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We study Majorana devices featuring a competition between superconductivity and multichannel Kondo
physics. Our proposal extends previous work on single-channel Kondo systems to a topologically
nontrivial setting of a non-Fermi liquid type, where topological superconductor wires (with gap A)
represent leads tunnel coupled to a Coulomb-blockaded Majorana box. On the box, a spin degree of
freedom with Kondo temperature T is nonlocally defined in terms of Majorana states. For A > T, the
destruction of Kondo screening by superconductivity implies a 4z-periodic Josephson current-phase
relation. Using a strong-coupling analysis in the opposite regime A < T'x, we find a 6z-periodic Josephson
relation for three leads, with critical current /. ~ eA%/AT ., corresponding to the transfer of fractionalized

charges e* = 2e/3.

DOI: 10.1103/PhysRevLett.118.057001

Introduction.—An important goal of condensed matter
physics and quantum information science is to implement,
thoroughly understand, and usefully employ systems host-
ing topologically protected Majorana bound states (MBSs)
[1-3]. These states are expected near the ends of topologi-
cal superconductor (TS) wires, and experimental evidence
for MBSs has been reported for semiconductor-super-
conductor heterostructures with proximitized InAs or
InSb nanowires [4-8]. For a Coulomb-blockaded super-
conducting island containing more than two MBSs
(“Majorana box™), a spin operator is encoded by pairs of
spatially separated MBSs. When normal leads are coupled
to the MBSs, this spin is screened through cotunneling
processes, culminating in the so-called topological Kondo
effect (TKE) [9-21] which exhibits non-Fermi liquid
physics below T'g. Unlike other overscreened multichannel
Kondo systems [22-25], the TKE is intrinsically stable
against anisotropies. Majorana devices could thus realize
multichannel Kondo effects without delicate fine tuning of
parameters.

Here we study the Josephson effect for a Majorana box
with superconducting (instead of normal) leads as illus-
trated in Fig. 1. Previous theoretical work for Majorana
systems contacted by superconducting electrodes has only
addressed cases without TKE [26-30]. In our setup, a
nontrivial competition between superconductivity and the
Kondo effect arises because lead states below the super-
conducting gap A are not available anymore for screening
the box spin. The simpler single-channel spin-1/2 Kondo
case, which is of a Fermi-liquid type and can be realized
when two superconducting leads are connected to a
quantum dot [31], was studied in detail both theoretically
[32-39] and experimentally [40-45]. It has been estab-
lished that a local quantum phase transition at A/Tg =1
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separates a so-called O phase (small A/Tg) and a x phase
(large A/Tg), where essentially the entire crossover is
described by universal scaling functions of A/T. Deep in
the O phase, the Kondo resonance persists and yields the
current-phase relation of a fully transparent superconduct-
ing junction; while in the z phase, the Kondo effect is
almost completely quenched and one finds a negative
supercurrent.
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FIG. 1. Schematic device setup with M = 3 superconducting
leads, using two long parallel InAs (or InSb) nanowires.
Proximitized parts give TS wire regions (green) with Majorana
end states (red crosses, shown only on the parts forming the
Majorana box). Short nonproximitized sections (yellow) are used
as gate-tunable tunnel contacts. The floating Majorana box with
four MBSs (y;) is created by joining the two central TS parts
through an s-wave superconducting bridge (blue). Superconduct-
ing leads are obtained from outer TS wire sections in contact with
conventional superconductors (blue). By tuning magnetic fluxes
(®;,), the supercurrents /; can be studied as function of the

phases (@1, ¢, @3).
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With the Majorana device proposed below, the rich
interplay between superconductivity and multichannel
Kondo screening may also become experimentally acces-
sible. The symmetry group of the TKE is affected here, by
even a tiny gap A, due to the proliferation of crossed
Andreev reflection processes. For A < Tx and M =3
attached leads, our nonperturbative strong-coupling theory
predicts that two-channel Kondo physics is responsible for
a Or-periodic Josephson effect with critical current
I, ~ eA?/hT. This periodicity implies charge fractionali-
zation in units of e* =2¢/3 for elementary transfer
processes. On the other hand, for A > Ty, we recover
the well-known 4z-periodic current-phase relation of par-
ity-conserving topological Josephson junctions [1-3]. In
view of the rapid experimental progress on Majorana states
in semiconductor-superconductor devices [4-8], our pre-
dictions can likely be tested soon, e.g., by the techniques
recently employed to observe the 4z Josephson effect [46].

Model.—The superconducting leads attached to the
Majorana box are described as semi-infinite TS wires of
symmetry class D. For M leads, the effectively spinless
low-energy Hamiltonian is (we put e = h = vy = 1) [1]

Hiass = Z/ dx V' (x)[=i0,0,+ Aje™ 176, ] (x), (1)

where A; denotes the absolute value and ¢; the phase of the
respective proximity-induced superconducting gap, Pauli
matrices o, , . and unity o, act in Nambu space, and the
spinors ¥; = (y; g, z//j‘ )T are expressed in terms of right-
and left-moving fermion operators with boundary condition
w;(0) =w;.(0). We mainly discuss results for identical
gaps, A; = A, but our theory applies to the general case
[47]. The reason why we did not assume conventional
s-wave superconductors as leads is that different pairing
symmetries for the box and the leads imply a supercurrent
blockade [26], where only above-gap quasiparticle trans-
port is possible under rather general conditions [27-30].
Fortunately, leads with effective p-wave pairing symmetry
may be implemented in a natural way, see below and Fig. 1.
At x = 0, each lead fermion y; is then coupled by a tunnel
amplitude ; to the respective Majorana operator y; = ;/JI on
the box, with an anticommutator {y;,y;} = ;. We study
energy scales well below the proximity gap A, on the
box, where Ay, and A < A, are taken as independent
parameters and above-gap quasiparticles on the box are
neglected. For a large charging energy E., charge quan-
tization implies a parity constraint for the Majorana states
on the box and tends to suppress quasiparticle poisoning
processes. Nonetheless, the ground state remains degener-
ate for M > 2, where the Majorana bilinears iy ;y represent
the box spin [9,15]. The projection to the Hilbert space
sector with quantized box charge yields [9]

M
Hge = Zﬂjk’l/;m)lﬂk(o)h}’j, (2)
J#k

where the dimensionless exchange couplings 1; =
2t;t;/Ec describe elastic cotunneling between leads
Jj <> k. For A =0, Refs. [9-11] show that H\..,qs + Hgc
gives a TKE of SO,(M) symmetry with

-1 Zl/k’

) =

Ty = Ege—®/PM=21 7

where the group relation SO,(3) ~ SU,4(2) implies a four-
channel Kondo effect for M =3 [49]. For A # 0, the
competition between Kondo physics and superconductivity
is then controlled by the ratio A/T'x. For ¢; = 0, the above
model also describes junctions of off-critical anisotropic
spin chains [12,13,20,21].

Implementation.—Before turning to results, we briefly
discuss how to realize this model for the simplest nontrivial
case M = 3, cf. Fig. 1. The floating box is defined by
connecting two parallel TS wires by an s-wave super-
conductor. Nanowires can be fabricated with an epitaxial
superconducting shell [5], where a magnetic field simulta-
neously drives both wires into the TS phase [1]. We assume
that the TS sections on the box are so long that overlap
between different Majorana states is negligible.
Nonproximitized wire parts yield gate-tunable tunnel
barriers, and leads are defined by the outer TS wires in
Fig. 1. Using available Majorana wires [7], it appears
possible to realize the Kondo regime [9,14,15,50]. In a loop
geometry with magnetic fluxes [51], one can change the
phase differences between TS leads and measure the
current-phase relation.

Josephson current.—Itis often convenient to integrate out
the lead fermion modes away from x = 0. The Euclidean
action, S = Sicaqs + Sbox + Sec, 1s thereby expressed in
terms of Majorana fields y;(z) and boundary (x = 0)
Grassmann-Nambu spinor fields, ¥;(z) = (y;.i;)". With
inverse temperature 3, H|.,qs gives

/ dred? qu

where the boundary Green’s function G;(z) has the Fourier
transform [29]

. A2 A i
G(w) = —isgn(w)y/ 1 + —0'0 + To-x. (5)

The box action is Sy =35 [dz)_;y;0:y;, and Spc =
J drHgc (7). Expressing the partition function as a func-
tional integral, Z = e™#F = [D(¥;,7;)e™5, the supercur-
rent /; through lead number j (oriented towards the box)
follows as phase derivative of the free energy,

Sleads = T -7 )\Ilj(r/)7 (4)
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I;=(2¢/h)0, F, where current conservation implies
>_;Ij = 0. We discuss the zero-temperature limit in what
follows.

Atomic limit: A > Tg.—In the atomic limit, after gaug-
ing out the ¢; phases from the bulk, Eq. (5) simplifies to
G(w)=[A;/(iw)](6y + 06,). As a consequence, the lead
action (4) becomes Sjcuqs = %Z ; f dtn;0.n;, where the
boundary fermions define =zero-energy Majorana
operators, 1; = (y; —i-l//;) /+/24;, and Eq. (2) yields the
effective low-energy Hamiltonian Heg = 5 iz /A ;A X
A jkei<‘/’f“”k)/ 5 Miykyj- Since all mutually commuting prod-
ucts 2in;y; = o; = *1 are conserved, we arrive at the
4r-periodic supercurrents

eA (P~ Pk
I] _7211'](0]'0](81[1( J 3 >, (6)

=

where the {c;} correspond to different fermion parity
sectors and we put A; = A. The Kondo effect is suppressed
in the atomic limit since no low-energy quasiparticles in the
leads are available to screen the box spin. In fact, Eq. (6)
also describes topological Josephson junctions with fea-
tureless tunnel contacts [1].

Renormalization group (RG) analysis.—To tackle the
case of arbitrary A/T, we start with the one-loop RG
equations. Renormalizations appear for A, for the 4, and
for the complex-valued crossed Andreev reflection ampli-
tudes k. = Ky; (with j # k). Such couplings are absent in
the bare model but will be generated during the RG flow by
an interplay of exchange processes (1) and superconduc-
tivity (A). They describe the creation (or annihilation) of
two fermions in different leads by splitting (or forming) a
Cooper pair on another lead, corresponding to the addi-
tional term

Hear = ZKij/;(O)WZ (0)yxy; +Hee. (7)
Jj<k

In the Supplemental Material [47], we provide a derivation
of the RG equations for arbitrary A; < D, where the
bandwidth is D = min(E¢, Ayey). For A; = A, taking a
gauge where the phase dependence only appears in
Hyc + Hepr, We obtain (j # k)

di, 2 ¥
d_;k = Z [m(/ljmimk + KjmKoy.)
T m#(j.k)
+ 8K, + KjmAmi )],
dK ik 2 M *
d—; = ; Z {5(/1]mlmk + ijkmk)
m#(j,k)

+ V14 8 (AjmKmi + KjmAy)]s (8)

with §(¢) = ¢’ A/D and initial conditions ;;(0) = 0 and
2k (0) = (2t;1;/Ec)e®=#0/2. The RG flow thus only
depends on the gauge-invariant phase differences ¢@; — ¢y.

RG solution for the unbiased case.—Putting all ¢; = 0,
the above RG equations can be solved analytically. The

(+)

matrices Ajk = Ajx £ kj; may now be chosen real sym-
metric and obey decoupled flow equations,

+
dy) 2
dc z

M
£)a (&
1+8+68) > ALAL. (9
m#(j k)

which (up to a rescaling) coincide with those for the TKE.
The results of Refs. [9—11,14] imply that anisotropies in the
A;f) are irrelevant perturbations, and both matrices scale
towards isotropy, Aﬁf)(f) - AL (D)1
tropic initial condition, A, (0) = A, with the average
coupling 1 in Eq. (3), we find from Eq. (9)

— 6]. For an iso-

with the monotonically increasing functions

5(2)
V14+6 -1

F.(6) = 14+6*+1n 7i5> . (11

0= (s VET SR

Hence A, (£) as well as §(£) scale towards strong coupling
(with A, > A_). For A < Ty with Tx in Eq. (3), the
energy scales 7. where A, (Z) enters the strong-coupling
regime can be estimated as T, = T ge178/RM=2)Ecl} The
renormalized couplings 4 2 k are then of order unity when
reaching the strong-coupling regime. Now any finite
coupling x (as well as A) is expected to destabilize the
SO, (M) Kondo fixed point and to induce a flow to a stable
fixed point with symmetry group SO, (M). For M = 3, this
has been shown in Ref. [20], where the relation SO;(3) ~
SU,(2) implies a two-channel (instead of the A = 0 four-
channel [9,49]) Kondo fixed point. On the other hand, for
A > Ty, the pairing variable §(¢) reaches the strong-
coupling regime first and we are back to the atomic limit.
In the remainder, we discuss the limit A < T for
M = 3 leads.

Phase-biased case.—For ¢; # 0, the RG equations (8)
are more difficult to solve. Numerical analysis of Eq. (8)
shows that for A <« Tk, the absolute values of the cou-
plings 4j; and x;; again flow towards isotropy but with a
specific phase dependence. With the real positive couplings
A(¢) and k() in Eq. (10), we find 1;,(£) — A(£)e!(@i=00)/2
and kj () — k(¢£)e as one approaches the strong-
coupling regime, where 6, = (¢; + ¢;)/2 — @y with the
center-of-mass phase ¢y = (¢; + @» + @3)/3. This result
for @; follows directly from gauge invariance and a
stationarity condition [47]. Finally, in what follows,
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it is convenient to remove the phase factors from
Hgc + Hear by the gauge transformation w; g/r (x) —
ei((ﬂ_/‘_(po)/zl//j’R/L(x)_

Strong-coupling analysis for M = 3 and A < T x.—We
now turn to the asymptotic low-energy regime which can be
accessed by perturbation theory around the two-channel
Kondo fixed point [16,52,53]. We first introduce
chiral fermion fields for the TS leads by an unfolding
transformation, ®;(x > 0) =w;x(x) and @;(x <0) =
w;(=x), and switch to their Majorana representations,
®;(x) = [n;(x) + i&;(x)]/v/2. Using the renormalized cou-
plings Ay = A+« in Eq. (10) with A, > A_, we then
obtain

HEC+HCAR:A+S'SV[+A—S'S§’ (12)

where we define the spin-1/2 operators S = —(i/2)y x 7,
S, = —(i/2)n(0) xn(0), and 8. = —(i/2)£(0) x £(0),
with ¥ = (y1,72.73)7 and similarly for the 5 and &
Majorana triplets. The theory for A= A_=0 then
describes the two-channel Kondo problem. The strong-
coupling regime is accessible by employing the following
rules [16,52,53]: (i) Screening processes leading to a
singlet state between S and S, imply the replacement

S — iT}l/ 2;/011(0), where the Majorana operator 1y,
describes the residual unscreened spin. With time ordering
T, we have (Tyo(7)r0(0)) = 3sgn(z). (ii) The Majorana
triplet #7(x) obeys twisted boundary conditions,
n(x) - sgn(x)n(x), while the € triplet remains unchanged.
In terms of fermions, this implies perfect Andreev
reflection, y; z(0) = =y, (0). (iii) For A = A_ =0, the
leading irrelevant operator is given by Hyjg =

2ﬂT,_<]/ 27/07]1(0);12(0)773(0), with  scaling  dimension
d = 3/2. The perturbation H_ due to A_, see Eq. (12),
is then also irrelevant with d = 3/2.

We now have to include the bulk pairing term « A in the
leads in a nonperturbative manner. In fact, the leading
contribution to /; follows from second-order perturbation
theory in H' = Hy o + H_. Since H' has scaling dimension
d =3/2, one naively expects a linear temperature (7°)
dependence of 1. However, A is RG-relevant and provides
a 1/T factor, resulting in a finite supercurrent at 7 = 0.
We then need the boundary Green’s functions for the
field combinations [y; z(0) — 1//jT 1 (0)]/V/2 representing
decoupled TS leads with twisted boundary conditions.
Following the steps in Ref. [29], we thereby obtain the lead
Majorana correlation functions at the boundary (x = 0™),

<T’7j(7)fk(0)> = —i6y A COS(%’ = @0)f(7),
<T’Ij(f)’7k(0)> = <T§j(7)fk(0)> == jkarf(f)’
ol —e @*+A%)Tg
o= [dorm e

R cos(wz).  (13)

The T = 0 supercurrents /; then come from the second-
order contribution to the free energy, F® =
—3 [ de(TH'(z)H'(0)). Using Eq. (13) and Wick’s theorem
[47], the phase derivatives of F?) yield

3
1/(401, @2, 03) = Iy Z {Sin@j — )

=

1 o —2
(e

1 —2;
- gsin (—(pk + (/Jé, (pj)] . (14)

where p # (J, k). The current scale, and thus ultimately the
critical current /., is set by

A eA A_(A_=-2
necrte (=222 e )

The dimensionless number ¢ is of order unity and can be
positive or negative. Compared to the conventional Kondo
system with critical current I, = eA/h [32], there is a
suppression factor A/Tx <1 due to the residual
unscreened spin encoded by y,. Equation (14) obeys current
conservation, » ;= 0, and predicts a 6z-periodic phase
dependence which in turn implies charge fractionalization in
units of e* = 2¢/3 for charge transfer between TS leads. For
finite A, we have a two-channel instead of a four-channel
Kondo problem, and hence this value of ¢* differs from the
one for normal leads probed by shot noise [14,50]. The 6z
periodicity is due to the non-Fermi liquid nature of the two-
channel Kondo fixed point and can be seen explicitly by
putting (¢, @2, p3) = (¢, 9,0), where Eq. (14) gives
I,,/1y = sing + [sin(¢p/3) + sin(2¢/3)]/3. On the other
hand, for (¢, ., @3) = (¢/2,—9/2,0), one gets a 4rx
periodicity, I,,/Iy = £[sin(¢p) + 2sin(¢/2)], since the
third terminal is now basically decoupled (/3 =0). In
general, the 6z periodicity coexists with 2z and 4x effects.
Finally, we note that for an observation of the 6 Josephson
effect, one should probe the supercurrent at finite frequen-
cies, cf. Ref. [46].

Conclusions.—We have studied the Josephson effect
through a multichannel Kondo impurity. This problem
could be realized using a Majorana box device with
superconducting leads. The different periodicities in the
atomic and the strong-coupling limit (4z vs 6z for three
leads) could indicate a quantum phase transition at A &~ T'g.
This point requires a detailed numerical study which can
also clarify to what extent the crossover is universal in
A/Tg. It would also be interesting to study topologically
trivial p-wave superconductors as leads, and to generalize
our strong-coupling analysis to M > 3 where one may
encounter even higher periodicities in the current-phase
relation.
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