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Abstract
Within seismology, geology, civil and structural engineering, deep learning (DL), espe-
cially via generative adversarial networks (GANs), represents an innovative, engaging, and 
advantageous way to generate reliable synthetic data that represent actual samples’ charac-
teristics, providing a handy data augmentation tool. Indeed, in many practical applications, 
obtaining a significant number of high-quality information is demanding. Data augmen-
tation is generally based on artificial intelligence (AI) and machine learning data-driven 
models. The DL GAN-based data augmentation approach for generating synthetic seismic 
signals revolutionized the current data augmentation paradigm. This study delivers a criti-
cal state-of-art review, explaining recent research into AI-based GAN synthetic generation 
of ground motion signals or seismic events, and also with a comprehensive insight into 
seismic-related geophysical studies. This study may be relevant, especially for the earth 
and planetary science, geology and seismology, oil and gas exploration, and on the other 
hand for assessing the seismic response of buildings and infrastructures, seismic detection 
tasks, and general structural and civil engineering applications. Furthermore, highlighting 
the strengths and limitations of the current studies on adversarial learning applied to seis-
mology may help to guide research efforts in the next future toward the most promising 
directions.

Keywords  Seismic · Seismology · Earthquake engineering · Geophysics · Generative 
adversarial networks · Deep learning
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CADN	� Convolutional adversarial denoising network
CAE	� Convolutional auto-encoder
CAE-SAGAN	� Convolutional auto-encoder self-attention GAN
CDF	� Cumulative density functions
cGAN	� Conditional GAN
CNN-WDRND	� CNN with a weak dependence on real noise data
CNN	� Convolutional neural network
CO2	� Carbon dioxide
CSA-GAN	� Compressed sensing architecture GAN
cWGAN	� Conditional Wasserstein GAN
Cycle-GAN	� Cycle-consistent GAN
DAS	� Distributed acoustic sensing
DBSCAN	� Density-based spatial clustering of applications with noise
DCGAN	� Deep convolutional GAN
DD-CGAN	� Dual-domain cGAN
DDAE-GAN	� Deep denoising auto-encoder GAN
DeGAN	� Denoising GAN
DL	� Deep learning
GMcGAN	� Gaussian mixture conditional GAN
EEW	� Earthquake early warning
EMSC	� European Mediterranean Seismological Centre
EQGAN	� Earthquake GAN
ESeismic-GAN	� Ecuadorian volcano origin seismic GAN
ESM	� Engineering Strong-Motion
ESRGAN	� Enhanced super-resolution GAN
GAN-CDG	� GAN with compressive data gathering
GAN	� Generative adversarial network
GIN	� Generative inpainting network
GRU​	� Gated Recurrent Unit
IM	� Intensity measures
INGV	� National Institute of Geophysics and Volcanology
ITACA​	� Italian Accelerometric Archive
JMA	� Japan Meteorological Agency
LSTM	� Long Short-Term Memory unit
MEMS	� Micro-electro-mechanical systems
MKAR	� Makanchi Kazakhstan Array
ML	� Machine learning
MLP	� Multi layer perceptron
MSE	� Mean square error
NGA-West2	� Next Generation Attenuation-West2
NTC	� Italian National Techinical Code
PEER	� Pacific Earthquake Engineering Research Center
pix2pix GAN	� Pixels to pixels cGAN
PSNR	� Peak signal-to-noise ratio
RAGAN	� Relative attributes-based GAN
RCGAN	� Residual learning cycle-GAN
RED-Net	� Residual denoising convolutional encoder–decoder network
ReLU	� Rectified Linear Unit
RF	� Random forest
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RLU-net	� Residual Link Nested U-net
RMSE	� Root MSE
RNAi	� RNN with attention
RNN	� Recurrent neural network
SAGAN	� Self-attention GAN
SEAM	� 3D Seismic Advanced Modeling
SegGAN	� Segment-based cGAN
SGAN	� Semi-supervised GAN
SHAP	� Shapley additive explanations
SHM	� Structural Health Monitoring
SIGAN	� Seismic data interpolation GAN
SNR	� Signal-to-noise ratio
SSIM	� Structural similarity index measure
STFT	� Short-Time Fourier Transform
StructGAN	� GAN-based structural design framework
StructGAN-PHY	� Physics-informed StructGAN
SVM	� Support vector machine
t-SNE	� t-Distributed stochastic neighbour embedding
TF-cGAN	� Time frequency cGAN
U-GAT-IT	� Unsupervised generative attentional networks with adaptive layer-

instance normalization for image-to-image translation
UAV	� Unmanned aerial vehicl
U.S.A.	� United States of America
VAE-GAN	� Variational auto-encoder GAN
VGG	� Visual Geometry Group
VSP	� Vertical seismic profile
WCycle-GAN	� Wasserstein cycle-consistent GAN
WGAN-GP	� WGAN with gradient penalty
WGAN	� Wasserstein GAN

1  Introduction

In many practical applications, obtaining a significant number of high-quality data can be 
challenging for many reasons. However, adopting generative adversarial networks (GANs) 
in seismology, geology, or civil and structural engineering is a promising way to gener-
ate synthetic data reproducing actual samples’ characteristics. Data augmentation based 
on artificial intelligence (AI) and machine learning (ML) data-driven models is altering 
current paradigms rooted in e.g. synthetic finite element model-based simulations. Among 
them, valuable applications are related to the AI-based synthetic generation of ground 
motion signals and seismic events. To the authors’ knowledge, there are no review studies 
on using GANs in the seismic field. Therefore, the current work’s primary purpose is to 
provide a critical overview of the existing literature for the first time. This study hopes to 
help clarify and classify the existing studies, thus supporting the readers, researchers, and 
practitioners when approaching this area of research. The present document is organized 
as follows. Before moving toward the existing literature studies, an introduction to the cur-
rently available and current GAN models is provided in Sect. 2. Then, a general overview 
is provided in Sect. 3 according to the bibliometric records existing in Scopus until July 
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2022. A more comprehensive insight and discussion into the various literature records is 
finally provided in Sect. 4.

2 � Current GAN models

In 2014, for the first time the study entitled “Generative adversarial nets” (Goodfellow 
et al. 2014) appeared and echoed a revolution in the deep learning (DL) field. The authors 
introduced for the first time the novel architecture of GANs, which is based on adversarial 
learning and adopts two different models in the spirit of a minimax problem, as depicted in 
Fig. 1. Specifically, a first model called generator (G) produces new samples from random 
noise (latent space) which appear very similar to the real ones after training. It attempts 
to reproduce the probability distribution of real data. On the other hand, a second model 
called discriminator (D) distinguishes between real or fake data. This structure resembles 
the so-called minimax problem. It can be heuristically explained as a two-people zero-sum 
game (Wang et  al. 2017). In this game, at the end of the training phase, the total gains 
are zero for both the players, and the loss or gain of the utility of each player stalls to 
a balanced level. The game, therefore, stops when a Nash trade-off equilibrium has been 
reached. This means that the generator G learned so well the probability distribution of 
input data pdata(x) to produce a sample that the discriminator is no more able to distinguish 
from real ones (Ratliff et al. 2013). Thus, the optimal training of a GAN can be formulated 
as a minimax problem. In formulae, setting the probability of noise pz(z) , the generator 
performs a mapping G(z) between a differentiable function of learnable parameters. Paral-
lelly, the discriminator provides a mapping D(x) , which establishes the probability of x to 
come from the real data or the fake generated data. The main goal is, therefore, to solve 
an optimization problem in which D tries to maximize log[D(x)] , and on the contrary, G 
attempts to minimize log[1 − G(z)]:

where Ex∼pdata(x)
 stands for the expected values of all real data occurrence correctly classi-

fied from the D(x) , which assumes a likelihood meaning, and Ez∼pz
 is the expected value 

on all the fake samples generated by G(z) . In this way, they actually not require any use of 
Markov chains (Goodfellow et al. 2014).

GANs models have been further applied in many scientific and engineering sectors due to 
their decisive success in the research of generative models field. They have been employed 
both for supervised or semi-supervised applications (Ratliff et al. 2013), even for data aug-
mentations and synthetic data generation. When convolutional layers are used in the gen-
erator and discriminator sub-parts, the network is also acknowledged as deep convolutional 

(1)min
G

max
D

f (D,G) = Ex∼pdata(x)
{logD(x)} + Ez∼pz

{log[1 − G(z)]},

Fig. 1   Schematic example of a generic GAN model architecture
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(DCGAN) (Radford et al. 2015). Despite the young age, many variants of GANs have already 
been proposed in the literature. The two most famous architectures are the conditional GAN 
(cGAN) (Mirza and Osindero 2014), based on conditional supervised learning, and the Was-
serstein GAN (WGAN), which is based on the computation of a distance measure between the 
real and fake generated data distributions (Arjovsky et al. 2017). In cGAN, the discriminator 
input comes from two domains, x, which is the data, and y, the generator output. The optimal 
min-max optimization scheme for this network is, as usual, related to the optimal arguments, 
which minimize the loss function LcGAN(G,D) for the generator and maximize the loss func-
tion LcGAN(G,D) for the discriminator, and can be expressed as

The optimum G∗ for cGAN are obtained by training alternatively the generator and the dis-
criminator for a few iterative cycles (Oliveira et al. 2018a).

GANs can be also structured by adopting auto-encoders (AE), see Exterkoetter et  al. 
(2018). The AEs are typically composed of two distinct parts. The foremost is called encoder 
and consists of a learnable feature extractor to map the input x to a more compact and com-
pressed representation y , generally expressed as

where W is the weight matrix, b is the bias term and s(∙) = 1∕(a + e−∙) is the sigmoid func-
tion. On the contrary, the decoder part of the AEs non-linearly maps the input compressed 
representation y to the reconstruction vector z , which aims to reproduce again the original 
input x , and generally expressed as

The training is conducted by minimizing the reconstruction error between x and z , e.g. 
adopting a squared error or cross-entropy loss function (Exterkoetter et al. 2018). Based 
on AEs, the variational auto-encoders GAN (VAE-GAN) have been firstly introduced in 
Larsen et al. (2016). When the training of a GAN becomes hard and unstable due to van-
ishing gradient or its explosion, Arjovsky et al. (2017) proposed the model acknowledged 
as Wasserstein GAN (WGAN) by modifying the Jensen–Shannon divergence with the 
Earth-mover distance to account a sort of distance measure between the real and fake gen-
erated data distributions. Moreover, the WGAN should satisfy the 1-Lipschitz conditions, 
i.e. the output of the discriminator does not change excessively when the input changes. 
However, these improvements do not mitigate this issue since they introduce additional 
optimization difficulties. Therefore (Gulrajani et al. 2017) proposed a WGAN with gradi-
ent penalty (WGAN-GP), denoting � as a penalty coefficient and ∇ indicates the gradient 
operation, to maintain the stability during the optimization:

(2)G∗ = argmin
G

max
D

LcGAN(G,D)

(3)
LcGAN(G,D) = Ex,y∼pdata(x,y)

{logD(x, y)}

+ Ex∼p(x),z∼pz
{log[1 − D(x,G(x, z))]},

(4)y = s(Wx + b)

(5)z = s(WTy + b)

(6)
min
G

max
D

f (D,G) = Ex∼pdata(x)
{D(x)} − Ez∼pz

{D(G(z))]}

− �Ex∼ps[(‖∇xD(x)‖2−1)2]
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The new loss function is based on an additional term accounting for an implicit distribu-
tion ps obtained by uniform sampling between pdata and pmodel , under the assumption of a 
“straight line” between them.

In later studies, Salimans et al. (2016) proposed in 2016 an innovative improvement 
of the GAN technique with a semi-supervised learning process, better acknowledged 
as SGAN. Considering a multi-class classifier with K possible classes, the output after 
the final softmax layer is a K-dimensional vector in which each element represents the 
probability of belonging to each class. Therefore, in supervised learning, the model is 
based on cross-entropy minimization between the ground truth labels and the model 
predictions, whose distribution is denoted as pM(y|x) . The main innovation of these con-
tributions (Odena 2016; Salimans et  al. 2016) is the adaptation of GAN to work also 
with a great amount of unlabelled data, i.e. in a semi-supervised learning approach. The 
synthetic generated data represent a new class for the multi-class discriminator clas-
sifier, which has, in total K + 1 classes. Therefore, three input typologies are possible 
for the discriminator (Li et al. 2019a): true labelled data xL from the real dataset, unla-
belled data xU still coming from the real dataset, and synthetically generated data G(z) . 
Thus, pM(y = K + 1|x) indicates the probability that the discriminator recognizes fake 
generated data, which is related to the term 1 − D(x) in the original GAN loss statement. 
Therefore, adding the generated data to the initial dataset which contains both labelled 
and unlabelled data, the loss function to train the discriminator classifier becomes:

In this way, the discriminator loss has been decomposed into two contributions. The 
model can train and learn directly from unlabeled data, assuming that these data corre-
spond to one of the K possible classes. The unsupervised loss may be rewritten considering 
pM(y = K + 1|x) = 1 − D(x) , eventually obtaining a formally identical min-max problem 
loss function

Another typical problem is the image-to-image translation which attempts to find a map-
ping function G ∶ X → Y  from a domain X to an output domain Y, exploiting available 
images in pairs for the training process. However, CycleGAN proposed in Zhu et al. (2017) 
attempts to find out this mapping without having paired images, exploiting, on the other 
hand, the inverse mapping F ∶ Y → X . This involves a cycle consistency loss, from which 
the name CycleGAN. This variant approximates a bijective inverse function to obtain the 
original sample F(G(X)) ≈ X . Moreover, it exploits transitivity to supervise and regularize 
the training process (Zhu et al. 2017).

Combining self-attention mechanism and GANs, the authors in Zhang et al. (2019a) 
developed the SAGAN model which provided long-range dependency modeling for 
image generation task with an attention-driven way both for the generator and the 
discriminator.

(7)L = Lsupervised + Lunsupervised

(8)Lsupervised = −ExL ,y∼pdata(xL ,y)
log

[
pM(y|xL, y < K + 1)

]

(9)
Lunsupervised = −ExU∼pdata(xU )

log
[
1 − pM(y = K + 1|xU)

]

− Ez∼pz
log[pM(y = K + 1|G(z))]

(10)Lunsupervised = −
{
Ex∼pdata(x)

log [D(x)] + Ez∼pz
log

[
1 − D[G(z)]

]}
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The illustration presented in Fig. 2 depicts the timeline and relative relationships of the 
critical breakthrough developed GAN variants analyzed in the current review study. Fur-
ther comprehensive and deeper insights on GANs from the algorithm, theory, and applica-
tion perspectives can be found in Gui et al. (2021).

3 � A global literature overview

The authors used the Scopus literature search service with the queries “generative adver-
sarial network” and “seismic” extended to the title, abstract, and keywords bibliographic 
fields (TITLE-ABS-KEY). The search yielded about 138 documents up to July 2022. See 
the cumulative curve in Fig. 3. Given the relatively recent arrival of GANs in 2014, Fig. 3 
displays how the research topic began to earn considerable engineering interest in 2018. 
It is still rising and maturing. Indeed, except for this year, 2022, which has not ended, the 
research lies in this curve’s growing branch, exhibiting a fairly linear growth. This moti-
vates the aim of the current study, i.e. attempting to outline and critically discuss the adop-
tion of the most recent DL techniques, especially the GANs models, in generating synthetic 
seismic signals in a new AI-based seismic data augmentation perspective. Figure 4a high-
lights that the majority of the studies belong to the Earth and Planetary Science Scopus 
category (about 52.9% of the total 138 documents), and the Engineering area represents 

Fig. 2   GANs main variants 
timeline

Fig. 3   Number of documents published from 2018 until July 2022 retrieved from Scopus search service 
with query “generative adversarial network” and “seismic” for titles, abstracts and keywords query system 
(TITLE-ABS-KEY)
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only about 17%. The Computer Science field appears as third (about 10.7%). These results 
evidenced the fundamental interconnection among these sectors, with fruitful competen-
cies from geology, geophysics, and structural engineering, all connected by the same AI 
and ML approaches retrieved from the computer and science field. Figure 4b proves that 
most of the considered studies are journal articles (about 50.7%) or conference papers 
(about 44.9%) and only the 2.9% is related to review papers. Therefore, few works have 
been developed, not enough to exhaustively discuss the most recent developments in the 
AI-based generation of synthetic seismic signals. Finally, the Pareto chart in Fig.  5 rec-
ognizes China as the most prolific country in this field (about 57 published documents), 
followed by the U.S.A. (about 35 papers). Italy is placed as the 8th country in the current 
ranking. The first ten main countries represent a percentage of about 80% in the cumulative 
frequency value of the overall literature on this topic.

Fig. 4   a Pie chart of the main area of recent years studies. b Pie chart of the main document type of recent 
years studies. Data retrieved from Scopus search service with query “generative adversarial network” and 
“seismic” for titles, abstracts and keywords query system (TITLE-ABS-KEY) from year 2018 until July 
2022

Fig. 5   Pareto chart of the number of documents published on Scopus related to the most active countries, 
with a limit placed to 80% of the cumulative frequency. Data retrieved from Scopus search service with 
query “generative adversarial network” and “seismic” for titles, abstracts and keywords query system 
(TITLE-ABS-KEY) from year 2018 until July 2022
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4 � Comprehensive literature critical discussion

The current section presents a detailed and critical review of the existing literature studies 
tied by the fil-rouge of the GANs applied to the seismic field. In Table 1 a synthesis of all 
the studies analyzed in the current work has been listed, whereas Fig. 6 depicted a litera-
ture overview with a pictographic bubble graph. These works have been gathered in two 
main categories or macro-areas, respectively denoted as earthquake engineering applica-
tions, see in detail 4.1, and geophysical studies involving the seismic phenomena, see in 
detail 4.2.

4.1 � Seismology and earthquake engineering studies

4.1.1 � Earthquake early warning systems

The GAN architecture represents an innovative model to solve engineering problems in 
seismology and earthquake engineering, as schematically represented in Fig. 7. The pre-
vention actions against safety threats due to earthquake events start attempting to detect 
events as early as possible they strike major population centres. However, false alerts of 
earthquake early warning (EEW) systems may cause a reduction of public confidence in 
those systems and unnecessary economic loss. These false alarms may be caused by impul-
sive noise events, both of natural origin, teleseismic signals, instrumentation malfunctions, 
or anthropogenic activities in the proximity of the EEW system. In Li et  al. (2018), the 
authors successfully exploit the GAN model to automatically analyze the features extracted 
from broadband, and strong motion primary waves (P-waves) recorded in southern Cali-
fornia and Japan. The GAN learned the statistical characteristics of real P-waves examples 
and offered, in this case, an interesting compact representation of the seismic waves, cru-
cial for the subsequent classification task. Indeed, they combined the trained discrimina-
tor with a random forest (RF) classifier to categorize actual seismic P-waves events from 
noise sources. Because of the statistical learning of the input earthquake P-waves, the 
GAN generator represented, in this case, a relevant tool for seismic signal synthesis for 
AI-based data augmentation in seismology applications. Despite the advantage of avoiding 
complex physical modelling of the P-wave source and wave propagation, the main draw-
back is the problematic interpretation of the features automatically extracted by the GAN 
discriminator. In Kim and Torbol (2019), synthetic seismic time histories were produced 
to perform a dataset augmentation for subsequent practical training of EEW systems. The 
authors employed WGAN with a gradient penalty. Acceleration waveform data from the 
Japan Meteorological Agency (JMA) have been used for the model training. The records 
selected exhibit a magnitude greater or equal than 3, expressed in the Japanese MJMA scale 
(Bormann et al. 2013). Since the various data present different lengths, every input to the 
network has been standardized and near-zero padded, and its amplitude normalized. The 
authors attempted to graphically show the effectiveness of the trained WGAN comparing 
the similarities of the artificial seismic signals with respect to the real ones and also com-
paring their features, i.e. waveform shapes and amplitude ranges. In Meier et  al. (2019) 
five different DL classifiers have been examined to compare AI-based classifiers with tra-
ditional real-time EEW algorithms, denoted as on-site classifiers. The authors analyzed a 
fully-connected multi-layer perceptron (MLP) with a rectified linear unit (ReLU) activa-
tion, a recurrent neural network (RNN) (Elman 1990; Pineda 1987; Werbos 1990), an RNN 
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with attention (RNAi), a CNN and a GAN with RF classifier (GAN+RF), adopting pre-
cisely the model exposed in Li et al. (2018). In Meier et al. (2019), the authors adopted the 
gated recurrent unit (GRU) cell, which adds a sort of “memory” to the RNN (Cho et al. 

Fig. 6   Bubble graph representing the existing literature classified according to their applications and cat-
egorized between the two identified macro-areas, i.e. earthquake engineering and geophysical studies. Each 
bubble has a size (radius) proportional to the number of existing literature studies

Fig. 7   Main research activities in earthquake engineering involving GANs
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2014; Chung et al. 2014). On the other hand, the RNAi employs a weighting vector (i.e. the 
attention) to the input vector at each recursive iteration of the gated RNN structure (Meier 
et al. 2019; Mnih et al. 2014; Bahdanau et al. 2014). The attention is highly informative 
for sequence data and is based on novel techniques like the neural transformers (Vaswani 
et al. 2017). The considered dataset was composed of signals cropped around their peak, 
and sixteen statistical features were extracted for diagnostic purposes, comparing the uni-
formity of the information in evaluating the cumulative density functions (CDF) for the 
magnitude of the seismic events and the hypocentral distance. A comprehensive discussion 
on precision-recall graphs focused especially on teleseismic signals and how they mini-
mized the false positive alerts, while almost zeroing the false negative rates. The authors 
demonstrated that the more complex models directly trained on raw seismic signals which 
also automatically learn the feature extraction, i.e. the CNN and the GAN+RF, remarkably 
outperform the simpler classifiers in terms of reliability of the real-time EEW system even 
with high-noise data. In Wu et al. (2021), a GAN model has been combined with an RNN, 
specifically the long short-term memory (LSTM) unit, to leverage the attention mechanism. 
The resulting model has been named by the authors EQGAN since it was able to gener-
ate realistic seismic signals and the recurrent part captured long-term and short-term fea-
tures and information provided by the time-history nature of the seismic sequences. In this 
contribution, the authors adopted popular, low-quality, low-cost micro-electro-mechanical 
systems (MEMS) sensors. However, they are usually characterized by high SNR because 
they are polluted by various sources of noise, e.g. by the sensor itself or noise of anthro-
pogenic origin. The EQGAN is composed of an encoder (generator) and a decoder (dis-
criminator) parts, adopting regularization techniques such as the Wasserstein distance and 
spectral normalization. To prove the reliability of the EQGAN, five different evaluation 
schemes have been proposed: visual inspection, frequency domain comparisons through 
the fast Fourier transform (FFT) signal processing, paired scatter plot, autocorrelation, and 
kernel density estimations of the distributions of actual, noise, or synthetic data points, sta-
tistical indexes computation such as mean square error (MSE), mean absolute percentage 
error (MAPE), and computational complexity comparisons with other DL models. For the 
sake of improving the quantitative evaluation of the robustness of the generated synthetic 
seismic signals, the authors proposed to adopt statistical screening and assessments based 
on the high-throughput screening theory (Malo et al. 2006), which was highly consistent 
with the distribution of seismic data pattern. In Liu et  al. (2022a), the authors adopted 
a GAN model for discriminating between earthquake events and microtremors within an 
EEW context. The authors defined microtremors as continuously weak non-earthquake-
induced vibrations monitored by the seismic sensors, i.e. referring in short to noises due 
to natural or anthropogenic sources. The authors adopted an MLP for the generator and a 
CNN for the discriminator, training their architecture on strong seismic events in Japan. 
In a later study, the same authors proposed an improvement of their previous contribution 
in Liu et al. (2022b). Specifically, the authors integrated the GAN with a support vector 
machine (SVM) classifier (Cortes and Vapnik 1995). The authors leveraged the advantage 
of a two-step procedure, i.e. firstly, training the GAN to provide an excellent feature extrac-
tor and, secondly, conducting the seismic detection task separately. In Li et al. (2021a), the 
authors adopted a DCGAN combined with an LSTM network to deliver a discriminator 
model able to distinguish seismic signals from noise ones within complex ambient noises, 
e.g. in nuclear explosion monitoring which blast events are discriminated from seismic 
ones. Firstly, the DCGAN model was trained based on seismic data from the international 
monitoring system array MKAR (Mikhailova and Sokolova 2019). Then, the dataset was 
preprocessed to extract six real seismic P-wave, and S-wave phases (Storchak et al. 2003). 
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Thereafter, exploiting the feature extraction of the trained discriminator, this network was 
combined with an LSTM classifier to address the actual discriminative classification task.

4.1.2 � Synthetic generation and augmentation

For decades, researchers in the earthquake engineering field have aimed to efficiently detect 
seismic events to mitigate potential hazards and find earthquake-resistant design solutions. 
Many algorithms have been proposed to tackle this task, often requiring an extensive high-
quality dataset, time-consuming procedures, and seismic data covering extreme events 
characterized by high return periods. However, the number of seismic time-series data is 
limited and does not cover more than a half-century. Nowadays, current trends attempt to 
provide innovative solutions such as the synthetic generation and augmentation of seis-
mic signals. For the very first time, in Wang et al. (2019a), the authors adopted the GAN 
to generate artificial seismic signals. Despite real seismic signals being affected by many 
natural factors, they may be considered the summation of low-frequency seismic waveform 
and high-frequency noise. Moreover, they usually involve three spatial component signals 
(two planar and one vertical component). Therefore, the authors proposed EarthquakeGen, 
i.e. a combined model of cGAN and DCGAN whose generator works with three parallel 
pipelines to create a three-dimensional multi-frequency superimposed time-series resem-
bling the real seismic signals. The author demonstrated the effectiveness of the trained gen-
erator in synthetically generating new data which are different from the actual samples but 
with the same probability distribution. The synthetic data have been combined with the 
real ones to augment the existing dataset, demonstrating an accuracy improvement of the 
classifier. In Wang et al. (2021), the same authors extended the previous contribution by 
providing a new model named SeismoGen to generate synthetic and realistic seismic sig-
nals for data augmentation purposed for the detection of earthquake events. The authors 
pointed out the importance of generalization and robustness of the data augmentation pro-
cedure, warning about the risk of jeopardizing the semantic content of the original data if 
unrealistic synthetic signals are added to the original dataset. Their cGAN adopted three 
pipelines to generate three-component seismic signals separately, including P-waves and 
S-waves parts. Given the implemented GAN’s conditional structure, the model can synthe-
size labelled data with two different labels, i.e. background noise and earthquake signal. In 
conclusion, the authors warned about some limitations to be aware of. Since they adopted 
three stations in the Oklahoma region, the synthesized signals would probably reflect only 
seismic events, which are likely to occur in this specific region. Moreover, since an inner 
imbalance lives in existing databases due to a limited number of records with low epicen-
tral distance, the GAN model output may also reflect this bias. Furthermore, the authors 
underlined that their approach was utterly data-driven. To improve the generalization 
capabilities of the DL model, introducing prior knowledge or emphasizing physical con-
straints may provide a more reliable and effective physics-informed ML model. In Li et al. 
(2020b), the authors proposed a GAN-based method to artificially generate time series that 
resemble realistic seismic signals. The main goal was to produce a high-quality data aug-
mentation procedure in multiple domains to train subsequent ML models to detect earth-
quake events. Traditional ML data augmentation procedures involve simply shifting, flip-
ping, and scaling training data. However, these trivial procedures are not robust because 
they may not capture the actual sequence structure of training data or maintain diversity, 
especially for time series data types. In contrast to Wang et al. (2019a) where three sepa-
rated pipelines have been employed for each channel of three-dimensional seismic signals, 
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in this contribution, only a single GAN with CNN gated structure was able to produce 
three-dimensional outputs. Specifically, the generator was composed of a 1D CNN part to 
capture the overall relationship along the time axis, and a gated CNN part with gated linear 
unit activations (Dauphin et al. 2017) to address the sequential and hierarchical structure 
of the time series. The discriminator was instead a 1D CNN structure, denoted as Conv-
QuakeNet (Perol et al. 2018). The training set was composed of recorded seismic events 
with a magnitude greater than three, collected from the Korea Meteorological Administra-
tion stations. The performance has been evaluated with two approaches: visual and with 
ConvQuakeNet. Moreover, the authors showed the frequency content through the spectro-
grams of the generated and real signals. This comparison was missing in previous works 
(Wang et al. 2019a). The same authors in Li et al. (2020a) adopted a cGAN for synthetic 
earthquake generation to provide a data augmentation tool. The model consists of 3 parts: 
a generator with an encoder-decoder U-net structure, a discriminator with a CNN structure, 
and a pre-trained CNN feature extractor not present in the optimization training process. 
In addition to the adversarial loss, the authors also considered the content loss, i.e. the 
MSE between the actual and synthetic feature maps. The goal was to retain the consist-
ency of high-level features, considering a weighted content loss with the adversarial one. 
The generated artificial signals were evaluated by visual inspection criterion and a time-
frequency domain analysis through the Short-Time Fourier Transform (STFT), proving a 
high degree of similarity with the real data. The authors in Gatti and Clouteau (2020) con-
ceived an innovative and comprehensive study for a more reliable generation of synthetic 
ground motions for digital twins of the earth–structure systems oriented to seismic risk 
assessment by leveraging the adversarial framework offered by WGAN. Specifically, the 
main idea was to integrate and combine physics-based simulations with actual recorded 
seismic data provided by existing databases. The authors detailed the mathematical frame-
work for this hybrid method, exploiting information obtained from the feature extraction of 
variational auto-encoders (VAE) and GAN to give a more compact latent space represen-
tation with hidden variables. These meaning features have been encoded into a Gaussian 
manifold known distribution connected with the low-dimensional latent space through a 
nonlinear stochastic process. The proposed procedure blends with the Bayesian estimation 
theory since the learning process is based on the adversarial learning of joint probabil-
ity distributions between generated latent variables conditioned by available seismic data. 
Therefore, this process is acknowledged as adversarially learned inference with conditional 
entropy (ALICE) (Li et al. 2017). For the sake of validation of the entire methodology, the 
visual inspection of generated results was insufficient. Thus, the authors adopted statistical 
goodness-of-fit metric criterion to measure the level of agreement between original and 
synthetic reconstructed signals based on both fit in the envelope, phase or arrival time. 
The resulting artificial seismic signals proved that physics-based simulation results provide 
enough information to condition the stochastic generator properly.

Many structural collapses during earthquake events occur at the mainshock shaking 
event and often during the numerous aftershock (AS) events that act on partially damaged 
structures. To characterize seismic events in traditional seismology, it is necessary to ana-
lyze three main variables, i.e. the frequency, the magnitude, and the occurrence time. Three 
acknowledged relationships among these fundamental variables are at the very foundations 
of seismology: Omori’s law (Omori 1895), Gutenberg–Richter law (Gutenberg and Richter 
1944), and the Bath law (Båth 1965). However, earthquake engineers are interested in the 
amplitude, spectrum, and duration of a ground motion, which express intensity measures 
(IMs) associated with that event to evaluate the structural impact of AS events. In Ding 
et al. (2020), the authors leverage the cGAN predictive capabilities to develop a predictive 
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model of the IMs for some mainshock events and the corresponding AS seismic data 
recorded by the Pacific Earthquake Engineering Research Center (PEER) and stored in the 
Next Generation Attenuation-West2 (NGA-West2) database. Specifically, the implemented 
model was a cGAN which also exploited WGAN to provide stability during training. The 
authors identified 33 different IM variables in terms of peak displacement, velocity, accel-
eration, and time duration. Since these IMs act as random variables, there was no well-
established mathematical framework to establish a direct relationship to predict the IM’s 
magnitude starting from mainshock and AS seismic data. On the other hand, the cGAN 
model offered the possibility to perform such high-dimensional data distribution correla-
tion conditioned by real data availability and even accounting for the stochastic nature of 
the underneath phenomenon. The same authors in a later study (Ding et al. 2021) adopted 
the cGAN model to deliver a DL predictive model for assessing the spectral acceleration 
of aftershock seismic events starting from the information of mainshock events. One of the 
most adopted traditional methods in seismic hazard analysis is the prediction of ground 
motion equations. However, this method was designed especially for mainshock events; 
thus, applying it to aftershock events may not correctly capture their spectral characteristics 
and any relationship with the related mainshock event. Therefore, the authors leveraged DL 
models to address this predictive task, focusing on the deterministic model deep MLP archi-
tecture with three hidden layers and the stochastic cGAN model. The input data consisted 
of eight indicators extracted by the mainshock events, e.g. spectral acceleration, hypocenter 
depth, fault mechanism, average shear-wave velocity in the top 30 m, and others. The pre-
dicted outputs for the aftershock events were spectral accelerations. The authors validated 
the obtained results by checking five statistical indices acting as performance indices, i.e. 
correlation coefficient, performance parameters, root mean squared error (RMSE), mean 
absolute percentage error and mean absolute error. In Matinfar et  al. (2022) the authors 
adopted a DCGAN to provide, for the first time, a synthetic ground motion acceleration 
generation respecting the spectral compatibility with a given target design spectrum. In 
the nonlinear analysis of structures, artificial ground motions are usually employed. How-
ever, the resulting response must respect a target defined by the structural codes to provide 
a realistic analysis. In structural engineering to respect this task, usually more than one 
input accelerogram is analyzed for nonlinear time history dynamic analyses, and the codes 
usually prescribe their number: ASCE 7–16 requires the use of 11 records as the mini-
mum number, whereas Italian national technical code NTC2018 requires the minimum use 
of 7 accelerograms. Thus, the average response spectra of the different artificial accelero-
grams adopted must respect spectral compatibility within a certain tolerance. Therefore, 
the authors adopted a limited number of spectral-compatible ground motions as a training 
set for their DCGAN model. The authors employed Hancock’s wavelet algorithm Hancock 
et al. (2006) to adapt their earthquake database to match the desired target response spec-
trum. In Grijalva et al. (2021), the authors proposed a model denoted as ESeismic-GAN to 
provide data augmentation for generating synthetic seismic signals for volcano events. Spe-
cifically, volcano origin event signals have been studied: long-period earthquakes and vol-
cano-tectonic earthquakes. The authors implemented a modified DCGAN to flatten to 1D 
convolutional layers both for the generator and discriminator. The time-series training data 
comes from a publicly available dataset referred to Cotopaxi Volcano in Ecuador, and they 
have been preprocessed in the frequency domain with the FFT algorithm. The magnitude 
response was collected and fed to the GAN model to generate new magnitude responses 
based on features and information from input data. A new synthetic time series was gener-
ated by combining the generated responses with actual phases extracted during the FFT 
preprocessing and adopting the inverse FFT algorithm. To provide a better evaluation of 
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the GAN during training and even for the generated seismic signals, the authors adopted 
the Fréchet distance metric (Heusel et  al. 2017), which established the similarity degree 
between the two distributions. In Florez et al. (2022) a WGAN was adopted to synthesize 
realistic three-component ground motion events accelerograms conditioned on a set of con-
tinuous physical variables, i.e. magnitude, distance, and shear wave velocity. The quality of 
generated signals was assessed in a statistical sense using the common engineering ground-
motion intensity measures, and inspecting both time (average acceleration envelopes) and 
frequency (average Fourier amplitudes) domains. In the novel study (Esfahani et al. 2022), 
the authors simulate non-stationary ground-motion recordings leveraging information con-
tained in the frequency domain and, inspired by Florez et al. (2022), even incorporating 
physics-based knowledge, i.e. distance, magnitude, and shear wave velocity. Specifically, 
the authors developed a time-frequency conditional GAN (TF-cGAN), which appears inno-
vative and one of the most promising approaches nowadays. Indeed, the GAN is learning 
from the Fourier spectrum domain, i.e. inspecting the actual frequency components dis-
tribution in real data. Because of a phase retrieval approach, the generated time series are 
finally returned through the inverse Fourier transform, which seems to effectively capture 
valid information compared with traditional seismology simulation methods, such as con-
ventional ground-motion prediction equations.

4.1.3 � Earthquake engineering applications

Before concluding this section dedicated to earthquake engineering, some studies 
focused on GAN for specific seismic-related engineering applications are presented in 
the following. For instance, in Fan et al. (2021), the authors adopted a segment-based 
cGAN named SegGAN for vibration-based continuous structural health monitoring 
(SHM). In particular, the model was trained to effectively reconstruct lost structural 
responses under external, operational, or seismic loading conditions in a data-driven 
method. Since a limited and finite number of sensors are usually placed on a structure, 
the monitoring system can collect information from a limited number of degrees of free-
dom. Therefore, any malfunctioning or technical issue may produce a low-quality vibra-
tion response loss, jeopardizing the health monitoring task. Thus, the SegGAN proved 
its effectiveness in reconstructing dynamic structural responses under operational condi-
tions by analyzing features and intra-channels correlations. Furthermore, conditioned 
inputs helped the generator to extract features robustly and reliably. The authors demon-
strated the ability of SegGAN to deal with numerically simulated responses with high 
levels of noise under seismic conditions, and finally, they tested the SegGAN on an 
experimental steel structure and comparing with other DL models, i.e. a DenseNet (Fan 
et al. 2021) and a CNN. In Yamada et al. (2021), the authors adopted a DCGAN to pro-
vide a vision-based algorithm for automatically classifying seismic damages in timber 
houses in Japan. DL models may help to speed up visual survey operations by automati-
cally detecting and quantifying damage in panoramic images. The authors proposed the 
integration of classification, detection, and segmentation to correctly identify damage 
with a rectangular frame, classify the damage typology and define the degree of damage. 
Since post-earthquake damaged photographs of timber detached houses are limited, the 
authors adopted GAN for data augmentation. Another compelling application of GAN 
in earthquake engineering is related to the study (Liao et al. 2021), in which the authors 
adopted a pix2pix GAN to deliver an automatic conceptual design proposal for shear 
walls in high-rise residential buildings. The optimal planar arrangement of shear walls 
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represents one feasible solution to provide enough lateral stiffness for high-rise and tall 
buildings during earthquake conditions. However, the design and planar placement of 
these reinforced rigid vertical elements are challenging. It is desirable that their stiffness 
distribution would not move the center of rigidity, also acknowledged as the center of 
torsion, excessively far from the center of the mass of each floor. Otherwise, detrimen-
tal torsional issues arise (Fares 2019). The authors leveraged the GAN capabilities to 
learn from architectural–structural design documents of existing shear wall buildings. 
These documents were properly prepared by adopting a semantic process to associate 
different color patterns with every structural element in the design drawing documents. 
The authors adopted two different methods to evaluate the design generated by their 
model, named StructGAN. The first one is a human-based metric based on engineering 
judgment defined from scores assigned by expert and non-expert engineers. The second 
evaluation method is referred to more objective computer vision metrics such as pixel 
accuracy, shear wall ratio, or weighted intersection over union (Rezatofighi et al. 2019). 
Eventually, the authors provided a finite element model of two StuctGAN designs to 
prove the overall design performance. The StuctGAN permitted the production of the 
first synthetic preliminary design framework, reducing the time-consuming traditional 
design process. It may also be oriented toward structural optimization tasks, e.g., seis-
mic deformation (drift ratio) and material consumption. The same authors in Lu et al. 
(2022) improved their previous study by integrating the GAN framework for intelligent 
seismic resistance design of shear walls with a surrogate model which accounts for the 
physics behavior of the generated design. Notwithstanding these are the first prelimi-
nary works in the field of seismic design, the authors’ proposed physics-informed model 
named StructGAN-PHY appeared to be very promising to guide the generator training 
more smartly. In Kuurková et al. (2018), Ueda et al. (2018), the authors attempted to use 
WGAN-GP combined with VAE to learn the mapping of input data to latent space, with 
the purpose of providing data correction of generator output to the nearest acceptable 
outcome. The authors employed their implementation for a building frame earthquake 
resistance retrofitting intervention, converting structural members’ position in voxel data 
(the three-dimensional equivalent of the pixels in bi-dimensional image data). However, 
this study appears excessively simplistic from a structural engineering point of view. 
The main limit of their implementation is related to the missing of more sophisticated 
nonlinear analysis in dynamic conditions to actually govern the optimal seismic design 
process and evaluate the final results. An anomaly detection GAN (named ADGAN) 
was employed to analyze satellite images and unmanned aerial vehicle (UAV) images 
to detect building damage in post-disaster scenarios, such as earthquakes (Tilon et  al. 
2020). The advantage of using GAN in this context was to exploit the unsupervised 
approach coming from the adversarial learning process, even in presence of a scarce 
amount of available data. Despite this promising application, additional efforts have 
still to be done to further specialize ADGAN, e.g. recognizing different kinds of dam-
age, and especially to effectively deal with the sometime prohibitive visual complexity 
of satellite images, e.g. due to vegetation and shadows. For a fairly similar purpose, 
the authors in Zhang et al. (2022a) trained a GAN model to generate synthetic images 
of victims partially buried by the debris of earthquakes or building collapses in order 
to train a further automatic victim detector. Earthquake-induced ground deformations 
such as liquefaction-induced lateral spreading may cause severe damage to engineered 
structures. The authors in Woldesellasse and Tesfamariam (2022) used a cGAN with a 
10-fold cross-validation procedure to solve the regression problem of lateral spreading 
from estimated horizontal ground displacement from Japan and U.S.A. databases. Since 
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complex DL model interpretability is still a challenging task, the authors employed the 
Shapley additive explanations (SHAP) values (Lundberg and Lee 2017) to illustrate the 
contribution of each input feature to the cGAN model predictions.

4.2 � Seismic geophysical studies

Within the seismic studies, a significant amount of the existing studies fall in the earth 
and planetary sciences, as evidenced in Fig. 4a. Specifically, much research on geophysi-
cal techniques involving seismic phenomena, in a broad sense as the propagation of elastic 
waves in soil, has been carried out. Geophysical seismic surveys are usually carried out to 
obtain a detailed and reasonably geographically extensive subsurface mapping, as schemat-
ically presented in Fig. 8. The goals can be geotechnical characterization, petroleum and 
mining engineering, e.g. for hydrocarbon exploration, environmental and land engineering, 
e.g. for reservoir detection and identification, etc.

4.2.1 � Seismic imaging: interpolation and supersampling

In Siahkoohi et  al. (2018), the authors adopted GANs for data reconstruction of seismic 
imaging (Scales 1997). As schematically depicted in Fig. 8, it is a geophysics technique 
related to emitting intense elastic waves into the ground and collected back by the geo-
phones (or hydrophones in marine environments) to evaluate subsurface conditions, con-
taminations of soils, etc. In this context, the authors pointed out the difficulties of acquiring 
densely sampled data. Moreover, the current sparsity-promoting iterative algorithms for 
data reconstruction, which mainly rely on linear models and waveforms superpositions, are 
incapable of capturing the information in seismic data and the physics complexity of the 
problem. The DL technique based on GANs represents a data-driven nonlinear generalized 
seismic data reconstruction model, which does not require any strong assumptions on the 
data. In Lu et al. (2018), the GAN has been adopted for seismic image supersampling to 
improve the subsequent deep-learning seismic fault detection and interpretation. Because 
of their abstractness, not physics-based, and generalization abilities, the GAN could repro-
duce reliable supersampling from blurred images through a Gaussian filter. GAN helped to 
effectively maintain the spatial resolution of the original data, involving just a slight 
increase of the magnitude of local extrema in seismic traces. Despite it could represent an 
ambiguous situation for geophysical resolution and human fault interpretation, increasing 
the image resolution and sharpness generally improves DL automatic fault detection 

Fig. 8   Geophysical seismic surveys and main correlated research activities involving GANs
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performances. Similarly, in Halpert (2018), the GAN has been adopted for seismic bi-
dimensional and three-dimensional image supersampling for high-frequency resolution. 
The ultimate goal is to improve reflector sharpness (e.g. reservoir presence, etc.) and thus 
the image interpretability. Existing limits of standard seismic imaging techniques are 
related to prohibitive computational costs for high-frequency images associated with the 
theoretical constraints due to the wave propagation physics mechanisms in subsurface 
mean. In hydrocarbon production, fault extraction results often face difficulties locating the 
fault plane characterized by low reflectivity. The authors in Jiang and Norlund (2020) exe-
cuted a super-resolution generative adversarial network to help improving the resolution of 
fault prediction results. First, synthetic fault data were used as training data to train a modi-
fied GAN system, and then the trained GAN model was applied to two different field data 
sets. The results demonstrate that the GAN can reconstruct the prediction map and enhance 
and clarify data where low probability exists. However, the authors do not quantify these 
approaches’ advantages by comparing them with more standard techniques. The authors in 
Li and Luo (2019) adopted the GAN to synthesize priors with ultrahigh-resolution samples 
to accomplish seismic acoustic impedance inversion for thin reservoir characterization. 
Traditional approaches generally require arbitrary mathematical assumptions on the prior 
data distribution. However, they are usually chosen only for mathematical convenience, 
and they are often referred to geological unrealistic hypotheses. In contrast, this study dem-
onstrated how GANs may learn richer and more informative priors essentially guided by a 
data-driven approach. Seismic image resolution enhancement has also been treated in 
Zhang et  al. (2019b). Traditional methods to deal with 3D post-stack seismic field data 
require calibrating a deconvolution operator. On the contrary, the authors in Zhang et al. 
(2019b) simplified the resolution increase procedure by exploiting the GAN generator to 
extract features, regrouping, and merging them into a downstream subpixel-convolution 
up-sampling layer. The authors in Zhang et  al. (2021) implemented a cycle generative 
adversarial network (CycleGAN) to improve seismic data resolution. The training set 
includes synthetic (labeled) and actual seismic data (unlabeled). Artificial experiments 
demonstrate the advantages of this approach in improving the resolution. According to 
Zhang et al. (2021), the field data application established the practicality and superiority of 
CycleGAN. In Han et al. (2022), the authors proposed a GAN-based model to deliver deep 
and ultra-deep underground prestack seismic wavelets separation, which could be benefi-
cial for prestack seismic migration or full seismic waveform inversion tasks. In Picetti et al. 
(2018), two examples have been presented adopting the pix2pix GAN (Isola et al. 2017) for 
seismic image processing. The foremost example involved a data interpolation for image 
supersampling, i.e. obtaining high-quality images from coarse seismic data. In contrast, the 
second one involved a deconvolution problem for the subsurface reflectivity of seismic 
waves. A deconvolution layer, also known as convolution transpose, can map a single input 
activation to multiple outputs (Exterkoetter et al. 2018). In this latter case of Picetti et al. 
(2018), a modified three terms loss function has been adopted also involving a regulariza-
tion factor based on the generator loss, thus improving the overall GAN performances. Fur-
thermore, the authors underline that in adversarial learning the discriminator behaves as a 
regularizer of the generator. The same authors in Picetti et al. (2019) provided a more com-
prehensive study on adopting GAN for seismic imaging. Specifically, a mathematical for-
mulation of the seismic imaging problem has been presented, illustrating the relationships, 
matrices, and operators involved in the image migration process. Despite the theoretical 
framework, the rendering quality may be further reduced due to noise in the data, spatial 
aliasing, limited aperture, nonuniform illumination, etc., and even from model uncertain-
ties, e.g. migration artefacts, limited bandwidth, and variable amplitudes. The authors, 
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therefore, proposed to treat the seismic image inverse problem by adopting a compound 
operator considering a post-processing mapping operator and a back-projection linear oper-
ator. A customized loss has been adopted in the current GAN implementation based on 
pix2pix CNN model for two different tasks: interpolation/dealiasing and deconvolution. An 
extended simulated campaign has been analyzed to explore the effects of data preprocess-
ing, additional loss terms, patch overlap, discriminator loss weight, and regularization loss 
weight on the GAN optimization learning process and generalization capabilities. The 
authors in Avila et al. (2021) compared DL models for seismic imaging migration decon-
volution process. Specifically, the authors analyzed the Hessian filter least-squares migra-
tion by adopting three different DL techniques to estimate the inverse operator: a fully con-
nected CNN, a U-net structure, and a WGAN. Despite WGAN seeming to visually provide 
the best resolution for migrated images, it provided slightly worse quantitative results than 
the others models. On the other hand, U-net appeared the most computationally expensive. 
In Wei et al. (2021a) the authors adopted a cGAN based on pix2pix GAN to perform inter-
polation for reconstructing irregular missing seismic data. The main novelty of the present 
work is that the authors improved the discriminator by adding a Gaussian-noise layer to 
avoid the vanishing gradient issue. This also enhanced the learning capabilities of the gen-
erator. The same authors in Wei et al. (2021b) implemented a cGAN with Wasserstein dis-
tance loss (cWGAN) for seismic interpolation to solve spatial de-aliasing. When geophone 
receivers are relatively mutually far, the seismic collected data result in poor accuracy of 
subsequent migration process mainly due to spatial aliasing issues. This problem may vir-
tually be solved by reducing the spacing of the receivers. However, this operation is not 
always economically and physically possible. Thus, the authors suggested that a worka-
round may consist in interpolating seismic traces among the receivers by interpreting spa-
tial-aliased seismic data as missing data. The model composed of a U-net generator and a 
PatchGAN discriminator (Isola et al. 2017) provided not only spatial de-aliasing ability but 
also generated a more dense seismic data reconstruction, beneficial for improving a subse-
quent migration process. The same authors in Wei et al. (2021c) used the cGAN for inter-
polating seismic data in the mainstream of data augmentation. In detail, the cGAN, trained 
on synthetic datasets, successfully removed spatial aliasing from measured signals. Unfor-
tunately, despite the successful attempts, the scholars do not provide any comparison with 
other approaches’ performances. Analogously, the authors in Ferreira et  al. (2019a) 
attempted to recover the frequency content or the missing traces in seismic data using the 
cGAN. The authors propose amplitude encoding and histogram equalization to stabilize 
the performance of GANs on seismic data. The analyses were promising for typicalseismic 
processing and interpretation applications. They generated low-pass-filtered seismic 
images and then trained the pix2pix network to recover the high frequencies from seismic 
images based on the low-pass filtered input images. The use of histogram equalization and 
amplitude encoding makes the training faster and more stable. The study compares two 
cases: with and without histogram equalization and amplitude encoding. In Chang et  al. 
(2018), the GAN has been adopted to accomplish the seismic data interpolation task. The 
adopted model has been denoted as SIGAN composed of CNN residual networks (ResNet). 
The SIGAN demonstrated its capabilities to interpolate and reconstruct seismic data effec-
tively. Nonetheless, the authors warned about the challenging training due to the prone 
behaviour of gradient vanishing or explosion. The same authors in a later study (Chang 
et al. 2019) extended the previous work by providing a cGAN, named TF-cGAN, to per-
form seismic data interpolation in the time and frequency domain. From input data with 
missing traces, two main pipelines are evidenced. The foremost extracts the features and 
reconstructs interpolated data in the time domain. The second pipeline carries out the FFT 
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preprocessing of the input images, then extracts features and reconstructs interpolated fre-
quency data. In a later contribution, the same authors implemented in Chang et al. (2020) a 
dual-domain cGAN (DD-CGAN) for seismic data interpolation. The term dual-domain 
indicated that authors leveraged information from time-domain seismic data and discrete 
FFT preprocessed data in the frequency domain. The discriminator was demanded to com-
pute the feature differences between original and interpolated data. In Wei and Li (2021), 
the authors adopted a cWGAN for seismic data interpolation in prestack seismic reflection 
data when big missing gaps occur, probably due to significant obstacles. Furthermore, the 
authors also adopted L 1-norm regularization inspired by pix2pix GAN model and adopted 
the gradient penalty strategy to satisfy the 1-Lipschitz constraint, denoting their implemen-
tation as cWGAN-GP. In Kaur et al. (2019a), a CycleGAN has been adopted for seismic 
trace interpolation on artificially decimated images. CycleGAN appeared beneficial due to 
its flexibility and ability to learn nonlinear mapping and not need any assumptions about 
the sparsity of the data or the linearity of seismic events. The use of transitivity of Cycle-
GAN and the adoption of additional loss functions helped to regularize the model. In Kaur 
et  al. (2021a), the same authors expanded their previous work for seismic interpolation, 
experimenting on GAN with synthetic seismic data, marine field data, and three-dimen-
sional seismic data. The same authors in Kaur et al. (2020a) adopted a CycleGAN to pro-
pose an alternative method to improve the resolution of seismic migrated images. Nowa-
days, imaging reverse-time migration is the most widespread method involving an adjoint 
operator. The seismic migration process towards reflectivity or impedance imaging occurs 
with a data-driven least square estimate. The solution to this least square problem requires 
a huge computational effort. It computes the inverse Hessian matrix which acts as a non-
stationary deconvolution operator for the amplitude correction of the migrated image. 
Adopting pairs of seismic and migrated images, the authors proposed to estimate the 
inverse Hessian matrix by CycleGAN. As a matter of fact, since the consistent learning 
cycles, CycleGAN permits transformation from source to target distribution and vice-
versa. Furthermore, the authors conditioned the model with additional information to bet-
ter lead the training and the data generation process. Three different synthetic velocity 
models have been adopted for training purposes, and, finally, the trained model has been 
employed on actual field data. The final results evidenced the proposed method’s advan-
tages but revealed some shortcomings in real data. Since migration considers a specific 
frequency bandwidth, the model struggled to reconstruct these unseen frequency compo-
nents if some frequencies were not considered during training. Moreover, the adopted 
velocity model is essential to gain a high-quality migrated image. Therefore, it is necessary 
to train the numerical model with some noise in training data to deal with real data 
effectively.

4.2.2 � Ground‑roll attenuation

In Yuan et al. (2020) the pix2pix GAN has been accomplished to deal with the acknowl-
edged ground-roll attenuation task. Seismic sources produce low-frequency surface waves, 
i.e. Rayleigh waves and Love waves. Specifically, Rayleigh produces elliptical waves in 
the vertical plane with an exponential decrease in the distance from the source (Al-Hus-
seini et  al. 1981). In seismology, the ground-roll issue denotes the signal-to-noise ratios 
(SNRs) deterioration due to noise caused by Rayleigh-type surface waves, which produce 
an information masking in collected seismic data. The authors in Yuan et al. (2020) com-
pared GANs which do not require strict model assumptions with traditional ground-roll 
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attenuation techniques. The goal is to evaluate the amplitude spectra quantitatively, the 
SNR improvement, comparing the f-k spectrum (Foti et al. 2002), and computing two met-
rics, i.e. the peak signal-to-noise ratio (PSNR) and the structural similarity index measure 
(SSIM). Although GAN is not a unique method for performing ground-roll attenuation, 
traditional methods require an optimal definition of various filters. In contrast, GAN can 
be trained to identify and filter out any random noise in the data. The authors in Kaur 
et  al. (2020b) adopted a similar CycleGAN implementation from their previous paper 
(Kaur et al. 2020a, 2019a) to perform seismic ground-roll noise attenuation. Two seismic 
field datasets have been analyzed: the foremost contained nearly radial ground-roll noise 
contamination, whereas severely aliased hyperbolic ground-roll phenomena characterized 
the latter. To create labels, the authors adopted two traditional techniques, the local time-
frequency transform (Liu and Fomel 2013), and the regularized non-stationary regression 
(Fomel 2009). The CycleGAN generator was arranged in three parts: an encoder, a sub-
sequent part composed of ResNet residual blocks denoted transformer from the authors 
(whose name has nothing in common with the neural transformers Vaswani et al. 2017), 
and a decoder part. To improve the stability during the training phase, the updating rule of 
the discriminator considers a buffer of images, which has reduced the model oscillations. 
In Kaur et al. (2019b), the authors used a GAN for ground-roll attenuation. Specifically, 
they used the framework of the CycleGAN algorithm (Zhu et  al. 2017) by adding addi-
tional loss functions to regularise the model and preserve the amplitudes. As a result, the 
algorithm attenuated the ground-roll noise similar to the regularised non-stationary regres-
sion. However, the authors do not explicitly quantify the discrepancy between the two 
methods. Similar findings were obtained by Si (2020). The authors in Oliveira et al. (2020) 
extended their previous work (Borges  Oliveira et  al. 2020), proposing for the first time 
a self-supervised two-step approach for ground-roll noise attenuation in prestack seismic 
data. In the first step, the authors leveraged a CNN U-net segmentation network to focus on 
those seismic images portion affected by ground-roll noise. After that, these images under-
went a noise attenuation filtering process by a subsequent cGAN model while preserving 
noise-free signals. The authors provided two datasets with noise-free and noisy data for 
the two stages of the process, delivering a self-supervised method. The authors effectively 
combined adversarial learning, detection, and segmentation for a reliable and self-super-
vised ground-roll attenuation framework. The authors tried an alternative approach to the 
traditional metrics to evaluate the resulting de-noised images. It compared the similarity 
between noisy and noise-free regions, delivering quality metrics and scores based on detec-
tion accuracy, amplitude changes, differences in noise segmentation, power spectrum and 
trace correlation coefficient with human expert reference.

4.2.3 � Noise attenuation and removal

The authors in Xie et al. (2018) exploited GAN to perform fast noise removal on onshore 
land seismic data, attempting to provide a new technology for real-time processing. The 
advantage of adopting GAN is evidenced again by the general-purpose and entirely data-
driven approach, which is geophysical model-free. The philosophy is that the generator is 
learning a specific task, and the discriminator penalizes the training every time the genera-
tor produces undesired behaviours. The author in Alwon (2018) applied DCGAN to 
accomplish seismic data processing applications. At first, a GAN for seismic noise attenua-
tion was implemented, adopting a U-net for the generator, a CNN initially developed for 
biomedical image segmentation, and a simple CNN based on DCGAN for the 
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discriminator. To permit the learning phase, noise-free sample pairs have been syntheti-
cally produced, adopting a finite-difference modelling engine. The model considers physi-
cally explainable noise sources and only leaves the GAN to learn about the random noise 
between real and synthetic samples. To evidence the potentialities of the GAN, with the 
same discriminator and a slight adaptation of the generator, the same author provide also 
seismic trace interpolation, similarly to techniques adopted for image super-resolution pro-
cedures. Alwon (2018) highlighted the computational effort required when the previous 
model may be adopted for 3D field seismic data. Moreover, in this contribution, the author 
critically argued about the limit of GANs when dealing with ill-posed problems, showing 
some fallacious cases they experienced. The author overcame these issues by adopting the 
Wasserstein loss with a gradient penalty term (Gulrajani et al. 2017; Arjovsky et al. 2017). 
This fact underlines that much more research has to be done to improve the promising path 
offered by GAN. In subsequent studies, e.g. in Oliveira et al. (2018a), the cGAN has been 
adopted for the seismic trace interpolation problem. Specifically, the authors employed the 
pix2pix GAN (Isola et al. 2017) to reconstruct artificially masked seismic traces. Working 
directly with post-stack seismic datasets, the authors introduced masked vertical strips of 
the seismic traces in the training and test set with variable pixel widths. The authors led a 
comparison between a single GAN working with all different pixel widths masks and a set 
of GANs, each delegated to work with masks of specific pixel width. The results have been 
discussed accordingly to a quantitative metric based on the Pearson correlation coefficient 
among reconstructed and ground truth images and even a qualitative criterion based on 
visual interpretability. The study evidenced that the more the masked strip width is, the less 
the similarity between interpolated and ground truth images, expressed through the Pear-
son coefficient. Furthermore, by analyzing each pixel column, the authors evidenced how 
the variability is higher for the central part of the reconstructed gap and is much lower at 
the edge of the gap, thanks to the actual image information provided by the neighbourhood 
of the gap. In Oliveira et al. (2018b), the same authors assess the performance of a cGAN 
for the interpolation problem in post-stack seismic datasets. Specifically, the authors used 
the pix2Pix cGAN architecture (Isola et al. 2017), based on a classic encoder-decoder gen-
erator network and a PatchGAN (Isola et al. 2017) discriminator network. They artificially 
generated missing seismic traces and trained the pix2pix network to interpolate the missing 
traces. Parallelly, the discriminator tries to determine whether the seismic traces were arti-
ficially generated. The study showed that higher missing gaps lead to worse performance 
regarding the Pearson correlation coefficient. The chosen metric estimates the similarity 
between the original and synthetic seismic traces. The same authors in Oliveira et  al. 
(2019) extended the previous contribution by adopting a cGAN for improving seismic 
post-stack data resolution. Specifically, they adopted the pix2pix cGAN in which the gen-
erator is an encoder-decoder model, whereas the discriminator is denoted as PatchGAN. 
For each pixel, this latter embeds local information encoded in the likelihood of patches 
belonging to real data distribution into the loss function. The authors in Bugge et al. (2021) 
used the cGANs to de-noise pre-stack seismic data. They proved that a cGAN trained on 
synthetic gathers (with and without multiples) successfully removes multiples from authen-
tic gathers even when the multiples interfere with the primary signals. In detail, the genera-
tor was a U-net-based network. In Min et  al. (2021) the authors proposed an innovative 
method to provide noise removal from seismic data by adopting a deep denoising auto-
encoder (DDAE), which is a convolutional auto-encoder (CAE) integrated with a GAN 
framework (DDAE-GAN) in a three-step procedure. At first, a WGAN was trained to gen-
erate high-quality noise samples and not as usual noisy data. This required extracting noise 
from paired clean-noisy data. Secondly, a DDAE was pre-trained based on the previously 
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generated noise considered additive noise, which was superimposed on clean data. After 
feeding the DDAE with a noisy signal, the DDAE was supposed to output the predicted 
clean data by minimizing the residuals in terms of MSE. The final step was to adopt trans-
fer learning of the previously pre-trained DDAE to produce noise removal from real field 
data effectively. In Wang et al. (2020a) the authors proposed an innovative implementation 
of GAN, named Att-DCDN, for seismic denoising. Their execution was inspired by Att-
GAN (He et al. 2019), an encoder-decoder GAN with an attribute classifier for generating 
human face images permitting the manipulation and conditioning of the model to create 
samples with the desired facial attributes. Thus, the authors conceived an innovative way to 
control the change in the target attributes and not directly constrain the output data repre-
sentation. The target attributes were hence controlling variables, i.e. the desired character-
istics of noise-free data, whereas the input is represented by the selves noisy data. There-
fore, the authors produced two new seismic training sets extracting their attribute 
representation (single or dual attribute) and adopted four loss function components cooper-
ating: adversarial loss, attribute classification loss (which constrains the de-noised data), 
reconstruction loss (to avoid losses or damage to de-noised signals), and residual loss. The 
authors added this latter part to account especially for the fact that seismic data are often 
highly contaminated by noise. This extended the capabilities of the proposed model beyond 
the denoising task, also permitting it to effectively recover signals with very low SNR. The 
authors in Ma et al. (2021) also delivered an unsupervised relative attributes-based GAN, 
named RAGAN, to accomplish seismic noise attenuation in desert regions. In Ovcharenko 
and Hou (2020), the authors critically compared U-net and GAN models for seismic 
denoising and interpolation. The authors demonstrated that U-net was more useful, espe-
cially for noise removal tasks, whereas GAN performed better in seismic interpolation. The 
authors explored the performance of GAN in interpolation, considering images with one-
half, one-eighth, and one-sixteenth of the total traces respectively. However, this study crit-
ically revealed two main pitfalls and shortcomings of GAN. Foremost, the use of L1-norm 
or L2-norm makes the networks unable to preserve weak events since these metrics are 
more biased in the case of strong events. The authors pinpoint the cause in the pixel-wise 
evaluation metrics and the adversarial loss, which mainly aims to satisfy perceptual real-
ism. Still, they do not incorporate any authenticity of the underlying physical process. The 
same authors in Ovcharenko et al. (2021) presented a modified GAN to extrapolate low-
frequency energy components in seismic data, which can be hard to capture but beneficial 
to mitigate cycle-skipping issues in the full-waveform seismic inversion task. It is worth 
noting that low-frequency components exist in the synthetic seismic dataset only because it 
is pretty hard to measure a high content of low-frequency components in a field measure-
ment campaign. In contrast, middle and high-frequency components are present in both 
synthetic and field data. Therefore, the authors presented a two-step procedure for GAN 
training denoted as generative dual-band learning. Foremost, the generator is trained only 
on synthetic data to provide a mapping between high and middle frequency, extracted with 
a band-pass filter, toward low and middle-frequency components. Secondly, during the 
training on synthetic data, field data are started to feed the generator, and the discriminator 
training started as well. The authors highlighted that the generator could reproduce only 
synthetic data without training the discriminator. However, the final goal is to extrapolate 
low-frequency components in actual fielddata. In this way, the proposed model acted as a 
transfer of knowledge from synthetic to field data. In Zhao et al. (2022) the authors con-
ceived an unsupervised approach to accomplish seismic denoising tasks by leveraging 
CycleGAN capabilities to work with unlabelled data. Their implementation, named 
DeGAN, adopted a two-way learning method with double generators with a U-net structure 
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and double discriminators, which use the PatchGAN model. The training of this model 
adopted adversarial and cycle-consistency loss and exploited information both from syn-
thetic signals and real field data. However, despite the advantage of working without 
labelled data, the authors argued about some limitations of the model, such as the signal 
amplitude attenuation or distortion when the signal energy varies considerably. The reason 
was identified by the restriction of the specific training set adopted (since DL models are 
severely dataset-dependent) and the inability to use L 1-norm or L 2-norm due to the unsu-
pervised approach. To mitigate this latter issue, the author proposed to constrain further the 
loss function aiming to amplitude preservation or increase the proportion of cycle consist-
ency loss. In Li and Wang (2021) the authors also explored the adoption of CycleGAN to 
solve seismic data denoising. Their model named RCGAN integrated a residual learning 
approach within the CycleGAN framework by exploiting convolution and residual blocks 
to improve the training efficiency. A GAN-based residual learning approach was also 
employed in Sun et al. (2022) for post-stack seismic profiles. In the generator, the authors 
adopted the residual learning strategy to address the denoising task and an iterated process 
in a back-projection unit to provide super-resolution seismic data reconstruction. The dis-
criminator was instead a CNN with large receptive fields to better feature capturing, help-
ing to improve the generator optimization process. In WU Xuefeng (2021), the authors also 
adopted a CycleGAN to deliver a random noise suppression method assuming a ResNet for 
the generator and a PatchGAN for the discriminator, eventually evaluating the results by 
comparing the SNR and RMSE of noisy and de-noised data. The authors in Dong et al. 
(2022) adopted a WGAN to provide data augmentation for seismic shot gather denoising. 
The GAN application was functional to effectively train a supervised dilated CNN with a 
weak dependence on real noise data, named CNN-WDRND, working on pre-arrival noise 
data acquired from the shot gather. In addition, the dilated convolution improved the fea-
ture extraction capacity by enlarging the receptive field size without increasing the number 
of learnable parameters. In Wang et  al. (2020b), the authors adopted a GAN model to 
address seismic denoising tasks, especially oriented to desert regions. As a matter of fact, 
in desert regions, low-frequency noise is more substantial due to its emptiness. Further-
more, sand is characterized by selective absorption of high-frequency noise, thus becoming 
the primary medium for background noise propagation. Those characteristics jeopardize 
seismic data producing spectrum overlapping and strong energy noise pollution, leaving 
only low-frequency components in the seismic field data. The CNN-based denoising 
method with minimization of the MSE of reconstruction delivered only slight improve-
ments in the denoising task but quite poor low SNR signal reconstruction. Therefore, the 
authors adopted a GAN model based on a RED-Net architecture (Mao et al. 2016), i.e. a 
deep recurrent convolutional encoder-decoder structure, with a WGAN-GP loss function 
composed of adversarial and reconstruction losses properly weighted. The same authors in 
Li et al. (2020c) employed a CycleGAN to work with unpaired data of noisy and clean data 
for desert regions’ seismic denoising data task. Seismic data collected in desert regions 
requires a proper denoising procedure since those areas present some issues illustrated in 
Wang et al. (2020b). In a later work (Li et al. 2021b), the same authors provided an inter-
esting improvement to solve the desert seismic data denoising task. Since seismic data in 
desert regions is tremendously affected by spectral aliasing and low-frequency noise, the 
authors proposed a semisupervised learning approach with a GAN model with adaptive 
layer-instance normalization for Image-to-Image translation, denoted as U-GAT-IT. Fur-
thermore, they combined the GAN framework with an attention module which exploited 
the resulting attention maps to guide the training process.



3540	 Bulletin of Earthquake Engineering (2024) 22:3511–3562

1 3

4.2.4 � Seismic data compression

In the last decades, many authors proposed data compression algorithm to reduce the 
amount of data transmitted among the nodes and recover the information contained in 
the original non-compressed data at the data centre level where only compressed data 
are delivered. The authors in Zhang et al. (2019c) proposed a very innovative solution 
to overcome the limitations of large-scale seismic exploration. Specifically, the tradi-
tional seismic data acquisition system is based on a multi-hop system, which requires 
distributed interconnected nodes in which signals collected from the sensors on the 
ground surface under study have to be transmitted. These nodes then will transfer data 
to other nodes until reaching the central elaboration core, i.e. the data centre. However, 
this method leads to both increasing computational efforts for the nodes close to the 
master node and increases in energy consumption, leading to a bottleneck behaviour for 
highly dense sensor arrays. In Zhang et al. (2019c), the GAN model has been success-
fully adopted in a novel seismic data compression approach (designated by the authors 
as CSA-GAN). Generator and discriminator have been trained to reduce the data traffic 
load and learn the recovery map, even preserving spatial-temporal information reaching 
high compression ratios (i.e. the ratio among uncompressed and compressed data sizes) 
with moderate induced SNRs. Compressive sensing with GAN has also been explored 
by Lu et  al. (2019). Information from seismic data can be represented more synthet-
ically by exploiting the sparsity and compressibility properties. In this way, data are 
transformed into a new domain by retaining only the most essential components of the 
original signals. In dos Santos Ribeiro et al. (2021), the authors integrated a GAN with 
a CAE model named 3DSC-GAN, based on an encoder-decoder architecture devoted 
to providing post-stack volumetric seismic data compression. The main goals were to 
leverage the volumetric redundancy and to maintain sufficiently low latent space dimen-
sions. The 3DSC-GAN was improved by integrating a GAN model to exploit better seis-
mic data redundancy. The results obtained were promising, with a high-quality visual 
appearance and increased peak SNR. In Lu et  al. (2019), the GAN model composed 
of CNNs has been adopted to overcome optimization limitations for seismic inversion 
to reconstruct missing traces in 3D data due to its ability to manage intense noise and 
aliasing issues. The generator training accounts for a loss that comprises two weighted 
parts: the standard adversarial loss and a pixel-wise content loss between the original 
and interpolated data. In classical approaches, window size and spatial dimensions are 
governing factors for the algorithm’s success. However, GAN demonstrates its potential 
even in dealing with blurry images providing plausible reconstructions with quite fast 
convergence. GAN dealt with interpolation on multiple dimensions, i.e. spatial and tem-
poral dimensions. The authors discussed the reliability of this model, focusing on pre-
serving original data information (i.e. visualizing f-k spectra). They further highlighted 
the GAN robustness in providing consistent, sharp images even with high compression 
ratios. The authors in Li et  al. (2019b) proposed the adoption of WGAN for seismic 
compressing sensing acquisition survey for inpainting purposes. Since the inner property 
of GANs performs information recovery from sparse arrays, they can model a manifold 
of seismic images from historical surveys. The authors named their proposal generative 
inpainting network with contextual attention (GIN) because they adopted a contextual 
attention layer able to capture information around the pixel under study and even con-
sider patching position inside the entire starting image. They studied compression sens-
ing effects by assuming a uniform sampling of actual seismic trace data with different 
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compression rates. To evaluate the algorithm’s performance, the authors adopted the 
PSNR, the SSIM, and the MSE metrics. Finally, the authors proposed recommendations 
for a realistic random nonuniform sampling scheme. They suggest a more dense sam-
pling scheme in the region riches in lithological features to capture the seismic image’s 
heterogeneity better. This is possible when prior information from historical surveys is 
available. Otherwise, it is recommended to conduct additional geological investigations. 
The authors in Bin et  al. (2020) proposed a GAN-based innovative compressive data 
gathering scheme, named GAN-CDG, to improve efficiency and data compression for 
seismic wireless sensor networks, i.e. geophones. Notwithstanding lossless compression 
methods permits a perfect reconstruction, these techniques are usually limited to low 
compression ratios. Thus, a method such as compressive data gathering may be pre-
ferred, albeit it is a lossy compression approach based on compression sensing theory 
and spatial correlation. Furthermore, due to the large data size of the seismic wireless 
sensor networks, the data transmission is limited to the wireless bandwidth. Therefore, 
the authors trained the GAN-CDG on a data projection, which ensured sparse repre-
sentation of seismic signals and, thus, data compression while adversarially permitting 
a good accuracy in signal reconstruction. Moreover, considering the topographic sen-
sor layout, the authors adopted the shortest path routing tree algorithm to improve the 
data collection. In Radosavljevic et al. (2021), the authors adopted the GAN model to 
provide seismic data restoration in case of missing portions. The strategy adopted the 
acknowledged edge connect technique inspired by human behaviour. Specifically, this 
is a two-stage procedure in which humans priorly draw only borders and only in a later 
phase will colour the image. Similarly, in the beginning, the applied GAN provides only 
edges of missing seismic traces with artificially induced masked patches; after that, the 
remaining pixels have been coloured. A generator-discriminator pair has been trained 
for each phase with adversarial loss and regularization parameters. To evaluate the 
obtained results, the MSE and the coefficient of determination R2 have been analyzed.

4.2.5 � Seismic inversion studies

In the field of geophysical studies, Mosser et al. (2018a) investigated the seismic inversion 
problem in the different geological stratigraphy of the ground, focusing on the seismic for-
ward and inverse modeling. The process of seismic data inversion is related to transforming 
seismic reflection data from seismic testing into a deeper investigation leading to a quanti-
tative description of the ground subsurface properties (Exterkoetter et al. 2018). This Phys-
ics-based modelling approaches lead to satisfactory results. However, they require remark-
able computational efforts without any guarantee of global convergence. In Mosser et al. 
(2018a), the GANs have been adopted in a fully data-driven approach by employing deep 
convolutional generative adversarial networks (DCGAN), i.e. using convolutional neural 
network (CNN) architectures both for generator and discriminator. The abstractness of the 
neural models allows the authors to perform a transfer function from seismic amplitude 
data to velocity functions. The authors even demonstrated how the GAN models might also 
detect and preserve faults in the velocity model and their successful learning process, pre-
serving the velocity model continuity across the fault when necessary. Furthermore, the 
ability of GAN to deal with probability distributions evidenced the possibility of relaxing 
the need to adopt two perfectly matching input-output images to perform direct and inverse 
seismic modelling with traditional approaches. The same authors in Mosser et al. (2018b) 
adopted GAN for seismic inversion problems within a Bayesian approach to estimate the 
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prior distribution. They applied it to a synthetic two-dimensional river channel reservoir 
structure test case. In a later work (Mosser et  al. 2019), the same authors explored the 
adoption of a DCGAN combined with adjoint-based optimization techniques to extract 
synthetic stochastic posterior samples for ill-posed seismic inverse problems. Specifically, 
they exploited the parametric generative model offered by the DL techniques by using the 
gradient-descendent method to update the prior distribution of earth models to match the 
observed experimental results. The experimental data can be acoustic P-waves recorded by 
seismic testing on channelized reservoirs accounting for the facies properties (permeability 
and porosity) of subsurface shale layers in existing production-injection wells pairs. This 
optimization procedure, jointly with DCGAN’s capability to parametrically deal with latent 
space of the noise input to the generator, allowed to reduce the variance of the posterior 
realizations, which become closer to the measured ground-truth observed data. The algo-
rithm could also reliably reproduce the oil extracted and water injected rate volumes even 
when a pressure decrease occurred. The authors in Sun et  al. (2021) used the Gaussian 
mixture model (GMM) (Reynolds 2009) with the cGAN, labelled GMcGAN, to an inverse 
problem in geophysics. The ultimate goal was to estimate the nonlinear mapping between 
seismic elastic parameters and oil saturation. Initially, the network has been trained on the 
synthetic data set generated by a rock physical model. Then, it was applied to actual data 
inversion. The main advantage of the GMcGAN, compared with the CNN, was the higher 
accuracy and the uncertainty quantification. In addition, the GMcGAN provided the oil 
saturation’s joint probability density function (PDF). A Bayesian seismic inversion frame-
work has been extensively illustrated in Fang et al. (2020), in which the authors proposed 
the adoption of a DCGAN to generate prior distribution resembling the input training data. 
Seismic data incorporates different sources of uncertainties and noise, and Bayesian infer-
ence offers the mathematical framework to deal with uncertainties. However, since a great 
computational effort is normally required in dealing with seismic data, the starting point, 
i.e. the prior distribution, is essential to provide an efficient inversion procedure. Moreover, 
traditional techniques applied to completely different seismic data may provide the same 
erroneous inverse representation due to the noise in data and modelling errors. Therefore, 
DCGAN offered the authors a data-driven framework that could be effectively integrated 
into the seismic Bayesian inversion procedure. In particular, to reduce the computational 
effort, a DCGAN with a different number of layers has been adopted to provide a prior 
generation in the latent space, which has a reduced dimension. This helped to avoid the 
coarse dimensionality problem and extensively sampling the posterior distribution, benefi-
cial for Markov-Chain Monte Carlo (MCMC) methods. Furthermore, the models with a 
higher number of layers (8 convolutional blocks) could better capture more complex prior 
distributions in the training data. To evaluate the obtained results, the authors introduced 
an L 2-norm to compare model error between generated and target images and a logarithm 
L 2-norm associated with the latent vector to evaluate the generalization capabilities of the 
generator. Finally, the authors tested the proposed methodology for travel time tomography 
and waveform seismic inversion applications. In Azevedo et al. (2020), the authors adopted 
a cGAN with a Wasserstein optimization scheme to perform a stochastic model reconstruc-
tion assuming sets of geological realizations and experimental observations. In contrast 
with model generation techniques, the idea is to provide a model reconstruction where 
there are no sparse measurements of the subsurface properties under study. This can be 
helpful, especially for early hydrocarbon exploratory stages when little geological informa-
tion is usually available (data or small seismic regions). It can also be beneficial when a 
general and global idea of the area of interest has been inferred from large-scale geological 
maps or expert geologists. This study evidenced the effectiveness of GANs in producing 
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unconditional and conditional subsurface geological models, i.e. without and with meas-
ured experimental data, respectively, both in continuous and discrete domains. Another 
advantage of the current implementation was that the authors could govern the available 
experimental data reproduction percentage. Since a high noise level could contaminate 
these data, the authors can discard the most uncertain data and provide a more reliable 
model reconstruction. A stochastic approach combined with GAN has been applied in Han 
et al. (2019) for super-resolution seismic simulations and inversion tasks. To overcome the 
band-limited issue, which typically characterizes the previous-mentioned tasks, the authors 
proposed a workflow involving stochastic simulations based on Bayesian sequential simu-
lation and combining the simulated data with limited seismic pre-stack data. Prior proba-
bility was obtained by the collocated cokriging method, which is a multivariable interpola-
tion technique (Shamsipour et al. 2010). In contrast, the joint likelihood has been defined 
by adopting a non-parametric kernel density estimation (Rosenblatt 1956). The idea was to 
arrange a training data set which collects data with different resolutions. The best simula-
tions have been combined with the dynamic time warping method. Initially designed for 
speech verification, this technique permitted to the matching of the pre-stack inversion 
results with simulations with better accuracy. Furthermore, these heterogeneous data have 
been combined with the gradual deformation method, which permits a linear combination 
of different stochastic models and maintains their spatial distribution (Han et  al. 2019). 
Finally, to reconstruct seismic inversion with super-resolution, the authors proposed a 
modified cGAN combined with a VAE, denoting this model as GAN with a decoder 
(DeGAN). This model was structured as a generator, a discriminator, and a decoder work-
ing in a three-flows way. The first two flows feed the network with logging data and simula-
tions simultaneously for the training process. The last flow, helpful for the decoder part, 
was demanded to construct high-frequency components, exploiting VAE to capture the 
implicit information. These high-frequency components were essential to replace the lost 
frequencies in the seismic inversion results. The outcomes effectively accomplished super-
resolution inversion tasks, revealing the presence of possible thin layers and, thus, improv-
ing geophysical interpretation for hydrocarbon exploration. In Araya-Polo et al. (2019), the 
GAN has been demanded to learn earth and geologic representations from a finite number 
of model examples. In this case, the GAN carried out a supervised data augmentation task 
to effectively train a subsequent CNN tomographic operator responsible for reconstructing 
subsurface seismic velocity models. The idea of the authors was to provide an AI-based 
workflow to create earth models with sufficient quality, competitive with the traditional 
methods, and acting as a precursor of further seismic imaging operations. Furthermore, 
since GANs can learn the intrinsic statistical distribution of earth models, the authors evi-
denced the GAN’s generalization property to spread to any other possible geologic regime. 
For the first time in the field under study, an innovativesemi-supervised GAN approach has 
been adopted in Li et al. (2019a) for seismic inversion to perform lithology recognition. To 
overcome the deficient number of labelled data, the authors proposed to adopt an SGAN to 
combine the small amount of labelled borehole-side data from well testing and the slightly 
greater amount of unlabeled seismic data. Since information retrieved from unlabelled data 
is intrinsically limited, to improve the unsupervised loss of the discriminator, the authors 
proposed a modified unsupervised loss considering an entropy-regularization term, i.e. the 
Gini-regularization term. This modification increased the convergence speed and the stabi-
lization of the model. However, this method depends on a arbitrary user-defined and data-
dependent regularization factor. Nevertheless, the authors provided mathematical proof of 
the effectiveness of the Gini-regularization term influencing the gradient and affecting the 
learning rate, thus improving the generalization capabilities of the model. In Liu et  al. 
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(2019), a semi-supervised GAN has been adopted for 3D seismic facies multi-class classi-
fication to detect floodplains, channels, and levees from the background. For the sake of 
comparisons, the authors also trained a CNN model based on the Visual Geometry Group 
model (VGG-net) (Aggarwal et al. 2018; Simonyan and Zisserman 2014). To address com-
putational issues, three CNN models have been trained separately based on the input repre-
sentation: a 2D-CNN for two orthogonal seismic slices, a 2D-CNN for seismic slices 
stacked in time, and a complete 3D-CNN to deal with an entire 3D seismic cube as input. 
To evidence the effectiveness of the automatic feature extractor, the authors illustrated the 
input data and the extracted features with a visualization technique acknowledged as t-dis-
tributed stochastic neighbour embedding (t-SNE) graphs (Van  der Maaten and Hinton 
2008). Despite the good results already obtained with CNN, this model presents a bottle-
neck because it requires a significant amount of labelled data and, thus, the availability of 
many wells in the area under study. On the contrary, the semi-supervised GAN model pro-
vided better results, even with a limited number of seismic wells data. In Meng et  al. 
(2020), the authors adopted a semi-supervised approach to train a WGAN model for seis-
mic impedance inversion to overcome the limitation of limited labelled data often related 
to well logs availability only. The discriminator was composed of three parts: an encoder, a 
middle part with atrous spatial pyramid pooling (Chen et al. 2017) to capture features at 
multiple scales, and a final fully connected part. A semi-supervised strategy is used since 
the algorithm learns in a supervised way by impedance label from the well logs and the 
forward model constrains. The same authors in Wu et al. (2021) expanded their previous 
work by adopting the GAN model for semi-supervised learning for seismic impedance 
inversion with similar findings. Similarly, in Meng et al. (2021), some of the same previous 
authors adopted a cGAN instead to address the seismic impedance inversion task. The 
authors in Cai et al. (2020) proposed a Cycle-GAN for seismic impedance inversion with a 
semi-supervised learning approach, incorporating unpaired data into its training. This 
study improved the Cycle-GAN algorithm by integrating the Wasserstein loss with gradi-
ent penalty loss as the target loss function, denoted as the Wasserstein cycle-consistent 
GAN (WCycle-GAN). Likewise, the new algorithm benefits from weaker topology in Was-
serstein distance and better data regularizations in cycle-consistent loss, leading to 
enhanced training robustness and generalization abilities. The algorithm was validated on 
the impedance inversion on a subset of the 3D Seismic Advanced Modeling (SEAM) data. 
It proved a good performance compared to the conventional CycleGAN, highlighting the 
prospect of semi-supervised learning applications. In a later study (Cai et  al. 2022), the 
same authors proposed adopting their WCycle-GAN to address surface wave tomography 
for the shear wave velocity inversion. The semi-supervised approach accounts for both 
observed surface wave dispersion data and synthetic model-generated data. The authors 
successfully tested their proposal on fundamental mode Rayleigh wave velocity dispersion 
data. The main CycleGAN advantage is to consider also unlabeled data, with interesting 
and promising predictive results requiring only a small amount of labelled data. The 
authors in Zhang et al. (2022b) developed a comparative analysis of the effects of hyperpa-
rameters of DL techniques on seismic impedance inversion. Specifically, the authors 
focused on the number of channels and layers and kernel sizes of conventional CNN, multi-
scale CNN, and U-net. Eventually, the authors proposed a more realistic seismic imped-
ance inversion enhancing high-frequency details by adopting a GAN model based on the 
enhanced super-resolution GAN (ESRGAN) architecture (Wang et al. 2018). In Zhang and 
Lin (2020), the authors proposed a WGAN, denoted as VelocityGAN, to effectively deal 
with data-driven real-time full-waveform seismic inversion tasks for stratigraphy or site 
geology recognition and to evaluate rock quality. The authors adopted an end-to-end 
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mapping from seismic data to recover the velocity map of wave propagation in the various 
subsurface lithology with a transfer learning approach and analyzed different cases to high-
light the transfer learning efficiency and robustness. They employed an encoder-decoder 
structure for the generator and a PatchGAN classifier network for the discriminator. Since 
DL models generally suffer from ill-posedness, robustness, and generalization issues, the 
authors presented a data-driven regularization technique directly learned from the training 
data. To cope with the inverse tasks’ ill-posedness issue, it is usually beneficial to include 
prior knowledge to constrain the generated solution to be consistent at least with the prior 
knowledge and penalize the inconsistent ones. A widespread but often ineffective solution 
is to adopt a generic function like L 1-norm or L 2-norm. Instead, in the current implementa-
tion, the loss function accounts for both MSE loss, devoted to catching geological faults, 
and maximum absolute error (MAE) loss, which revealing the lithological interfaces, 
incorporates data-driven regularization into the GAN framework. The authors also evalu-
ated the test error of the trained model on unseen data, usually composed of the summation 
of training error and the generalization error. Typical techniques, such as cross-validation, 
appeared useless in this case; therefore, the authors adopted some special-designed test 
data to stress the trained model the most. In Saraiva et al. (2021), the authors adopted the 
pix2pix GAN to provide a surrogate model for the full seismic waveform inversion task, 
avoiding the traditional iterative computational expensive operation. Seismic velocity esti-
mation is normally arranged with three phases: the first manually normal moveout velocity 
estimation, then a ray-based or grid tomography which provides a low-frequency (2–3 Hz) 
velocity model, and finally the full seismic waveform inversion model. This latter attempts 
to cover the information gap between the low-frequency tomographic model and the seis-
mic reflection image, which concerns the high-frequency part. The authors used three input 
types, i.e. the average tomographic velocity, post-stack seismic image, and two-way time 
grid, to provide a reliable surrogate model. This delivered velocity images with a quality 
and resolution similar to traditional full seismic waveform inversion. The evaluation of the 
results was performed with percent error, SSIM, and visual inspection. The authors in Kaur 
et al. (2021b) adopted a CycleGAN to provide an innovative estimation of the elastic wave-
mode separation of a seismic wave propagating in a heterogeneous isotropic and aniso-
tropic medium, for specific time steps and given a certain seismic source. The resulting 
model has great potential for applications such as full seismic waveform inversion or 
reverse-time migration. Furthermore, this GAN-based approach avoids the numerical reso-
lution of the Christoffel equation for seismic wave propagation in a particular medium at 
each spatial location for each time instant of interest (Sripanich et al. 2017). Thus, the goal 
of the implemented CycleGAN was to learn the inverse mapping between the horizontal 
and vertical displacement components of the propagating wavefield towards the corre-
sponding polarized P-wave and S-wave elastic wave modes. In O’Brien (2020), the author 
adopted a CycleGAN to investigate the capabilities of this DL model to deal with seismic 
inversion by conditioning the typical image gathers for improved removal of post-migra-
tion artefacts. The author defined the quantitative interpretation of seismic data as trans-
forming seismic data, such as reflectivity maps, into the physical properties of the ground. 
A typical example of a quantitative interpretation technique is the common image gathers, 
and its conditioning variant address both patternrecognition and image translation tasks. 
Specifically, three different GAN models have been trained to accomplish various tasks: 
noise removal only, multiples removal only, and a combined conditioned task for both 
noise and multiples removal. The term multiples denotes multiplicative and overlapped 
reflected waves evidenced in seismic sections due to stratified geological structures with 
substantial wave impedance. The final results demonstrated the effectiveness and 
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potentialities of GAN to improve the current raw gather to translate and clean the artefact-
rich test data into an artefact-free seismic gather. In addition, the model could also translate 
complex moveouts into flat gathers while maintaining the amplitude response. In Pan et al. 
(2021), the authors proposed a modified pix2pix GAN version to map high-dimensional, 
stochastic reservoir models into a low-dimensional latent space based on Gaussian random 
variables. The GAN was conditioned by numerical simulations produced with the rule-
based reservoir modelling technique, a method able to capture the geological structure of 
oil or water reservoirs and channel systems into sedimentary zones (Jo et al. 2020). In addi-
tion, the GAN was also conditioned with actual data collected in strategic wells. Therefore, 
the authors included a penalty term in the loss function to constrain the various realizations 
to be consistent with the conditional data. The main limitation of pix2pix GAN is the lack 
of variability in generated samples. The authors affirmed that this was probably due to the 
reconstruction loss based on L1-norm, which may cause overfitting. Also, conditioning data 
are given in input to the discriminator reducing the variety of recognizable patterns. There-
fore, the authors’ implementation overcomes the previously-mentioned issues and consid-
ers additional loss terms to constrain the model to be more consistent with conditioning 
data, governing the authors’ belief in the conditioning data with a proper weighting term. 
Since the visual inspection of the results is usually deficient, the authors developed a new 
metric denoted mean categorical error to check the consistency of the output results com-
pared with conditioning data. The authors in Liu-Rong et  al. (2021) developed a GAN 
named CAE-SAGAN for the separation of seismic surface-related multiples. The authors 
implemented a CAE as the generator model with a self-attention mechanism, whereas 
adopted a CNN for the discriminator. The training was performed considering a set with 
primaries and surface-related multiples and a second dataset with primaries only. In this 
study, the authors adopted a supervised strategy with a loss function with a regularization 
coefficient. Moreover, they provided a z-score standardization procedure to preprocess the 
input data to mitigate overfitting issues. The same authors have obtained similar findings in 
Tao et al. (2022) in which a GAN with self-attention blocks, denoted as SAGAN, has been 
employed for seismic surface-related multiples suppression. Within the seismic imaging 
process, a valid technique may be separating diffraction events, a process acknowledged as 
diffraction imaging to better emphasize the presence of subsurface discontinuities. In 
Lowney et al. (2021) the authors proposed a image-to-image GAN-based method for seis-
mic diffraction imaging on pre-migrated data. The authors implemented a pix2pix GAN for 
pre-migration images, which presents the advantage of being processed independently 
before the migration process. The generator was a U-net structure, and the discriminator 
was a PatchGAN network. The training set was composed of both synthetic data and field 
data. Specifically, seismic field data were properly preprocessed by an analytical method 
denoted as plane-wave destruction, which unfortunately was not optimal in certain condi-
tions. Thus, the authors have manually removed all those training samples, which could 
potentially bias the GAN training, i.e. seismic data collected in synclines or complex geol-
ogy layouts. The study (Durall et  al. 2020) proposes using GAN to pick the diffractions 
from seismic signals, compared to the tedious manually picking. Generally, the scholars 
create a synthetic labelled training dataset, followed by testing on actual unlabeled data, 
although synthetic data oversimplifies the real one. Therefore, the authors use GANs to 
create a semi-synthetic dataset that fills the gap between artificial and actual domains. In 
hydrocarbon exploration, to overcome the limits of traditional petrophysical facies classifi-
cation, the authors in Kim and Byun (2020) adopted a CycleGAN to perform a data aug-
mentation procedure. The first issue encountered is typically the absolute rarity problem, 
which means the missing or limited amount of labelled facies information data, especially 



3547Bulletin of Earthquake Engineering (2024) 22:3511–3562	

1 3

the hydrocarbon area of interest. However, the greatest challenge for ML algorithms is the 
unbalance of training set data which may lead to the mode collapse problem, e.g. a genera-
tor model biased towards only one class or a small subset of the training data. Therefore, 
the authors adopted a CycleGAN adopting 1D CNN with bi-directional learning to miti-
gate the mode collapse issue. Exploiting the cycle consistency learning, two generators and 
two discriminators were respectively adopted to map from one domain to another and, 
vice-versa, to map the inverse backward transformation. The augmented data helped 
improving the more accurate seismic facing classification. The same authors in Kim and 
Byun (2021) extended their previous contribution by exposing an objective selection crite-
rion for CycleGAN to accomplish the imbalance problem in facies classification. Based on 
the difference between the recall and the weighted precision for each class, the authors 
explain an interesting strategy to choose the number of synthetic data that should be gener-
ated and for which category to tackle the seismic facing classification imbalance issue. The 
prediction of the spatial distribution of facies is an ill-posed problem, but it is of utmost 
importance for flow simulations and, thus, the prediction of production curves of an oil/gas 
field. In Talarico et al. (2020), the authors applied the cGANs with a progressive training 
strategy (Karras et al. 2017; Hamada et al. 2018) to sample geological facies sections from 
migrated seismic sections. The algorithm yielded detailed and realistic images. They were 
characterized by a good spatial correlation between negative impedances and reservoir 
facies. Additionally, they preserved the stratigraphic relations. The authors in Kaur et al. 
(2021c) adopted a GAN with a combination of adversarial loss and multi-class cross-
entropy for seismic facies classification starting from seismic reflection data. The authors 
trained the network on manually labelled data and tested it on real field data. The novelty 
of this work is to provide a naive method for a simple uncertainties quantification of the 
GAN predictions. By leveraging the random dropout layers and recalling the trained model 
many times for the same input, one may obtain different output predictions for the same 
input. Thus, the authors affirmed that the mechanism of dropout layers belongs in some 
way to the Bayesian approximation framework. Therefore, the authors could estimate con-
fidence levels for GAN output predictions in this simple way. To reconstruct the petroleum 
and oil reservoir connectivity patterns, a DCGAN has been adopted in Exterkoetter et al. 
(2018) for seismic inversion data. To overcome the limits of the current geostatistics 
approaches (such as traditional two-point statistics (Bosch et al. 2010) or multi-Point geo-
statistics Strebelle 2002), the GAN revealed the ability to rapidly post-process the data 
from seismic testing to reconstruct the internal reservoir connectivity structure, crucial to 
estimate the optimal location for injection wells and production wells for gas and oil recov-
ery. In this case, for the generator, a fully CAE has been adopted. In contrast, a CNN has 
been employed for the discriminator with a softmax activation to determine the probability 
of each pixel belonging to the reservoir or non-reservoir class. CAE implements layers 
similar to CNN in an encoder-decoder structure, with the ability to consider the spatial cor-
relation among image pixels. The decoder part adopts deconvolutional and unspooling lay-
ers for a reliable reconstruction of the shapes present in the original image and captures the 
features at different hierarchical levels, similarly to what happens in conventional CNNs. In 
a later study (Xie et al. 2022), the authors adopted a WGAN-GP for reservoir modelling, 
considering well data, seismic data, and information from geology with promising results. 
The seismic impedance inversion task handles seismic data with narrower bandwidth to 
retrieve the wave impedance data with broader frequency bandwidth. Within this context, 
the labelled data are always limited. Thus in Wang et  al. (2019b) a 1D CycleGAN was 
adopted to mitigate this limitation thanks to the cycle consistent loss. Two sub-networks 
have been adopted for the generator and discriminator to deal with both seismic forward 
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and inversion tasks. This allows the GAN to extract information even with unlabelled data. 
The generator comprises a CNN 1D U-netmodel with an encoder and a decoder part with 
skip connections to capture multi-scale features. The discriminator is composed of a CNN 
1D AlexNet model (Krizhevsky et al. 2011) with a scalar output performing a binary clas-
sifier between real or generated data. During training, the discriminator ensured that the 
generated data distribution approaches the real data distribution. In a later study (Wang 
et  al. 2022a), the same authors extended their previous contribution of adopting a 1D 
CycleGAN for seismic impedance inversion. Again, the authors delivered extended and 
comprehensive robustness experiments with promising results. In Zhong et  al. (2020) a 
CycleGAN has also been adopted. In this contribution, the aim was to continuously moni-
tor 3D seismic survey data of the same area over time to characterize the dynamic property 
changes of a reservoir fluid to track carbon dioxide CO2 capture and storage. This tech-
nique is named 4D seismic inversion for reservoir monitoring, and it is also better acknowl-
edged as time-lapse seismic reservoir monitoring. As often happens in seismic inversion, 
obtaining high-resolution CO2 saturation maps from 4D seismic data is an ill-posed and 
highly nonlinear inverse problem, and traditional gradient-based methods appear meaning-
less due to the high computational efforts. Therefore, the authors proposed a physics-based 
CycleGAN to tackle this problem to obtain a bidirectional mapping that solves both for-
ward and inverse problems between these two high-dimensional domains. In this way, it 
was possible to relate changes in seismic properties (e.g. travel time, seismic wave celerity, 
seismic noise level and magnitude etc.) to dynamic changes in reservoir properties (e.g. 
pore pressure, fluid content, saturation, CO2 plume tracking etc.). The authors defined this 
cross-domain learning between the seismic acoustic impedance domain and the reservoir 
fluid property domain. Numerical training and tests have been conducted on a synthetic 
saline storage aquifer modelled with a commercial reservoir simulator. The authors under-
line the importance of the “end-to-end” property of their GAN implementation, meaning 
that input data are directly transformed into output predictions without the feature extrac-
tion phase, which is usual in other ML frameworks. This property was beneficial to avoid-
ing adversarial attack phenomenon, i.e. the tendency of a trained model to biased misclas-
sify once only a little noise is added to training data. CycleGAN remained stable in 
performance for both forward and inverse tasks even when heterogeneity structure changes, 
suggesting the ability to self-adjust the model parameters to changes. The author in Nav-
arro et  al. (2020) presented a pipeline to adopt cGAN for real-time inference of seismic 
attributes. A seismic attribute can be seen as a mapping of any measure of seismic data 
which can be used to quantify or characterize any features under study, starting from a 3D 
input amplitude volume. The generator has been decomposed into two sub-networks 
devoted to coarse and fine quality capturing, respectively, promoting the aggregation 
between global and local scale information. The discriminator is composed of three net-
works to avoid overfitting issues and to perform multi-scale feature analysis with a large 
receptive field. The results demonstrated how a single network was generally good enough 
to catch more attributes. Still, for high-quality attribute capturing, the network has to be 
specialized, i.e. one network dedicated to each feature. In Wei et  al. (2019), the authors 
adopted the cGAN for P-wave separation and reconstruction based on vertical seismic pro-
file (VSP) data collected with geophones placed on the lateral walls of a drilled well. Since 
the sensors are placed directly in the subsurface, they can capture more detailed informa-
tion about the stratigraphy. However, it is strictly necessary to proceed with wave separa-
tion techniques. Divergence and curl operators are traditionally employed. Nevertheless, 
they may not be directly applied to VSP data unless a careful calibration of the model 
parameters is performed. The data-driven method based on a cGAN with a U-net as a 
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generator has been trained with a multi-scale strategy, i.e. starting with the P-wave dis-
crimination in simpler waveform and progressively increasing the complexity of the data. 
Since the separation task is quite different from standard classification or regression tasks, 
the authors adopted six metrics to evaluate the results in terms of accuracy, precision, 
recall, f1-score, R2 for the envelope and raw data. In Cao et al. (2021), the authors success-
fully applied the GAN with asymmetric convolution blocks to separate up-going and 
down-going wave fields from vertical seismic profiles. In Ferreira et  al. (2019b), the 
authors explored the adoption of sketches for seismic imaging data augmentation. Since, in 
ML the bottleneck is the need to have enough data, the authors adopted a cGAN model to 
generate seismic profiles starting from simple sketches usually used only for quick repre-
sentation and transmitting ideas about the subsurface stratigraphy. After that, in Ferreira 
et  al. (2019c), the same authors extended the previous contribution by adopting pix2pix 
cGAN with a generator with an encoder-decoder structure and a discriminator with the 
PatchGAN structure (Oliveira et al. 2019). They tested different combinations of artificially 
generated sketched images to reconstruct realistic seismic ones. The results demonstrated 
that the sketch type composed of a variety of filled background colours, representing the 
rock layers, and colourful edges, defined by two geoscientists, produced the best results. 
The authors in Chuang et al. (2020) adopted a DCGAN to perform the first-arrival pickup 
tomographic inversion task from seismic data for seismic exploration. For example, the 
SNR of seismic data is low in a mountainous areas and, in general, in locations with com-
plex near-surface conditions. This determines an appreciable first-arrival wave travel time 
change. The first-arrival pickup accuracy directly reflects on the propagation velocity 
model in the mean and directly affects the tomographic inversion. Therefore, the authors 
adopted a DCGAN for its generality and efficiency with generator and discriminator com-
posed of CNNs. The training and testing of the model involved preprocessed mountain 
seismic data. However, the authors underlined that more types of seismic data need to be 
trained in future to improve the generalization capabilities of the model. The authors in 
Zhang and Sheng (2020) leverage the WGAN for data augmentation to effectively perform 
first-arrival picking of microseismic signals in a deficient SNR environment. Specifically, 
they adopted WGAN to generate adversarially synthetic samples to test and improve a sub-
sequent DL model, i.e. a residual link nested U-net structure (RLU-net). This latter model 
was devoted to retaining spatial information and even accomplishing the first arrival pick-
ing task in an end-to-end approach. The simulated microseismic training data for the 
WGAN were obtained by finite difference forward modelling.

4.2.6 � Fiber‑optic distributed acoustic sensing systems

In Shiloh et al. (2018), the GAN has been adopted to perform an essential data augmen-
tation procedure, helpful for training an automatic detection and classification of seismic 
acoustic waves for fibre-optic distributed acoustic sensing (DAS) system. However, a reli-
able automatic classification based on the DAS system is still computationally and human 
resources demanding due to all the training database construction, e.g. collecting labeled 
signals for the different phenomena to classify. Additionally, overly complex approaches 
may invalidate real-time applications, e.g. due to processing-delay issues. To improve the 
database creation, the authors in Shiloh et al. (2018) adopted GAN for data generation and 
augmentation purposes, exploiting limited available real data. Furthermore, a great advan-
tage of GAN is not requiring an accurate definition of the physical parameters involved in 
the generation and propagation of seismic waves in the soil medium and the sometimes 
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challenging interaction phenomena modelling with the DAS fibres. Thus, they tested 
experimentally with human-step recognition in the proximity of the buried DAS system, 
simulating the fibre sensor response to a seismic event. In a later study, the same authors 
in Shiloh et al. (2019) expanded the results by adopting the GAN for the DAS system and 
vehicle excitations. The authors evidenced the advantage of the method based on the GAN 
model, which is virtually adaptable to any medium soil type and fibre length. Moreover, 
parallel real-time computing for each fibre of DAS has been made possible by exploiting 
narrow spatial segments and short time windows of the collected DAS signals. In Eaid 
et al. (2021), the authors analyzed the DAS system to characterize the microseismic source 
and to determine the source mechanism. Since DAS produces a considerable quantity of 
data, an effective way to manage them is crucial for moment tensor estimation. Firstly, the 
authors trained a CAE to extract the most critical features from the data. After that, the 
authors provided two techniques to estimate moment tensor, adopting at first a density-
based clustering technique (DBSCAN) (Ester et  al. 1996). The second technique was a 
GAN model to train the generator to provide moment tensor estimation predictions directly 
from feature space vectors extracted from the CAE. An attention-aided GAN was applied 
by Ji et al. (2022) to reduce the noise of vertical seismic profiles obtained from DAS. The 
feature extractor is the multi-head self-attention mechanism, generating a spatial attention 
weight matrix to extract the key information of the noises. In the second step, the generator 
receives the original signal and the spatial attention weight matrix. Lastly, the noise reduc-
tion of the original signal is achieved with the adversarial mechanism between the genera-
tor and the discriminator. In Zhao et al. (2022), the authors examine deep learning models’ 
limits in denoising DAS signal data. The performance of data-driven approaches depends 
on the quantity and quality of the training datasets, and thus they are strongly limited with 
small datasets. Therefore, the authors proposed combining a GAN with CNN. First, they 
used a small noise dataset to train a GAN for synthesizing artificial noise, with the final 
purpose of noise dataset augmentation. Afterward, the expanded noise dataset and the sig-
nal dataset from modeling were used together to compile a synthetic training set. Finally, 
the CNN was specialized to de-noise the experimental data. Seismic data from DAS sys-
tems are thus often characterized by a low SNR due to the weak energy of scattered optical 
signals. Also, in Dong and Li (2020), a GAN-based model, named convolutional adver-
sarial denoising network (CADN), has been implemented to address the DAS denoising 
process and improve data quality by increasing the SNR. The network architecture utilized 
a RED-Net model (Mao et al. 2016), i.e. a deep recurrent convolutional encoder-decoder 
structure.

5 � Actual limitations and future challenges

Notwithstanding that the GAN model is a relatively recent technique in DL prospect 
(Goodfellow et  al. 2014), their innovative capabilities have already successfully permit-
ted broadening the earthquake-related engineering actual frontiers. The critical compre-
hensive review of the previous sections demonstrated how GANs had paved the way for 
novel methodologies and unprecedented breakthroughs, representing valuable alternatives 
to current traditional workflows. Many research papers have already been published on 
the wide range of aspects involved in geophysical studies. On the other hand, slower but 
progressively increasing developments have been achieved recently, even within the earth-
quake engineering field. However, in both disciplines, many research opportunities are still 
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possible, also promoted by the latest advances in GANs (Gui et  al. 2021) and, in wider 
terms, into AI, ML, and DL areas.

Through adversarial learning, GANs act as efficient generative models able to synthe-
size different but plausible artificial representations of any input data, by estimating their 
probability distribution (Wu et al. 2022; Shiloh et al. 2018, 2019). Their thoroughly data-
driven perspective provided an indisputable advantage to accounting for highly nonlinear 
relationships between data and complex domain mappings, where often traditional analyti-
cal modeling approaches have failed (Mosser et al. 2018a). Generally, ML algorithms can 
map complex interactions even when there is any prior knowledge of the form of rela-
tionship between input and output variables (Woldesellasse and Tesfamariam 2022). This 
should help to understand why the overall most commonly used GAN architectures in the 
previously analyzed studies are represented by image-to-image translation pix2pix GANs 
(Ferreira et  al. 2019a, c; Liao et  al. 2021; Lowney et  al. 2021; Oliveira et  al. 2018a, b, 
2019; Pan et al. 2021; Picetti et al. 2018, 2019; Saraiva et al. 2021; Wei et al. 2021a; Yuan 
et al. 2020) and CycleGANs (Cai et al. 2020, 2022; Kaur et al. 2019a, 2021b, a, 2020a, b; 
Kim and Byun 2020, 2021; Li et al. 2020c; Li and Wang 2021; O’Brien 2020; Wang et al. 
2019b, 2022a; WU Xuefeng 2021; Zhang et al. 2021; Zhao et al. 2022; Zhong et al. 2020).

Nonetheless, the main pitfalls of many data-driven approaches are basically and intrinsi-
cally embedded into the input datasets themselves (Wu et al. 2022). To implement a reli-
able GAN model, it is desirable to use a high-quality dataset that almost covers the entire 
input domain range (Kim and Byun 2020). This would ensure non-biased training proce-
dures and provide accurate estimates of the input data probability distribution. Further-
more, the considerable number of learnable parameters commonly involved in complex 
DL model training, such as GANs, usually require large enough datasets. However, this 
is often economically and time prohibitive to fulfill seismic-related engineering practical 
purposes. Therefore, in the previously discussed papers, many authors leveraged GAN gen-
erative capabilities for data augmentation goal, in order to increase seismic datasets arti-
ficially for EEW systems (Li et al. 2018), for detecting earthquake events (Grijalva et al. 
2021; Li et al. 2020b, a; Wang et al. 2021), for earthquake engineering applications and 
post-disaster analysis (Yamada et  al. 2021), for geophysical seismic imaging (Wei et  al. 
2021c), noise attenuation (Dong et  al. 2022), seismic inversion (Araya-Polo et  al. 2019; 
Ferreira et al. 2019b; Kim and Byun 2020; Zhang and Sheng 2020), and for DAS systems 
(Shiloh et al. 2018). However, the final generalization and robustness of the data augmen-
tation procedure must be carefully evaluated. The actual risk is jeopardizing the original 
data semantic content if unrealistic synthetic signals are added to the initial dataset (Wang 
et al. 2021). Furthermore, in the training procedure of the GAN model itself, some scholars 
have occasionally used only a small amount of synthetic seismic data generated by current 
traditional procedures, analytical or numerical (Jiang and Norlund 2020; Kaur et al. 2020a; 
Ovcharenko et al. 2021). However, training GANs only on these data may provide biased 
models. Analytical or numerical synthetic seismic data generated with traditional methods 
may be unable to capture all the real-world aspects (Kaur et al. 2020a; Ovcharenko et al. 
2021; Wang et al. 2022b). Therefore, many authors trained GAN models by mixing syn-
thetic data with artificially added noise and real field data in the input dataset. A critical 
future challenge would be providing high-quality, certified, and openly accessible seismic 
databases to effectively support AI applications and research on both earthquake engineer-
ing and geophysical studies. Some efforts in that direction have been already carried on 
with seismic data curation responsibilities provided by some acknowledged institutions 
worldwide. It is worth mentioning, e.g. the European Mediterranean Seismological Centre 
(EMSC) which provides real-time earthquake information for seismic events, or the Italian 
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National Institute of Geophysics and Volcanology (INGV) which provides high-quality and 
certified seismic databases for open-science and research project. For instance, the ITal-
ian ACcelerometric Archive (ITACA) (Luzi et al. 2017) is concerned with Italian seismic 
events only and, on the other hand, the Engineering Strong-Motion (ESM) database (Luzi 
et al. 2020) is related to strong seismic events mainly recorded in the European-Mediterra-
nean regions and the Middle East.

Albeit a well-trained GAN is virtually able to successfully capture the probability dis-
tribution of the input data, its limited extrapolation capabilities represent another possible 
drawback. Some scholars warned about the difficulty of GANs to generate synthetic seis-
mic data which are completely different from the starting training set (Kaur et al. 2020a). 
Specifically, a dataset referred to a specific and topographically limited restricted area will 
probably bias the generated samples to reflect only seismic events likely to occur in that 
specific region, thus reflecting the seismological conditions of that region only (Wang et al. 
2021). Another future promising approach may involve conditioning GANs with both top-
ographical and seismological metadata, thus providing spatial correlation information to 
even generate georeferenced synthetic seismic data.

Another focal point that is worth to dwelling on is the lack of interpretability for which 
ML models are often blamed (Woldesellasse and Tesfamariam 2022). However, in recent 
years some innovative interpretability methods have been developed to explain DL models’ 
learned parameters and weights (Li et al. 2022; Selvaraju et al. 2017; Zhou et al. 2016), e.g. 
providing interpretative maps such as in Rosso et al. (2023). These methods permit deeper 
insights and further explanations of the resulting outputs. Moreover, in the previous sec-
tions, all the scholars agreed on considering deficient a simple visual inspection to assess 
the quality of generated synthetic seismic results, since it would be an overly subjective 
evaluation. Therefore, many studies adopted more objective metrics, i.e. accuracy, preci-
sion, recall, f1-score, R2 (Wei et  al. 2019), correlation coefficients, performance param-
eters, RMSE, mean absolute percentage error and mean absolute error (Ding et al. 2021), 
MSE (Li et al. 2019b), computer vision metrics (Liao et al. 2021), PSNR and SSIM met-
rics (Yuan et al. 2020; Saraiva et al. 2021; Ji et al. 2022), statistical goodness-of-fit metric 
(Gatti and Clouteau 2020) and mean categorical error (Pan et al. 2021).

Although the main advantage of GANs models is their general purpose and data-driven 
strategy, generally ML models may still suffer ill-posedness, robustness, and generaliza-
tion issues. Furthermore, the final outputs may not incorporate any authenticity of the 
underlying seismic physical process (Ovcharenko and Hou 2020). Therefore, in the most 
recent studies, the physics-informed ML philosophy appeared as a promising solution to 
overcome those obstacles, mainly enhanced by the conditional GAN perspective. Thus, 
considering prior knowledge and information about the involved seismic phenomena, the 
conditioned GAN models were able to generate synthetic samples consistent with the prior 
knowledge (Zhang and Lin 2020), avoiding any lack of variability (Pan et al. 2021), and 
even regularizing the training process with additional loss terms (Gatti and Clouteau 2020; 
Kaur et al. 2020a). Furthermore, since earthquake phenomena are often characterized by 
significant uncertainty and noise levels, another future aspect to address would be inte-
grating also the aleatory and epistemic uncertainties which affect seismological data and 
metadata. Some basic attempts to deal with seismic-related uncertainties have been already 
done by integrating the Bayesian framework into the GAN-based workflows (Fang et al. 
2020; Kaur et al. 2021c, c).

Last but not least, the computational effort required to train GAN models needs to be 
considered. Since GANs involve the adversarial training of two DL networks simultane-
ously, this procedure may require significant computational costs (Kaur et al. 2020a; Wu 
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et  al. 2022). Nevertheless, this strongly depends on the specific kind of implementation 
adopted for the generator network and the discriminator one. Thus, especially focusing on 
the DL side, immediate future promising research paths are already offered by the most 
recent GAN implementations (Gui et al. 2021) or by the latest breakthrough developments 
in the DL field. For instance, innovative implementation improvements may be achieved 
by employing the state-of-art neural transformer architecture in the generator and/or the 
discriminator parts (Dosovitskiy et  al. 2020; Vaswani et  al. 2017), or even adapting the 
novel generative transformer architecture (GPT) (Radford et al. 2018), hitherto applied for 
natural language processing tasks only.

6 � Conclusions and remarks

In the current study, the authors critically review the various GAN models and architec-
tures adopted within the seismic field. The existing literature studies can be organized 
into two macro-areas: earthquake engineering for synthetic signals generations and appli-
cations on one side and geophysical studies for the earth and planetary sciences on the 
other. To the authors’ knowledge, the present document represents the first work within this 
research field that outlines and categorizes the existing literature for a more comprehensive 
overview.

Due to the solid multidisciplinary background, it will be necessary for civil engineers, 
electrical engineers, artificial intelligence experts, computer science engineers, etc., to cre-
ate more reliable systems for intelligent structures and infrastructures. Within the current 
panorama, the GAN and the other ML/DL models may play a central role in the upcom-
ing years because it represents a revolution for innovative paradigms and approaches. Data 
augmentation has become an essential tool to make it possible to adopt ML algorithms 
where only a few high-quality data are available.

Understanding the existing literature represents the very first step toward future develop-
ments and studies. Furthermore, understanding the nowadays limits of the various methods 
will provide a clearer view and track the promising research path for future improvements. 
The primary present and future accomplishment will be the syncretic interaction between 
AI, earthquake engineering, and planetary sciences within the complex, intricate, highly 
uncertain, and nonlinear topics under investigation. To improve the generalization capa-
bilities of the DL model, introducing prior knowledge or emphasizing physical constraints 
may provide a more reliable and effective physics-informed ML model.
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