such as BERT, LSTM, ALBERT, and ULMFit, on different textual data collec-
tions and text classification tasks. Results show that the proposed approach is general
and widely applicable, independently from the model or task.

• A human evaluation of the correlation between the influence index exploited by
T- EBAnO (normalized Perturbation Influence Relation) and human judgment. We col-
lected 4320 user evaluations from 108 participants, each evaluating 2 explanations from
20 input texts, showing that the proposed index is highly correlatedwith human judgment.

The paper is organized as follows. Section 2 discusses XAI literature, Sect. 3 provides an
overview of the proposed solution, Sect. 4 provides the details about the interpretable features
extracted by our framework, and Sect. 5 describes how the local and global explanations are
computed. Section 6 presents the experimental results and discusses the prediction-local and
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model-global explanation reports produced by T- EBAnO. Finally, Sect. 7 concludes this
work and presents future research directions.

2 Literature review

Research activities in XAI can be classified based on [1, 17, 41] data-type (e.g., structured
data, images, texts), machine learning task (e.g., classification, forecasting, clusterization),
and characteristics of the explanations (e.g., local vs global). More generally, explanation
frameworks can be grouped into (i) model-agnostic, (ii) domain-specific, and (iii) task-
specific approaches.

Up to now, many efforts have been devoted to explaining the prediction process in the
context of structured data (e.g., measuring quantitative input influence [9], by means of local
rules in [7, 37]) and of deep learning models for image classification (e.g., [15, 43, 48]).
In contrast, less attention has been devoted to domain-specific explanation frameworks for
textual data analytics.

2.1 Model-agnostic approaches

Tools like [20, 32, 40] can be applied to explain the decisions made by a black-box model on
unstructured inputs (e.g., images or texts), and they provide interesting and human-readable
results. LIME [40] is amodel-agnostic strategy that allows a local explanation to be generated
for any predictive model. It approximates the prediction performed by the model with an
interpretable model built locally to the data object to be predicted. However, the interpretable
model approximates the prediction locally, and it could not represent faithfully what the real
model has effectively learned. SHAP [32], instead, is a unified framework able to interpret
predictions produced by any machine learning model, exploiting a game-theoretic approach
based on the concept of Shapley Values [44], by iteratively removing possible combinations
of input features and measuring the impact that the removal of the features has over the
outcome of the prediction task. PALEX [20] is a model-agnostic explanation method that
providesmultiple local explanations for individual predictions. It uses frequent input patterns
to generate a precise neighborhood of the prediction and exploits intrinsic interpretability
of contrast patterns to capture locally important information. Since the above-mentioned
techniques are model-agnostic, they might not fully exploit the specific characteristics of
the data domain and the latent semantic information specifically learned by the predictive
models when computing an explanation. Although they can be applied in the context of
NLP, they do not provide inner-model awareness, i.e., they are not able to deeply explain
what the model has specifically learned since they do not exploit such information in their
explanation process, leading to less specific explanations. Moreover, in the specific case of
NLP, model-agnostic techniques analyze the impact of singular words over the prediction
without taking into account the complex semantic relations that exist in textual documents
(i.e., semantically correlated portions of text) and that is actually learned by modern neural
networks. Also, perturbing singular words can have a very limited impact on the prediction
process, in particular when dealing with long texts, other than being very computationally
intensive, compromising the quality of the explanations.

T- EBAnO addresses such limitations and is able to increase the precision of the produced
explanations and limit the feature search space by i) using domain-specific feature extraction

123



Trusting deep learning natural-language models via local… 1867

techniques and ii) exploiting the inner knowledge of the neural network to identifymeaningful
inter-word relations learned by the NLP model.

2.2 Domain-specific approaches

An exhaustive overview of the existing XAI techniques for NLP models, applied in dif-
ferent contexts, such as social networks, medical, and cybersecurity, is presented in [34].
Many works exploit feature-perturbation strategies in the explanation process, analyzing the
model reactions to produce prediction-local explanations, like in [2, 28, 32, 35, 40, 48]. This
straightforward idea is very powerful but requires a careful selection of the input features to
be perturbed.

Differently from model-agnostic and domain-agnostic frameworks [32, 40], some strate-
gies have been explored by domain-specific works to determine the information contained in
the target model, with the aim to select the most relevant features to be perturbed. The feature
extraction process is of utmost importance in the explanation process since the quality of the
produced explanations strictly depends on this step. In [35], the authors propose the use of an
approximate brute-force strategy to analyze the impact that phrases in the input text have over
the predictions made by LSTM models. Also, they define an importance score that exploits
the parameters learned by an LSTMmodel to select the phrases which consistently provided
a large contribution in the prediction of a specific class. However, this approach has been
tailored to LSTM models, making it difficult to generalize the solution. In [2], the authors
proposed an explanation strategy tailored to structured and sequential data models with a
perturbation strategy that exploits the training of a variational autoencoder to perturb the
input data with semantically related variations, introducing controlled perturbations. How-
ever, this explanation strategy has been mainly focused on explaining sequence to sequence
scenarios (e.g., machine translation), and the perturbation requires the training, in advance, of
a variational autoencoder model, introducing a further level of opacity and complexity in the
explanation process. The authors in [25] propose to learn how to explain a predictive model
jointly with the training of the predictor. To this aim, they introduce an encoder-generator
framework that extracts a subset of inputs from the original text as an interpretable summary
of the prediction process. Again, the training of a separate model is required to extract the
whole explanation, also making this solution equivocal for the end-user. The authors in [28]
proposed an explanation process based on a novel strategy to select the minimal set of words
to perturb what causes a change in the model’s decision. To this aim, a reinforcement learn-
ing approach has been exploited. However, as in previous cases, this method requires the
training of an external model to extract features to be perturbed, increasing the complexity
and affecting the reliability of the explanation process itself. The authors in [12] propose a
framework called CREX that allows regularizing the training of DNNs using prior human
knowledge. The prior human knowledge, consisting of a subset of features highlighted by
domain experts, is exploited to let the model focus more on what actually matters for the task.
However, the highlighting operation is time-consuming, it is not always feasible, and it is not
applicable to already trained models. The authors in [8] propose LS-Tree, a model-agnostic
but domain-specific game-theoretic technique based on the Banzhaf value [3] and parse trees
to analyze several aspects of NLP models such as the nonlinearity, adversarial relationship
captured, and overfitting. However, it is more suitable to acquire global insights about the
model behavior instead of explaining single predictions of the model. Moreover, it has high
complexity, especially for long sentences. Finally, its explanations are more suited for an
expert audience.
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Instead, other techniques are gradient-based and, thus, exploit gradients to produce expla-
nations [43, 45]. In [43], the authors propose Grad-CAM, a gradient-based approach that
highlights the important regions in the image for the prediction. However, it is suitable for
convolutional-based neural networks, and thus, for the computer vision domain. The authors
in [27] propose a Grad-CAM implementation for text classification named Grad-CAM-Text.
However, it is only applicable to 1D convolutional neural networks for text classification.
Therefore, it is inapplicable for sequence models such as RNNs or transformer-based mod-
els as BERT, which are currently the most widespread architectures for NLP tasks. Finally,
the authors in [45] propose DeepLIFT, a gradient-based technique that computes importance
scores by explaining the difference between the outputs of the input to explain from the outputs
obtained by a “reference” input. However, it requires prior knowledge to make assumptions
on reference data. Moreover, it has been only tested on convolutional neural networks, and,
again, the version presented in the paper is unsuitable for sequence or transformer-based
models.

Different from the above-mentioned works, T- EBAnO implements a feature-extraction
process that exploits the specific information learned by the predictive deep natural-language
model, without the need to train external resources. T- EBAnO exploits the embedding
representation of the textual input data, available in the inner layer of the neural network,
to identify correlated portions of input text accordingly to the model, which are used in the
explanation process. To support this choice,we recall that textual embeddings have interesting
interpretable properties, as described in [46]. Following the insights discussed by the authors
in [13],modern natural-languagemodels incorporatemost of the context-specific information
in the latest and inmost layers. T- EBAnO exploits the textual embedding representations as
interpretable features to explain model outcomes.

2.3 Task-specific approaches

Finally, not every task can be explained with model-agnostic or domain-specific approaches.
This is why interpretable task-specific solutions are also relevant. In [53], the authors focused
their attention on explaining the duplicate question detection task developing a specificmodel
based on the attention mechanism, proposing to interpret the model results by visually ana-
lyzing their attention matrix to understand the inter-words relations learned by the model.
However, exploiting attention can be performed only for black-box models that are based
on this mechanism, and it can be hard to interpret for non-expert users. The authors of [52]
developed an explainable tag-based recommendationmodel that increases the interpretability
of its results by proposing an overview of user’s preference correlated with learned topics
and predicted tags, but without actually focusing on the reliability of the model or on the
possible presence of bias. In [31], the authors introduced a specific linguistic explanation
approach for fuzzy classifier decisions, which are shown in textual form to users. They focus
on a high abstraction level of explanations providing reasons, confidence, coverage, and
feature importance. However, their approach does not take into account the complexity of
deep learning models. In [22], the authors propose a framework for recognizing symptoms
of cognitive decline that provides natural language explanations of the detected anomalies
generated from a trained tree regression algorithm. However, this solution is customized for
this specific task and not easily extendable to other contexts. In [21], the authors propose
two solutions, for the k-nearest neighbor and the random shapelet forest algorithms, solving
the problem of locally and globally explainable time-series tweaking. These solutions are
suitable for time-series classification, and they are not easily applicable for different tasks.
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T- EBAnO proposes a new local and global explanation process for state-of-the-art deep
NLP models. By exploiting a perturbation-based strategy similar to that described in [48],
which was successfully tailored to image data, T- EBAnO fills in the gap of missing cus-
tomized solutions for explaining deep NLP models by introducing a totally redesigned
architecture and experimental section. Specifically, we introduce (i) a novel feature extraction
process specifically tailored to textual data and deep natural language models, (ii) new per-
turbation strategies, (iii) an improved version of the index proposed in [48] able to quantify
the influence of the input feature over local predictions tested in a new domain (NLP), and
(iv) novel class-based global explanations, besides extending the experiments to new mod-
els and use cases, and presenting a human evaluation of the exploited index and proposed
explanations.

3 T-EBAnO overview

T- EBAnO explains the inner functionalities of deep neural networks (DNN) models in the
context of NLP analytics tasks. Deep learning models act as a black-box to the end-user
because the model’s internal decision process is obscure [17]. However, T- EBAnO requires
that the model’s architecture is known. For instance, for explaining the decision-making
process of a transformer-based model, its architecture is known, but why it produces certain
predictions is unknown and requires an explanation. Thus,T- EBAnO exploits the knowledge
about the architecture of the specific model to make more reliable and faithful explanations,
in contrast to completely model-agnostic methodologies that could be applied to arbitrary
models but that cannot exploit the knowledge hidden into the model.

T- EBAnO’s architecture is shown in Fig. 1 and includes different building blocks. Both
model-agnostic (i.e., part of speech, sentences) and model-aware (i.e., multi-layer word
embeddings) features are extracted by T- EBAnO. The model-aware technique is the one
that requires and exploits the knowledge about the model’s architecture, while the model-
agnostic techniques are completely independent of the model. However, all the techniques
are domain-specific and exploit the semantic feature of textual data.

For a given classification task, an input document is provided to the pre-trained deep
learning model 1© that outputs its predicted class label 2©. Thus, T- EBAnO extracts a
set of interpretable features 3© by exploiting either NLP techniques or the analysis of the
knowledge hidden in the model itself (Sect. 4.1). Then, it performs the perturbation of the set

Multi-Layer Word
Embedding Part of Speech

Sentences

Nouns, Verbs,
Adjectives

Clusters of
interpretable set of

words

Interpretable Feature Extraction3

Removal

Substitution

Perturbation4

Input Document

Explanation
Computation

Local Explanations

Class Label1

DNN Model

1

5

2

Perturbed Texts
Perturbed Probabilities

Fig. 1 T- EBAnO local explanation process
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of interpretable features and tests themodel’s outcomes on the perturbed inputs 4© (Sect. 4.2).
Specifically, the perturbed inputs are new texts produced by applying the perturbation to each
interpretable feature extracted. Then, the model’s predictions (perturbed probabilities) for
the perturbed texts are evaluated to measure each feature’s impact. The perturbation of the
interpretable features can influence the model outcome in different ways, as described in the
following:

• Case (a): the probability of the class under analysis increases. It means that the analyzed
features were negatively impacting the process;

• Case (b): the predicted probability decreases. It means that the perturbed features were
positively impacting the class under analysis;

• Case (c): the predicted probability remains roughly unchanged. It means that the portion
of the input is irrelevant to the predictive model under analysis.

The significance of the difference in the prediction process before and after the perturbation
is evaluated through the nP I R index, a quantitative metric to estimate the effect of the
perturbation strategy (Sect. 4.3). Thus, T- EBAnO generates the local explanation report 5©,
showing the results of the analysis of the perturbations through an informative dashboard
(Sect. 5.1).

Finally, aggregating the local explanations produced for a corpus of input documents,
T- EBAnO provides model-global explanations highlighting relevant inter- and intra- class
semantic concepts that are influencing the deep neural network decision-making process at
a model-global level (Sect. 5.2).

4 Interpretable features

This section describes the interpretable feature extraction (Sect. 4.1) and perturbation (Sect.
4.2). Then, it introduces the quantitative index that measures the feature importance (Sect.
4.3) exploited by T- EBAnO. Finally, it details the Multi-layer Word Embedding feature
extraction technique (Sect. 4.4).

4.1 Interpretable feature extraction

The interpretable feature extraction block identifies meaningful and correlated sets of words
(tokens) having an influence on the outcomes of the NLPmodel under the exam. It represents
the most critical and complex phase in the explanation process workflow. A set of words is
meaningful for the model if its perturbation in the input document produces a meaningful
change in the prediction outcome. On the other hand, a set of words is meaningful for a user
if s/he can easily understand and use it to support the decision-making process.

T- EBAnO considers both word (tokens) and sentence granularity levels to extract the set
of interpretable features. Moreover, T- EBAnO records the position of the extracted features
in the input text since the context in which words appear is often very important for NLP
models.

T- EBAnO includes three different kinds of interpretable feature extraction techniques:

1. Multi-layer Word Embedding (MLWE) feature extraction. This strategy is the most pow-
erful technique since it exploits the inner knowledge learned by the model to perform the
prediction. Specifically, it performs an unsupervised clustering analysis to group related
input tokens based on the inner representation (i.e., embedding) assigned by the model.
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Each group of tokens could have influenced the prediction of the model in a similar way.
The unsupervised analysis performed by the MLWE figures out by itself which and the
right number of tokens to assign to each cluster and which cluster of tokens is the most
influential. To access the inner knowledge of the network, this technique needs to know
the inner details of the model under analysis. However, the process can be easily adapted
to be compliant with different deep architectures (e.g., as reported in [48]) and their hidden
layers. A detailed description of the MLWE feature extraction technique is provided in
Sect. 4.4.

2. Part-of-Speech (PoS) feature extraction. This strategy explores the semantic meaning of
words by looking at which part-of-speech they belong to (e.g., nouns, adjectives). The
intuition behind this type of feature extraction is that the semantic difference corresponding
to distinct parts-of-speech can differently influence the model outcome. Firstly, the input
text is tokenized, leading to three features: the token itself, its position in the text, and
its pos-tag (i.e., part-of-speech tagging). Then, tokens are divided into correlated groups:
adjectives, nouns, verbs, adverbs, and others. Each group is considered as a separate
interpretable feature by T- EBAnO in the perturbation phase (e.g., the POS-Adjectives
interpretable feature extracts all the adjectives present in the input text and not a partial
subset of it). This is because the main objective of the POS is to measure the influence of
each entire part-of-speech, while the MLWE feature extraction discovers the exact more
influential tokens. Understanding which POS most influenced the original prediction of
the model can be useful to understand if the model is looking to the correct semantic
aspect. Indeed, different tasks are usually influenced by different parts-of-speech. For
instance, a well-trained model for sentiment analysis usually exploits adjectives to predict
the sentiment. Therefore, adjectives should be the most influential and important part-of-
speech in the model’s decision-making process. Thus, T- EBAnO creates an interpretable
feature for each analyzed part-of-speech.

3. Sentence-based (SEN) feature extraction. This strategy considers each sentence separately
to assess its influence on the model decisions. The straightforward intuition behind this
strategy is to verify if the model captures the complete meaning of a sentence and uses it
to derive the outcome. The sentence feature extraction characterizes the input text with the
position of the sentence and the sentence itself. In this case, T- EBAnO creates a feature
for each sentence in the input text.

Then, separately for each feature extraction method, T- EBAnO tests pairwise combina-
tions of features to create larger groups of tokens corresponding to more complex concepts.
For instance, for Part-of-Speech, it creates a feature with the combination of Adjectives and
Verbs, Adjectives and Nouns, etc. For the Sentence-based feature extraction, it creates a fea-
ture with the combination of the first sentence and the second, another with the first sentence
and the third, and so on. Finally, for the Multi-layer Word Embedding feature extraction, it
creates a feature with the combination of the first cluster of words and the second, the first
and the third, and so on (more details on MLWE features are provided in Sect. 4.4). T-
EBAnO creates pairwise combinations of features only within the same feature extraction
method and not among different feature extraction methods because each of them considers
different aspects of the input text, i.e., PoS features are combined with PoS features and not
with MLWE features. This allows T- EBAnO to efficiently explore a wider search space of
interpretable features, hence finding even more relevant prediction-local explanations.
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4.2 Interpretable feature perturbation

After the extraction of the interpretable feature sets, a perturbation phase is performed by
introducing noise and consequently assessing the impact of the perturbed features on the
model outcomes. Adding noise to the model input is a well-known technique adopted by
different state-of-the-art approaches [2, 32, 40, 48] to study the model behavior through the
effects on the outcomes. Different input data types require different perturbation strategies.
In case of textual data, the perturbation can be performed by feature removal or feature
substitution.

In the feature removal perturbation approach provided byT- EBAnO, all the interpretable
features are iteratively removed from the input text, producing new perturbed variations of
the input itself. The perturbed variations of the input are then fed back into the model under
analysis, and its predictions are collected and analyzed by T- EBAnO to produce the local
explanation report (see Sect. 5.1). For instance, formulti-layerword embedding features, each
cluster of tokens is removed (one cluster at a time) from the input text, each one producing
a new perturbed text. For part-of-speech features, each part-of-speech removal produces a
new perturbed text. Finally, for sentence-based features, the removal of each sentence, one
at a time, produces a new perturbed text.

Examples of explanations produced by feature removal perturbation are shown in Fig. 3b–
d. From the input text in Fig. 3a, the words highlighted in Fig. 3b, the sentence highlighted
in Fig. 3c and the words identified by MLWE in Fig. 3d are removed. A discussion on these
examples is provided in Sect. 5.1.

The feature substitution perturbationwas also explored byT- EBAnO. While the removal
perturbation causes an absence of the concept associated with the removed words, the sub-
stitution perturbation introduces a new, possibly related, concept that can cause a change in
the prediction. The feature substitution perturbation requires an additional step to select new
words that will replace the current ones. In T- EBAnO, the substitution of words with their
antonyms is exploited. This strategy turned out to be very powerful in some specific cases
(e.g., Adjective-POS perturbation), but in general, it has several limitations: (i) some words
can have many antonyms and the optimal choice might depend on the context, (ii) antonyms
do not exist for some words (e.g., nouns), and (iii) the choice of the new words to be inserted
in the substitution of the feature is task-specific (e.g., antonyms work with opposite class
labels like Positive and Negative in sentiment analysis, but are not suited with independent
class labels as in topic detection). Thus, the effectiveness of this perturbation strategy is
affected by these limitations. Figure 3e, f shows two examples of explanations performed
using this technique. For the Adjective-POS features, it is straightforward to find meaningful
antonyms. On the contrary, for Verb-POS features, the result is very difficult to evaluate
since verbs like { was, have} are substituted with { differ, lack}. This feature
perturbation strategy remains an open task left for further inspection in future works. For
instance, we plan to analyze task-specific and expert-driven substitution perturbations. For
example, for a comment toxicity classification (i.e., predicting if an input text contains toxic
or clean language), the effects of substitution w.r.t. gender, minority, named entity, or other
possible biases is of absolute interest. For a sentence grammar acceptability classification
task (i.e., predicting if a sentence is grammatically acceptable or unacceptable), introducing
expert-driven substitutions to understand if the classifier is robust to critical linguistic aspects
is another example. In this paper, such implementations are out of scope because we currently
devise T- EBAnO to be as general as possible across different classification tasks without
requiring human expertise, and we reach this goal by means of the removal perturbation.
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4.3 Interpretable feature influencemeasurement

T- EBAnO exploits an improved version of the quantitative index proposed in [48], namely
normalized Perturbation Influence Relation (nPIR) to measure the influence of each inter-
pretable feature extracted.This improved index solves the issues ofasymmetry andunbounded
values, which affect the index previously proposed in [48]. It assesses the importance of an
input feature for a given prediction, analyzing its performance before and after the perturba-
tion of a feature (or set of features) extracted from the input data.

Formally, given a model able to distinguish between a set of classes c ∈ C . Let ci ∈ C
be the class-of-interest for which the local explanation has to be computed. Given the input
sample I , the explanation process extracts the set of interpretable features F . For each feature
f ∈ F , the perturbation is applied, and the reactions of the predictive model are evaluated.
These reactions represent the contribution of f to the prediction process. We quantify the
influence of f over ci through the nPIR index.

Let po,ci be the output probability of the original input I (the unperturbed input) to belong
to the class-of-interest ci , and pf,ci the probability of the same input, with the feature f
perturbed, to belong to the same class. Let us consider the predicted class distributions as∑C

c Po,c = 1 and similarly
∑C

c P f ,ci = 1. For instance, the output of the model is given by
a SoftMax layer.

We introduce a generic definition of influence relation for a feature f by combining the
outcomes of the model po,ci and pf,ci before and after the perturbation process. We want
such influence relation (i.e., the nPIR) to range in the [−1; 1] interval. An nPIR value for f
close or equal to 1 represents a positive relevance for the concept in f over the prediction
of class ci . On the opposite, an nPIR value for f close or equal to −1 represents a negative
impact of that feature over the prediction of class ci . An nPIR value close to 0 means that f
is neutral w.r.t. the prediction of class ci .

The nPIR derives from the combination of two sub-indicators: the Amplitude of Influence
ΔI and the Symmetric Relative Influence SRI . The ΔI for a feature f is defined as in Eq.
1 and ranges from −1 to 1 since the domain for probability values is included in [0, 1].

ΔI f = po,ci − pf,ci (1)

A ΔI f > 0 represents a positive influence of the feature f for class ci since the perturbation
of the corresponding portion of input causes a decrease in its probability to belong to the class-
of-interest. Thus, f is relevant for class ci . Similar reasoning could be made for ΔI f < 0
representing a negative influence of the feature f for ci .

The amplitude alone does not reflect the overall contribution of f completely. In par-
ticular, the absolute distance between two values can be low if the values are small w.r.t.
the probability values domain, but, their relative distance can still be significant. This effect
should not be ignored as well. Because of this, we need to consider also the relative influence
of f . To capture the relative influence of f , a straightforward approach would be to compute
the ratio between the probabilities. However, as shown in [48], such score is asymmetric: the
ratio po,ci

pf,ci
will range from 0 to 1 in case of negative influence and from 1 to ∞ in the other

case. So, it will be difficult to quantitatively compare positive and negative influences. To
overcome this problem, we define the Symmetric Relative Influence for a feature f as in Eq.
2. This index evaluates the relative influence that f has over po,ci and pf,ci. The symmetry
of this score allows measuring the relative influence of the feature f before and after the
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perturbation regardless of its positiveness or negativeness.

SRI f = po,ci
pf,ci

+ pf,ci
po,ci

(2)

By combining Eqs. 1 and 2, we define the Perturbation Influence Relation for f in the
range (−∞,+∞). We finally add the Softsign [16] function to obtain a linear approximation
of the influence close to 0 and to bound in a nonlinear way the very high positive or negative
values in the [−1; 1] range. Hence, the normalized Perturbation Influence Relation (nP I R)
of a feature f for a class-of-interest ci is defined in Eq. 3.

nP I R f (ci) = softsign(ΔI f ∗ SRI f )

= softsign(pf,ci ∗ b − po,ci ∗ a) (3)

a = 1 − po,ci
pf,ci

; b = 1 − pf,ci
po,ci

(4)

The coefficient a is the contribution of input o w.r.t. the perturbed input. Similarly, b
represents the contribution of the perturbation of f w.r.t. the original feature. The higher the
nP I R f (close to 1), the more the feature f is positively influencing the class-of-interest.
On the opposite, the lower the nP I R f (close to -1), the more the feature f is negatively
influencing the class-of-interest.

4.4 Multi-layer word embedding (MLWE) feature extraction

In this section, the terms words and tokens are often used interchangeably. However, the
tokenization process of the explained model also drives T- EBAnO. For example, if the
tokenizer of the explainedmodel removes the punctuation and stopwords,T- EBAnO-MLWE
does not consider it. Otherwise, if the tokenization step keeps the punctuation and stopwords,
then also T- EBAnO-MLWE considers them as possible influential tokens/words.

Deep neural networks are trained to extract knowledge from training data learning a
complex numerical model spreading this knowledge on multiple hidden layers. During the
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prediction process of previously unseen data, all these layers contribute to the outcome. Thus,
to get a reliable explanation, it is necessary to mine all the knowledge hidden along with the
layers of the model. Thanks to the Multi-layerWord Embedding (MLWE) feature extraction,
T- EBAnO can achieve this goal. Specifically, T- EBAnO analyzes the outcomes of multiple
hidden layers to extract the numerical representation of the input at different levels of the
network. TheMulti-layer Word Embedding feature extraction process is shown in Fig. 2.

4.4.1 Embedding knowledge extraction and aggregation

Firstly, given an input document 1©, a tensor containing the numerical embedding representa-
tions of different tokens in different layers is extracted 2©. Then, the intermediate embeddings
of each layer are aggregated (e.g., through average, sum or concatenation) on the layers’ axis
to a single-layer vector representation for each token. Then, only in the case of sub-words
representation, another aggregation is performed to reconstruct full-words from the sub-
words tokens. The aggregation of the multiple channels’ and the sub-tokens representations
compose the vectorial aggregation step and depends on the specific model’s architecture.
Finally, their dimensionalities are further reduced through PCA to obtain an embedding vec-
tor representation for each input token 3©. The outcomes of the vectorial aggregation and
the dimensionality reduction steps are the Multi-layer Word Embedding representation of
the input document 4©, where each full-token is represented with a small and dense vector
that approximates the meaning and knowledge learned by the model. The intuition is that
words with a similar MLWE representation are considered highly correlated by the model,
and, if grouped together, they represent key input concepts that most probably are influenc-
ing the current prediction. The MLWE feature extraction, and in particular, the extraction
of the aggregated word embeddings from multiple layers has to be achieved in different
ways depending on the neural network architecture under the exam. Further details about
MLWE feature extraction tailored to LSTM and to BERT and how MLWE fits other NLP
architectures are provided in Sect. 6.2.

4.4.2 Unsupervised embedding analysis

Once the MLWEs are extracted, they are analyzed through an unsupervised clustering anal-
ysis 5© to identify sets of correlated words that share common behaviors inside the model
under exam. Specifically, the unsupervised analysis aims to identify the smallest groups of
input words (tokens) that have the highest impact on the model outcome. For this purpose,
T- EBAnO exploits the K-Means [30] clustering algorithm since it provided good perfor-
mance in a similar context [48] and represents a good trade-off with computational time. A
critical parameter when dealing with K-Means is setting the desired number of groups K to
correctly model interesting subsets of data.T- EBAnO applies K-Means to identify a number
of groups ranging in [2, Kmax], where the max number of clusters Kmax is a function of the
input size and has been empirically set to:

Kmax = √
ntk + 1 (5)

On the one hand, using small fixed values of K with large input texts leads to large clusters of
words containing both influential and less impactingwords, and consequently, the explanation
provided will be of low interest. On the other hand, the number of tokens ntk in a text can be
very high, and it would be neither feasible nor useful to evaluate partitioning that takes into
account values of K as large as the number of tokens ntk. For this reason, the evaluation of a
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number of clusters K that is atmost equal to the root of the number of tokensntk in a text allows
maintaining a good trade-off between partitioning size and performance. This allows for
reducing the search space, without affecting the quality of the features. T- EBAnO produces
a quantitative explanation (as detailed in Sect. 5.1) exploiting the normalized Perturbation
Influence Relation (nPIR) index (introduced in Sect. 4.3) for each K 6©. Specifically, for each
value of K ∈ [2, Kmax], K perturbations will be analyzed, each one producing a new version
of the input text applying the perturbation over the tokens of the current cluster. Then, the
outcomes of the model by presenting the new perturbed texts are evaluated, producing the
nPIR index for each cluster perturbation of each possible K (dot lines in 6©). In this way, a
large number of potentially useful local explanations are produced by T- EBAnO.

4.4.3 Most informative local explanation evaluation

The objective, however, is to provide only the best explanation to the end-user. T- EBAnO
selects the most informative local explanations as those extracting the most valuable knowl-
edge from the behavior of the model over a single prediction. To this aim, firstly, T- EBAnO
assigns a feature informative score (FIS) to each feature (i.e., each cluster of words), exploit-
ing the nPIR index, as follows:

FIS(κ) = max

(
(
α(nP I Rκ ) + β(1 − κtk/ntk)

)
, 0

)

(6)

where κ is the current cluster, κtk is the number of tokens inside the cluster κ , ntk is the total
number of tokens and nP I Rκ is the influence score of the current cluster κ , which measures
the positive or negative influence of perturbing the tokens in κ (as discussed in Sect. 4.3). The
ratio κtk/ntk represents the percentage of tokens inside the cluster over the total number of
tokens. The FIS(κ) score tends tomaximize the influence of the feature (nP I R) andminimize
the size of the feature κtk/ntk (maximizing (1 − (κtk/ntk))).

The hyperparameters α and β are the weights assigned, respectively, to the nP I R and the
tokens ratio score (1−(κtk/ntk)). They determine the relative contribution of the influence of
the feature and its size. In our settings, we assigned a weight of 0.60 to the influence and 0.40
to the size of the features (α = 0.60 and β = 0.40) because selecting influential features is of
prevalent importance, and only secondly, we would like to minimize the number of tokens.
On the contrary, selecting small-size features which are not influential would be useless. An
experimental evaluation of α and β hyperparameters is provided in Sect. 6.7.

The range of nPIR is [−1,1] (as discussed in Sect. 4.3), where 1 indicates a very high
positive influence for the class of interest. The range of (1 − (κtk/ntk)) is [0,1]. Therefore,
the feature informative score FIS, with α = 0.60 and β = 0.40 (or any values of α and
β whose sum is 1), is in the range [0,1]. The negative values are undesired because we are
looking for positively influential features for the class of interest. A F I S = 0 is obtained by
a feature whose size is toward the 100% of the tokens and whose influence is toward 0. A
F I S = 1 is obtained by a feature with few tokens (e.g., less then 1%) and with an influential
score toward 1. The higher the F I S score, the more informative and shorter the feature is.

Then, for each value of K (i.e., each possible partition analyzed), a score is computed 7©
by taking the max of the F I S score over its clusters of words.

Kscore = max
κ∈K

(

FIS(κ)

)

= max
κ∈K

(

max
(
(α(nPIRκ ) + β(1 − κtk/ntk)), 0

)
) (7)
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Table 2 Example of the most informative local explanation(cluster 3.1) and best K division(K = 3) selection
using MLWE for an input text with 9 tokens predicted as Positive by an NLP model fine-tuned for sentiment
analysis

K k Highlighted Clusters ktk ktk/ntk nPIR FIS

2 2.1 Yesterday I saw a movie that 3 3/9 0.990 0.861
positively surprised me

2 2.2 Yesterday I saw a movie that 6 6/9 0.001 0.134
positively surprised me

3 3.1 Yesterday I saw a movie that 2 2/9 0.999 0.911
positively surprised me

3 3.2 Yesterday I saw a movie that 4 4/9 0.001 0.228
positively surprised me

3 3.3 Yesterday I saw a movie that 3 3/9 0.000 0.267
positively surprised me

The K with the highest Kscore is selected as the best. Hence, K clusters of words are created,
with each κ ∈ K being a feature including some neutral features (or negative influential, i.e.,
nP I R ≤ 0) and, generally, one very highly influential feature. Finally, the cluster κ with the
highest F I S(κ) will be the most informative local explanation 8©.

Table 2 shows an example of the analysis made by T- EBAnO using MLWE with a
short input text consisting of 9 tokens predicted with the label Positive with high confidence
(≈ 0.99) in a sentiment analysis task. The column K represents the different numbers of
clusters analyzed by T- EBAnO, cluster κ ∈ K is denoted as K .k (e.g., 2.1 is the first
cluster of the division K = 2), ktk represents the number of tokens inside the cluster, ktk /ntk
represents the ratio between the tokens in the cluster and the total number of tokens, nPIR
and FIS are the influence score and the feature informative score obtained by cluster k,
respectively. The tokens of each cluster are highlighted in cyan in the input text (column
Highlighted Clusters).

The partitions analyzed by T- EBAnO are K ∈ [2, 3] (Kmax = √
9 + 1 ≈ 3). The

first partition (K = 2) finds two clusters of tokens: cluster 2.1 containing 3 tokens and
cluster 2.2 containing 6 tokens (highlighted in cyan). The current most informative local
explanation is cluster 2.1, because it has the highest FIS score among the clusters of K = 2.
Then, T- EBAnO analyzes the clustering results with K = 3. The current most informative
local explanation is cluster 3.1, because it has the highest FIS score among the clusters of
K = 3. Overall, the local explanation cluster 3.1 has a higher FIS score than cluster 2.1
(0.911 > 0.861), then K = 3 is selected as the best K value, and cluster 3.1 is the final most
informative local explanation.

5 Explanations

This section presents the prediction-local (Sect. 5.1) and the model-global (Sect. 5.2) expla-
nation processes implemented in T- EBAnO.

5.1 Prediction-local explanations
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This film was very awful. I have never seen such a bad movie.

(a) Original text

This film was very awful. I have never seen such a bad movie.

(b) EXP1: Adjective - POS feature extraction with removal perturbation.

This film was very awful. I have never seen such a bad movie.

(c) EXP2: Sentence feature extraction with removal perturbation.

This film was very awful. I have never seen such a bad movie

(d) EXP3: Multi-layer word embedding feature extraction with removal perturbation.

This film was very [awful] nice. I have never seen such a [bad] good movie

(e) EXP4: Adjective-POS feature extraction with substitution perturbation.

This film [was] differ very awful. I [have] lack never seen such a bad movie.

(f) EXP5: Verb-POS feature extraction with substitution perturbation.

Fig. 3 Examples of a textual explanation report. The original text was labeled by BERT as Negative with a
probability of 0.99. The most relevant features are reported and highlighted in cyan. Removed tokens for the
substitution perturbation are in squared brackets and followed by the new inserted tokens

Table 3 Quantitative explanation for example in Fig. 3. P is the positive label, N is the negative label. The
(sub.) suffix indicates that the substitution perturbation has been applied. Otherwise, the removal perturbation
has been applied

Explanation Feature f Lo Lf nPIRf (N)
EXP1 POS-Adjective N P 0.998
EXP2 Sentence N N 0.000
EXP3 MLWE N P 0.984

EXP4 POS-Adjective (sub.) N P 0.999
EXP5 POS-Verb (sub.) N N 0.000

To produce the local explanations, T- EBAnO exploits the outcomes of the model when
fed with the original input and its perturbed versions. A local explanation consists of two
main parts: a textual explanation (Fig. 3) and a quantitative explanation (Table 3), as detailed
in the following.

5.1.1 Textual explanation

The textual explanation highlights the most relevant sets of features for the model under
analysis, also allowing the understanding of the context in which they appear. Many sets of
features can be extracted for each interpretable feature extraction technique. Figure 3 shows a
simple example of textual explanations. For this example, the BERT model has been trained
to detect the sentiment of a textual document, either positive (P) or negative (N). Given the
input document in Fig. 3a, the model outputs a negative sentiment. So, the user can inspect
the highlighted features (in cyan) in the textual explanations in Fig. 3b–f to find out which
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are the most important sections of the input that have been exploited by the model to make
its decision.

5.1.2 Quantitative explanation

The quantitative explanation shows the influence of each set of extracted features for the
prediction (separately) by evaluating the nPIR index (normalized Perturbation Influence
Relation) introduced in Sect. 4.3. The nPIR index is computed by T- EBAnO for each fea-
ture extracted by all the feature extraction techniques, for the class-of-interest (usually the
predicted label for the input text).

Exploiting the nP I R index, we can define thresholds to identify highly influential
and informative explanations. For instance, considering a threshold nP I Rt > 0, if
−nP I Rt ≤ nP I R f ≤ nP I Rt , then the difference between the probabilities before and
after the perturbation of f could be considered not sufficiently informative. Instead, values
of nP I R f < −nP I Rt (or nP I R f > nP I Rt ) mean that the perturbation of feature f is
contributing negatively (or positively) to the prediction by decreasing (or increasing) the
probability of belonging to the class-of-interest.

Table 3 shows the quantitative explanations for the textual explanations in Fig. 3. For each
interpretable feature f , the labels assigned by the model before and after their perturbation
are reported in columns Lo and L f , respectively, along with the nP I R value calculated for
the class-of-interest negative (N). Perturbing the POS adjectives in Fig. 3b (EXP1) or the
MLWE cluster in Fig. 3d (EXP3) the nP I R is very close to 1. This means that these sets of
features are very relevant for the model outcome: removing one of these features will cause
completely different outcomes from the model, changing the prediction from negative (N)
to positive (P). Instead, the perturbation of the sentence in Fig. 3c (EXP2) is not relevant at
all for the model, showing a value of nP I R equal to 0. We can conclude that the feature sets
{ awful, bad} and { was, awful, bad, movie } are the real reason why the
model is predicting the negative class. The information contained in the sentence { This
film was very awful } instead does not justify the model outcome alone, like the rest
of the text that is also contributing to the prediction.

The quantitative explanations obtained through the substitution perturbation ( EXP4 and
EXP5) have been also reported in Table 3. Even from these results, it is evident that the sub-
stitution perturbation has great potential in expressiveness when it is possible to find suitable
antonyms. In the case of Adjective-POS substitution (EXP4), the quantitative explanation
shows a nP I R value close to 1. On the contrary, in the case of EXP5, verbs are replaced
with semantically incorrect words (not antonyms) in the context of the phrases, showing no
impact in the prediction process with a nP I R equal to 0. Therefore, as discussed in Sect. 4.2,
this perturbation strategy remains an open task left for further inspection in future works.

5.2 Per class model-global explanation

T- EBAnO is able to provide per-class model-global explanations of the prediction process.
The local explanations computed for a corpus of input documents are aggregated and analyzed
together, highlighting possible misleading behaviors of the predictive model.

Two indices have been introduced to measure the global influence of the corpus of input
documents: (i) the Global Absolute Influence (GAI) described by Algorithm 1, and (ii) the
Global Relative Influence (GRI) defined in Eq. 8. TheGAI score measures the global impor-
tance of all the words impacting the class-of-interest, without distinction concerning other
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Fig. 4 Influential set of words at model-global level for class-of-interest c0

classes (Fig. 4a). On the other hand, the GRI score evaluates the relevance of the words
influential only (or mostly) for the class-of-interest, differently from other classes (Fig. 4b).

The global explanations are computed for each available class c ∈ C , analyzing the set of
local explanations produced byT- EBAnO from a dataset of input texts D. For each document
d ∈ D, the set of local explanations Ed are produced, where each explanation ed, f ∈ Ed is
the explanation computed over the feature f (e.g., cluster of tokens) containing the list of
tokens of the current feature and their influence value (nPIR). Only MLWE explanations are
exploited to produce the global explanations since it is the only feature extraction strategy
that exploits inner model knowledge (as discussed in Sect. 4.4).

Algorithm 1: Global Absolute Influence.
Input: Dataset D, Classes C .
Output: GAI score ∀ class label c ∈ C and lemma l ∈ L .

1 GAI ← initHashMap(0);
2 PredictionsCounter(C) ← init(0);
3 L ← empty list;
4 for d in D do
5 ĉ ← Model.Predict(d);
6 PredictionsCounter(ĉ) ← PredictionsCounter(ĉ) + 1;
7 Ed ← T- EBAnO.LocalExplanation(Model, d, ĉ);
8 êd, f ← T- EBAnO.GetMostInfluentialExplanation(Ed , ĉ, "MLWE");
9 for tk in êd, f . f eatureT okens do

10 l ← Lemmatize(tk);
11 L .insert(l);
12 GAI (ĉ, l) ← GAI (ĉ, l) + Max[0, êd, f .nP I R];
13 end
14 end
15 for c in C do
16 for l in L do
17 GAI (c, l) ← GAI (c, l)/PredictionsCounter(c);
18 end
19 end
20 return GAI;
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5.2.1 Global absolute influence

The Global Absolute Influence value is computed following the process described in Algo-
rithm 1. Firstly, are initialized the HashMap containing the GAI score for each class C and
each lemma L (line 1), the counter of predictions for each class (line 2) and the list of unique
lemmas (line 3). Then, given a corpus of documents D, for each input textual document
d ∈ D the following steps are repeated (line 4). Firstly, the estimated class label ĉ ∈ C for
the input text d is predicted by the DNN model to explain (line 5) and the counter value for
the class ĉ is incremented (line 6). Then, T- EBAnO produces the local explanation set Ed

for the input d and the class-of-interest ĉ (line 7). Thus, the most influential explanation êd, f ,
i.e., the one with the highest nP I R, is selected (line 8). We recall that T- EBAnO exploits
only the MLWE features to produce the global explanations. Therefore, the most influential
explanation êd, f is the cluster of tokens with the highest influence, measured with the nPIR,
for the original predicted class label ĉ. Finally, for each token tk belonging themost influential
feature êd, f . f eatureT okens (line 9),T- EBAnO extracts the lemma l (line 10) of each token
tk, adds it to the list of unique lemmas L (line 11) and updates the GAI score GAI (ĉ, l) for
the class ĉ of the lemma l (line 12) by summing the nP I R score of the the explanation êd, f ,
only if it is positively impacting the prediction (i.e., if nP I R > 0). The algorithm analyzes
lemmas instead of tokens (words) in order to group together their inflected forms, obtaining
more significant results. Finally, T- EBAnO normalizes the GAI score of each lemma l ∈ L
and each class c ∈ C dividing by the number of inputs predicted with the class label c (lines
15,16,17). This normalization step is required to handle also unbalance classes cases. The
output of the algorithm is the set of Global Absolute Influence scores. Specifically, for each
lemma found in corpus D, a GAI score is computed for each possible class c ∈ C . The value
GAI (c, l) is in range [0,+∞] and measures the absolute global influence of the lemma l for
the class c. Notice that, in the current T- EBAnO implementation, the GAI score can exceed
1 because if a lemma is present n times in an influential feature, its global score is updated by
summing the nPIR index n times. We could obtain a score in range [0, 1] by taking the list of
unique lemmas of the feature (in lines 9 and 10). However, we preferred to reward lemmas
that are highlighted multiple times as important for the prediction in a single explanation.

In conclusion, the GAI score will be 0 for all the lemmas that have always brought a
negative influence on class c, and it will grow proportionally to the frequency and to the
positive influence of each lemma positively influencing class c. The higher the GAI score,
the most positively influential a lemma is for the model under analysis with respect to class
c.

5.2.2 Global relative influence

TheGlobalRelative Influence score highlights themost influential and differentiating lemmas
for each class-of-interest, discarding lemmas with multiple impact on other classes. TheGRI
for a class-of-interest c, for a specific lemma l, and for a classification task with nC classes
is defined as:

GRI(c, l) = Max

⎡

⎣0,

(

GAI(c, l) −
C∑

ci �=c

GAI(ci , l)/(nC − 1)

)
⎤

⎦ (8)

TheGRI score is 0 when a lemma is more relevant for other classes than for the one under
exam, whileGRI> 0 if its influence is higher for class c than all the other classes. The higher
the GRI value, the more specific the lemma influence is with respect to the class-of-interest.
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The normalization over the number of predicted samples for each class performed on the
GAI allows the GRI to be fair in case of unbalanced classes, while the division by nC − 1
allows handling multi-class tasks.

Analyzing GAI and GRI scores, the user can extrapolate which are the most relevant
inter- and intra-class semantic concepts that are affecting the decision-making process at a
model-global level. For example, if a word is influential for all the possible classes, it will
have a high GAI score and a GRI score close to 0 for all the classes. On the contrary, if a
word is most influential for a specific class, the GAI score will be higher for that specific
class. Therefore, the GRI score for that class will be greater than 0 for that class and usually
0 (or close to 0) for all the other classes. Section 6.4 provides an experimental analysis of the
insights provided by T- EBAnO at a model-global level.

6 Experimental results

In this section, we present the experiments performed to assess the ability of T- EBAnO to
provide useful and human-readable insights on the decisions made by deep learning NLP
models. Firstly, we describe the experimental use cases in terms of NLP models and datasets
(Sect. 6.1). Before discussing the core results, i.e., the explanations, we show how MLWE
adapts to different NLP-model architectures (Sect. 6.2). The effectiveness of T- EBAnO
in extracting useful local explanations is presented in Sect. 6.3, whereas results for global
insights are discussed in Sect. 6.4. Then,we evaluate the application ofT- EBAnO to different
use cases (Sect. 6.5), the effectiveness ofMLWEwith respect to a randomchoice of the features
(Sect. 6.6), and we perform a hyperparameters analysis (Sect. 6.7). Finally, we evalaute the
capacity of the proposed influence index (nPIR) tomodel the human judgment (Sect. 6.8), and
we perform an experimental comparisonwith twomodel-agnosticXAI techniques (Sect. 6.9).

6.1 Use cases

To discuss howT- EBAnO is able to provide useful prediction-local explanations andmodel-
global explanations, we selected two main use cases consisting of different NLP models and
classification tasks (Use cases 1-2). We chose a sequence model and a transformer-based
model from the state-of-the-art, specifically LSTM and BERT, applied on two different
binary text classification tasks: sentiment analysis and toxic comment classification. Then, to
evaluate the flexibility of T- EBAnO, independently of the specific deep learning model and
the classification task, we selected additional classification tasks (AgNews topic classification
and Cola sentence acceptability) on different models like BERT, ALBERT, and ULMFit
(Use cases 3-8). The removal perturbation has been exploited for all the experiments. Table
4 summarizes all the experimental use cases.

6.1.1 Use case 1

The first task is a binary toxic comment classification, and it consists of predictingwhether the
input comment is clean or toxic, i.e., it contains inappropriate content. The toxic class label
contains several subtypes of toxic comments such as identity attacks, insults, explicit sexual-
ity, obscenity, insult, and threats. An LSTMmodel applied to a civil comments dataset [6] has
been used. The LSTMmodel is composed of an embedding 300-dimensional layer, two bidi-
rectional LSTM layers (with 256 units for each direction), and finally, a dense layer with 128
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Table 4 Experimental use cases

Use case Model Dataset Task (classification) Test accuracy (%)

1 LSTM Civil comments Comment toxicity 90

2 BERT Imdb Sentiment analysis 86

3 BERT Ag news Topic classification 94

4 BERT Cola Sentence acceptability 81

5 ALBERT Ag News Topic classification 93

6 ALBERT Cola Sentence acceptability 77

7 ULMFit Ag News Topic classification 92

8 ULMFit Cola Sentence acceptability 71

hidden units. Transfer learning has been exploited using GloVe [38] (with 300-dimensional
vectors) for the embedding layer.After training, the customLSTMmodel reached an accuracy
of 90%.

6.1.2 Use case 2

The second selected task is sentiment analysis, and it consists of predicting if the underlying
sentiment of an input text is either positive or negative. The BERT base (uncased) pre-trained
model [11] has been chosen as deep learning predictive model with obscure decision-making
process, and it has been applied to the IMDB dataset [33], which is a reference set of data
for sentiment analysis. We performed a fine-tuning step of the BERT model [11] by adding
a classification layer on top of the last encoder transformer’s stack. The BERT model, fine-
tuned on the IMDB textual reviews, reached an accuracy of 86%.

6.1.3 Other use cases

For the additional use cases, we selected different models and classification tasks. We kept
BERT from the transformer-encoder family of models as a reference milestone of the state-
of-the-art, then we added ALBERT [24] as a representative of the variations proposed for the
BERT model (like RoBERTa [29], DistilBERT [42]), and ULMFit [19] as a representative
of the general language model family, with a completely different architecture. The two
additional tasks are (i) a binary classification, predicting the grammatical acceptability or
unacceptability of the sentence with the Cola (Corpus of Linguistic Acceptability) dataset
[50], and (ii) a multi-class news topic classification task consisting of four classes (World,
Sport, Business and Science/Technology) of the Ag News dataset [51] (a subset version with
the four largest classes of the original corpus).

6.2 Multi-layer word embeddingmodel-specific implementations

In this section, we discuss the model-specific MLWE implementations for the deep learning
models used in the experimental use cases.
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6.2.1 LSTM

RNNs with LSTM units are robust architectures that can learn both the time sequence dimen-
sion and the feature vector dimension. Multiple LSTM layers usually characterize them, and
they can take as input an embedded representation of the text. As highlighted in Sect. 6.1,
the developed LSTM model exploits one embedding layer that works with full tokens and
two bidirectional LSTM layers. For these reasons, the MLWE exploits the single embedding
layer to extract a tensor of shape (tk × 300 × 1). In this case, the vectorial aggregation step
(Sect. 4.4) is unnecessary because the embedding is extracted from a single layer, and the
model does not present sub-tokens. Then, a principal component analysis is used to reduce the
embeddingmatrix shape to (tk×c), obtaining themulti-layer word embedding representation
for the custom LSTM model.

6.2.2 BERT

Figure 5 shows all the steps of the multi-layer word embedding (MLWE) feature extraction
process in BERT. The base version of the BERT model [11] is composed of 12 transformer
layers [47], each producing an output of shape (wp× 768), where wp is the number of word
pieces extracted by BERT in its preprocessing phase. The MLWE, in this case, analyzes
the word embeddings extracted from the last four transformer layers of the model. It has
been motivated in the literature [13] that modern natural language models incorporate most
of the context-specific information in the last and deepest layers. Thus, the joint analysis
of these layers allows the MLWE to extract features more related to the task under exam,
avoiding too specific (if analyzing only the last layer) or too general (if analyzing only the
first layers) word embeddings. In the first step of the MLWE feature extraction, the last four
transformer layer outputs (i.e., L9, L10, L11, L12) are extracted (Fig. 5-left), resulting in a
tensor of shape (wp × 768 × 4). Each row is the embedding representation for each word
piece in each layer. Then, the outputs of the four layers are aggregated, summing the values
of the embeddings over the layer axes in a matrix of shape wp × 768 (Fig. 5-center-left),
as suggested by [14]. Since BERT works with word pieces but T- EBAnO objective is to
extract full tokens (words), the embedding of word pieces belonging to the same word are
aggregated, averaging their values over the word-piece axes, and obtaining a new matrix of
tokens embedding of shape tk × 768, where tk is the number of input tokens (Fig. 5-center-
right). The 4-layers to single-layer and word-pieces to full-tokens aggregations compose the
vectorial aggregation step (Sect. 4.4) for the BERT model. In the end, due to the sparse
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the word embedding matrix, wp and tk indicate the position of the word-piece and token respectively in the
input text, 768 is the original embedding dimension, c is the number of reduced principal components of the
word embedding vector and Lid is the layer from which is extracted
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nature of data, the dimensionality reduction technique, i.e., Principal Component Analysis,
is exploited, reducing the final shape of the tokens embeddings matrix to (tk × c), where c
is the reduced number of principal components extracted (Fig. 5-right). This last result is the
Multi-layer word embedding representation for the BERT model.

6.2.3 Other models

In general, to adapt T- EBAnO to different NLP deep-learning architectures, the MLWE
approach requires providing one or more layers of word embedding (a vector or a tensor
for each token), an aggregation function if there are more layers of word embedding (i.e., to
represent each token from the n-dimensional tensor to a one-dimensional vector) and, finally,
an aggregation function ifwordpieces tokenization is performed (i.e., some tokens are divided
into sub-tokens) to create full tokens representations instead of wordpieces representations
(vectorial aggregation step).

T- EBAnO provides an interface to be implementedwith such specifications, hence allow-
ingT- EBAnO-MLWE to potentiallyworkwith anyNLPdeep-learningmodel. This interface
has been used to exploit MLWE with all the models included in the experiments (LSTM,
BERT, ALBERT, ULMFit). For instance, theMLWE implementation for the ALBERT archi-
tecture is exactly the same as used for BERT. It extracts the last four transformer-encoder
layers, aggregates the multi-layer to a single vectorial representation for each wordpiece
(sum), and, finally, aggregates the wordpieces vectorial representation to full token represen-
tation (avg) before the dimensionality reduction. For the ULMFit model, instead, the MLWE
implementation is very similar to the LSTM implementation. T- EBAnO extracts a represen-
tation for each input token by the LSTM-encoder part of ULMFit (a vector of length 400 for
each token) and then applies the dimensionality reduction. The two aggregation functions, in
this case, are not necessary because a single-layer representation is extracted for each token,
and ULMFit already works with full tokens.

6.3 Local explanations

For each input document, the local explanations were computed exploiting all the feature
extraction methods described in Sect. 4.1 and the removal perturbation for use cases 1 and
2.

6.3.1 Overview of use cases 1 and 2

In the explanation process of the sentiment analysis task with the BERT model (use case 2),
T- EBAnOhas been experimentally evaluated on 400 textual documents, 202 belonging to the
class Positive and 198 to the class Negative, for a total of almost 100,000 local explanations,
with an average of 250 local explanations for each input document. However, only the highly
influential local explanations are automatically shown by the engine to the user. A local
explanation has been defined to be highly influential when having an nP I R value equal to
or higher than the threshold nP I Rt = 0.5. All the rest of the local explanations produced
by T- EBAnO are still available to the users, should they like to investigate further insights
into the prediction process. To show the effectiveness of the proposed feature extraction
techniques, we analyzed the percentage of documents for which T- EBAnO computed local
explanations with at least one highly influential feature for the class-of-interest. Experiments
on the same input texts have been repeated twice, firstly without combining the different
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Table 5 Explanations of the BERT model: percentage of documents for which each feature extraction strat-
egy produces at least one highly influential local explanation (i.e., with nP I R ≥ 0.5), with and without
combination of features

Feature extraction type No combination (%) Pairwise combination (%)

Part-of-speech 33 70

Sentence 22 30

MLWE 75 86

Overall 80 90

The pairwise combinations are inner feature extraction methods (like Adjs with Verbs for POS, Sentence 1
with Sentence 2 for SEN and Cluster 1 with Cluster 2 forMLWE). Overall is the percentage of documents for
which at least one method provided a local explanation with nP I R ≥ 0.5

Table 6 Explanation of the custom LSTM model: percentage of documents for which each feature extraction
strategy produces at least one highly influential local explanation (i.e., with nP I R ≥ 0.5), with combination
of features, for the class labels Clean and Toxic separately, and together (Clean/Toxic).

Feature extraction type Clean (%) Toxic (%) Clean/toxic (%)

Part-of-speech 8 98 53

Sentence 2 76 39

MLWE 12 98 55

Overall 15 99 58

The pairwise combinations are inner feature extraction methods (like Adjs with Verbs for POS, Sentence 1
with Sentence 2 for SEN, and Cluster 1 with Cluster 2 forMLWE)

features, then including the pairwise combinations for each feature extractionmethod. Table 5
shows the percentage of documents required to find at least one highly influential feature
(nP I R ≥ 0.5)with andwithout combinations of pairwise features. TheMLWEmethod leads
to abundantly better results than the other methods. The part-of-speech strategy benefits the
most from the pairwise combinations, allowing the creation of features representing more
complex concepts. For example, the combination of adjectives and nouns allows the creation
of features composed of words like { bad, film} that, together, can better express a
sentiment.

In the explanation process of the toxic comment task with the custom LSTM model (use
case 1), T- EBAnO has been experimentally evaluated on 2250 documents, 1121 belonging
to the class Toxic and 1129 to class Clean, leading to almost 160,000 local explanations
in total. Table 6 shows the percentage of input documents for which T- EBAnO has been
able to extract at least one highly influential local explanation (nP I R ≥ 0.5). For the Toxic
class, T- EBAnO has been able to identify at least one highly influential explanation for
almost all the documents, with most of the feature extraction strategies. Only the sentence-
based feature extraction has a lower percentage of highly influential explanations w.r.t. the
other techniques. This suggests that toxic words tend to be sparse in the input text and not
concentrated in a single sentence. Finding highly influential explanations for the Clean class
has proven to be harder. None of the feature extraction techniques can explain more than 15%
of the predictions for theClean input texts. The nature of the use case under exam can explain
possible causes: usually, a document is considered clean; it can become toxic because of the
presence of specific words or linguistic expressions. Thus, the hypothesis is that there is no
specific pattern of words that represents the Clean class (see Sect. 6.4 for further details).
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Criticize a black man and the left calls you a racist. Criticize a woman and you
are a sexist. Now I will criticize you as a fool and you can call me intolerant.

(a) Original text

Criticize a black man and the left calls you a racist. Criticize a woman and you
are a sexist. Now I will criticize you as a fool and you can call me intolerant.

(b) EXP1: Adjective & Noun - POS feature extraction

Criticize a black man and the left calls you a racist. Criticize a woman and you
are a sexist. Now I will criticize you as a fool and you can call me intolerant.

(c) EXP2: Multi-layer word embedding feature extraction

Fig. 6 Examples of textual explanation report for the input in Fig. 6a originally labeled by custom LSTM
model as Toxic with a probability of 0.98. The most relevant features are highlighted in cyan

Table 7 Quantitative explanation for the example reported in Fig. 6

Explanation Feature f Lo Lf nPIRf (N)
EXP1 POS-Adj&Noun T C 0.839
EXP2 MLWE T C 0.883

T is the Toxic label, C is the Clean label. Positively highly influential features (nP I R ≥ 0.5) for the Lo class
are highlighted in green in the nP I R f (N ) column

6.3.2 Local explanation: example 1

In the following, we present and discuss some specific local explanations provided by T-
EBAnO in different conditions to show their relevance and usefulness in explaining the deep
NLP model behavior for both the custom LSTM and the BERT models of the use cases 1
and 2.

In the first example, reported in Fig. 6, the custom LSTM model classifies the input com-
ment in Fig. 6a as Toxic. The most influential features identified by T- EBAnO are shown
in Fig. 6b, c. The different feature extraction strategies find that the most positively influen-
tial features for the Toxic class labels are {black man, left, racist, woman,
sexist, fool, intolerant}. In particular, the most influential explanations are
extracted with the combination of adjectives and nouns (Table 7-EXP1) and with MLWE
(Table 7-EXP2). It is interesting to notice that in this case, the combination of adjectives
and nouns is very relevant for this model, e.g., it is not just the word black that makes a
comment toxic, but the combination black man. Furthermore, the POS feature extraction
and the MLWE highlighted very similar sets of words. In this case, the prediction is trustful,
and in particular, it is relevant that the model learned features like black man and woman
to be influential for the Toxic class.

6.3.3 Local explanation: example 2

In the second example, the BERT model makes a wrong prediction by classifying the sen-
timent of the input text in Fig. 7a as Negative, while the expected label (ground-truth) is
Positive. A user requiring to decide whether to trust such prediction can take advantage of
T- EBAnO to understand which are the words influencing the outcome. Figure 7 shows the
textual explanations provided by the most influential features. Table 8 contains the corre-
sponding quantitative explanations with the nP I R values. T- EBAnO identified three local

123



1888 F. Ventura et al.

How many movies are there that you can think of when you see a movie like this? I
can’t count them but it sure seemed like the movie makers were trying to give me a
hint. I was reminded so often of other movies, it became a big distraction. One of
the borrowed memorable lines came from a movie from 2003 - Day After Tomorrow. One
line by itself, is not so bad but this movie borrows so much from so many movies
it becomes a bad risk. BUT... See The Movie! Despite its downfalls there is enough
to make it interesting and maybe make it appear clever. While borrowing so much
from other movies it never goes overboard. In fact, you’ll probably find yourself
battening down the hatches and riding the storm out. Why? ...Costner and Kutcher
played their characters very well. I have never been a fan of Kutcher’s and I
nearly gave up on him in The Guardian, but he surfaced in good fashion. Costner
carries the movie swimmingly with the best of Costner’s ability. I don’t think Mrs.
Robinson had anything to do with his success. The supporting cast all around played
their parts well. I had no problem with any of them in the end. But some of these
characters were used too much. From here on out I can only nit-pick so I will save
you the wear and tear. Enjoy the movie, the parts that work, work well enough to
keep your head above water. Just don’t expect a smooth ride. 7 of 10 but almost a
6.

(a) Original text

How many movies are there that you can think of when you see a movie [...] I was
reminded so often of other movies, it became a big distraction. One of the borrowed
memorable lines came from a movie from 2003 - Day After Tomorrow. One line by
itself, is not so bad but this movie borrows so much from so many movies it becomes
a bad risk. BUT ... See The Movie! Despite its downfalls there is enough to make
it interesting and maybe make it appear clever. While borrowing so much from other
movies it never goes overboard. [...] I have never been a fan of Kutcher ’s and
I nearly gave up on him in The Guardian, but he surfaced in good fashion. Costner
carries the movie swimmingly with the best of Costner ’s ability. [...] But some of
these characters were used too much. [...] Just do n’t expect a smooth ride. 7 of
10 but almost a 6.

(b) EXP1: Adjective - POS feature extraction

How many movies are there that you can think of when you see a movie like this? I
can’t count them but it sure seemed like the movie makers were trying to give me a
hint. I was reminded so often of other movies, it became a big distraction. One of
[...]

(c) EXP2: Sentence feature extraction

How many movies are there that you can think of when you see a movie like this?
[...] See the movie despite its downfalls there is enough to make it interesting
and maybe make it appear clever. [...]

(d) EXP3: Multi-layer word embedding feature extraction

Fig. 7 Examples of textual explanation report for the input in Figure 7a, wrongly labeled by BERT asNegative
with a probability of 0.99. The most relevant features are highlighted in cyan

Table 8 Quantitative explanation for the example in Fig. 7

Explanation Feature f Lo Lf nPIRf (N)
EXP1 POS-Adjective N P 0.884

EXP2 Sentence N P 0.663

EXP3 MLWE N P 0.651

P is the positive label, N is the negative label. Positively highly influential features (nP I R ≥ 0.5) for the Lo
class are highlighted in green in the nP I R f (N ) column
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explanations for the Negative class with nP I R values higher than 0.5, whose perturbation
would cause a change in the predicted label from Negative to Positive). The top relevant
features were extracted exploiting Adjectives-POS (Fig. 7b), Sentence (Fig. 7c), and MLWE
(Fig. 7d). Regarding the Adjectives-POS feature extraction, Fig. 7b shows that general words
like {many, other, big, ..., smooth} have an nP I R value for the class Neg-
ative close to 0.88 (Table 8-EXP1). General words with a very strong impact on the final
prediction for this specific input text are not a trustful indicator: their absence might lead to
entirely different outcomes.

Regarding the sentence-based feature extraction, the negative prediction is triggered by
only one specific phrase (Fig. 7c), whose absence leads to a Positive prediction with a nP I R
value of 0.66 (Table 8-EXP2).

Finally, the MLWE feature extraction strategy identifies a cluster composed of only two
instances of a very general singleword {there} as themost informative feature (Fig. 7d). By
removing the two occurrences of the word {there}, the prediction changes from Negative
to Positive with an nP I R value of 0.651 (Table 8-EXP3).

Since the output of the prediction model can be drifted (from Negative to Positive) by
simply removing occurrences of general words such as {there, many, other, big,
smooth, ...} from the input text (actually removing only {there} is enough!), doubts
on the predicted class reliability are reasonable. More details related to the global behavior
and the robustness of the model are addressed in Sect. 6.4.

6.3.4 Local explanation: example 3

The example is reported in Fig. 8, where the BERT model correctly classifies the input text
in Fig. 8a as Negative. The textual explanations produced by T- EBAnO exploiting different
feature extraction strategies are reported as follows: adjective-POS in Fig. 8b, verb-POS in
Fig. 8c, adjective-verb-POS in Fig. 8d, sentence in Fig. 8e, and multi-layer word embedding
in Fig. 8f. Their nP I R values are reported in the quantitative explanations of Table 9. We
note that only the adjective-verb-POS, sentence, and MLWE techniques provide informative
explanations, whereas the adjective-POS and verb-POS yield uninformative explanations,
yet we include them in the example for discussion.

The POS feature analysis (Fig. 8b, c) shows that the different parts-of-speech, taken
separately one at a time, are not influential for the prediction of the class Negative. From the
quantitative explanation of EXP1 and EXP2 in Table 9, indeed, it can be observed that they
achieve an nPIR close to 0.003 and 0.137, respectively.A similar resultwas obtained for all the
other POS features considered individually. Consequently, T- EBAnO explores the pairwise
combinations (as explained in Sect. 4.1) of the parts-of-speech to create more sophisticated
features and to analyze more complex semantic concepts. In this case, the feature composed
of Adjectives and Verbs (Fig. 8d) is reported to be impacting for the predicted class label
reaching a nPIR value close to 0.915 (EXP3 in Table 9).
The sentence feature extraction strategy, instead, identifies the feature composed of the phrase
in Fig. 8e as positively influential for the predicted class with an nPIR score of about 0.638
(EXP4 in Table 9).

Finally, theMLWEfeature extraction identifies K = 15 as the bestKpartitioning ofwords,
and the most informative feature (i.e., cluster of words that maximize nPIR and minimize
tokens ratio) with a significant impact on the output prediction is shown in Fig. 8f, reaching
an nPIR of 0.899 (EXP5 in Table 9).

Analyzing the content of the most influential textual explanations (EXP3, EXP4 and
EXP5), it can be observed that interestingly, all the local explanations with high values of
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There were so many classic movies that were made where the leading people were
out-and- out liars and yet they are made to look good. I never bought into that
stuff. The "screwball comedies" were full of that stuff and so were a lot of the
Fred Astaire films. Here, Barbara Stanwyck plays a famous "country" magazine writer
who has been lying to the public for years, and feels she has to keep lying to keep
her persona (and her job). She even lies to a guy about getting married, another
topic that was always trivialized in classic films. She’s a New York City woman
who pretends she’s a great cook and someone who knows how to handle babies, etc.
Obviously she knows nothing and the lies pile up so fast you lose track. I guess
all of that is supposed to be funny because lessons are learned in the end and true
love prevails, etc. etc. Please pass the barf bag. Most of this film is NOT funny.
Stanwyck was far better in the film noir genre. As for Dennis Morgan, well, pass
the bag again.

(a) Original text

There were so many classic movies that were made where the leading people were
out-and- out liars and yet they are made to look good. I never bought into that
stuff. The ‘‘screwball comedies’’ were full of [...] plays a famous ‘‘country’’
[...] getting married, another topic that was always trivialized in classic films.
[...] she’s a great cook and someone [...] supposed to be funny because lessons
are learned in the end and true love [...] bag. Most of this film is NOT funny.
Stanwyck was far better in the film noir genre. [...]

(b) EXP1: Adjective - POS feature extraction

There were so [...] that were made where the leading people were out-and- out liars
and yet they are made to look good. I never bought into that stuff. The ‘‘screwball
comedies’’ were full of that stuff and so were a lot [...] Barbara Stanwyck plays
a famous ‘‘country’’ magazine writer who has been lying to [...] she has to keep
lying to keep her persona (and her job). She even lies to a guy about getting
married, another topic that was always trivialized in classic films. She ’s a New
York City woman who pretends she’s a great cook and someone who knows how to han
dle babies, etc. Obviously she knows nothing and the lies pile up so fast you lose
track. I guess all of that is supposed to be funny because lessons are learned in
the [...] Please pass the barf bag. Most of this film is NOT funny. Stanwyck was
far [...] well, pass the bag again.

(c) EXP2: Verb - POS feature extraction

There were so many classic movies that were made where the leading people were out-
and- out liars and yet they are made to look good. I never bought into that stuff.
The ‘‘screwball comedies’’ were full of that stuff and so were a lot of the Fred
Astaire films. Here, Barbara Stanwyck plays a famous ‘‘country’’ magazine writer
who has been lying to the public for years, and feels she has to keep lying to keep
her persona (and her job). She even lies to a guy about getting married, another
topic that was always trivialized in classic films. She ’s a New York City woman
who pretends she ’s a great cook and someone who knows how to handle babies, etc.
Obviously she knows nothing and the lies pile up so fast you lose track. I guess
all of that is supposed to be funny because lessons are learned in the end and true
love prevails, etc. etc. Please pass the barf bag. Most of this film is NOT funny.
Stanwyck was far better in the film noir genre. As for Dennis Morgan, well, pass
the bag again.

(d) EXP3: Adjective & Verb - POS feature extraction

[...] She even lies to a guy about getting married, another topic that was always
trivialized in classic films. [...]

(e) EXP4: Sentence feature extraction

[...] I never bought into that stuff. The "screwball comedies" were full of that
stuff and so were a lot of the Fred Astaire films. Here, Barbara Stanwyck plays a
famous "country" magazine writer who has been lying to the public for years, and
feels she has to keep lying to keep her persona (and her job). she even lies to
a guy about getting married, another topic that was always trivialized in classic
films. she’s a new york city woman who pretends she’s a great cook and someone who
knows how to handle babies, etc. Obviously she knows nothing and the lies pile up
so fast you lose track. I guess all of that is supposed to be funny because lessons
are learned in the end and true love prevails, etc. [...] Most of this film is not
funny. Stanwyck was far better in the film noir genre. as for Dennis Morgan, well,
pass the bag again

(f) EXP5: Multi-layer word embedding feature extraction

Fig. 8 Examples of textual explanations for the input in Figure 8a, originally labeled by BERT as Negative
with a probability of 0.99. Features extracted by T- EBAnO are highlighted in cyan
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Table 9 Quantitative explanations for the example reported in Fig. 8

Explanation Feature f Lo Lf nPIRf (N)
EXP1 POS-Adjective N N 0.003
EXP2 POS-Verb N N 0.137
EXP3 POS-Adj&Verb N P 0.915
EXP4 Sentence N P 0.638
EXP5 MLWE N P 0.899

P is the positive label, N is the negative label. Positively highly influential features (nP I R ≥ 0.5) for the Lo
class are highlighted in green in the nP I R f (N ) column

nP I R contain the word {trivialized}. It might seem that a single word can be the only
one responsible for the original prediction. However, also the explanation EXP2 contains
the same word but is not influential for the class label. Therefore, it emerges that the output
predictions are not influenced by single words, but is the combination of different words that
allows creating more complex concepts which determine the predicted class label. Moreover,
it is possible to say that in this specific prediction, the model is not sensible to the perturbation
of adjectives (EXP1 in Fig. 8b) or verbs (EXP2 in Fig. 8c) separately, highlighting that the
proposed prediction has been produced taking into account the whole context of the input
text. Only in EXP3 (Fig. 8d) it is possible to notice that when adjectives and verbs are
perturbed together, changing the meaning of the input text radically, the predicted class
changes. The joint perturbation can be considered a good measure of robustness for the
prediction performed by the fine-tuned BERT model under analysis.
However, as for the previous example, it is shown in EXP4 (Fig. 8e) that exist a singular
phrase more relevant than the others in the decision-making process. The perturbation of
the sentence in EXP4 will bring the model to change the prediction from class Negative
to Positive. Furthermore, EXP5 (Fig. 8f), obtained through the MLWE feature extraction
technique, shows an apparently random pool of words very relevant in the prediction process.
The MLWE feature extraction is able to find the influential feature with higher precision
concerning EXP3 (obtained by the combination of all verbs and adjectives), with a very
small penalty on the nPIR score. Indeed, the MLWE strategy is able to find a small number
of words belonging to different part-of-speeches and different sentences that are affecting the
model’s output. So, also the resulting explanations are more understandable and meaningful
for the end-user.

As in the previous example, this last experiment shows that the predictive model is par-
ticularly sensitive to a few specific variations of, apparently not correlated, input words.

From these examples, it emerges that the different feature extraction strategies should
be used in a complementary manner, as they look at different aspects of the input text and
provide different kinds of explanations. Furthermore, the proposed examples showed that:

• T- EBAnO can be successfully applied to different deep learning models;
• the proposed prediction explanation process can be applied with success to different use

cases and NLP tasks;
• T- EBAnO can extract meaningful explanations from both long and short text documents

without limiting their interpretability;
• the end-user is providedwith informative details to analyze critically and judge the quality

of the model outcomes, being supported in deciding whether its decision-making process
is trustful.
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Fig. 9 Global explanation of toxic comment classification with LSTM

6.4 Model-global explanations

Exploiting the prediction-local explanations computed by T- EBAnO for all the input docu-
ments, model-global insights can be provided.

6.4.1 Use case 1

For the toxic comment classification, Fig. 9 shows theGAI andGRI scores for each influential
word under the form of word clouds for the classes Toxic (Fig. 9a, c) and Clean (Fig. 9b, d),
respectively. They are generated by analyzing all the local explanations produced over the
2250 texts of use case 1 (as discussed in Sect. 5.2). The font size of words is proportional to
the GAI or GRI scores obtained for each class separately. The proportion of the font size is
relative only to the single word cloud (i.e., two words with the same size in different word
clouds do not necessarily have the same score, while two words with the same size in the
same word cloud have almost the same score).

Firstly, as discussed in Sect. 5.2, T- EBAnO analyzes the most influential local explana-
tions produced and computes the GAI score for each lemma and the labels Toxic and Clean.
Then, it generates the word clouds (Fig. 9a, b) to provide a visual impact of the most impor-
tant lemmas for each class. The GAI word clouds (Fig. 9a, b) show that the two classes are
influenced by a non-overlapping set of words. Indeed, the most important lemmas for the
Toxic class (i.e., with higher GAI for the Toxic class) are stupid (0.31), Politician1
(0.28), people (0.26), idiot (0.17), and white (0.15). Instead, the lemmas with higher
GAI for the Clean class are the (0.04), people (0.02), and (0.01), if (0.01), and like
(0.01). This confirms that the model learned that if a word is attributable to toxic language
in some context, it is unlikely to be associated with clean language in others. Toxic com-
ments are identified by terms that are strongly related to toxic language, discrimination, or
racism. Instead, there is no specific pattern of words that identifies clean comments. Just a
few concepts like people have an inter-class influence.
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Then, T- EBAnO computes the GRI score for each lemma and the Toxic and Clean
classes and generates the corresponding word clouds (Fig. 9c, d) to determine which are the
more differentiating concepts between the two classes, among those selected by the model.
The GRI word cloud highlights, even more, the impact of words like stupid, idiot,
and ignorant which obtained a GRI score for the Toxic class of 0.31, 0.17, and 0.12,
respectively. But also terms related to minorities and genders like woman, black, white,
gay, (which obtained a GRI for the Toxic class of 0.10, 0.10, 0.15, and 0.06, respectively)
meaning that the model has learned to recognize racists or sexists comments when these
terms are present. Also, the presence of specific politician family names, anonymized as
Politician1, Politician2, etc., highlights that those people’s names are related to
toxic comments. In particular, Politician1 achieved the second higherGRI score for the
Toxic class with 0.28. These results demonstrate that a deep learning model, if not carefully
trained, can learn from sensible content, including prejudices and various forms of bias that
should be avoided in critical contexts. Finally, associating a specific person’s family name to
a class also raises ethical issues.

6.4.2 Use case 2

Analyzing the prediction-local explanations produced for the 400 input texts in the sentiment
analysis use case is possible to extract global insights regarding the fine-tuned BERT model.
Figure 10 shows the GAI and GRI word clouds for the Positive (Fig. 10a, c) and Negative
(Fig. 10b, d) class labels.

Again, T- EBAnO firstly produces the GAI score for each lemma for the Positive and
Negative classes analyzing all the most influential local explanations (as discussed in Sect.
5.2). The most important lemmas for the Positive class (i.e., with higher GAI for the Positive
class) are film (0.60), movie (0.48), one (0.34), like (0.22), story (0.21), good
(0.21),great (0.20), andlove (0.19). Instead, the lemmaswith higherGAI for theNegative
class are movie (0.37), film (0.25), like (0.17), one (0.16), even (0.14), and story

Fig. 10 Global explanation of sentiment analysis with BERT
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(0.12). From these values, T- EBAnO generates theGAI word clouds for the classes Positive
(Fig. 10a) and Negative (Fig. 10b).

Differently from the previous example, the GAI word clouds for the Positive and the Neg-
ative class labels show that several words like story, movie, film, like are impacting
on both classes. This means that the model exploits overlapping concepts that do not directly
express a sentiment but that, if considered together in their context, can be associated with
words that express the mood of the writer (e.g., This film is not as good as
expected). Thus, to understand which are the lemmas that mostly impact one class with
respect to the other, it computes the GRI score for each lemma for the two classes and
generates the word clouds.

The GRI word cloud for the Positive class (Fig. 10c) shows that words like movie and
film are still very relevant for it, while they do not appear anymore for the Negative class
(Fig. 10d) that is nowhighly characterized by the concept of book. Indeed,movie andfilm
obtain aGRI for the Positive class of 0.35 and 0.11, respectively (while for theNegative class
is 0). Instead, book achieved a GRI score for the Negative class of 0.07 (while for the
Positive is 0). Exploring the dataset, we noticed that movies inspired by books are used to be
associated with negative comments, as typically, the original book is more detailed or slightly
different. Therefore, this can be considered a form of bias that the model has learned, in the
sense that a movie evaluationmight not be based on its comparison with a book. However, the
GRI shows also that most of the influential words for positive input texts are concepts strictly
related to positive sentiments like good, great, best, love achieving a GRI score for
the Positive class of 0.12, 0.17, 0.12, and 0.17, respectively. Similarly, the negative sentiment
is associated with words like worst, bad, awful achieving a GRI score for the Negative
class of 0.07, 0.06, and 0.05, respectively. For these concepts, the model behaves as expected.

Thanks to the model-global explanation process, the user can better understand how the
predictive model is taking its decisions, identifying the presence of prejudice and/or bias,
and allowing to decide if and which corrective actions have to be taken to make the decision-
making process more reliable.

6.5 Framework extendibility

In this section, we evaluate the ability of T- EBAnO to adapt to different architectures and
different tasks (use cases 3-8). For this purpose, we defined the following additional tasks.

• Ag News: a multi-class news topic classification task consisting of four classes: World,
Sport, Business and Science/Technology [51].

• Cola: Corpus of Linguistic Acceptability, a binary classification task that consists of
predicting the grammatical acceptability or unacceptability of the sentence [50].

Both tasks differ from the previous ones (sentiment analysis and toxic comment) because they
do not strictly depend on a specific part of the speech. Furthermore, Ag News is a multi-class
classification problem.
For each task, we trained three different models:

• BERT : Bidirectional Encoder Representations from Transformers
• ALBERT : A Lite BERT [24]
• ULMfit: Universal Language Model Fine-tuning [19]

For each model and task, corresponding to the use cases 3-8 of Table 4, we produced with T-
EBAnO the local explanations of 512 input texts exploiting the removal perturbation. Then,
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Fig. 11 nPIR distribution of the most influential features (Max nPIR) and the least influential features (Min
nPIR) over 512 input texts for each model and task

for each local explanation, we selected the most influential feature (i.e., with the highest
nPIR) and the least influential feature (i.e., with the lowest nPIR).

Figure 11 shows the nPIR distribution of the most influential features (Max nPIR) and
the least influential features (Min nPIR) for all input texts, separately by each model-task.
The nPIR values of the least influential features are close to zero for all models, whereas
the most influential features have nPIR values close to 1 for all models and generally higher
than 0.5. BERT performs better on these tasks and, consequently, T- EBAnO is able to find
features having extreme nPIR values. A model like ULMfit, instead, is more uncertain in the
prediction, and T- EBAnO finds features with variableMax nPIR values from 0.5 to 1. Such
results show that T- EBAnO is able to extract different features from the input texts, both
highly influential and neutral ones, for the prediction of the class label. Moreover, T- EBAnO
is able to find explanations for models with different architectures and different classification
tasks.

Table 10 shows examples of local explanations for the different models and tasks. For each
input text i, one highly influential feature (i.a) and one neutral feature (or less influential)
(i.b) are reported. The original predicted label Lo, the label predicted after the perturbation
Lo, and the relative nPIR score obtained by the feature (with respect to the original predicted
label Lo) applying the removal perturbation are also reported.

For Ag News, inputs from 1 to 6 show that all models correctly learned the concepts of
World, Business, Sport, and Science/Technology. All the influential features 1-6.a contain
concepts related to the predicted class L0, whereas less influential features 1-6.b contain neu-
tral concepts or tokens. The only exception is the 6.a example, which shows that the ULMFit
model overfits some tokens, as the specific name of the London’s agency { Reuters} has
been learned as important for the class label Business. The behavior of the explanations is
also coherent with the performance in terms of the accuracy of the models. Analyzing a wider
set of explanations, also BERT and ALBERT models overfit some tokens, such as HTML
strings of web pages, that are often related to misclassified inputs in Science/Technology.
Regarding Cola, the explanations from id 7 to 13 show that the models generally learned
to classify grammatically correct sentences. The explanations of the Acceptable class label
usually contain most of the input text, while the explanations of theUnacceptable class labels
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Table 10 Features extracted by MLWE on different models and different tasks (highlighted in cyan). For Ag
News, the labels are Sport (S), World (W), Business (B), Science/Technology (S/T). For Cola, the labels are
Unacceptable (U) and Acceptable (A)

id MLWE feature Lo Lf nPIR

BERT-Ag News
1.a uk gives blessing to open source . with most organizations that

planned to move already moved to microsoft server 2003 ,
os migration has dropped to the bottom ranks after making its

S/T W 0.983

1.b uk gives blessing to open source . with most organizations that
planned to move already moved to microsoft server 2003 ,
os migration has dropped to the bottom ranks after making its

S/T S/T 0.000

2.a radcliffe to run in new york marathon . london ( reuters ) - world
marathon record holder paula radcliffe believes she has put her
failure at the athens olympics behind her after announcing on tuesday
that she will run in the new york marathon on november 7 .

S W 0.893

2.b radcliffe to run in new york marathon . london ( reuters ) - world
marathon record holder paula radcliffe believes she has put her
failure at the athens olympics behind her after announcing on tuesday
that she will run in the new york marathon on november 7 .

S S 0.006

ALBERT-Ag News
3.a eu seeks joint asylum policy. eu ministers meeting in luxembourg

plan moves to integrate their asylum and immigration procedures.
W S/T 0.709

3.b eu seeks joint asylum policy. eu ministers meeting in luxembourg
plan moves to integrate their asylum and immigration procedures.

W W -0.023

4.a job numbers give candidates room to debate. washington - employers
stepped up hiring in august, expanding payrolls by 144,000 and
lowering the unemployment rate to 5.4 percent.

B W 0.912

4.b job numbers give candidates room to debate. washington - employers
stepped up hiring in august, expanding payrolls by 144,000 and
lowering the unemployment rate to 5.4 percent.

B B 0.008

ULMfit-Ag News
5.a nato to send staff to iraq . nato will send military trainers to iraq

before the end of the year in response to appeals by iraqi leaders for
speedy action , us ambassador to nato nicholas burns said today .

W S/T 0.706

5.b nato to send staff to iraq . nato will send military trainers to iraq
before the end of the year in response to appeals by iraqi leaders for
speedy action , us ambassador to nato nicholas burns said today .

W W 0.001

6.a court seen lifting yukos block – lawyers . london ( reuters ) - a u.s .
bankruptcy court is likely to revoke its temporary ban on the sale of
russian oil group yukos ’s main production unit, lawyers said on friday

B W 0.993

6.b court seen lifting yukos block -- lawyers . london ( reuters ) - a u.s .
bankruptcy court is likely to revoke its temporary ban on the sale of
russian oil group yukos ’s main production unit, lawyers said on friday

B B 0.043

BERT-Cola
7.a many people said they were sick who weren’ t . U A 0.985
7.b many people said they were sick who weren’ t . U U 0.200

8.a charlie will leave town if his mother - in - law doesn’ t . A U 0.995
8.b charlie will leave town if his mother - in - law doesn’ t . A A 0.452

9.a snow white poisoned . U A 0.754
9.b snow white poisoned . U U 0.014

ALBERT-Cola
10.a mary runs not the marathon. U A 0.819
10.b mary runs not the marathon. U U 0.267

11.a both workers will wear carnations. A U 0.744
11.b both workers will wear carnations. A A 0.033

ULMfit-Cola
12.a you could give a headache to a tylenol . U A 0.930
12.b you could give a headache to a tylenol . U U 0.119

13.a paul breathed on mary . U A 0.999
13.b paul breathed on mary . U U 0.320

Lo is the original predicted label, L f is the label predicted after the perturbation on the feature, nPIR is the
score obtained by the feature with respect to the original predicted label (nPIR(Lo)). For each input i, there
are two features, one highly influential (i.a) and one neutral or less influential (i.b)
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Table 11 Most informative local
explanation example

Feature ID nPIR Tokens ratio FIS

Feature 1 0.50 10/50 = 0.20 0.620

Feature 2 0.99 15/50 = 0.30 0.874

Feature 3 1.00 25/50 = 0.50 0.800

tend to highlight small portions of the input text containing errors. This behavior is reasonable
because a sentence is correct if all its tokens are correct, while it is incorrect if it contains
some wrong tokens.

6.6 MLWE effectiveness

For a given input text, while the number of tokens of each feature extracted by the part-of-
speech (PoS) and sentence-based (SEN) approaches is fixed, the MLWE feature extraction
figures out by itself the right number and which tokens to assign to each feature. For an
effective explanation, we want that the most influential feature extracted by the MLWE
maximizes the nPIR while minimizing the number of tokens (i.e., it selects only the tokens
contributing to a high nPIR).

For instance, Table 11 reports a sample (partial) result where the MLWE is applied to an
input text with 50 total tokens: three possible clustering results are discussed (note that the
discussion is limited to 3 for simplicity, but Kmax should be used for full results, as described
in Sect. 4.4).

• The most influential feature in the first clustering is Feature 1 with nP I R = 0.50 and it
consists of 10 tokens.

• Themost influential feature in the second clustering is Feature 2with nP I R = 0.99 and
it consists of 15 tokens.

• The most influential feature in the third clustering is Feature 3 with nP I R = 1.00 and
it consists of 25 tokens.

The feature informative score FIS, as explained in Sect. 4.4, is computed accordingly to the
following formula:

F I S(κ) = max

(
(
α(nP I Rκ ) + β(1 − κtk/ntk)

)
, 0

)

= max

(
(
0.60(nP I Rκ ) + 0.40(1 − κtk/ntk)

)
, 0

) (9)

Then, the final most informative local-explanation selected by T- EBAnO is Feature 2
because it provides a high nPIR with a limited number of tokens. Feature 1 has a smaller
number of tokens, but its lower nPIR leads to a lower FIS. Feature 3, on the contrary, has a
higher nPIR but includes much more tokens, hence having a lower FIS too.

Thus, MLWE can be viewed as a heuristic that exploiting the inner information of the
model, figures out exactly the group of tokens that influenced mostly the original input
prediction in a reasonable amount of time. Indeed, in theory, the best possible solution (i.e.,
the smallest amount of tokens that mostly influenced the prediction) could be found by
exploring all the n-combinations of tokens for each n in the range [2, ntk] (where ntk is the
number of tokens in the input text) and taking the one that maximizes a performance metric
such as the FIS score. For instance, if an input text contains 100 tokens, it would be necessary
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to explore and evaluate all the two-combinations, three-combinations up to 100-combinations
of 100 input tokens, making the problem unfeasible, especially for long texts.

Therefore, to evaluate the effectiveness of the MLWE, we compare its performance with a
Random feature extraction method. The Random feature extraction creates several features,
each composed of a group of nr random tokens, with different sizes (i.e., number of tokens)
in the range nr ∈ [1, nr_max] where nr_max is set to 80% of the total tokens of the input
text ntk . Specifically, for each nr value, it creates five random features, each composed of
a different group of nr random tokens selected from the input text. For instance, if an input
text has 100 tokens, the Random feature extraction creates five features composed of one
random token, five features each composed of a group of two random tokens, up until five
features each composed of a group of 80 random tokens. We chose to create five features
for each random feature size nr value in the specified range because, with these settings, the
Random feature extraction creates at least 5 times more features thanMLWE. Consequently,
it has a clear advantage in the comparison at the cost of more computational power. Thus,
we want to see if, selecting a random subset of all the possible solutions (i.e., the random
features of different sizes are a subset of all the possible combinations of tokens), where the
cost of extracting and evaluating the influence of these random features is much higher with
respect to theMLWE (i.e., higher computation time), themost influential features founded by
the MLWE are more effective in terms of influence and compactness (i.e., nPIR and tokens
ratio).

We experimented on BERT-IMDB and BERT-Ag News since BERT-Cola contains very
short sentences, which was not meaningful for our goals. We produced the local explanations
with both the MLWE and the Random feature extraction from 512 input documents for each
task. ForBERT-IMDB, about 230 thousand features have been producedwith nP I R_mean =
0.1 (about 460 for each input). Instead, for BERT-Ag News, about 91 thousand features have
been produced with nP I R_mean = 0.07 (about 185 for each input). This shows that simply
removing some random groups of tokens to obtain a high nPIR value would be insufficient,
hence the need to carefully and smartly select the tokens. However, as expected, due to the
large number of features extracted from each input text, some Random features obtain a high
nPIR score by chance. For each input text, we selected themost informative local-explanation
extracted with the Random feature extraction method exploiting the same formula used by
the MLWE (Eq. 9).

To understand the effectiveness of the MLWE, we compared the percentage of selected
tokens ratio (i.e., the number of tokens of the feature with respect to the total number of
tokens in the input) belonging to the very high influential features (nP I R ≥ 0.9) extracted
by MLWE and Random on the two tasks.

Figure 12 shows the CDF (Cumulative Distribution Function) of the very high influential
features with respect to the percentage of tokens. The chart shows that T- EBAnO with
MLWE finds very high influential features selecting fewer tokens with respect to the Random
feature extraction method. Indeed, looking at the CDF, the 75% of very high influential
features (i.e., nP I R ≥ 0.90) found by MLWE (blu lines) on IMDB and Ag News contains,
respectively, less than 35% and 50% of tokens. On the other hand, the 75% of very high
influential features found by Random (orange lines) on IMDB and Ag News contains less
than or equal to 55% and 70% of tokens. MLWE is then more effective in selecting a lower
number of more influential tokens.

We also compared the execution time of the MLWE and the Random feature extraction.
For the IMDB task, the MLWE feature extraction method is about 6 times faster than the
Random approach, with 35 seconds per input versus 215 seconds per input, on average. For
the Ag News task, the MLWE feature extraction method is about 4.5 times faster than the
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Fig. 12 CDF of tokens percentage ratio (i.e., percentage of feature tokens over total input tokens) for very
high influential features (i.e., features with nP I R ≥ 0.9) extracted with T- EBAnO-MLWE and Random,
separately for BERT-IMDB and BERT-Ag News

Random approach, with 10 seconds per input versus 46 seconds per input, on average. By
exploiting the inner knowledge learned by the model, the MLWE feature extraction method
provides higher effectiveness and efficiency with respect to searching random features. The
MLWE approach finds high influential features containing a lower percentage of tokens and,
at the same time, reduces the execution time.

6.7 Hyperparameters evaluation

We evaluated the impact on the most informative local explanation produced by the Multi-
layer Word Embedding feature extraction (MLWE) by changing the hyperparameters α and
β of the Feature Informative Score (FIS) computation. We recall that α and β sum up to
one and weights the influence (nPIR) and the compactness (1 - tokens ratio), respectively,
in the Feature Importance Score (FIS) computation (Eq. 9). The tokens ratio is computed
as the number of tokens in the feature over the total number of tokens. The objective of Eq.
9 in the unsupervised clustering analysis is to maximize the influence (nPIR) and minimize
the number of tokens inside the most influential cluster of each k division. Thus, the most
influential clusters founded will change based on these hyperparameters.

We used the BERTmodel fine-tuned for topic classification onAgNews dataset (Use cases
3 in Table 4) for this purpose. We randomly selected 512 input texts from the dataset, and we
produced the local explanations with T- EBAnO. Table 12 shows the mean nPIR and tokens
ratio for different α and β values for the most informative local explanations extracted by
T- EBAnO (i.e., with max FIS score). Specifically, for each local explanation of each input
text, we selected the most informative explanation, and we averaged the tokens ratio and the
influence (nPIR) of the most influential features over the entire dataset.

On the one hand, with smaller α values (0.2 and 0.3), and respectively high β values (0.8
and 0.7), the most informative features founded by the MLWE have a low mean influence
(mean nPIR 0.31 and 0.45 respectively). But the most informative clusters are very compact,
being composed of only 11% and 15%. However, even if tiny clusters increase the compre-
hensibility of the explanation, they lack completeness because they select only a partial set
of the relevant tokens mostly used by the model for the original prediction.

On the other hand, greater α values (0.7 and 0.8), and respectively high β values (0.3 and
0.2), obtain larger nPIR mean values (close to 0.64) with the pain of larger clusters found.
However, the increase in the nPIRmean is too small compared with the cost of the increasing
size with respect to values of α ∈ [0.4, 0.5, 0.6] and relative β ∈ [0.6, 0.5, 0.4] values.
Indeed, they achieve a mean nPIR of 0.54, 0.59, and 0.61, with a mean tokens ratio of 21%,
24%, and 25%, respectively. Finally, the couple α = 0.3 and β = 0.7 values obtained an
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Table 12 Mean influence (nP I R) and mean selected tokens ratio (TokensRatio) in the most influential
explanations with different α and β values

Hyperparameter values

α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8
β = 0.8 β = 0.7 β = 0.6 β = 0.5 β = 0.4 β = 0.3 β = 0.2

nP I R 0.31 0.45 0.54 0.59 0.61 0.64 0.64

TokensRatio 11% 15% 21% 24% 25% 29% 31%

already good mean nPIR value of 0.45 with a very small percentage of tokens highlighted,
equal to 15%.

In conclusion, in this paper, we used α = 0.6 and β = 0.4 as default values because
they allow us to reach a good trade-off between the number of highlighted tokens and their
influence. Indeed, even if a clear best value does not emerge from this experiment, setting
α = 0.4 and β = 0.6 seems good to obtain small clusters with a strong influence. However,
other possible values could be useful in different scenarios. Thus, the final user can change
this parameter accordingly to specific needs.

6.8 nPIR correlation with human judgement

Toassess the quality of the explanations,which are selected byT- EBAnObased on their nPIR
value, we evaluate the correlation between the nPIR value and human judgment. The human
validation is performed by interviewing both expert and non-expert users with a survey2. The
survey contains local explanations extracted byT- EBAnO, and their nPIR value is compared
with the relevance assigned by the users. More precisely, we selected 12 input texts from Ag
News with BERT and eight input texts from the Toxic Comment use case with the LSTM
model. In such use cases, input texts are shorter and then more suitable for a survey. For
the purpose of this survey, we selected only correctly classified examples. For each input
text, we randomly picked one highly influential feature and one neutral feature extracted
by T- EBAnO. Those features are then presented to the user, who is requested to select
one option among "Very Relevant", "Relevant", and "Not Relevant" for each feature. The
main scope of the survey is to measure and evaluate the correlation between the influence
index (nPIR) and human judgment. However, we also indirectly validate the quality and
readability of the explanations produced by T- EBAnO: for correctly classified examples, if
the proposed explanations are effective and human-readable, then the user should understand
which features are important ("Relevant" or "Very Relevant") and which are neutral ("Not
Relevant").

Figure 13 shows the introductory example of the survey. In the first box (input text),
the user can read the original input text, the predicted label, and the probabilities of such
prediction computed by the NLP model. Then, two explanations are presented for each input
text, with the feature words highlighted in light blue. In total, at the time of writing, we
collected 4320 user evaluations from 108 participants (each evaluating 2 explanations from
20 input texts), with 76% being expert machine learning users, and 18% being also expert
users of Natural Language Processing with deep learning (as anonymously self-declared by

2 The link to the online survey is available in the T- EBAnO GitHub repository.
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Fig. 13 Survey’s introduction example

themselves in the survey). Participants have been invited among researchers and students of
PhD and Master courses in Computer Science.

To evaluate the correlation between nPIR and the human judgment, we assigned to each
question (that corresponds to an explanation/feature extracted byT- EBAnO) amanual score
of 0 if the user selected "Not Relevant", 0.5 for "Relevant", and 1 for "Very Relevant".

Figure 14 shows, for each of the 40 explanations (2 for each of the 20 input texts), the
nPIR assigned by T- EBAnO (the blue bars), and the mean relevance assigned by the 108
users (the red bars), according to the manual scores (the data are presented in descending
order ofHuman Score). The chart shows an explicit correlation between the nPIR assigned by
T- EBAnO for both influential and neutral features, for both tasks, topic detection and toxic
comment classification. This also implies that T- EBAnO produces effective and human-
readable explanations for the final users.

We also measured the inter-annotator agreement between the 108 annotators (survey
participants) by using each explanation as input (for a total of 40 annotations). Then, we
obtained only two possible labels by aggregating the "Relevant" and the "Very Relevant"
into the same label. We exploited the Krippendorff’s alpha coefficient3 [23] to measure the
inter-annotator reliability agreement. We obtained a Krippendorff’s alpha coefficient of 0.65,
denoting a good agreement between the 108 participants and the 40 explanations.

Additionally, we asked the participants (i) if the task of the survey was clear, as a self-
evaluation check: 44% answered 5 (max value), and 41% chose 4 out of 5; (ii) if the
explanations proposed by T- EBAnO were easy to understand, the answers from top (5)
to bottom (1) were distributed as follows: 34%, 45%, 18% 3%, and 0%.

6.9 Effectiveness evaluation with respect to model-agnostic techniques

In this section, we compare the effectiveness of theT- EBAnO-MLWEexplanationswith two
model-agnostic explainability techniques. Comparing explainabilitymethodologies is still an
open issue in the research community, as a definitive definition ofgood explanation ismissing.

3 It has been exploited the implementation in: https://github.com/LightTag/simpledorff.
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Fig. 14 Comparison between nPIR assigned by T- EBAnO (blue bars) and mean human scores (red bars).
Questions are ordered by descending mean human score

However, explanations should have important properties such as:Fidelity,Comprehensibility,
Complexity, Effectiveness, Trustworthiness, etc.

We performed an experiment to evaluate the Fidelity and the Effectiveness of the explana-
tions proposed by T- EBAnOwith respect to two state-of-the-art model-agnostic techniques,
LIME4 [40] and SHAP5 [32].

To measure the Fidelity and Effectiveness of the proposed explanations, we removed the
words/tokens highlighted as important by the different methodologies, and we measured
the change in probability caused by this deletion. Basically, we are asking the following
questions:

1. Are the important words/tokens highlighted by the explainability techniques effectively
the ones used by the model to perform the original prediction?

2. How does the model prediction change if the highlighted words/tokens are not present in
the original text?

If removing the words/tokens highlighted by the explanation does not correlate with a
reduction in the probability of the original class label, then the selected words are not among
the important features used by the model to produce the original label. On the contrary, the
larger the probability changes, the more the model relied on those words/tokens to predict
the original label.

To make a fair comparison, we created features composed of the same percentage of the
most important tokens identified by the differentmethodologies. LIME assigns an importance
score to each token. However, it requires defining the percentage of themost important tokens
for the importance score. Therefore, we set this parameter so that the number of the most
important tokens for the class of interest is almost equal to the mean number of tokens
highlighted by the T- EBAnO explanations. Instead, SHAP assigns an importance score to
each token of the input text (Shapley Values [44]). Thus, we selected the most important
ones with the same percentage of T- EBAnO. In this way, we selected subsets with similar
cardinality and importance.

We chose as experimental use cases (i) a BERT model fine-tuned for sentiment analysis
with IMDB and (ii) a BERT model fine-tuned for topic classification on Ag News Subset.
We did not use the same models trained in Table 4 due to compatibility issues. We trained
two new models exploiting the HuggingFace6 library. The fine-tuned models reached 93%
and 95% accuracy on the validation set for IMDB and Ag News Subset, respectively. The

4 The LIME parameter number of permutations has been set to 5000.
5 The Partition Explainer version of SHAP has been used.
6 https://huggingface.co/.
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experiments were performed on a single node of the SmartData BigData cluster at Polito7.
The node contains two Intel Xeon Gold 6140 CPUs with 2.30 GHz frequency and 384 GB
of RAM. However, for the experiment, we limited the process to using only one CPU with
a maximum of 120 GB of RAM (without exploiting GPUs).

For the IMDB case, T- EBAnO-MLWE highlights on average about 20% of tokens, so
we also removed the top-20% of tokens selected by LIME and SHAP. We evaluated the
probability difference before and after removing the highlighted tokens for eachmethodology.
Removing the most influential tokens highlighted by T- EBAnO causes a mean decrease of
probability around 71%, the same removal for LIME causes a 48% probability drop on
average, and for SHAP, the mean probability decrease is 59%. We also compared the mean
execution time to produce an explanation. The IMDB dataset contains relatively long texts
and, on average, T- EBAnO took 38 seconds, while LIME 304 and SHAP 484 seconds.

For the second use case, on the Ag News dataset, T- EBAnO-MLWE highlights, on aver-
age, about 30% of tokens. We removed the top-30% of tokens selected by LIME and SHAP.
This time, removing the most important tokens yields a mean decrease of probability around
75% for T- EBAnO, 60% for LIME, and 61% for SHAP. The mean execution time to pro-
duce each explanation is lower because this dataset contains shorter sentences. Specifically,
T- EBAnO takes on average 4 seconds, LIME 239 seconds, and SHAP 16 seconds.

We notice that not only T- EBAnO is much faster than the other two methodologies
(approximately from 1 to 2 orders of magnitude), but also the explanations provided are
more faithful and effective, by highlighting as important tokens the ones that were the most
impacting for the prediction of the model under analysis.

7 Conclusion and future research directions

This paper proposed T- EBAnO, a new engine able to provide both prediction-local and
model-global interpretable explanations in the context of NLP analytics tasks that exploit
deep learning models. T- EBAnO’s experimental assessment includes different NLP classifi-
cation tasks, i.e., sentiment analysis task, comment toxicity, topic classification, and sentence
acceptability, performed through state-of-the-art techniques: fine-tuned models like BERT,
ALBERT, and ULMFit and a custom LSTM model.

Results showed that T- EBAnO can (i) identify specific features of the textual input data
that are predominantly influencing the model’s predictions, (ii) highlight such features to the
end-user, and (iii) quantify their impact through effective indexes. The proposed explanations
enable end-users to decide whether a specific local prediction made by a deep learning
model is reliable and to evaluate the general behavior of the global model across predictions.
Besides being useful to general-purpose end users, explanations provided by T- EBAnO are
especially useful for data scientists, artificial intelligence and machine learning experts in
need of understanding the behavior of their models since the extracted features, both textual
and numeric, are an efficient way to harness the complex knowledge learned by the models
themselves.

Future research directions include: (a) investigating new strategies for the perturbation of
the input features, such as new kinds of substitution perturbations, exploiting task-specific or
expert-driven directives; (b) integrating T- EBAnO in a real-life setting to measure the effec-
tiveness of the proposed textual explanations by real-world human evaluation; (c) extending
T- EBAnO to address new data analytics activities, such as guiding data scientists in applying

7 https://smartdata.polito.it/computing-facilities/.
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fine-tuned deep-learning models, explaining concept drifts, and providing insights on Adver-
sarial Attack countermeasures; (d) extending the proposed methodology and influence index
(i.e., nPIR) to new NLP tasks such as Question Answering and Named Entity Recognition.
(e) designing an XAI comparison methodology tailored to the NLP domain containing both
objective and subjective comparison criteria and applying it to compare T- EBAnO with
several XAI methodologies.
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