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A stable meshfree PDE solver for source-type

flows in porous media

R. Campagna, S. Cuomo, S. De Marchi,
E. Perracchione, G. Severino

Abstract

An elliptic partial differential equation with a singular forcing term,
describing a steady state flow determined by a pulse-like extraction at a
constant volumetric rate, is approximated by a radial basis function ap-
proach which takes advantage of decomposing the original domain. The
discretization error of such scheme is numerically estimated and we also
face up to instability issues. This produces an effective tool for real ap-
plications, as it is confirmed by comparison with classical grid-based ap-
proaches.

1 Introduction

Flows generated by isolated/distributed sources are frequently encountered into
many branches of the physics, such as electromagnetism [1], heat transfer [2],
and diffusion [3]. Moreover, in the context of the fluid mechanics in porous
formations (aquifers and petroleum reservoirs), source-flows lend themselves as
a very powerful diagnostic tool to determine the hydraulic properties of the
formations [4, 5]. The idea is to model a well (or a battery of wells) like a
source and assume the (pumped or injected) water so long to reach steady state
conditions. The effect of such a stimulation upon the pressure distribution in
the flow domain is recorded, and then the hydraulic properties are identified by
matching the measured pressure-values against the theoretical ones [6].

Numerous studies have contributed to solving steady source-flows in geo-
logical formations. Modeling the formation as homogeneous (or at most as a
sequence of homogeneous layers) is common to all these solutions, although it
is de facto heterogeneous with the hydraulic conductivity varying in the space
quite largely [7, 8]. These irregular changes have an impact upon flow [9, 10, 11]
and transport [12, 13, 14, 15] taking place in porous formations. The common
(and widely accepted) approach to tackle these erratic spatial variations is a
stochastic framework that regards the hydraulic properties as random fields [16],
therefore rendering stochastic the flow and transport [17, 18, 19, 20] equation.

In the present study, we consider a steady flow taking place into an un-
bounded domain. The flow field is generated by a given (i.e. deterministic)
source function with finite support, and the aim here is the computation of the
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hydraulic head u (energy per unit weight). This leads to an elliptic Partial
Differential Equation (PDE) with a singular forcing term, which calls for some
regularization. In order to tackle such a type of flow configuration in porous
formations, where the radial symmetry is lost, due to the heterogeneous soil
properties, numerical grid-based schemes, with fine grid level of discretizations
near singularities, need very expensive meshes. In view of these considerations,
mesh-free solvers seem to be preferable. In this realm, many methods, such as
Radial Basis Function (RBF) collocation via Partition of Unity (PU) method,
multiscale methods and RBF-Finite Difference (FD) local approaches, have al-
ready been developed, see e.g. [21, 22, 23, 24]. Here we deal with stability issues
due to the ill-conditioning of the collocation matrices, arising in the application
of the RBF-PU collocation method. To address this, we construct a hybrid
method [25, 26] with the use of Variably Scaled Kernels (VSKs), introduced
in [27] and further investigated in [28, 29]. Since VSKs work with any kernel,
the so-constructed scheme turns out to be flexible, stable and accurate. We
provide computable error estimates for the discretization via RBF-PU which
are strongly consistent with numerical results. Moreover, as a confirm of the
efficacy of the proposed procedure, comparisons with a grid-based scheme are
also carried out.

Let us assume of having a well-type flow in a two-dimensional porous forma-
tion included in a bounded domain Ω ⊂ R2. Under the hypothesis of stationary
flow, stady-state confined homogeneous aquifer, i.e. with constant spatial hy-
draulic transmissivity T (x) = T and pumping volumetric rate Q(x) = Q, and
by modelling the source flow term by a Dirac delta pulse distribution δ, we
solve: {

∇2u(x) = −QT δ(x), x ∈ Ω,
u(x) = u0, x ∈ ∂Ω,

(1)

with u(x) hydraulic head. The solution of (1) is sought subject to the Dirichlet
boundary conditions on the frontier ∂Ω. Under these assumptions, the Thiem
solution furnishes the radial drawdown, in polar coordinates, u(r) − u0 with
respect to a reference level u0 = u(R), at a radial distance r from the pumping
well. Let R be the radius of influence, a reference solution is given by the Thiem
function:

u(r)− u0 =
Q

2πT
ln

(
R

r

)
,

so that when r → R the hight u(r) is close to the boundary condition u0. (see
Figure 1). From now on we set u0 = 0 and k := −Q/T for simplicity of nota-
tion. The guidelines of the paper are as follows. In Section 2 we present the
PDE for source type flow in porous media and we model the singular source
term. Section 3 is devoted to the presentation of the numerical scheme and
error analysis. Numerical results are reported in Section 4 and the last section
deals with conclusions.
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Figure 1: Problem scheme and sampling example.

2 The problem regularization

Let Ω be an open Lipschitz domain on RM , with polygonal boundary that
contains the origin. Let D∗(Ω) be the dual of the test function set D(Ω), where
we denote by D(Ω) the space of real-valued C∞ functions that are compactly
supported on Ω and equipped with the usual topology of the test functions.
Denoting by Hs0(Ω) the Sobolev space

Hs0(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀α ∈ Nn, | α |≤ s, u |∂Ω= 0},

the Dirac delta δ ∈ D∗(Ω) can be approximated by some distributions δ̃H ∈
D∗(Ω) constructed as

δ̃H(φ) := (δH , φ)Ω, ∀φ ∈ Hs0(Ω), (2)

where δH ∈ Hs0(Ω) is a suitable regular function and (·, ·)Ω is the L2-inner
product. Moreover, after denoting by Hs∗0 (Ω) the dual of Hs0(Ω), we recall the
following definition, see e.g. [30].

Definition 2.1. Let δH ∈ Hs0(Ω) and δ̃H ∈ Hs∗0 (Ω), defined as in (2), be a
regularization of δ. We say that δ̃H is a distribution satisfying m-moment
conditions if and only if δH is compactly supported in a ball B(0, H) ⊂ Ω and
so that:

(δH ,1Ω)Ω = 1, (δH , φ
α)Ω = 0, 1 ≤| α |≤ m,

where 1Ω denotes the characteristic function of Ω.

As in [30], we focus on radially symmetric approximations, i.e.

Definition 2.2 (Radially symmetric approximation). Let Ω be an open
Lipschitz domain in R2 with polygonal boundary that contains the origin and
B(0, H) ⊂ Ω the ball of radius H > 0 centered at the origin. A radial sym-
metric approximation on Hs0(Ω) is

δH(x) =


1

H2
ηm

(
|x|
H

)
, x ∈ B(0, H),

0, otherwise,
(3)
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where ηm(z) : B(0, 1) → R is radially symmetric and m ∈ N is the number of
moment conditions satisfied by δH .

Finally, the problem (1) reads as follows:

Problem 2.1. Let Ω ⊂ R2, T (x) = T and Q(x) = Q be constant real functions
and let δ be as in (3), we solve:{

∇2u(x) = −QT δH(x), x ∈ Ω,
u(x) = u0, x ∈ ∂Ω.

(4)

The numerical solution of Problem 2.1 is found via the method outlined in
the next section.

2.1 RBF framework

We define a mesh-free scheme, based on collocation via RBFs. Such approach
has been introduced by E.J. Kansa [31] and later extended to a local setting,
see e.g. [32, 24]. This local scheme, which is based on collocating via the PU
method, turns out to be particularly meaningful for our application, according to
the arguments of the previous section. Furthermore, because of its independence
of any mesh, it turns out to be easy to implement in high dimensions and flexible
for different geometries; differently from classical grid-based methods such as
FDs, finite elements and finite volumes.
Let Ω be a bounded domain on RM and u : Ω −→ R. Given a set of N
distinct points X = {x1, . . . ,xN} ⊂ Ω, and the associated function values U =
{u(x1), . . . , u(xN )} := {u1, . . . , uN}, the scope in the interpolation framework
is to find a function Pu,X such that:

Pu,X (xi) = ui, i = 1, . . . , N.

The interpolant Pu,X is usually defined as linear combination of some basis
functions. Given a real positive shape parameter ε, we here drive our attention
towards strictly positive definite and symmetric kernels Kε : Ω × Ω −→ R so
that Pu,X ∈ span{Kε(·,xi), i = 1, . . . , N}. In other words the approximant
assumes the form:

Pu,X (x) =

N∑
k=1

αkKε(x,xk), x ∈ Ω.

Letting u = (u1, . . . , uN )ᵀ and let A ∈ RN×N be the interpolation (or kernel)
matrix of entries

(A)ik = Kε(xi,xk), i, k = 1, . . . , N,

the coefficients α = (α1, . . . , αN )ᵀ, are determined by solving the linear system
Aα = u, which admits a unique solution provided that K is strictly positive
definite and symmetric.
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We further remark that, if we take radial kernels then there exists a univari-
ate function φε : [0,∞) −→ R such that for all x,y ∈ Ω

Kε(x,y) = φε(||x− y||2) := φε(r).

We list several RBFs and their smoothness degree:

φε(r) = e−ε
2r2 , Gaussian, C∞,

φε(r) = e−εr(1 + εr), Matèrn, C2,

φε(r) = e−εr(15 + 15εr + 6ε2r2 + ε3r3), Matèrn, C6,

φε(r) = (1− εr)4
+ (4εr + 1) , Wendland, C2,

φε(r) = (1− εr)8
+

(
32ε3r3 + 25ε2r2 + 8εr + 1

)
, Wendland, C6,

where (·)+ denotes the truncated power function. We remark that when a large
number of points is involved, working with RBFs of finite regularity might be
advantageous for stability purposes. Further, note that the Wendland’s func-
tions are compactly supported. We finally point out that the shape parameter,
being linked to the conditioning of the kernel matrix, affects the accuracy of the
solution, see e.g. [33] for further details.

For error bounds of the RBF interpolant and convergence theorems, we refer
the reader to [34]. For our purposes we only remark that with the Leave One
Out Cross Validation (LOOCV) scheme we are able to give error estimates by
computing the residual ri at the i-th point as ([35, 36])

ri =
αi

(A)
−1
ii

, (5)

where αi is the i-th coefficient of the RBF interpolant Pu,X based on the full data

set and (A)
−1
ii is the i-th diagonal element of the inverse of the corresponding

interpolation matrix. Then, as estimate of the error one can consider

r = ||(r1, . . . , rN )||p,

where usually p = 2,∞.
Dealing with applications, the conditioning of the interpolation matrix is

usually high and leads to instability issues. To enhance stability, techniques
allowing stable computations of the interpolant have already been developed.
Among them, the most effective for the Gaussian kernel are RBF-QR methods
and the Hilbert-Schmidt Singular Value Decomposition (HS-SVD), see e.g. [37,
38, 39]. Other approaches are based on finding low rank approximations of the
kernel matrix, refer e.g. to [40, 41, 42] for further details. In view of these
considerations, a stable way to compute the approximant is indeed necessary.
To achieve both accuracy and stability, we consider the VSKs [27].

In this context, the key idea consists in substituting the scalar shape param-
eter with a scale function which plays the role of a density function (cf. [27,
Def. 2.1]).
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Definition 2.3. Letting Σ ⊆ (0,+∞) and Kε a positive definite radial kernel
on Ω × Σ depending on the shape parameter ε > 0. Given a scale function
ψ : Ω −→ Σ, we define a VSK Kψ on Ω as

Kψ(x,y) := K1((x, ψ(x)), (y, ψ(y))),

for x,y ∈ Ω.

In other words, ψ defines a map

Ψ : x 7→ (x, ψ(x)),

so that the VSK interpolant on the set of nodes Ψ(X ) := {(xk, ψ(xk)), xk ∈ X},
with fixed shape parameter ε = 1, takes the form

Pu,Ψ(X )(Ψ(x)) =

N∑
k=1

αkK1(Ψ(x),Ψ(xk)),

with x ∈ Ω, xk ∈ X .
The error and stability analysis of this varying scale process on Ω coincides

with the analysis of a fixed scale kernel on Ω× Σ. However, it is worth noting
that in this setting both fill and separation distances, respectively defined by

hX = sup
x∈Ω

(
min
xk∈X

‖x− xk‖2

)
, and qX =

1

2
min
i 6=k
‖xi − xk‖2 ,

are larger than in the fixed scale framework on Ω (see [27]). The former indicates
how well the data fill out the domain Ω and is a measure of the interpolation error
since it decreases according to it. The separation distance instead represents the
radius of the largest ball that can be centred at every point in X such that no
two balls overlap and is a measure of stability, indeed it usually decreases when
the ill-conditioning grows. Therefore, the VSKs introduce a trade-off between
accuracy and stability. To partially overcome this, we introduce the PU method.
Taking advantage of the local scheme we can introduce a hybrid method that
enables us to construct an accurate and stable numerical tool [25].

To introduce the local approach, we need to remark that the PU method
partitions the bounded domain Ω into d subdomains or patches Ωj , such that
Ω ⊆ ∪dj=1Ωj , with some mild overlap among them. For each of these patches, a
local kernel-based approximant is defined and the global solution is constructed
taking into account all the local contributions which are glued together via a
family of compactly supported, non-negative and continuous functions wj , with
supp(wj) ⊆ Ωj and such that they form a partition of unity. Here, those weights
are constructed via the Wendland’s C2 function and we take balls on RM as
subdomains. Their radius will be selected so that the covering properties are
satisfied.

In some cases the scaling via the shape parameter provides more accurate
approximations, while when the conditioning of the kernel matrices truly grows
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it might be advantageous to use VSKs. Thus, given a fixed tolerance τ , we
define our hybrid PU interpolant, namely HVSK-PU, as

Iu,X (x) =

d∑
j=1

wj(x)Puj ,Xj
(x), (6)

where the local approximant Puj ,Xj on a given Ωj is so that

Puj ,Xj
(x) =



Nj∑
k=1

αjkKε(x,x
j
k), x ∈ Ω, σjm ≥ τ,

Nj∑
k=1

αjkKψ(x,xjk), x ∈ Ω, σjm < τ,

(7)

where i, k = 1, . . . , Nj , Nj indicates the number of points on Ωj , x
j
k ∈ Xj = X ∩

Ωj , with k = 1, . . . , Nj , and σjm is the smallest singular value of the local kernel

matrix in the fixed scale setting whose entries are given by Kε(x
j
i ,x

j
k), i, k =

1, . . . , Nj . In this way, we use the VSKs only when the interpolation matrix
constructed via the fixed scale parameter is numerically close to be singular.

In this hybrid setting, we deal with local kernel matrices defined as:

(Φj)ik =

{
Kε(xi,xk), σjm ≥ τ,
Kψ(xi,xk), σjm < τ,

(8)

with i, k = 1, . . . , Nj , j = 1, . . . , d.
We point out that, also when using VSKs, the error of the PU interpolant

can be bounded by the worst local error, indeed for x ∈ Ω, we have that

|u(x)− Iu,X (x)| ≤
d∑
j=1

∣∣u(x)− Puj ,Xj (x)
∣∣wj(x) ≤ max

j=1,...,d

∥∥u− Puj ,Xj

∥∥
L∞(Ωj)

.

(9)

3 The collocation scheme and accuracy results

The problem (4) is collocated via the local PU method on a global set of points
X = {xi, i = 1, . . . , N}, composed by both boundary and interior points. Thus,
see e.g. [43, 24],

∇2Iu,X (xi) =
∑d
j=1∇2

(
wj (xi)Puj ,Xj

(xi)
)

= kδ̃H(xi), xi ∈ Ω\∂Ω,

Hu,X (xi) =
∑d
j=1 wj (xi)Puj ,Xj

(xi) = u0, xi ∈ ∂Ω.

Letting αj = (αj1, . . . , α
j
Nj

)ᵀ and let hj = (Puj ,Xj
(xj1), . . . , Puj ,Xj

(xjNj
))ᵀ be the

vector of local nodal values. Since the following relation holds

αj = Φ−1
j hj ,
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we get

∇2hj = Φ∇
2

j Φ−1
j hj ,

where, on a given Ωj , Φ∇
2

j is the matrix defined as

(Φ∇
2

j )ik =

{
∇2Kε(x

j
i ,x

j
k), σm ≥ τ,

∇2Kψ(xji ,x
j
k), σm < τ.

(10)

Thus the local elliptic discrete operator is given by

(Lj)ik =

{
(L̄j)ik, for xji ∈ Ω\∂Ω,

δik, for xji ∈ ∂Ω,

with
(L̄j)ik =

(
w̄∇

2

j Φj + 2w̄∇j · Φ∇j + w̄jΦ
∇2

j

)
Φ−1
j := WjΦ

−1
j , (11)

where the local differentiation matrices are constructed by substituting the
proper differential operator in (10), δik denotes the Kronecker delta, and

w̄∇
2

j = diag
(
∇2wj(x

j
1), . . . ,∇2wj(x

j
Nj

)
)
.

Similarly we define w̄∇j and w̄j .
Finally, let xζkj

∈ XNj be the node corresponding to xk ∈ X . The global
discrete PDE operator is then given by

(L)ik =

d∑
j=1

(Lj)ζij .ζkj
, i, k = 1, . . . , N, (12)

and to approximate the solution, we solve

Lz = u, (13)

where z = (Hu(x1), . . . ,Hu(xN ))ᵀ and u = (u1, . . . , uN )ᵀ, with

ui =

{
kδH(xi), for xi ∈ Ω\∂Ω,
u0, for xi ∈ ∂Ω,

i = 1, . . . , N.

As a final remark, we point out that for this local collocation method, we
need to distribute the points among subdomains. Many procedures have been
developed for such problem. Here we use the so-called block-based data structure
and we refer the reader to [44, 45] for further details.

3.1 Algorithmic details

Before showing error bounds and error estimates, we summarize the steps of the
proposed scheme for solving the problem (1) in the HVSK-PU approach. In order
to compute a set of approximated values:

As = {Iu,X (x̃i), i = 1, . . . , s},
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the algorithm has to define a set

Cd = {x̄j , j = 1, . . . , d} ⊆ Ω,

of d of PU centres. Since d should be proportional to N , here we fix [25, 33]

d =

⌊
M
√
Nc

2M−1

⌋M
. (14)

with M = 2 and Nc interior boundary nodes, such that N = Nc + Nb, with
Nb boundary nodes. Moreover, in order to satisfy the covering property, we
construct the partition Ω1, . . . ,Ωd as balls of radius

ρ =

(
2

d

)1/M

. (15)

Finally the block-based partitioning data structure is used to organize nodes
and evaluation points among the subdomains.

Algorithm 1 The HVSK-PU algorithm

1: {Input: Q, T problem (1) parameters, ηm,p regularizing function;

X = {xi, i = 1, . . . , N} ⊆ Ω, set of data points;

d, number of PU subdomains, x̃i, i = 1, . . . , s, evaluation points;

K kernel; ε shape parameter; ψ scale function; τ , tolerance. }
2: {Initialise:}
3: definition of number and type of PU centers: Cd = {x̄j , j = 1, . . . , d}, d as in (14);
4: definition of the PU balls radius: ρ as in (15);
5: organize nodes and evaluation points among the subdomains via block-based partitioning

data structures.
6: {Computation:}
7: For each subdomain j = 1, . . . , d:
8: compute (11) by selecting the kernel family as in (10).
9: accumulate the local contributions into (12).

10: End for
11: Solve (13) and evaluate Iu,X .
12: {Output: As = {Iu,X (x̃i), i = 1, . . . , s}}

3.2 Method accuracy

For our scheme, the accuracy on the computed solution depends on both the
regularization error, introduced by the approximated mathematical model, and
the discretization error, introduced by the numerical collocation scheme. While
for the former upper bounds on the error are available, for the latter we only
provide error estimates which are consistent with numerical results.

Once we regularize δH , we obviously introduce an approximation whose con-
vergence order can be bounded via the following theorem [30].

Theorem 3.1 (Regularization error). Let Hs0(Ω) be a Hilbert space and
Hs∗0 (Ω) its dual. Let be δ ∈ Hs∗0 (Ω) the Dirac delta, there exists a regularization
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δ̃H ∈ Hs∗0 (Ω) that satisfies

εδ =| δ(φ)− δ̃H(φ) |≤ C(φ,m)Hm+1,

where φ ∈ D(Ω), m ∈ N is the number of moment conditions and C(φ,m) is a
constant that depends on φ and m.

δH is usually constructed by taking ηm := ηm,p as a polynomial of degree
p, satisfying the m−moment conditions. We list below several examples of
regularizations together with their approximation order and smoothness degree.

η1,2 =
12

π
(5r2 − 8r + 3), O(H2), C0,

η2,3 = −60

π
(75r3 − 15r2 + 10r − 2), O(H3), C0,

η2,5 =
84

π
(24r5 − 70r4 + 70r3 − 25r2 + 1), O(H3), C1,

Upper bounds for PU collocation method, being based on Kansa’s collocation
approaches, are not available in literature. However, taking into account cross-
validation schemes and their extensions to Kansa’s methods [46], we are able
to give an estimate of the collocation error and later numerically prove the
convergence of the PU collocation method.

Proposition 3.1 (Discretization error). Letting Ω ⊂ R2, X = {xi}i=1,...,N ⊆
Ω, d number of PU subdomains; set (L̄ᵀ

j )ik and (Φj)
−1
ii defined as in (8) and

(11) for each i, k = 1, . . . , Nj, and j = 1, . . . , d. For the HVSK-PU collocation
scheme, an error estimate ediscr via LOOCV is given by

ediscr = max
j=1,...,d

||Ej ||p, (Ej)ik =
(L̄ᵀ

j )ik

(Φj)
−1
ii

, (16)

where usually p = 2 or it is the Frobenius norm, and i, k = 1, . . . , Nj.

Proof. On a given Ωj , the local differentiation matrix is given by

L̄j = WjΦ
−1
j , (17)

and because of the symmetry of the matrix Φj , we can rewrite (17) as

ΦjL̄
ᵀ
j = W ᵀ

j .

Since this last equation implies that on each subdomain we deal with multiple
systems having as common matrix Φj , taking into account (5), we define the
following cost matrix:

(Ej)ik =
(L̄ᵀ

j )ik

(Φj)
−1
ii

,

i, k = 1, . . . , Nj . Finally, taken into account (9) the upper bound for the global
error estimate is given by (16). �
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In the next section we verify the reliability of the estimate (16) and the
convergence of the described scheme, through its decreasing values while the
number of the collocation points increases.

4 Numerical Results

In this section we show numerical results for the application of the described
scheme to solve the Dirichlet problem (4) in order to emphasize the effects of
some main parameters and heuristic on the accuracy. Tests were carried out
with MATLAB R2018a software on an Intel(R) Core(TM) i5, 1.8 GHz processor.

Under the assumptions on the mathematical model, particularly under the
hypotheses of homogeneous transmissivity, the Thiem function can be assumed
as reference solution.

Set Halton-type collocation points, we compute the accuracy on the com-
puted solution ũ(·) on Ne uniformly distributed evaluation points x̃i by evalu-
ating the relative Root Mean Square Error (rRMSE):

rRMSE =

√
1
Ne

∑Ne
i=1 | u(x̃i)− ũ(x̃i) |2√∑Ne
i=1 | u(x̃i) |2

. (18)

In the experiments, we consider the Gaussian and the Matèrn C6 kernels. The
first one is infinitely differentiable, while the second one is characterized by a
finite regularity. This results in more stable solutions when using the Matèrn
C6, rather than the Gaussian function. Indeed, as well-known, the eigenvalues
of the Gaussian decay very quickly, especially for a huge number of nodes, and
thus the kernel matrix might be numerically non-invertible. Therefore, since in
our problem a singular forcing term is involved, we definitely expect more stable
results with kernels characterized by finite regularities.

As concern the regularizing term of problem (4), between the radially sym-
metric regularizations in 2 space dimensions [30], we choose η1,2 ∈ C0, provid-
ing a regularization of order O(H2). About the value of H, we have tested
the scheme choosing H in the range [2ρ, 6ρ]; where ρ is the central patch ra-
dius. Particularly, since ρ decreases as N increases, according to (14) and (15),
in order to verify the convergence of the numerical scheme for a fixed regu-
larization error, we select H as the minimum value computed as H = 4ρ, for
N ∈ {81, 289, 900, 1089}. Furthermore, we fix, unless otherwise noted,

- the number of Halton data sites N = 289 and the number of evaluation
points Ne = 40;

- the model constant
Q

2πT
= 120;

- the PU weights as the Shepard’s weights constructed via the Wendland’s
C2 functions
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- the scale function for the VSK technique as

ψj(x,x
j
i ) =

Nj∑
i=1

| pji (x,x
j
i ) | on Ωj ,

with

pji (x,x
j
i ) =

1

π
arctan(hji (x1 − xji1)) exp(−5(x2 − xji2)),

where x = (x1, x2),xji = (xji1, x
j
i2) ∈ Ωj , and hji ∈ R+, 1 = 1, . . . , Nj . In

order to not further burden the computational cost, we fix hji = 7×106, i =
1, . . . , Nj , and we refer the reader to [25] for further details.

The results highlight the main advantages of the presented scheme; in particular:

• the stability of the scheme with respect to the increase of the collocation
points (oversampling). One of the advantages of the PU scheme is that it
might oversample only regions where the solution has high variation, e.g.
in our case the patch where the singularity is located [?]. However, the
oversampling might cause instability problems due to ill-conditioning of
the local collocation matrices. The VSK strategy can help to address this
numerical issue. The hybrid technique uses the fixed shape parameter as
long as the conditioning is acceptable and it switches to VSKs where the
local matrix is close to be singular. Some results on the convergence of
error estimates emphasize the effectiveness of the HVSK-PU algorithm.

• A comparison between HVSK-PU and a Finite Difference scheme con-
cludes the section.

In Figure 2 the Halton points (blue circles) distribution is described; in the
same figure are also reported those Halton points (red points) and the evalu-
ation points (green dots) located in the central patch, where the accuracy on
the regularizing term plays a crucial role. Figure 3 describes the contour plots
for the Thiem and the computed solution, obtained by the radially symmetric
polynomial regularization η1,2 and the Gaussian kernel, with fixed shape param-
eter ε = 1. The red circle overlying the contour levels denotes the support H

of the regularization δH =
1

H2
η1,2. The corresponding error on the solution is

rRMSE = 1.99× 10−2. The condition number in Frobenius norm of the global
matrix in the collocation scheme results κ(L) = 2.41× 106.
Being VSKs applied only on certain subdomains, their contribution varies for
different bases functions. For example, set ε = 1, with the Matèrn kernel we
have rRMSE = 2.58 × 10−2 and κ(L) = 7.72 × 105. Those values highlight
that the Matèrn kernel grants the same accuracy on the solution by correcting
the ill-conditioning of local collocation matrices in much more patches than the
Gaussian one (see Figure 4). Figure 5 describes the surfaces for the Thiem and
the computed solution via the Matèrn kernel. As already mentioned, we observe
that, by increasing the number of collocation points, i.e. on a set of N = 1089
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Figure 2: The Halton points (blue circles), the data in the central subdomain
(red points) and the evaluation points in the central subdomain (green points).

Halton points, using the Gaussian kernel the method suffers from instability.
Thus, from now on we restrict to the Matèrn C6.

We also report in Figure 6 the sparsity pattern of the final collocation matrix.
This suggests that future investigations in iterative methods for the resolution
of the global system might be of interest [21]. Now we present some results con-
firming the robustness of the scheme as N increases. It is well known that by
decreasing the fill distance the rRMSE decreases while the conditioning might
increase. With ε = 1 and N = 1089 we obtain:

rRMSE = 7.30× 10−3 κ(L) = 9.01× 106

The proposed scheme tackles the increase of the collocation points in suitable
subdomains. The next test is carried out with 289 data sites and thickening of
50 points in the central patch; the results prove that the accuracy is maintained:

rRMSE = 1.74× 10−2 κ(L) = 6.75× 106

In the following we explore for different ε-values (ε = 2, 0.1) the numerical
convergence of the HVSK-PU scheme, through the Discretization error estimate
ediscr in (16), which as the rRMSE should decrease as N increases. Of course,
since the tolerance used to test if the local matrices are singular increases when
the shape parameter decreases, as in [25], we expect that the accuracy of the
HVSK-PU scheme significantly improves for small values of the shape param-
eters, while the solution in terms of rRMSE should be comparable with that
furnished by the classica PU scheme, for ε = 2. Indeed, from Table 1, it is evi-
dent that rRMSEs are comparable for both methods. This is a consequence of
the fact that the local matrices are invertible and thus there is no need of using
any stable technique. The discretization error estimate instead is too optimistic
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Figure 3: Contour plots of computed solution by Gaussian kernel (left) and
Thiem solution (right), N = 289, ε = 1, η1,2.
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Figure 4: Distribution of the patches where the HVSK-PU algorithm dynami-
cally applies the kernel scaling, with Gaussian (left) and Matèrn (right) kernel,
respectively.
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Figure 5: Computed solution by Matèrn kernel (’red *’) and Thiem solution
(’blue · ’), N = 289, ε = 1, η1,2.

Figure 6: Sparsity of the collocation matrix on 289 data sites. nz is the number
of non-zero coefficients.

for the HVSK-PU scheme, which however shows its monotonic behaviour for
small values of the shape parameter, see Table 2. For this example the classical
PU approach fails and this is due to the fact the ill-conditioning of the local ma-
trices is prohibitive for stably computing their inverse. This confirms the high
variability of the classical PU scheme and stresses the efficacy and convergence
of the HVSK-PU approach also for small values of the shape parameters.

Finally, we compare the advantages of the HVSK-PU scheme with respect
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ε = 2
nodes number HV SK − PU PU

N ediscr rRMSE ediscr rRMSE
81 3.7533E-03 2.6213E-02 3.5232E-01 2.5191E-02
289 9.0642E-05 2.5824E-02 9.9057E-03 2.5746E-02
900 5.6812E-04 7.3459E-03 1.6099E-03 7.3392E-03
1089 1.0410E-03 7.2998E-03 1.0783E-03 7.2813E-03

Table 1: Estimation of the discretization error for classical and HVSK-PU col-
location scheme for different sets of Halton data, ε = 2.

ε = 0.1
nodes number HV SK − PU PU

N ediscr rRMSE ediscr rRMSE
81 3.7533E-03 2.6213e-02 8.1452E-06 1.6829E+00
289 9.0642E-05 2.5824E-02 5.3205E-02 –
900 3.7144E-05 7.3451E-03 4.5907E-02 –
1089 3.3834E-05 7.2997E-03 2.7474E-02 –

Table 2: Estimation of the discretization error for classical and HVSK-PU col-
location scheme for different sets of Halton data, ε = 0.1.

to a FD approach for solving the elliptical problem in exam. To this end let us
assume a rectangular regular domain Ω = [0, 1] × [0, 1] around the singularity
fixed in P = (0.5, 0.5), which is covered by a regular grid of mesh-size ∆:

Ω∆ =

{
(xi, yj) : xi = i∆x, i = 0, . . . , n, ∆x =

1

n
, yj = j∆y, j = 0, . . . ,m, ∆y =

1

m

}
⊂ Ω, m, n ∈ N.

The values at the mesh points will be denoted by

uij = u(xi, yj), i = 0, . . . , n, j = 0, . . . ,m.

At the grid points of Ω∆ the five-point Laplacian scheme furnishes a second
order approximation for the second order derivatives:

∇2u(xi, yj) =
ui+1,j − 2ui,j + ui−1,j

∆2
+
ui,j+1 − 2ui,j + ui,j−1

∆2
+O(∆2)

with i, j = 1, . . . , n−1, ∆ = ∆x = ∆y and m = n for simplicity. The Dirac delta
approximation is made in a 2∆× 2∆ subdomain centered at P. The FD scheme
leads to the solution of a linear system of dimension n2. Let us compare the
two schemes with the same problem size. Set 81 collocation points, the Matèrn
C6 and ε = 1, the HVSK-PU scheme gives rRMSE = 6.71× 10−3 in a time of
t = 1.15× 10−3 seconds, by solving a linear system with κ(L) = 3.30× 104. For
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the same size the FD scheme with ∆ = 1/8 = 0.125 gives an approximation with
relative error of order 10−2, so higher than the one computed by HVSK-PU (see
Table 3). In order to improve the accuracy we halve ∆ so increasing the linear
system dimension and consequently the computational cost of the grid-based
FD scheme. The results in Table 3 confirm that the FD scheme reaches the
same order of accuracy of the HVSK-PU scheme, provided many discretization
points are considered and consequently with higher computational costs (of four
orders greater than HVSK-PU). The κ(L) in table refers to the conditioning of
the coefficient matrix produced by the FD scheme.

n2 ∆ rRMSE κ(L) t
81 0.125 8.53E-02 1.12E+03 1.68E-03
289 0.0625 4.19E-02 7.02E+03 6.65E-03
1089 0.03125 2.09E-02 4.16E+04 1.66E-01
4225 0.015625 1.04E-02 2.41E+05 7.43E+00
16641 0.0078125 6.97E-03 6.68E+05 5.80E+01

Table 3: Values obtained by FD with different mesh sizes.

5 Conclusions

In this paper we propose a numerical framework for solving an elliptic differential
problem arising in hydraulic engineering. The pulse like source term, modelled
by a Dirac delta function, has been firstly regularized. Then, we apply a radial
basis function-based scheme which takes advantage of decomposing the original
domain and allows the definition of an hybrid algorithm. The latter turns out to
be very flexible and enables us to control the ill-conditioning of the collocation
matrices through a kernel scaling. The discretization error for the numerical
scheme is estimated and comparisons with a classical grid-based approach are
also presented.
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[25] S. De Marchi, Á. Mart́ınez, E. Perracchione, and M. Rossini. Rbf-based
partition of unity methods for elliptic pdes: Adaptivity and stability issues
via variably scaled kernels. Journal of Scientific Computing, on line first,
2018.

20



[26] S. De Marchi, A. Mart́ınez, and E. Perracchione. Fast and stable rational
rbf-based partition of unity interpolation. Journal of Computational and
Applied Mathematics, 2018.

[27] M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback. Interpolation with
variably scaled kernels. IMA Journal of Numerical Analysis, 35(1):199–219,
2015.

[28] L. Romani, M. Rossini, and D. Schenone. Edge detection methods based
on rbf interpolation. Journal of Computational and Applied Mathematics,
on line first, 2018.

[29] M. Rossini. Interpolating functions with gradient discontinuities via vari-
able scaled kernels. Dolomites Research Notes on Approximation, 11:3–14,
2018.

[30] B. Hosseini, N. Nigam, and J. M. Stockie. On regularizations of the dirac
delta distribution. J. Comput. Phys., 305:423–447, 2016.

[31] E.J. Kansa. Application of hardy’s multiquadric interpolation to hydrody-
namics. Proc. 1986 Simul. Conf., 4:111–117, 1986.

[32] E. Larsson, V. Shcherbakov, and A. Heryudono. A least squares radial
basis function partition of unity method for solving pdes. SIAM Journal
on Scientific Computing, 39:A2538–A2563, 02 2017.

[33] G. E. Fasshauer and J. G. Zhang. On choosing “optimal” shape parameters
for rbf approximation. Numerical Algorithms, 45(1):345–368, Aug 2007.

[34] H. Wendland. Scattered Data Approximation. Cambridge Monographs
on Applied and Computational Mathematics. Cambridge University Press,
2004.

[35] G.E. Fasshauer. Meshfree Approximation Methods with MATLAB. Inter-
disciplinary mathematical sciences. World Scientific, 2007.

[36] S. Rippa. An algorithm for selecting a good value for the parameter c in ra-
dial basis function interpolation. Advances in Computational Mathematics,
11(2):193–210, Nov 1999.

[37] R. Cavoretto, G. E. Fasshauer, and M. McCourt. An introduction to the
hilbert-schmidt svd using iterated brownian bridge kernels. Numerical Al-
gorithms, 68(2):393–422, Feb 2015.

[38] E. Larsson and B. Fornberg. A numerical study of some radial basis function
based solution methods for elliptic pdes. Computers & Mathematics with
Applications, 46(5):891 – 902, 2003.

21



[39] E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg. Stable computation
of differentiation matrices and scattered node stencils based on gaussian
radial basis functions. SIAM Journal on Scientific Computing, 35:A2096–
A2119, 01 2013.

[40] S. De Marchi and G. Santin. Fast computation of orthonormal basis for
rbf spaces through krylov space methods. BIT Numerical Mathematics,
55(4):949–966, Dec 2015.

[41] M. Pazouki and R. Schaback. Bases for kernel-based spaces. Journal of
Computational and Applied Mathematics, 236(4):575 – 588, 2011. Inter-
national Workshop on Multivariate Approximation and Interpolation with
Applications (MAIA 2010).

[42] S.A. Sarra. The matlab radial basis function toolbox. Journal of Open
Research Software, 5(1):8, 2017.

[43] A. Safdari-Vaighani, A. Heryudono, and E. Larsson. A radial basis func-
tion partition of unity collocation method for convection–diffusion equa-
tions arising in financial applications. Journal of Scientific Computing,
64(2):341–367, Aug 2015.

[44] R. Cavoretto, A. De Rossi, F. Dell’Accio, and F. Di Tommaso. Fast com-
putation of triangular shepard interpolants. Journal of Computational and
Applied Mathematics, 2018.

[45] R. Cavoretto, A. De Rossi, and E. Perracchione. Efficient computation of
partition of unity interpolants through a block-based searching technique.
Computers & Mathematics with Applications, 71(12):2568 – 2584, 2016.

[46] G. E. Fasshauer and J. G. Zhang. On choosing “optimal” shape parameters
for rbf approximation. Numerical Algorithms, 45(1):345–368, Aug 2007.

22


	Introduction
	The problem regularization
	RBF framework

	The collocation scheme and accuracy results
	Algorithmic details
	Method accuracy

	Numerical Results
	Conclusions

