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ABSTRACT

In complex industrial and chemical process control rooms, effective decision-making is crucial for
safety and efficiency. The experiments in this paper evaluate the impact and applications of an Al-
based decision support system integrated into an improved human-machine interface, using
dynamic influence diagrams, a hidden Markov model, and deep reinforcement learning. The
enhanced support system aims to reduce operator workload, improve situational awareness, and
provide different intervention strategies to the operator adapted to the current state of both the
system and human performance. Such a system can be particularly useful in cases of information
overload when many alarms and inputs are presented all within the same time window, or for
junior operators during training. A comprehensive cross-data analysis was conducted, involving 47
participants and a diverse range of data sources such as smartwatch metrics, eye-tracking data,
process logs, and responses from questionnaires. The results indicate interesting insights regarding
the effectiveness of the approach in aiding decision-making, decreasing perceived workload, and
increasing situational awareness for the scenarios considered. Additionally, the results provide
insights to compare differences between styles of information gathering when using the system
by individual participants. These findings are particularly relevant when predicting the overall per-
formance of the individual participant and their capacity to successfully handle a plant upset and
the alarms connected to it using process and human-machine interaction logs in real-time which
resulted in a 95.8% prediction accuracy using hidden Markov model. These predictions enable the
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development of more effective intervention strategies.

1. Introduction

In today’s complex industrial setting and chemical process
control rooms, operators frequently encounter complex situa-
tions demanding rapid and precise decision-making. The
Human-Machine Interface (HMI) can overwhelm operators
with excessive information, leading to information overload
and potentially compromising their ability to respond effect-
ively, thus increasing the likelihood of human errors. To
address this challenge, there is a need for a decision support
framework to assist operators in detecting and responding to
potential safety incidents. In this context, we present the results
of an experimental study in this paper to assess the effectiveness
of an improved Al-based recommendation system in address-
ing information overload and mitigating process abnormalities.

In this study, we evaluate the impact of an AI decision
support system (DSS) on control room operators, focusing

on workload reduction and situational awareness enhance-
ment through an integrated HMI that includes screen-based
procedures and an Al-based recommendation system. This
system employs a dynamic influence diagram coupled with
reinforcement learning to detect anomalies and provide
operators with relevant, dynamically updated procedures.
We conduct a simulation involving formaldehyde produc-
tion where participants (Figure 1) respond to various scen-
arios, either assisted by the DSS or not, to assess the
effectiveness of the Al-enhanced recommendation system.
The presentation of the procedures to the operators is a crit-
ical aspect of this research. Providing operators with simpli-
fied procedures that adapt to the current state of the system
has shown promising results in assisting their work. This
system’s interpretability and basis in expert knowledge are
enhanced through the collaboration between the influence
diagram and reinforcement learning. Such a system holds
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Figure 1. Case study: simulated control room environment of a process indus-
try for a living lab.

particular advantages for operators dealing with information
overload and junior operators.

Our comprehensive evaluation strategy includes both sub-
jective and objective measurements such as questionnaires,
response times, heart rate, temperature, electrodermal activ-
ity (EDA), and eye-tracking metrics. Workload is assessed
using the NASA Task Load Index (NASA-TLX), along with
physiological measurements, to determine the mental, phys-
ical, and temporal demands on operators. Situational aware-
ness is evaluated using the Situation Awareness Rating
Technique (SART) and the Situation Presence Assessment
Method (SPAM), which help quantify the operator’s under-
standing and projection of future states. Performance met-
rics, including response time and accuracy, determine the
DSS’s effectiveness in aiding decision-making and task exe-
cution. Additionally, trust in the DSS is gauged through
questionnaires to assess operators’ confidence in the Al sys-
tem, crucial for its acceptance and operational success.

Our findings suggest that while the DSS significantly
improves performance and reduces workload, there is a poten-
tial for reduced situational awareness and an over-reliance on
the system, which could impact safety and decision-making.
Correlation studies and factor analysis are used to simplify the
interpretation of complex data sets and to understand the rela-
tionships between variables. This holistic evaluation strategy
not only validates the system’s effectiveness but also highlights
areas for improvement, ensuring the enhanced Al-based rec-
ommendation system can optimally support operators in man-
aging industrial processes safely and effectively.

Furthermore, to gain insights into human behavior and
their intervention approach the analysis is performed within
the participants of the group that is provided with the AI-
enhanced decision support system. The cross-analysis com-
pares the perception level and intervention ability of the
participant based on the source they target to gain informa-
tion about the system such as the screen procedures,
Al-based decision support, or both. Moreover, we explore
human failure prediction in real time by analyzing process
variables and human-machine interaction data. This
approach aims to identify potential errors before they occur,
thereby enhancing the overall safety and efficiency of
operations

Furthermore, the outcomes from these experiments and a
survey (Amazu et al. (2023)), which involved experts and

stakeholders who might engage with the developed support
system led to the development of an extension of the
dynamic influence diagram-based reinforcement learning
framework. The focus is on proposing a Human-in-the-Loop
(HITL) hierarchical framework for interpretable, specialized,
and safe Deep Reinforcement Learning (DRL) that can be
employed in real-world safety-critical industries. This
extended framework aims to predict the plant’s state during
process abnormalities from human-machine interaction and
process logs, enabling improved intervention strategies.
Therefore, it can be used as a decision support tool during
the training of junior operators, but also as a co-pilot to sup-
port even experienced operators in situations where there are
too many alarms all arriving in the same time window. The
tool can further take up the role of taking over control and
requesting approval to automate the recovery process.

The paper is structured as follows: In Section 2, we delve
into the related work, outlining the contributions of this
paper. Moving on to Section 3, we define the framework
used for the Al-enhanced decision support system in the
experiments and its extended version for future enhance-
ments. In Section 4, we present the formulated case study,
which serves as the basis for data collection and analysis.
The data collection process and details of the collected data
are discussed in Section 5. Subsequently, Section 6 conducts
an in-depth analysis of the data, making comparisons
between groups and within participants for the Al-supported
group. Finally, in Section 7, we validate the extended frame-
work using results from the experiments and elucidate its
application capabilities.

2. Related work and contributions

The review article by Sethu et al. (2023) emphasizes AI’s
potential to assist operators in making precise and swift
decisions, thereby enhancing the safety of nuclear energy
production. They also investigate various causes of human
errors in nuclear power plants and assess how AI has been
integrated into various operator support systems to address
these errors. Eight specific types of support systems are
examined, including decision support, sensor fault detection,
operation validation, operator monitoring, autonomous con-
trol, predictive maintenance, automated text analysis, and
safety assessment systems. Highlighting the significance of
human-autonomous system interactions in ensuring plant
system performance and reliability, the review addresses
various human factors-related issues identified in the litera-
ture. The authors argue that a crucial gap exists in integrat-
ing the HITL strategy with both black-box models, such as
Deep Neural Networks (DNN), and the white-box approach
involving probabilistic modeling.

The authors in Lee et al. (2007); Wu and Li (2018) also
discuss the importance of preventing human errors and a
review of alarm system design in nuclear power plants. They
propose an enhanced control room interface design and
decision support system to enhance operational perform-
ance. Their methodology involves analyzing operators’ cog-
nitive activities, resulting in the development of two



decision support systems for fault diagnosis and operation
validation.

The authors in Kang and Lee (2022) propose a frame-
work, designed to improve initial emergency responses in
nuclear power plants. The framework aims for agile,
dynamic, and intuitive operation, seeking to reduce response
time and operator workload through automation and real-
time risk assessment. Scenario tests demonstrate a 95%
reduction in tasks and improved efficiency. Despite these
positive results, the authors acknowledge limitations such as
the reliance on rule-based logic, the importance of rigorous
effectiveness verification, and the system’s narrow focus on
early-stage emergencies. As the system is framed on rule-
based logic, therefore, it does not take into account the
uncertainties involved in the environment and needs to
reiterate the rules over time to adapt to the changing
environment.

The experiments presented in Hsieh et al. (2012) focus
on a decision support system designed for identifying abnor-
mal operating procedures in nuclear power plants. The
study involved 32 graduate students with backgrounds simi-
lar to new nuclear power plant operators. After undergoing
training and qualification tests, participants utilized the sup-
port system in a formal experiment. The results showed that
the support system significantly reduced errors by 25%,
decreased decision-making time by 25%, and increased deci-
sion accuracy by 18%. Operators using the system made
fewer erroneous decisions, experienced reduced mental
workload, and demonstrated a preference for the support
system. The study also highlighted the importance of avoid-
ing information overload to maintain decision quality. As a
recommendation, the developed decision support system is
suggested as a valuable training tool, offering enhanced per-
formance and reducing mental burden for operators.

An experimental study was performed in Balaji et al
(2023), where the authors discussed the challenges faced by
human operators in process industries and explored the
potential of using a digital twin to enhance their perform-
ance. The authors introduced a cognitive architecture using
eye tracker data that can be used to create a human digital
twin and explained how it could be applied to process
industries. They evaluated its performance by comparing it
to control room operators in a disturbance rejection task,
involving 11 participants. The authors collected process
data, operator actions, and eye-tracking data. The results
showed that the human digital twin’s performance was gen-
erally in agreement with that of human operators. The
digital twin successfully diagnosed the cause of the abnor-
mality and initiated necessary control actions. It focused on
areas directly related to the disturbance and employed a
proactive monitoring strategy using the trend of the process
variables.

Authors in Ghosh and Bequette (2019) provide a compre-
hensive overview of the integration of HITL systems, par-
ticularly focusing on the concept of Smart Control Rooms
(SCRs) to address the complexities of human-machine inter-
actions and enhance overall system performance. The frame-
work emphasizes the significance of incorporating human
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factors and cognitive science in decision-making processes
within industrial settings. They highlight the fact that the
integration of human factors in chemical process manufac-
turing has been relatively slow compared to other industries.

Hierarchical Reinforcement Learning (HRL) offers a
structured approach to address the challenges of transferring
knowledge at temporal abstractions between task hierarchies
in deep reinforcement learning (Botvinick (2012)). HRL
allows the agent to make decisions at multiple levels of tem-
poral abstractions instead of single-level decision-making.
This helps RL agents to focus on local problems and opti-
mize towards the global objective efficiently. Pateria et al.
(2021) survey HRL methods, categorizing them into classes
addressing hierarchical policies, subtask discovery, transfer
learning, and multi-agent learning. HRL research can gener-
ally be characterized into broad branches, (i) Feudal and (ii)
Option. Feudal presents a “manager and sub-manager” hier-
archy, whereas option relates to implementing a specific RL
model for the given situation. The proposed architecture
incorporates the strengths of both approaches in terms of
having a higher abstraction model as feudal RL using the
probabilistic approach and in other ways having option RL
for choosing the correct RL model for the autonomously
identified states as well as providing interpretations for the
given action or the given identification of the state. In the
options architecture (Stolle and Precup (2002); Bacon et al.
(2017)), the Markov Decision Process (MDP) is divided into
sub-policies that make it a Semi-MDP. Semi-MDPs are par-
ticularly useful for modeling problems where the duration of
states or transitions is important. This architecture introdu-
ces temporal abstraction in states and activates a particular
sub-policy when a particular state is observed. In this
research, the proposed framework is inspired by the HRL
framework, however, to make the policy more transparent
and interpretable the use of white-box probabilistic model-
ing is used to determine options and specialize the DRL
agents similar to the prior studies discussed in Abbas et al.
(2022b, 2023, 2024).

2.1. Contributions

This paper contributes by conducting an exploratory data
analysis on experiments carried out within a simulated con-
trol room environment. The specific focus is on comparing
two groups: one utilizing an Al-enhanced decision support
system based on dynamic influence diagrams and reinforce-
ment learning (RL), and the other not using such a system.
Additionally, we delve into the analysis of human decision-
making preferences for the group using the Al-enhanced
decision support system and their associated consequences.
Moreover, our paper addresses a significant gap in the exist-
ing literature by investigating the synergies among various
models and the impact of a HITL Al-enhanced decision
support framework, specifically integrating dynamic influ-
ence diagrams, a hidden Markov model, and Deep RL
(DRL). We leverage DRL for its adept handling of uncer-
tainties and adaptability to dynamic environments. The
objective is to incorporate human states and actions to
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enhance decision-making interventions. In contrast to prior
research, our proposed framework uniquely emphasizes
automated intervention strategies and decision-support con-
trols during process abnormalities. This automation is trig-
gered when the system identifies increased task loads for
humans or predicts a high probability of human failure dur-
ing abnormal situations. While our current research paper
does not explicitly delve into the creation of a human digital
twin, it lays the groundwork for such advancements. The
results presented here serve as a foundation for further
enhancements in the framework.

3. Framework
3.1. Preliminaries

The Al-based recommendation system leverages DRL and a
dynamic influence diagram. DRL is employed in an online
setting, where it learns through interaction with the environ-
ment and observation of process behavior based on its
actions. The dynamic influence diagram is constructed using
expert knowledge, which includes the physical equations
governing the behavior of the system components. These
two models are combined to detect deviations in the process
and provide the operator with precise recommendations,

along with specific values tailored to the current
circumstances.

3.1.1. Dynamic influence diagram (DID)

A dynamic influence diagram (DID) (Howard and

Matheson (2005); Tatman and Shachter (1990)) is a graph-
ical decision analysis tool that extends traditional influence
diagrams by incorporating a time dimension. DIDs repre-
sent decision problems through nodes such as decision,
chance, and value nodes, connected by directed arcs that
illustrate causal relationships and dependencies. The inclu-
sion of a time element allows the modeling of evolving sys-
tems. Key components include utility functions, decision
rules, and applying probabilistic links to account for uncer-
tainty. DIDs enable scenario and sensitivity analysis, offering
insights into decision-makers’ strategies and the robustness
of outcomes. The use of a dynamic influence diagram within
this framework and experiment is described in detail by
authors in Mietkiewicz et al. (2023, 2024). The definition of
an influence diagram is as follows:

Definition 1. Discrete Limited Memory Influence Diagram
(Kjeerulff and Madsen (2007))

Given an influence diagram denoted as N = (X, G, P, U),
it comprises the following components:

i. A Directed Acyclic Graph (DAG) G = (V,E), where V
represents the set of nodes and E is the set of directed
edges, indicating dependency relations and information
Sflow.

ii. A collection of discrete random variables Xc and deci-
sion variables Xp, such that the total set of variables X

is the union of these two sets, i.e., X = Xp U Xc¢. These
variables are represented by the nodes in G.

iii. A set of conditional probability distributions P, where
each distribution P(X,|Xpa(v)) is associated with a dis-
crete random variable X, given its parent variables
Xpa(v) in the graph.

iv. A set of utility functions U, with each utility function
U(Xpa(y)) associated with a node v in the subset of utility
nodes Vy C V.

To determine the decision option with the highest
expected utility, we calculate the expected utility for each
decision alternative. Let A be a decision variable with
options ay, ...,a,, H a hypothesis with states h;, ..., h,, and
€ a set of observations as evidence. The probability of each
hypothesis outcome h; and the expected utility of each
action a; can be computed. The utility for an outcome
(ai,hj) is denoted as U(a;, hj), where U(-) is the utility func-
tion. The expected utility for action a; is given by:

EU(a;)) = > _ Ul(a;, hj) x P(hle) 1
j=1

Here, P(-) represents the belief in hypothesis H given evi-
dence e. The utility function U(:) quantifies the decision
maker’s preferences numerically. The optimal decision is
made using the principle of maximum expected utility,
selecting an option a* such that:

a" = argmax, ., EU(a;) 2)

Dynamic influence diagrams extend traditional influence
diagrams by incorporating discrete time elements, effectively
creating a time-sliced model. This approach involves repli-
cating a static network structure across multiple time slices,
where each slice represents the system at a specific point in
time. The progression of the system over time is captured
through connections between variables across these different
time slices. Essentially, a dynamic model can be visualized
as a series of static models placed sequentially, each depict-
ing the system at a distinct time step. The links between
these time steps illustrate the impact of the system’s past
state on its present state. In our experiment, we utilized a
finite horizon dynamic influence diagram, which means our
model was designed to consider a specific, limited number
of time steps into the future.

3.1.2. Deep reinforcement learning

Deep Reinforcement Learning (DRL) (Frangois-Lavet et al.
(2018)) combines deep neural networks with reinforcement
learning, offering an approach for training to make sequen-
tial decisions in complex and dynamic settings. In process
control and its optimization, where traditional control tech-
niques may struggle to address the complexities and uncer-
tainties inherent in real-world processes, DRL has proven to
be beneficial (Spielberg et al. (2020)). Mathematically,
reinforcement learning involves Markov Decision Processes
(MDPs), where an agent interacts with an environment by
taking actions based on its current state, receiving rewards,



and updating its policy to maximize cumulative future
rewards. The Q-value function, denoted as Q(s, a), repre-
sents the expected cumulative reward of taking action “a” in
state “s” and following the optimal policy thereafter. The
Bellman equation, a fundamental concept in reinforcement
learning, expresses the recursive relationship between Q-val-
ues. Authors in Abbas et al. (2022a) have delved into the

application of DRL in the process control environment.

Q(s,a) =E|r+ymaxQ(s,a')|s,a (3)

3.1.2.1. Twin delayed deep deterministic policy gradient
(TD3) architecture. Twin Delayed DDPG (TD3) architecture
was proposed by Fujimoto et al. (2018) to tackle challenges
like overestimation bias. TD3 serves as the foundational
DRL architecture in our framework, incorporating twin Q-
value estimators to alleviate overestimation errors and a
delayed policy update mechanism for stabilizing the learning
process. The TD3 algorithm follows the actor-critic
approach, where the actor decides and the critic evaluates
the policy.

3.1.2.2. Critic update.

1
L(BQ) = ]E(s,a, r,s')~D 5 (Ql—target(s’ a) - )’)2 (4)
y=r + “/(1 - d) glllg Qi-mgﬂ (5/: Tlarget (S/)) (5)
3.1.2.3. Actor update.
L(07) = —Esp[Qu(s, n(s))] (©)

3.1.2.4. State. Within the framework of a Partially
Observable Markov Decision Process, relying solely on the
observed state may be insufficient due to inherent partial
observability constraints. To overcome this challenge, our
research employs a tuple consisting of the history of expert
actions concatenated with the history of process variables.
This history extends up to a length denoted as “l,” as illus-
trated in Equation (7). The selected historical information
includes the current state at time “t” and the preceding tra-
jectory at time “t—1.”

St = <()’t—1’ af—l—l)’ ()’t’“f—l)> @)

3.1.2.5. Action. In the context of the TD3 architecture, the
actor-network outputs a continuous action parameterized by
a neural network. The actor’s output is denoted as:

mo(s) = u(s) ©)

Here, u(s) is the deterministic policy function, represent-
ing the mean of the distribution over the continuous action
space.

3.1.2.6. Reward. In a disturbance rejection scenario, the
agent seeks to determine an optimal policy that minimizes
tracking error and stabilizes the process while deviating
minimally from the optimal set point. This objective is
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Figure 2. Specialized reinforcement learning agent (SRLA). Source: Abbas et al.
(2024).

incorporated into the DRL agent through a reward function
(r) or a cost function (—r), such as the negative 11-norm of
the set-point error, as expressed in Equation (9).

my
T'(St) a?)5t+l) =- Zb’i,t - )’i,sp| )
i—1

3.1.3. Specialized reinforcement learning agent

A Specialized Reinforcement Learning Agent (SRLA) inte-
grates the strengths of probabilistic modeling and DRL as
shown in Figure 2, proposed in Abbas et al. (2024). SRLA
enables the DRL agent to specialize in specific scenarios
within the environment, particularly in cases involving pro-
cess abnormalities. This specialization enhances training effi-
ciency and reduces the need for excessive data. In the
associated figure, P(s;) denotes the probability of a particular
state, x*(s;) signifies the specialized state where the DRL
agent is activated, and the system state S is filtered to extract
information about that specific state. The recommended
optimal control strategy n is then presented to the operator.
An instantiation of the framework was adapted for a case
study in process control and optimization, as presented in
Abbas et al. (2023). The actor and critic updates are modi-
fied as shown in Equation (10) where s* = desired state
identified through the probabilistic model.

£;(02) = =Q(s", (a" + a*(s'(0x)) |0) (10)

Lal0) = & (R- Q&' (0" +a(+16,) )’

Furthermore, the framework was extended as an AI-
enhanced recommendation system for process control,
where a Multi-Specialized Reinforcement Learning Agent
(M-SRLA) configuration was employed. In this setting, mul-
tiple agents operate independently, with only a specific agent
activated to offer the optimal control strategy when a pro-
cess abnormality is detected through the influence diagram
as presented by Mietkiewicz et al. (2023).

3.1.4. Hidden Markov model (HMM)

The Hidden Markov Models (HMMs) (Rabiner (1989)) are
probabilistic models widely used for modeling sequential
data in diverse fields. They consist of a set of hidden states,
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Figure 3. Human-centered specialized reinforcement learning agent for safety-critical systems. The dashed area represents the framework developed in Mietkiewicz

et al. (2023, 2024).

each associated with a probability distribution over observ-
able outcomes. The transitions between hidden states are
governed by probabilities, and at each state, an observation
is emitted based on another probability distribution. HMMs
are characterized by their ability to capture temporal
dependencies. A similar hybrid approach of combining
HMM with DRL was used by authors in Abbas et al.
(2022b) and Abbas et al. (2023), where the sole purpose of
HMM was to provide separate the state space into normal
and abnormal states as well as to provide interpretations for
the root cause of failure. In our proposed framework HMM:s
(Lee (2023)) are used in a similar context to predict the
human failure in process abnormality states.

3.1.4.1. State transitions.

P(q:|qe-1)

where P(q|g:-1) represents the transition probability from
state g;—; to ¢q;.

(11)

3.1.4.2. Emission probabilities.

P(x:|q:)

where P(x|q;) represents the emission probability of obser-
vation x; given state g;.

(12)

3.1.4.3. Hidden state prediction. Given the current state g;_i,
the observation sequence X, X3, ..., X;—; up to time t — 1, and
the model parameters 0 (initial, transition, and emission prob-
abilities) the predicted probability distribution for the next
state g; is given by:

P(qt|xlax2$~-~)xt—1) 0) (13)

3.2. Human-centered specialized RL decision support
framework for safety-critical systems

In this paper we build upon the previous framework
(Mietkiewicz et al. (2023)) and introduce an extended ver-
sion as shown in Figure 3 that incorporates a HITL setup.
As shown in the figure, the process variables are used as the
input for DID and HMM. Furthermore, the confidence
threshold from DID adds an extra layer of safety to the
DRL suggestion. If the suggested control falls outside this
threshold, it is not presented to the operator; instead, only
the interval is suggested. The DID identifies the process
abnormality, and based on this identification, the DRL agent
specialized for that specific abnormality is activated to sug-
gest control values. The proposed framework additionally
captures the human state prediction in real-time by the use
of the HMM on the data from process, alarms, and HMI
logs, which provide information on the process variables as



well as the human interaction with the process. This frame-
work further increases the capabilities in terms of the inter-
vention strategies based on HMM prediction, such as using
it during the operator’s training, decision support for the
operator or supervisor, operator action validation, and
requesting automating of the intervention through DRL.
Finally, based on the decision support from DID, DRL, and
HMM, the human operator makes the final decision that is
implemented in process control.

The methodology involves utilizing an influence diagram
to locate specific failures within the system globally. Once
the failure-associated procedure is identified, the relevant
step of the procedure is presented to the operator based on
the current situation. In cases where the procedure requires
the manual adjustment of a controller with continuous val-
ues, locally specialized DRL is activated to determine the
appropriate value, considering the current state of the sys-
tem. One additional safety barrier that we introduce for
using such a black-box system in safety-critical industries is
that the exact continuous value is only suggested to the
operator if it is found within the confidence interval of the
DID. The influence diagram, due to data discretization, pro-
vides a value in the form of an interval. If the value derived
from DRL falls outside this interval, only the procedure,
along with the interval, is presented to the operator. This
precaution is taken to ensure the interpretability and safety
of the overall system. In summary, the influence diagram
serves to model the system globally, while reinforcement
learning precisely addresses local issues.

Furthermore, the HMM is introduced at the final layer
between the human and the recommended control value
that determines different intervention strategies based on the
state of both the system and the human as derived from the
real-time process logs, which includes the data of current
process variables, alarm information, and human-system
interactions. The HMM predicts if the human state will be
able to handle the situation given the time and circumstan-
ces. Based on this, it suggests the operator either adjust the
control manually or allow the system to automate certain
processes. The HMM can also be used to validate the
actions of the operator according to the expert standards
and prompt to avoid human errors. Moreover, the proposed
framework is versatile enough to be used in real situations
as well as during the training of the operator to enhance the
guidance.

3.2.1. Algorithm
The algorithm is defined in Algorithm 1 and is available in
the project repository’ (Abbas (2024)).

Algorithm 1. Human-Centered Specialized Reinforcement
Learning Agent (HC-SRLA).
Step I: Dynamic influence diagram monitoring
Input:
y: process variables
DID: trained model
Output:
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s*: specific event of interest (such as abnormality)
recommendation: pruned procedure
STEP II: Deep Reinforcement Learning Inference.
Input:
s*: specific event of interest (such as abnormality)
y: process variables
7p(s) : trained specialized actor
Safety control confidence interval check
Output:
u(s): recommended control value (Equation (8)) or
interval
STEP III: Hidden Markov Model Monitoring
Input:
logs: process, alarms, and HMI-logs
HMM: trained model parameters
Output:
qr: hidden state predition from Equation (13)
STEP IV: Decision Support and Human Intervention
Input:
qr hidden state interpretation (such as human
failure)
Output:
intervention: intervention strategy suggestion
control: human intervention

4. Case study and design of experiments

The case study, conducted in collaboration with Politecnico
Di Torino and Technological University Dublin, involves a
simulated chemical plant dedicated to formaldehyde produc-
tion. The plant, which produces a 30% formaldehyde solu-
tion at a rate of 10,000kg/h through partial oxidation of
methanol with air, consists of three main sections: the feed
section (comprising various systems such as nitrogen flow,
methanol tank, pumps, boiler, compressors, heaters, piping,
controllers, safety valves, and indicators), the heat and
recovery section (housing three heat exchangers), and the
reaction and separation section (featuring a reactor, control-
lers, alarms, sensors, rupture disk, absorber, and piping).
The study focuses on hazardous events or process safety
occurrences, including depressurization of the methanol
tank, air ingress into the methanol tank leading to the for-
mation of a flammable atmosphere, and reactor overheating.
These scenarios are categorized based on complexities (nor-
mal and abnormal situations) within different plant sections.
The goal is to vary the task load as a variable and observe
its impact on performance, analyzing it alongside other vari-
ables to enhance the understanding of the system’s behavior.
The experiment aims to investigate the impact of various
interactions between variables in human-machine and
automation interactions on operator performance and its
implications for process safety. The goal is to facilitate com-
prehensive risk-based decision-making for real-time support
adaptation, process control optimization, and management
of change. The key objectives include developing a real-time
model to assess human performance in human-machine
interaction environments, modeling safety data for Human-
in loop configurations in process control, exploring optimal
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1. Check the Pressure value [ata] on the graph (see Graph on tank
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IF, pressure below or above 1 [ata] , do STEP 2.

ELSE, do nothing

2. Check the Nitrogen flow (see Primary system flow meter [Nm¥h] on
tank mimic). Cross check with nominal Nitrogen flow value [4 Nm?/h]
IF, Nitrogen flow less than 3.5 [Nm?h] or greater than 4.5
[Nm?*h], then continue STEP 3.
ELSE, go to STEP 1.

3. Switch Nitrogen valve to manual.

4. Move and adjust Pointer on Nitrogen valve scale between 5.2 and
5.5 Nm?¥h.

5. Monitor, for a while, Tank Pressure with Plot on Tank mimic (nominal
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Figure 5. GroupN support panel including screen-based procedures (Amazu, Mietkiewicz, Briwa, et al. 2024).

decision-making processes in safety-critical systems using
Reinforcement Learning with human-in-the-loop, and creat-
ing Bayesian networks to assist human operators in recom-
mending adaptive automation strategies.

4.1. Process control room simulation environment

Our experiment is based on a simulator created for formalde-
hyde production (Demichela et al. (2017)), which simulates a
control room environment. A significant enhancement to this
simulator is the “support panel” converting it into a compre-
hensive control room simulation with features like graphical
production monitoring, an alarm list, a procedure list, and a
suggestion box as shown in Figure 4.

4.2. Groups

For the comparative evaluation, the participants were div-
ided into two groups, the one with the AI support system
and the one without it.

4.2.1. GroupN (without Al system)

The group without the Al system has a screen-based proced-
ure panel to manually go through the intervention proced-
ure and had the difference in the last section of the support
panel that does not include any suggestion box as shown in
Figure 5.

e Screen-Based Procedure Panel. The screen-based proce-
dures provided the participants with the intervention
procedures for all the alarms per every sub-section of the
plant. The participant has to click on the specific alarm
which has to be recovered and follow the procedure
accordingly.

4.2.2. GroupAl (with Al system)
The only difference between GroupAl from GroupN is an
additional panel of suggestion boxes as shown in Figure 6.

e Al-Enhanced Decision Support Panel The Al-enhanced
decision support panel introduces a concise representation
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Figure 6. GroupAl With support panel including screen-based procedures and Al-based suggestion box (Amazu, Mietkiewicz, Briwa, et al. 2024).

of the intervention procedure to be followed and gives the
root cause of the predicted failure even before the alarm.
The probabilistic model predicts the failure and DRL pro-
vides the exact analog value for the controller to be manu-
ally configured. If the participant agrees to follow the
suggestions by the AI system they have to acknowledge
and then follow the guidelines. Furthermore, to gain the
attention of the participant the acknowledge box starts
blinking if there is any change in the suggestion so that the
operator (participant) can monitor that change and per-
form the suggested action.

4.3. Scenarios

To evaluate the effectiveness of our decision support, we
devised three scenarios, and further analysis of the scenarios
was divided according to the Time of Interest (TOI):

4.3.1. Baseline overview (scenario 1)

This TOI refers to the condition where the operator just
observes the overall process up to the time before the occur-
rence of the first critical alarm. This created a baseline per-
formance analysis of the participant in terms of
physiological measures such as an eye tracker.

4.3.2. Critical alarm (scenario 2)
This TOI refers to the start of the first critical alarm to the
time when it is either fully recovered or the end of the

experiment. The three scenarios included within this TOI
are as follows:

e Pressure indicator control failure. The automatic pressure
management system in the tank malfunctions, requiring
the operator to manually adjust nitrogen inflow to main-
tain pressure. The interruption of nitrogen flow leads to
a pressure drop as the pump continues channeling nitro-
gen into the plant.

e Nitrogen valve primary source failure Similar to the first
scenario, the primary nitrogen source fails, prompting
the operator to switch to a backup system. While the
backup system starts slowly, the operator regulates pump
power to slow down the pressure drop in the tank.

e Temperature indicator control failure in the Heat
Recovery section. The operator attempts to resolve the
issue by adjusting the cooling water flow in the absorber
manually.

4.3.3. Alarm overflow (scenario 3)

This TOI refers to the start of the alarm overflow (second
critical alarm) to the end of the experiment. Scenario 3
included within this TOI is as follows:

e Temperature indicator control failure in the Heat
Recovery section The operator attempts to resolve the
issue by adjusting the cooling water flow in the absorber
manually. However, this proves ineffective, and the oper-
ator contacts the supervisor. The supervisor advises that
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the problem exceeds control room resolution and
requires a field operator’s intervention. While the field
operator addresses the issue on-site, the control room
operator manages the reactor’s temperature, with a focus
on preventing potential reactor issues.

For certain aspects of the comparative analysis, the pri-
mary focus wasn’t on comparing different scenarios. Thus,
the results were normalized across scenarios and aggregated
as an average for each participant. This process created a
single data point for each participant within their respective
group, reducing the comparison parameters and dimension-
ality. Furthermore, to normalize metrics within their corre-
sponding baseline TOI (where applicable) (Mathot et al.
(2018)), the following Equation (14) was applied:

Metric in TOI

Metric =
Metric in Baseline TOI

(14)

4.4. Specialized RL agent control suggestion

For the scenarios designed in this controlled experiment,
Figure 7 shows the inference of trained DRL agents special-
ized for the scenarios it is activated on. The inference

validates that opting for precise adherence to DRL sugges-
tions by the participant or allowing the system to operate
autonomously to address abnormalities leads to the optimal
path in restoring the system to its normal operating status.

In 7a the nitrogen valve opening is controlled to maintain
the tank pressure and in 7b the cooling system temperature
is controlled to maintain the maximum reactor temperature.
As can be seen in both figures, the DRL optimizes the pro-
cess disturbances (visualized by the ramp in the graphs) and
tries to restore the process as promptly as possible.
Moreover, 7b highlights a sinusoidal control pattern, indicat-
ing a need for constant and abrupt input changes to nor-
malize conditions. This design aligns with the requirements
of the alarm overflow scenario, demanding precise control
adjustments alongside effective alarm handling.

5. Data collection

The dataset and our evaluation strategy integrate subjective
and objective measurements, including questionnaires,
response times, heart rate, temperature, electrodermal activity
(EDA), and eye-tracking metrics. These metrics are com-
monly employed in assessing cognitive states related to
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Figure 7. Specialized reinforcement learning agent training and inference for process abnormality related to (a) tank pressure and (b) reactor temperature.



workload, situational awareness, stress, and fatigue. Workload
is measured using the NASA Task Load Index (NASA-TLX)
and physiological data to assess mental, physical, and tem-
poral demands. Situational awareness is evaluated with the
Situation Awareness Rating Technique (SART) and a think-
aloud Situation Presence Assessment Method (SPAM), which
gauges the operator’s understanding and projection of future
states. Performance metrics, such as response time and accur-
acy, assess the decision support system’s (DSS) effectiveness in
aiding decision-making and task execution. Additionally, trust
in the DSS is measured through questionnaires to evaluate
operators’ confidence in the Al system, essential for its accept-
ance and operational success. A detailed explanation of the
dataset is provided in this data article Amazu, Mietkiewicz,
et al. (2024) and the dataset is available in this repository”
(Abbas & Winniewelsh, 2024).

Furthermore, the datasets encompass information derived
from a simulated formaldehyde production plant, involving
participant interaction within a controlled experimental set-
ting resembling a control room. The human-in-the-loop
scenario included tasks like Monitoring, Alarm Handling,
Recovery planning, and intervention (Troubleshooting,
Control, and Evaluation). Data collection involved 47 partic-
ipants divided into two groups, each undergoing the speci-
fied task flow. Participants were graduate chemical
engineering students with intermediate knowledge of process
control and control rooms. Participants tested three scen-
arios lasting 15-18 minutes, with breaks and survey comple-
tion periods in between, utilizing different combinations of
decision support tools. The decision support tools varied
across groups, encompassing factors of digitized screen-
based procedures and the inclusion of an AI recommenda-
tion system.
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The significance of this research lies in its relevance in com-
paring current industry practices and their impact on operators’
performance and safety. It is also applicable for validating pro-
posed solutions within the industry. The dataset is utilized for
statistical analysis to compare outcomes among different
groups. These datasets have potential applications for decision-
makers involved in control room design and optimization, pro-
cess safety engineers, system engineers, human factors engineers
in process industries, and researchers in related domains. The
hierarchy of the dataset is shown in Figure 8 and the processed
dataset can be found in this repository3 (Abbas (2024)).

The collected raw data was processed particularly for the
analyses in this paper. The data from individual participants
was concatenated and merged in a single Excel file for fur-
ther evaluation. The data used for comparison between the
GroupN and GroupAl is presented in the merged normal-
ized data folder. The Excel file contains the data points for
each participant per row and each column represents the
data and sub-data collected from various sources.

In the folder of “hmm modeling” (Figure 8) the con-
catenated data represent the time-series data of the process,
alarms, and HMI logs for every participant into a single file
as is required by the HMM python library (Lee (2023)).
Furthermore, a separate file is included that provides the
labels for participants who failed during the task based on
various factors such as the consequence of plant shutdown
or reactor overheating and overall performance.

5.1. Ethics statement

This research study was conducted following the ethical
guidelines set forth by the Technological University Dublin
Ethical Review Committee. Ethical approval for this study

— merged normalized data (GroupN and GroupAl)

L. @

— hmm modeling (GroupAl)

Figure 8. Dataset file hierarchy.
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— Group
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— Eye tracking data

— Process, alarm, and HMI logs

— Operational metrics

— Questionnaires (SPAM, SART, NASATLX, Al)
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— Alarm logs
— Process logs
HMI logs
Al suggestion logs

— % Failure annotations
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was obtained from the Technological University Dublin
Ethical Review Committee (REC Approval Number: REC-
20-52A). All participants provided informed consent before
participating in the study, and their confidentiality and priv-
acy were strictly maintained throughout the research pro-
cess. Any potential risks to participants were minimized,
and steps were taken to ensure the well-being of all individ-
uals involved in the study.

5.2. Value of the data

5.2.1. Optimizing human-Al interaction

The dataset provides an opportunity to study the integration
of human-in-the-loop configurations with AI systems in
safety-critical industries. By examining the data, researchers
can identify the factors necessary for successful collaboration
between humans and Al. This knowledge can lead to the
development of optimized interaction mechanisms, ensuring
that the strengths of both humans and AI are leveraged
effectively to enhance decision-making in critical scenarios.

5.2.2. Evaluation of Al-enhanced decision support system
The dataset allows for qualifying and quantifying the per-
formance and effectiveness of the Al-enhanced decision sup-
port system incorporating DRL. By analyzing the data,
researchers can assess how well the system performs in
safety-critical process industries with human-in-the-loop
configurations, which is rarely observed. This evaluation can
provide insights into the potential benefits, scope, and limi-
tations of utilizing DRL in such contexts.

5.3. Data explanation

In this section, a brief description of each variable in the
dataset is provided.

5.3.1. Biometric measures

The biometric data for this study is described in Amazu,
Mietkiewicz, Abbas, et al. (2024). This includes data on the
pulse rate, electrodermal activity, and temperature of partici-
pants during the test. A brief description of each measure is
also given below.

o Electrodermal Activity (EDA) or Galvanic Skin Response
(GSR). It measures the skin’s electrical conductance of
the skin. It is influenced by sweat gland activity, for
example, the skin’s moisture level.

e Pulse Rate or Heart Rate It defines the number of heart-
beats per unit time (bpm).

e Temperature The body temperature here refers to the
degree of coldness or hotness of the body.

5.3.2. Eye tracker

Tobii Pro Glasses 3 (Tobii Technology, 2024a) and Tobii
Pro Lab (Tobii Technology, 2024b) analysis software were
used in this experiment for eye tracking and extracting

useful metrics within the defined Time of Interest (TOI),
allowing for better evaluation of visual attention dynamics:

e Baseline Overview (pre-alarm occurrence): From the start
of the experiment to the start of the first critical alarm
(scenario 1).

e C(Critical Alarm: From the start of the first critical alarm
to the end of it (scenario 2).

e Alarm Overflow: From the start of the second critical
alarm to the end of the experiment (scenario 3).

All the eye tracker metrics were categorized based on
these TOIs for evaluating visual attention across distinct
phases of the experiment. To normalize each eye tracker
metric within its corresponding TOI, Equation (14) was
applied. This normalization process ensured that the metrics
were evaluated relative to the baseline, facilitating meaning-
ful comparisons and insights.

5.3.2.1. Fixation. Fixation is the stable gaze or sustained
focus on a specific point in the visual field. During fixation,
the eyes remain relatively stationary, allowing detailed proc-
essing of visual information at that location.

e Fixation Duration: Fixation duration is the amount of
time individuals concentrate on a particular point of
interest. This measurement helps identify elements that
capture extended attention, enhancing our understanding
of information processing and cognitive involvement.

e Pupil Diameter: Pupil diameter during fixation serves as
a vital metric indicating shifts in cognitive load and emo-
tional arousal. Analyzing changes in pupil size allows us
to comprehend the cognitive effort and emotional reac-
tions linked to particular visual stimuli.

5.3.2.2. Saccade. It refers to rapid eye movements that occur
between periods of fixation. It allows us to evaluate visual per-
ception, information processing, and the dynamics of decision-
making. Furthermore, characteristics during saccades include:

Amplitude: The distance covered during a saccade.
Velocity: The speed of the eye movement.
Peak Velocity: The maximum speed reached during a
saccade.

e Duration: The time taken for the completion of a
saccade.

5.3.2.3. Heat map. The heat map visually displays regions
that attracted participants’ visual attention. Brighter areas on
the heat map signal a higher concentration of fixations, pro-
viding information about key focal points within the visual
stimuli. This understanding is especially valuable when com-
paring the heat map with TOlIs, revealing how visual atten-
tion changes during different phases of the experiment.

5.3.3. Process, alarms, and HMI logs (online)
The performance and behavioral measures derived from the
online logs and how they were derived are detailed in
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Figure 9. Average DRL vs. human response for 23 participants during (a) critical sce|

Amazu, Abbas, et al. (2024). A brief description of what
they mean is shown below.

5.3.3.1. Alarms.

e Number of alarms annunciated.
e Number of alarms silenced.

e Number of alarms acknowledged.

5.3.3.2. No. of procedures. The number of procedures
opened during the duration of each scenario.

5.3.3.3. No. of mimics opened. The number of mimics*
opened during the duration of each scenario.

nario: tank flow error and (b) overflow scenario: reactor temperature error.

5.3.3.4. AI acknowledgement. The number of times the Al
acknowledgment button was pressed during the duration of
each scenario.

5.3.3.5. AI vs. human response. Deviations and preliminary
analysis of decisions taken by the human participant and
suggestions by AI/DRL agent were analyzed and the mean
error was calculated. Figure 9 illustrates the aggregated
mean and standard deviation of the human vs Al
(DID + SRLA) control for all the participants in GroupAl It
includes the scenarios of (a) critical alarm and (b) alarm
overflow. The DRL control suggestion is based on the
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current state of the process and is considered to be ideally
optimal in the case of this experiment. The optimality of the
DRL suggestions is verified through a carefully controlled
experimental design, barring any unforeseen deviations by
the human participant. This can be further validated in the
correlation analysis conducted later in Section 3, revealing a
positive correlation between higher errors and more adverse
consequences. Therefore, the AI vs_human measure was
used to evaluate the performance of participants in terms of
optimally following the suggestions.

5.3.4. Operational measures (offline)

These metrics are derived from the online process logs and
can only be measured once the experiment has been com-
pleted, hence these are computed offline. It gives the overall
indication of the performance of the participant.

5.3.4.1. Behavioral measures. These metrics pertain to the
human participant’s behavior relating to the intervention
strategy based on time.

Recovery Time: The time to recover the critical alarm.
Reaction Time: The time of the first control action.
Response Time: The time it takes to Perform the last
control action on the expected area of interest.

5.3.4.2. Performance measures.

e Recovery Status: Classified into optimal, good, and poor
based on the participant’s ability to manage the situation
without an alarm annunciation (optimal, ability to
recover the alarm even if annunciated (good), and failure
to recover the alarm (poor).

e Accuracy: This metric quantifies the mean square error
between the executed action and the prescribed control
action (expert response, as specified in the operating pro-
cedure manual). Notably, the expert response over which
the “Accuracy” is measured is a constant average baseline
and is not adapted to the current state of the system, unlike
the AI_vs_Human response. Furthermore, accuracy is a
common factor between both groups for easy comparison,
however, the AI_vs_Human response is just for GroupAl.

e Consequence: Broken down into different levels depend-
ing on the event. The possible consequences are impurity
of air in the tank atmosphere, plant shutdown, reactor
overheating, and safe state.

e Overall Performance: Classified into optimal, good, and
poor performance based on percentiles of the recovery
time.

5.3.5. Questionnaires

Some questionnaire-based measures below have been
detailed in a previous study by Amazu, Mietkiewicz, Briwa,
et al. (2024). A brief description is provided for each.

5.3.5.1. Task load. Questions on how the participants per-
ceived the complexity of the task were asked at the end of
each scenario.

Table 1. Questions that were asked to evaluate each of these themes.

NASA-TLX index SART index SPAM index
Mental demand Instability Monitoring
Physical demand Variability Planning
Temporal demand Complexity Intervention
Performance Arousal

Effort Spare capacity

Concentration
Attention Division
Quantity

Quality

Familiarity

Frustration

5.3.5.2. NASA-TLX, SART, and SPAM indexes. The Task
Load Index (TLX) and Situation Presence Assessment
Method (SPAM) indexes are calculated as the average of
their six and three dimensions, respectively. Situation
Awareness Rating Technique (SART) is based on Equation
(15), as previously detailed in Amazu, Mietkiewicz, Briwa,
et al. (2024)°. The thematic breakdown of the questions
asked is shown in Table 1.

SART Understanding = SART Demand — SART Supply
(15)

5.3.5.3. Alarm prioritization support. This entails the per-
ceived support of the participants on how well the alarm
prioritization supported them during the scenario.

5.3.5.4. Procedures support. This refers to the perception of
the participants on how well the procedures supported them
during the task.

5.3.5.5. AI support questions. These questions were asked
after the end of the entire experiment (all 3 scenarios).

Level of explainability of the AI suggestion.

Level of trust for the AI suggestion.

Helpfulness of the AI suggestion.

Additional workload imposed by the AI suggestion.

The tradeoff between the benefits of the AI system vs the
additional workload.

e Importance of validating the AI suggestion by manually
going through the screen-based procedures.

5.3.5.6. Questions related to DRL. Some specific question-
naires were asked for the DRL analog value suggestions pro-
vided to the human participant as shown in Figure 10

e Importance of the DRL (analog) value in the AI
suggestion.
e Increase in trust due to the DRL (analog) value (if any).

The data analysis is divided into two main sections. In
Section 6, we compare GroupN and GroupAl, and within
GroupAlI, we focus on participants. The objective is to assess
the impact of the Al-enhanced decision support framework,
specifically, the dynamic influence diagram-based DRL out-
lined in Mietkiewicz et al. (2023, 2024). This analysis lays
the groundwork for understanding the dataset, recognizing



How useful was the analog value for you?
(refer the image for an example of the analog value)
(1: Low, 5: High)

Suggestion

Step to recover
1) Open Tank mimic

2) Switch to manual njtrogen flow
3) Set nitrogen flow tq[5.62]

Did this analog value helped the Al enhanced decision support system to be more trustworthy, if
yes, to which extent?
(1: Low, 5: High)
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Figure 10. Questions related to deep reinforcement learning suggestions.

patterns, and informing the development of an extended
framework for real-world implementation. Moving on to
Section 7, this section validates the extended framework. It
offers a detailed analysis of observations and explores poten-
tial future applications in industries. Specifically, it delves
into the human-in-the-loop specialized DRL framework that
utilizes a hidden Markov model for real-time system failure
prediction based on human and process states.

6. Analysis I: exploratory data analysis

An experimental study was conducted to evaluate the per-
formance of the recommendation system and the impor-
tance of the DRL agent. GroupN is the group without the
AT system and GroupAl refers to the group with the aid of
the AI recommendation system. There are a total of 47 par-
ticipants with 23 participants in GroupN and 25 participants
in GroupAl. The participants’ perceived familiarity with the
process industry and control room was recorded on a scale
of 1-5 to ensure a balanced experience across each group.
Both groups of participants had an average industry famil-
iarity score of 3 and a control room familiarity score of 2.
The data was normalized using a MinMax scalar with values
ranging from 0.0 to 1.0. The normalization was applied
across grouping by scenario to minimize the effect of the
scenarios on all the participants from both groups.

In this section, we cross-correlate different performance
measures to evaluate the overall performance between groups
as well as within participants in GroupAl for their different
choices of preferences. Furthermore, this cross-analysis will
help in identifying the relationship of the process, alarm, and
HMI logs as well as the DRL vs Al response with other
important factors such as situational awareness, task load, trust
in the system, and overall performance, etc. to be able to valid-
ate the real-time prediction of operator state.
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6.1. Between participants (GroupN and GroupAl)

The analysis here primarily focused on group comparison
rather than comparing scenarios. Thus, results were normal-
ized across scenarios and averaged for each participant, sim-
plifying the data by condensing it into single data points per
participant and reducing comparison dimensionality.

6.1.1. Heat map

Figure 11 shows the heat map of the participants’ data (17
participants) within the groups with and without AI support
for the entire recording for scenarios 1 and 2 combined.

e Time of Interest — Critical Alarm: Figure 12 shows the
heat map for the specific Time of Interest (TOI) of criti-
cal alarm (scenario 2). As can be seen for GroupAl (with
Al support), people focus more on the AI suggestion
rather than the procedure, and the DRL analog sugges-
tion value and the control task to return the plant to
normal condition as soon as possible as compared to
GroupN (without Al support).

6.1.2. Radar plot
Figure 13 presents a radar plot of the results used to enable
cross-evaluation of several different factors to be conducted.

e Consequence: This factor is nearly the same for both
groups, indicating the performance based on the overall
recovery of the plant does not vary.

e Recovery, Reaction, and Response Time: All of these fac-
tors are lower in GroupAl as compared to GroupN indi-
cating the performance in terms of reduced information
processing time.

e Accuracy: It is higher for GroupAl which shows the abil-
ity to follow the operational guidelines accurately.

e Mimics Opened and Number of Alarms: Both of these
factors were observed to be lower in the case of
GroupAl, indicating the preventive and proactive ability
provided by the AI system to the participants and mini-
mizing the task-solving complexities.

e Overall Performance: It was measured greater for
GroupAl as compared to GroupN which was evaluated
based on how correctly the overall system was stabilized.

e Task Load, SART, TLX, and SPAM Index: All the ques-
tionnaires indicated lower values for GroupAl compared
to GroupN. Despite GroupAl having a reduced task load,
their situational awareness is effectively lower.

e EDA, Temperature, and Pulse Rate: In examining these
measures, it was observed that GroupAl exhibited higher
levels of EDA and temperature, while their pulse rate
was lower. The autonomic nervous system (ANS) is
responsible for regulating various physiological responses
(Ghiasi et al. (2020)), including heart rate and electroder-
mal activity. While EDA and temperature may indicate
increased sympathetic nervous system activity, heart rate
is also influenced by both sympathetic and parasympa-
thetic branches. The group with higher EDA and
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Figure 11. Heat maps for participants in (a) GroupN (without Al support) and (b) GroupAl (with Al support).

Figure 12. Heat maps for participants in (a) GroupN (without Al support) and (b) GroupAl (with Al support) within the time of Interest (TOI) of critical alarms.

temperature may be experiencing a specific pattern of results were then filtered to visualize only those correlations
autonomic response that involves decreased parasympa- exceeding a specified threshold of 0.4, as shown in Figure 14.
thetic activity, leading to lower heart rates.

e Eye Tracking Metrics: GroupAl exhibited longer fixation e Control Room Familiarity: It is directly correlated with

and saccade durations, smaller and slower eye movements the higher scores for Al benefits and help, as well as the

(lower saccade amplitude and velocity), and reduced pupil utilization of Al suggestions.

diameter compared to GroupN. These findings suggest e Recovery Time: Reaction time, response time, and num-

that GroupAI employs a more focused and deliberate cog- ber of alarms are directly correlated with the recovery

nitive processing strategy, potentially perceiving the task time and inversely correlated with the accuracy.

as less demanding or engaging than GroupN. e Number of Alarms: It correlates directly with the TLX
index, task load, SPAM index, average pupil diameter,

6.1.3. Correlation matrix and consequence.

A Pearson correlation analysis (Sedgwick (2012)) was con- e Procedures Support: It is directly correlated with the SART
ducted on participant data from both groups combined. The index and inversely correlated with the consequence.
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Figure 13. Radar plot between GroupN (blue) and GroupAl (red).

e Velocity: Velocity is directly correlated with recovery
time, mimics opened, overall performance, SART, and
SPAM index.

e Fixation Duration: It shows an inverse correlation
between recovery time and the number of alarms. It is
directly correlated with the number of procedures
opened.

e Al (DRL) vs Human Response: This metric shows a dir-
ect correlation with recovery and reaction time. On the
other hand, it is inversely correlated with recovery status,
accuracy, SPAM index, pupil diameter, velocity, saccade
amplitude, Al acknowledgment, Al support, and Al help.
As the deviation from the suggested value increases,
there is a corresponding rise in the time needed to attain
process stabilization, leading to a decline in recovery per-
formance. The escalation of errors also signifies a reduc-
tion in situational awareness (SPAM). Additionally, it is
noteworthy that a lower error in adhering to the DRL
recommendations correlates with higher participant rat-
ings for the help and support offered by the overall Al

Recovery_status

Task_load

Recovery_time

Reaction_time

Response_time

Accuracy

Alarms_silenced

Alarms_ack

Mimics_opened

0.5 0.6 0.7

No_of_procedures

No_of_alarms

Consequence

Overall_performance

TLX_index

SART_index
SPAM_index

system, along with an increased frequency of acknowl-
edging and accepting the AI suggestions. Furthermore,
higher error also results in lower pupil diameter, saccade
velocity, and amplitude which may suggest reduced
arousal, slower eye movements, and more restricted vis-
ual processing.

AT Acknowledgement: The degree to which a participant
concentrates on adhering to the AD's recommendation
directly correlates with heightened situational awareness
(SPAM), enhanced perception of Al assistance, and
support.

Al Explainability: A heightened understanding of the Al
system, particularly in terms of explainability for the par-
ticipant, yields increased situational awareness (SPAM).
Al Trust: The participant’s response to the trust in the
Al system is inversely proportional to the reaction time,
saccade amplitude, EDA, and pulse rate. It suggests that
as individuals develop a higher level of trust in the AI
system, they exhibit faster reaction times, reduced eye
movements, decreased electrodermal activity, and a lower
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Correlation Matrix
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Figure 14. Correlation matrix for participants in both groups.

pulse rate. These observed physiological and behavioral
changes likely signify a more relaxed and less stressed
response in participants who trust the AI system.

Al as Additional Work Load: Participants tend to rate
higher scores for perceiving the AI system as an add-
itional workload. Surprisingly, this perception is associ-
ated with a decrease in reaction time, number of alarms,
velocity, and electrodermal activity (EDA), which are
typically indicative of lower workload. However, there is
a positive correlation with saccade duration, suggesting
that participants may spend more time making eye
movements when perceiving the AI system as a higher
workload. The contradictory nature of these findings sug-
gests a need for further investigation to understand if
there are any unexpected factors influencing these out-
comes or if there might be nuances in how participants
perceive and respond to the Al system’s workload.

AT Benefits vs Additional Workload: It shows a positive
correlation with alarms silenced, alarms acknowledg-
ments, number of alarms, TLX index, procedures sup-
port, Al acknowledgment, and AI trust. With AI vs
human error, a negative correlation can be observed. The
favorable view that participants hold toward the benefits
of AI vs the additional workload is linked to heightened
trust, following AI suggestions by acknowledging it. The
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inverse relationship with human error implies pervasive
confidence in Al as a dependable and error-reducing
solution.

e AI Validity: The participants who were more likely to

consider the importance of validating the AI system
opened more mimics and had a higher fixation and sac-
cade duration. Longer saccades may indicate increased
cognitive load or visual search difficulty, while prolonged
fixations suggest in-depth processing, interest, or confu-
sion (Unema et al. (2005); Fadardi et al. (2022);
Mahanama et al. (2022); Stuyven et al. (2000)).

e DRL Importance: We observed a positive correlation

between the importance of DRL as a response by partici-
pants to SART, Al trust, and Al as an additional work-
load. Furthermore, it was negatively correlated with
reaction time, EDA, and pulse rate. This implies that as
the perceived importance of DRL increases, participants
tend to respond more to the task, trust AI more, and
perceive Al as a greater workload, but also exhibit faster
reaction times and reduced physiological responses.

e Trust Increase due to DRL: It is directly correlated with

SART, AI support, Al trust, and DRL importance, and
inversely correlated with the reaction time. It indicates
the increase in overall AI support and trust with the
DRL'’s analog value and faster reaction responses.



6.1.3.1. Significantly correlated matrix. Probability values
(p-values) using a two-sample independent t-test were
derived to confirm that the differences in results between
the groups are not merely due to random group assignments
or individual variations (Sedgwick (2014); Kim (2015);
Manfei et al. (2017)). Given that multiple comparisons/
hypotheses are made in this study, a Bonferroni correction
was applied to the threshold to avoid false positives
(Weisstein (2004)). The correction is calculated by dividing
the significance level (x) by the number of tests (m)
(Equation (16)). This results in a more stringent threshold
for determining statistical significance.

o

Uadjusted = ; (16)

where o is the initial significance level (e.g., 0.05) and m is
the number of hypotheses tested. Following the Bonferroni
correction, a low p-value or probability value, typically
below ogjustea (here 0.0019), signals whether our findings
are statistically significant or if they could be due to ran-
dom chance. This adjustment minimizes the risk of false
positives and strengthens the validity of our findings. The
correlation matrix for variables that demonstrated statistical
significance with a correlation value greater than 0.4 is pre-
sented in Figure 15. Higher overall performance is signifi-
cantly associated with faster recovery times, fewer alarms,
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and lower consequences. A higher task load links signifi-
cantly with longer recovery times, while Al-related errors
are connected to longer recovery and reaction times.
Additionally, longer reaction times are related to lower
trust in AI, less perceived helpfulness from AI, and
decreased importance and trust due to DRL. From these
results, it can be interpreted that performance and user
trust in AI are enhanced by faster recovery and fewer
alarms, while increased task load and AI vs human errors
reduce recovery speed and trust in AL

6.1.4. Factor analysis

Factor analysis is a statistical method used to explore rela-
tionships among observed variables by postulating underly-
ing latent factors. In the factor model equation, observed
variables (X) are expressed as linear combinations of latent
factors (F) and unique factors (U), represented by the factor
loading matrix (A). The covariance matrix (X) can be
decomposed into the product of A and its transpose, plus a
diagonal matrix (V) of unique variances. To determine the
optimal number of factors, a scree plot is generated by plot-
ting the eigenvalues of the covariance matrix, and the elbow
joint, indicative of the optimal number of factors, is identi-
fied by analyzing the second difference in the cumulative
variance explained with a threshold of 0.05 as shown in

Significant Correlation Matrix
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Figure 15.

Significant correlation matrix with values greater than 0.4 and based on two-sample independent t-test and Bonferroni correction.
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Figure 17. Cumulative explained variance per each factor.

Figures 16 and 17. The following statistical modeling can be
decomposed as follows:

reached 50% (benchmark). This factor, along with the
preceding factors, collectively explains approximately half
of the total variance in the data. The analysis successfully
achieved dimensionality reduction, simplifying the inter-
pretation of the complex dataset. While the 50% cumula-

X=AF+U
T=AA"+ V¥
> Eigenvalue,

Cumulative Variance = =——
> Eigenvalues

Second Differences = diff (diff (Cumulative Variance))
Elbow Point = argmax(Second Differences)
(17)

Interpretation of the Factors: The factor analysis con-
ducted on the dataset identified a crucial factor, chosen
at the point where the cumulative variance explained

tive variance is a meaningful balance between model
simplicity and explanatory power, further exploration of
additional factors or alternative models is advisable for a
more detailed understanding of the underlying structure.
The interpretation of factors is context-dependent,
emphasizing the significance of findings concerning the
specific goals and nature of the variables in the analysis.
The factor analysis performed here was the combination
of all the variables and the data points of all the partici-
pants involved in both groups and also included some



Table 2. Factor analysis.
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Factor 1 Factor 2
(Situational awareness &
performance) (System status & task impact)

Factor 3

(Human-Al interaction & trust)

Factor 4 Factor 5
(Oculomotor behavior:

cognitive load & attention (Al and DRL perception)

Recovery_time Recovery_status Accuracy

Reaction_time No_of_alarms Al_vs_human_error
Response_time Consequence Al_ack

Accuracy Overall_performance Al_support

No_of_alarms TLX_index Trust_increase_due_to_DRL
SPAM_index

Pupil_diameter_overflow
Velocity_critical
Pulse_rate

Velocity_overflow EDA
Fixation_duration_overflow Al_trust
Saccade_duration_overflow Al_additional_load
Saccade_amplitude_overflow DRL_importance
Trust_increase_due_to_DRL

missing variables. Therefore, further analysis is required
to break down the data points in terms of specific con-
text as well as scenario-wise for detailed exploration.
Overall, the factor analysis provided insights into the
relationships among observed variables, facilitating a con-
cise and interpretable representation of the dataset as
shown in Table 2. A factor loading importance threshold
of 0.4 was chosen which was identified iteratively to cap-
sulate the valuable factors involved in the experiment.

Table 2 represents a factor analysis on five key factors for
which these titles were interpreted: Situational Awareness &
Performance, System Status & Task Impact, Human-Al
Interaction & Trust, Oculomotor Behavior: Cognitive Load
& Attention, and AI and DRL Perception. Each factor is
associated with a set of variables that give a general overview
of the group it belongs to. For instance, the first factor
includes variables like recovery time, reaction time, response
time, accuracy, SPAM index, etc., which relates to the sys-
tem’s performance and the user’s awareness of the situation.
This helps in understanding the correlation and variability
among these observed variables.

6.1.5. Discussion on analysis between GroupN and
GroupAl

GroupAl, demonstrated faster decision-making and task exe-
cution with higher accuracy and overall performance, sug-
gesting the effectiveness of AI4+DRL assistance in
operational contexts. However, despite reporting a lower
perceived task load, participants in GroupAl showed signs
of potentially reduced situational awareness, as evidenced by
physiological  indicators and  eye-tracking  metrics.
Correlation and factor analyses further explained the rela-
tionships between various performance metrics, user percep-
tions, and Al system characteristics. These findings highlight
the importance of balancing task efficiency with maintaining
situational awareness and user trust in Al systems for opti-
mal performance in complex environments.

6.2. Within participants (GroupAl)

This section presents the analysis of the aggregate GroupAl
results and provides a comparison of the participants
involved within GroupAl

As depicted in the diverse heatmaps representing differ-
ent participants from GroupAl in Figure 18, distinct

patterns emerge. Certain participants (a) exclusively adhere
to the AI procedure, others (b) concurrently emphasize both
Al and DRL, (c) a subset concentrates solely on screen pro-
cedures, meanwhile, (d) some validate their approaches
through a combination of Al and screen procedures.

A subset of participants from GroupAl was chosen based
on how they preferred to understand and adhere to the
intervention strategy as shown in Table 3. This interpret-
ation of the preference was extracted from the heatmap and
other variables such as AI vs human response. One observa-
tion regarding participant preferences was that those with
more familiarity with the industry tended to prefer screen
procedures for intervention over Al suggestions. Conversely,
participants with the least industry experience favored Al
suggestions and did not focus on screen procedures or DRL
control suggestions. Two participants were compared with
each other on various factors to better understand the
behavior patterns and performance. For each comparison, a
participant was included who preferred to use both the
AI+DRL support to be able to understand its characteris-
tics with the other participant’s behavioral pattern.

6.2.1. Analyzing participant preferences: Al vs. Al + DRL
(P21 vs. P24)

This section compares P21 (preference: AI) and P24 (prefer-
ence: Al and SRLA).

e AI (SRLA) vs Human Response: The comparison
between the Specialized Reinforcement Learning Agent
(SRLA) suggestion and the human response can be seen
in Figure 19, which shows P24 follows the SRLA sugges-
tions better than P21, however, for the scenario of alarm

overflow both the participants have similar poor
performance.
e Radar Plot: Participant P21 demonstrates superior

physiological responses, better AI interaction, higher
overall performance, quicker recovery from errors, and
greater task accuracy compared to P24. P24, on the other
hand, exhibits a higher cognitive workload, better situ-
ational awareness, and more significant consequences
for actions. The comparison suggests that P21 excels in
performance-related metrics, while P24 may have
strengths in cognitive aspects and situational awareness
(Figure 20).
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(d)

Figure 18. Heat maps for (a) P21, (b) P24, (c) P30, and (d) P37 within the time of interest (TOI) of critical alarms.

Table 3. Selection of participants based on their preference of suggestion tool used during the experiment.

Participants Preference Industry familiarity (1-5) Control room familiarity (1-5)

P21 Al 1 3

P24 Al + DRL 3 2

P30 Procedure 4 2

P32 Al + DRL 3 2

P37 Al + Procedure 3 3

P96 Al + DRL 3 2
6.2.2. Analyzing participant preferences: procedures vs. e Al (SRLA) vs Human Response: The comparison
Al+ DRL (P30 vs. P32) between the SRLA suggestion and the human
This section compares P30 (preference: screen procedures) response can be seen in Figure 21, which shows that

and P32 (preference: AI and SRLA). P32 follows the SRLA suggestions better than P30 for
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both the scenario of critical alarm and alarm
overflow.

Radar Plot: Participant P30 generally experiences higher
consequences, workload, and positive interaction with
Al however, has higher errors following the AI sugges-
tion. P30 also ranks procedures support and the need for
Al validation higher as evidenced by the preferred choice
of intervention support. P30 also encounters higher
recovery, reaction, and response time leading to more
alarms and the opening of more mimics, indicating
higher evaluation time for following the screen proce-
dures support. In contrast, P32 excels in situational
awareness, quicker transitions between points of interest
sustained attention at specific locations, and more delib-
erate or careful exploration of the visual environment
(based on eye movement dynamics). P32 relies more on
Al support and rates highly its help demonstrating
quicker recovery and higher importance of DRL, how-
ever, experiences a higher load in doing so as also evi-
dent from the rating of Al as an additional load (Figure
22). Moreover, a noteworthy observation from this ana-
lysis was that the participant (P30) who opted not to fol-
low the AI and experienced failure assigned a higher
trust score to the AL This suggests that the participants
perceived that had they followed the AI's guidance, the
outcome might have been more favorable.

human response of participant (a) P21 and (b) P24 within the time of interest (TOI) of critical alarms (scenario 2) and alarm overflow (scen-

6.2.3. Analyzing participant preferences: Al + procedures
vs. Al + DRL (P37 vs. P96)

This section compares P37 (preference: Al and Screen
Procedures) and P96 (preference: AI and SRLA).

e SRLA vs Human Response: The comparison between the
SRLA suggestion and the human response can be seen in
Figure 23, which shows a comparable performance of both
the participants, however, P96 tends to respond more accur-
ately to the dynamic changes of the SRLA suggestions.

e Radar Plot: Participant P37 encounters more challenges
with higher AI vs human error, longer recovery time,
increased alarms, opened procedures, severe consequen-
ces, higher task load, EDA, and temperature. In contrast,
Participant P96 experiences a more positive interaction
with Al including higher AI acknowledgment, support,
explainability, better recovery status, response time,
accuracy, and overall performance, but also higher per-
ceptions of Al as an additional load. P96 also reports a
balanced perceived task load and higher situational
awareness (Figure 24).

6.2.4. Discussion on findings within GroupAl
The analysis compares the behavior and performance of par-
ticipants within GroupAl, focusing on their preferences for
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Figure 20. Radar plot between participant 21 and 24..

different intervention strategies, including DID, DRL,
DID + DRL, and screen procedures. Overall, distinct pat-
terns emerged among participants, with some adhering to
DID procedures, others combining DID and DRL, and some
relying solely on screen procedures.

When comparing participants who followed DID and
DID + DRL strategies, the latter demonstrated better adher-
ence to Al suggestions, while participants who followed the
DID-only approach showcased superior performance met-
rics, suggesting strengths in DID interaction and task accur-
acy. Those who followed the AI strategy exhibited higher
cognitive workload and situational awareness. Similarly,
when comparing participants who followed screen proce-
dures-only and AI strategies, differences in response to Al
suggestions were observed, with the participant choosing Al
showing better accuracy, while participants who relied solely
on screen procedures experienced higher consequences and
workload but assigned a higher trust score to Al (interpreted
as their perception on if they would have followed the Al
suggestion, they would have performed better). Lastly, in the
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comparison of participants who followed DID + Screen
Procedures and Al strategies, the latter displayed more posi-
tive interactions with AI suggestions, including better recov-
ery and overall performance, despite both groups facing
challenges such as increased alarms and task load.

These findings highlight the relationship between individ-
ual preferences, task performance, and the effectiveness of
different intervention strategies within the GroupAlI.

6.3. Human performance vs, system performance

In this analysis, we aim to explore the research question sur-
rounding the limitations of automation and discern the
point at which its efficiency diminishes.

The metrics for analysis were divided in such a way that
it can capture the performance of the human as the operator
and decision-making agent as well as the performance of
the system that would be in the case of GroupAlI the AI and
DRL recommendation system. From the frequency plot
of the overall consequences of participant’s actions
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Figure 21. SRLA vs human response of participant (a) P30 and (b) P32 within the time of Interest (TOI) of critical alarms (scenario 2) and alarm overflow (scen-

ario 3).

(air impurity, plant shutdown, reactor overheat, or safe)
incurred during plant abnormality in the simulation as
shown in Figure 25, it can be observed that with the AI sys-
tem in an alarm overflow scenario (a problem in the
reactor), it becomes difficult to recover the plant and to
focus on the recommendation of the DRL precisely.

6.3.1. Between participants (GroupN and GroupAl)

To delve deeper into our investigation, we divided the radar
plot between scenarios 2 and 3 (Section C). A notable dis-
tinction emerges in Figures 26 and 27, particularly in overall
performance and adverse consequences. The accuracy of
GroupAl experiences a decline in the scenario of alarm
overflow. Concurrently, there is an increase in the perceived
task load (as indicated by the TLX index) for GroupAl in
the same scenario. This suggests that when the operational
situation becomes overly complex, making it challenging for
the operator to adhere precisely to the system’s recommen-
dations, the likelihood of failure increases. In light of this,
two potential approaches come to the forefront: first, the
adoption of full autonomy to enhance response time and
system dynamics management; alternatively, the manual
handling of process abnormalities in scenarios where adher-
ing strictly to recommendations becomes impractical.

6.2.3. Within participants (GroupAl)

Further investigation was carried out to compare the partici-
pants belonging to the same group (GroupAl) for critical
alarm and alarm overflow scenarios as shown in Figure 28.
The common factors that were observed to increase in alarm
overflow scenarios were Al vs human error, task load, num-
ber of screen procedures opened, and time to take the
required action. This suggests that as the scenario complex-
ity and task load increases there is also an increase in the
precision and time required to follow the AI suggestions as
well as to verify those suggestions through other means
(such as screen procedures).

7. Analysis ll: human failure prediction in real-time
using process variables and human-machine
interaction

The data used to train the Hidden Markov Model (HMM)
included the variables that can be accessed in real-time,
such as process variables, alarm logs, and human-machine
interactions such as the number of procedures opened, the
number of times the manual switch was controlled, etc.
Optuna (Akiba et al. (2019)) was used for hyperparameter
tuning for the HMM modeling and the best chosen hyper-
parameters are summarized in Table 4. With 95.8% accur-
acy for the situation of alarm overflow (scenario 3), the
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Figure 22. Radar plot between participant 30 and 32.

HMM was able to predict the hidden state (state 2) for
which the human would fail the situation using the raw
data from the process logs, alarm logs, and human-machine
interactions as shown in Figure 29. The figure represents
the prediction of the hidden state by the HMM as
described in Section 4 for datapoints at every second
(simulation timestep). Defined by the hyperparameter opti-
mization, the total number of hidden states chosen is “3.”
HMM for every timestep predicts a hidden state based on
the sequential data and based on those predictions we can
identify the hidden state that relates to the state of interest
(such as in our case it is human failure). As illustrated in
the figures for different human participants in Figure 29,
we compared the ground truth data for which the partici-
pants failed the scenario, and that corresponded to the
prediction of hidden state “2.” For the participants that
succeeded in the scenario without a catastrophic failure,
there was no prediction of hidden state “2” for the entire
experiment. The plots reveal that in cases where partici-
pants encountered failure in the scenario, the HMM dem-
onstrated the capability to forecast the failure well in
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advance. The HMM can effectively intervene in human
actions by issuing timely alarms about potential consequen-
ces and highlighting alternative courses of action.

7.1. Factor loadings on the principal component
analysis (PCA)

The reason for this analysis is to understand the importance
of feature sets or data sources used for the prediction of the
system state based on the state of the process as well as the
state of the human and human-machine interaction. The
Principal Component Analysis (PCA) is a method for reduc-
ing dimensionality in multivariate data. It encompasses the
computation of factor loadings (f;j), representing the coeffi-
cients in the linear combination of the original variables (X;)
to construct each principal component (PC;). The factor
loadings for the initial principal component are determined
by the elements of the eigenvector (ayj), acquired through
the eigenvalue problem for the covariance or correlation
matrix of the original variables.
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Figure 23. SRLA vs. human response of participant (a) P37 and (b) P96 within the time of interest (TOI) of critical alarms (scenario 2) and alarm overflow (scen-

ario 3).

The principal components (PC;) are novel variables
formed as linear combinations of the original variables (X;),
with the factor loadings (a;;) serving as coefficients in these
combinations.

Factor loadings:

Principal components:

P
PC] = Z aini
i=1

In these equations, p denotes the number of variables in
the original dataset, These formulae aid in the analysis and
encapsulation of essential information within a dataset
through a condensed set of variables. The top 10 factor
loadings in both directions on the chosen 4 Principal
Components are shown in Figure 30.

It can be seen from the description of these features as
provided in Appendix Table Al, that the most important
factor loadings for the principal components are the com-
bination of process, alarms, and HMI variables.

7.2. Intervention strategies and applications: towards a
general SRLA-based support system

In the proposed framework, a Dynamic Influence Diagram
(DID) is used for process-level abnormality detection and
the Hidden Markov Model (HMM) is for human-level
abnormality detection. The Specialized Reinforcement
Learning Agent (SRLA) is used in this loop to identify the
best possible intervention strategies and suggest them to the
human operator who is responsible for the final decision.
Based on these intervention strategies we propose several
applications for which such a system can be implemented in
the real world safety-critical process industries. The follow-
ing proposed applications in the real world are based on the
interviews with the safety-critical industry experts, control
room operators, and decision-makers:

e Training and Tuning: Such a framework can be imple-
mented during the training of new operators as well as
training the experienced operators when there is a major
change in the system. It can help the operator focus on
the pruned procedures and what is needed to be followed
in such a situation which can later be generalized by their
intuition. Furthermore, it can also be used for tuning the
system’s parameters (Hsieh et al. (2012)) by observing the
predicted hidden states and control suggestions.
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Decision Support to Operator: Such a system has already
been tested and provided in this research, where the
framework is used to provide suggestions to the operator
in a simulated environment, however, in real-world the
conditions can be more complex, and therefore, it may
be challenging to directly implement such a system into
safety-critical industries (Lee et al. (2007)). Nevertheless,
even in scenarios where the recommendation seeks the
operator’s confirmation for automating the process, the
ultimate decision remains in the hands of the human.
This approach ensures the implementation of a higher
level of safety. Therefore, a tradeoff between increased
task load and aid in decision support is to be made as
also evidenced by the findings in the experimental
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Figure 26. Radar plot between GroupN (blue) and GroupAl (red) for scenarios (a) critical alarm and (b) alarm overflow.
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Figure 27. Radar plot between scenarios critical alarm (green) and alarm overflow (violet) for (a) GroupN and (b) GroupAl.

results. Furthermore, it can also help the operator to self
asses their operating state and control decisions.

Decision Support to Supervisor: An alternative applica-
tion could involve offering decision support directly to
supervisors instead of burdening operators with the add-
itional workload. However, ethical considerations regard-
ing the disclosure of information about the operator’s
state must be carefully taken into account. In such a con-
figuration, the supervisor can assess the overall system
performance, determine necessary corrective measures,
and disseminate relevant information among the
operators.

SRLA-Based Validation: Specialized Reinforcement
Learning Agent (SRLA) can also be trained and used to
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Figure 28. Radar plot between scenarios critical alarm (green) and alarm overflow (violet) for participants (a) P21, (b) P24, (c) P32, and (d) P37.

Table 4. Hyperparameters for HMM modeling.

Hyperparameter Value
n_states 3
model_type “gmmhmm”
n_mix 3
covariance_type “tied”
is_1r True
is_scalar True
is_pca True
n_decomp 4

validate the control actions taken by the operator in
abnormal as well as normal operating conditions and
prompt for any predicted consequences as also a similar
setup developed in Lee et al. (2007).

e SRLA Control: On the opposite end of the spectrum to
the approach of solely providing suggestions to the oper-
ator is full process automation, particularly in instances
where the HMM predicts elevated workload, reduced
situational awareness, or an imminent failure. However,
the automation would only be performed after receiving
confirmation from the operator. This form of automation
proves beneficial in situations where the agent’s speed in
performing control actions surpasses that of a human, as
illustrated in our experiment’s scenario 3. It’s crucial to
acknowledge that incorporating human latency as an
input to SRLA is essential for delivering more robust
control suggestions. Furthermore, SRLA can also deter-
mine which processes to automate and which to recom-
mend for manual intervention.
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Figure 29. Sample of participant’s failure prediction based on the real-time simulator log time-series data.

8. Discussion

While comparing GroupN with GroupAl the general obser-
vation that was made was that GroupAl had a better overall

performance

and

reduced task load, however,

the

participants in GroupAl also had lower situational awareness
as compared to GroupN. The comparison among partici-
pants in GroupAl revealed that the participants who
followed the suggestions provided by the Specialized
Reinforcement Learning Agent (SRLA) more closely resulted
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Figure 30. Top 10 factor loadings in both directions on
Component analysis (PCA).

the Principal

in better situational awareness and performance, however, a
higher workload was observed. The differences in these
experiences highlight the importance of evaluating various
factors in human-Al interactions for a comprehensive
understanding.

In situations where a high level of well-informed situ-
ational awareness is crucial, artificial intelligence may not be
the optimal solution regardless of the workload. However, in
emergency scenarios and similar cases, the combination of
Al, along with prior knowledge and training, can prove
beneficial.

From the correlation analysis in Section 3, it was gener-
ally observed that:

1
———— o Situational awareness
Task load

Expressing that as participants perceive greater support
from various components, their task load decreases, and
situational awareness improves. Hence, for optimal results,
the decision support system should be universally applicable,
benefiting each individual. Additionally, providing operators
with thorough training on such an interface is likely to
enhance overall performance and situational awareness while
reducing task load. Furthermore, it can be observed that the
process, alarm, and HMI logs are correlated with situational
awareness, task load, cognitive load, attention dynamics, and
physiological responses. Therefore, these correlations can
help base future research on identifying such states using
the Hidden Markov Model (HMM) on the real-time data
and its implementation in the real world. Further in-depth
study is needed to interpret the hidden states predicted by
the HMM and its relation to the physiological state of the
operator using ground truth data from various sources such
as an eye tracker, smartwatch, questionnaires, and an elec-
troencephalogram (EEG).

Rating of support o

9, Limitations and future work

This study focuses on a specific simulated chemical plant.
Future studies will aim to replicate the experiment in differ-
ent industrial settings to assess the broader applicability of
the Al-based decision support system.

Moreover, the study’s participant pool was relatively
small and they were non-expert students with limited indus-
try experience in process control and control rooms. To
enhance the robustness of the findings, including a larger
and more diverse group of participants and real-world oper-
ators in future research is imperative.

In future research, the proposed framework will be used
in an extended study with human participants. This will
allow for the evaluation of human-state (failure) prediction
and the provision of improved intervention strategies in real
time. Furthermore, the possibility of creating a human
digital twin will be explored to be able to run the entire
experiment in simulation without the need of real human
participants and the digital twin will be used as their
replacement to be able to have more flexibility in terms of
experimental validations. Furthermore, in current research
only human failure was predicted, however, the correlation
between that failure and its association with task load and
situational awareness is yet to be explored.

The integration of real-time feedback mechanisms to con-
tinuously adapt and improve the AI system’s performance



based on operator interactions and feedback is aimed for
further exploration. Conducting comparative studies to
evaluate the AI system’s performance against traditional
decision support systems or other Al-based approaches in
similar industrial contexts will further validate the proposed
framework.

Developing these Al-enhanced decision support systems
entails significant overheads and challenges, particularly in
terms of technical requirements, financial investment, and
operational integration. The technical overhead includes
data acquisition, management, and the computational
demands of model training and system integration.
Financially, the initial setup and ongoing maintenance create
a substantial cost barrier. Operationally, integrating these
systems within existing frameworks can disrupt current
workflows and require significant adjustments. However, the
potential for generalization across different settings presents
a promising avenue to offset these overheads. By designing
these systems with modularity and employing transfer learn-
ing techniques, we can better tailor Al-enhanced DSS to
various industrial environments without extensive reconfig-
uration. Moreover, standardizing system interfaces could
facilitate broader deployment, making the initial high costs a
worthwhile investment given the extended applicability and
potential for significant improvements in decision-making
processes. The feasibility of such generalization will be rigor-
ously tested in future studies, aiming to replicate and adapt
the current framework across diverse operational settings,
thus providing a clearer picture of the scalability and adapt-
ability of our Al-enhanced DSS in real-world scenarios.

Moreover, current research does not investigate the eth-
ical and social implications of integrating Al systems into
safety-critical industries, including considerations of trust,
accountability, and transparency that would be the request
for future research.

10. Conclusion

This study introduces an Al-based recommendation system
using dynamic influence diagrams and reinforcement learn-
ing to tackle information overload in complex industrial
environments, with a focus on chemical process control
rooms. Preliminary results indicate the system’s potential to
reduce operator workload and enhance situational aware-
ness, especially in situations of information overload and for
less experienced operators.

Feedback from NASA Task Load Index (TLX) and
Situation Awareness Rating Technique (SART) question-
naires, along with eye-tracking data, suggests a decrease in
perceived workload and increased situational awareness
when the recommendation system is active. Additionally, a
reduction in operators’ heart rates while using the system
implies a potential reduction in the stress associated with
managing process deviations.

While these results are promising, further research with
larger participant samples is needed to confirm these find-
ings and optimize the system for broader application in
real-world industrial settings. This research contributes to
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the advancement of Al decision-support tools in safety-criti-
cal industries, paving the way for improved process safety
and more efficient decision-making.

Notes

1. https://github.com/ammar-n-abbas/drl-based-decision-
support

2. https://zenodo.org/doi/10.5281/zenodo.10569181

3. https://github.com/ammar-n-abbas/drl-based-decision-
support

4. Mimics: Graphical interfaces that represent the layout and
components of the sub-processes. These mimics allow the
user to analyze variables associated with the sub-process and
to be able to manually control if necessary.

5. SART demand: Sum of the first three dimensions, SART
Supply: Sum of dimensions 4, 5, 6, and 7, SART
Understanding: Sum of the last three dimensions.
Dimensions are presented in order in Table 1.
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Appendix A. Process, Alarm, and HMI Logs Description.

Table A1.

Var Name Description
LSERB_1 Tank level

All2_XX Alarm activation

sAIl_XX Alarm sound silence

PSERB_1 Tank pressure

Human Control adjusted by human
Nitsel_1 Nitrogen system selector
AckAll Alarm action

SRLA_vs_Human Error between the suggestion and chosen control
SRLA Control suggested by SRLA
MCReatTempOld_1 Manual reactor cooling value
MmanNit_1 Manual primary flow value
LinasO_1 Water IN flow

MVAPrec3_1 Flow steam REC3
MAssWatO_1 Manual absorber water selector
intop_1 Open interface

REC3WMO_1 Manual REC3 selector
MWpopOld_1 Manual Pump power value
MpumpOld_1 Manual Pump selector
intop_5 Open interface

FN2serb10_1
MCoolreatOld_1

Primary nitrogen flow
Manual reactor cooling selector

intop_2 Open interface
MligbolO_1 Methanol mass in the boiler
MNitsel_1 Manual primary nitrogen selector

MAssWatFlowO_1 Manual absorber water value



https://doi.org/10.1109/21.52548
https://www.tobii.com/products/eye-track ers/wearables/tobii-pro-glasses-3
https://www.tobii.com/products/eye-track ers/wearables/tobii-pro-glasses-3
https://www.tobii.com/products/software/behavior-research-software/tobii-pro-lab
https://www.tobii.com/products/software/behavior-research-software/tobii-pro-lab
https://doi.org/10.1080/13506280444000409
https://doi.org/10.1080/13506280444000409
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/
https://doi.org/10.1080/10447318.2017.1371950
https://doi.org/10.1080/10447318.2017.1371950

	Analyzing Operator States and the Impact of AI-Enhanced Decision Support in Control Rooms: A Human-in-the-Loop Specialized Reinforcement Learning Framework for Intervention Strategies
	Abstract
	Introduction
	Related work and contributions
	Contributions

	Framework
	Preliminaries
	Dynamic influence diagram (DID)
	Deep reinforcement learning
	Twin delayed deep deterministic policy gradient (TD3) architecture
	Critic update
	Actor update
	State
	Action
	Reward

	Specialized reinforcement learning agent
	Hidden Markov model (HMM)
	State transitions
	Emission probabilities
	Hidden state prediction


	Human-centered specialized RL decision support framework for safety-critical systems
	Algorithm


	Case study and design of experiments
	Process control room simulation environment
	Groups
	GroupN (without AI system)
	GroupAI (with AI system)

	Scenarios
	Baseline overview (scenario 1)
	Critical alarm (scenario 2)
	Alarm overflow (scenario 3)

	Specialized RL agent control suggestion

	Data collection
	Ethics statement
	Value of the data
	Optimizing human-AI interaction
	Evaluation of AI-enhanced decision support system

	Data explanation
	Biometric measures
	Eye tracker
	Fixation
	Saccade
	Heat map

	Process, alarms, and HMI logs (online)
	Alarms
	No. of procedures
	No. of mimics opened
	AI acknowledgement
	AI vs. human response

	Operational measures (offline)
	Behavioral measures
	Performance measures

	Questionnaires
	Task load
	NASA-TLX, SART, and SPAM indexes
	Alarm prioritization support
	Procedures support
	AI support questions
	Questions related to DRL



	Analysis I: exploratory data analysis
	Between participants (GroupN and GroupAI)
	Heat map
	Radar plot
	Correlation matrix
	Significantly correlated matrix

	Factor analysis
	Discussion on analysis between GroupN and GroupAI

	Within participants (GroupAI)
	Analyzing participant preferences: AI vs. AI + DRL (P21 vs. P24)
	Analyzing participant preferences: procedures vs. AI + DRL (P30 vs. P32)
	Analyzing participant preferences: AI + procedures vs. AI + DRL (P37 vs. P96)
	Discussion on findings within GroupAI

	Human performance vs, system performance
	Between participants (GroupN and GroupAI)
	Within participants (GroupAI)


	Analysis II: human failure prediction in real-time using process variables and human-machine interaction
	Factor loadings on the principal component analysis (PCA)
	Intervention strategies and applications: towards a general SRLA-based support system

	Discussion
	Limitations and future work
	Conclusion
	Disclosure statement
	Funding
	Orcid
	References


