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Abstract. The development of algorithms for secure state estimation in vulnerable cyber-physical
systems has been gaining attention in the last years. A consolidated assumption is that an
adversary can tamper a relatively small number of sensors. In the literature, block-sparsity
methods exploit this prior information to recover the attack locations and the state of the system.
In this paper, we propose an alternative, Lasso-based approach and we analyse its effectiveness.
In particular, we theoretically derive conditions that guarantee successful attack/state recovery,
independently of established time sparsity patterns. Furthermore, we develop a sparse state
observer, by starting from the iterative soft thresholding algorithm for Lasso, to perform online
estimation. Through several numerical experiments, we compare the proposed methods to the
state-of-the-art algorithms.

Keywords: Cyber-physical systems, sensor attacks, secure state estimation, sparse
optimization, Lasso, Luenberger-like observers

1. INTRODUCTION

A cyber-physical system (CPS) is a collection of computing
devices that interact with the physical world, through
sensors and actuators, and with one another, through com-
munication networks. Applications of the CPS paradigm
include industrial control processes, smart power grids,
wireless sensor networks, electric ground vehicles and co-
operative driving technologies.

The distributed nature of CPSs is ambivalent in terms of
security: on the one hand, it is more resilient to faults
with respect to centralized systems; on the other hand,
it is exposed to adversaries, either in terms of physical
access to sensors or cyber access to data transmission net-
works. Examples range from non-invasive spoofing phys-
ical attacks, as illustrated by Shoukry et al. (2013), to
cyber attacks to SCADA systems as done by the Stuxnet
worm; see Langner (2011). Since CPSs act on the physi-
cal world, cyber-physical attacks layer may yield serious
consequences to physical processes and to human beings,
which makes the security problem very critical.

In the last decade, a substantial work has focused on
the security of CPSs. A relevant research line considers
the problem of secure state estimation (SSE) for CPSs
in the presence of sensor attacks, that inject false data
to manipulate the measurements. As a matter of fact, a
malicious injection perturbs the data as a noise. However,
we expect that an adversary conceives an unpredictable
intrusion, that is, we have no information on its dynamics,
boundedness and probabilistic description. The unique
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realistic assumption on sensor attacks is sparsity: only a
relatively small number of sensors is accessible, due to,
e.g., large dimensionality, physical deployment and sensor
heterogeneity of CPSs.

In this paper, we consider CPSs described by discrete-
time (DT) linear time-invariant (LTI) dynamical systems,
with sparse sensor attacks. The identification of the at-
tack support, i.e., the subset of tampered sensors, is a
combinatorial problem, which does not scale well for large
dimensional systems. However, by leveraging the sparsity
assumption, one can exploit ℓ1-based sparsity-promoting
decoders to recast the problem into constrained convex op-
timization; see, e.g., Fawzi et al. (2014); Pajic et al. (2017).
Since these approaches are still computationally intense,
Shoukry and Tabuada (2016) introduce a faster event-
triggered projected gradient (ETPG) approach, whose
structure is prone to recursive SSE. The provided sufficient
conditions for the convergence of ETPG are quite restric-
tive. Shoukry et al. (2017) address this issue by a sat-
isfiability modulo theory approach, called Imhotep-SMT,
which returns the exact solution in short time for problems
of small/medium dimensions. However, Imhotep-SMT is
combinatorial, thus critical for large-scale problems.

In this paper, we propose a different approach to SSE of
CPSs under sparse sensor attacks, based on Lasso; see Tib-
shirani (1996). Specifically, we define a Lasso formulation
and we analyse its effectiveness.

The proposed Lasso-based model builds on ℓ1 relaxation,
but, differently from Fawzi et al. (2014); Pajic et al. (2017),
it gives rise to an unconstrained optimization problem,
which can be solved through low-complex recursive algo-
rithms. By elaborating on this point, the second contri-
bution of the paper is a recursive SSE method exploiting
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new data as soon as they become available, with the final
aim of performing online SSE. More precisely, we design
a sparsity-promoting Luenberger-like observer by starting
from the iterative soft thresholding algorithm for Lasso.

Finally, we propose numerical experiments that show the
effectiveness of the proposed methods with respect to
the state-of-the-art approaches, in terms of estimation
accuracy and execution time.

We organize the paper as follows. In Sec. 2, we state
the problem and we illustrate the background. In Sec.
3, we introduce the proposed Lasso approach and we
theoretically analyse it. In Sec. 4, we extend the method to
recursive and online SSE, by developing a state observer.
Finally, we devote Sec. 5 to numerical experiments and we
draw some conclusions in Sec. 6.

2. PROBLEM STATEMENT

By following Fawzi et al. (2014); Shoukry and Tabuada
(2016), we consider CPSs that can be modeled as DT LTI
dynamical systems

x(k + 1) = Ax(k)

y(k) = Cx(k) + a(k)
(1)

where x(k) ∈ Rn is the state, y(k) ∈ Rp is the measure-
ment vector, a(k) ∈ Rp is the attack vector, A ∈ Rn,n

and C ∈ Rp,n. We assume that each sensor i takes a
measurement yi(k); if ai(k) ̸= 0, sensor i is under attack.
We assume that a(k) is sparse, i.e., few sensors are under
attack at each k. Since the presence of a known input
does not impact on the formulation of the problem, see
Shoukry and Tabuada (2016), for simplicity of notation we
consider a zero-input model. Moreover, as in Fawzi et al.
(2014); Shoukry and Tabuada (2016), we consider a noise-
free model for our theoretical analysis, while we envisage
measurement noise in some numerical experiments.

The SSE problem is as follows.

Problem 1. For some τ ≤ n and k ≥ τ − 1 given A, C
and y = (y(k − τ + 1)⊤, . . . , y(k)⊤)⊤ ∈ Rpτ , estimate the
τ -delayed state x(k−τ+1) in the presence of sparse sensor
attacks.

Let us denote a = (a(k − τ + 1)⊤, . . . , a(k)⊤)⊤ ∈ Rpτ and
x = x(k− τ +1) ∈ Rn, while I ∈ {0, 1}pτ,pτ is the identity
matrix. From (1), we have

y = (O I)

x
a

, where O =




C
CA
...

CAτ−1


 ∈ Rpτ,n (2)

If τ = n, O is the observability matrix of the attack-
free system. We assume that the attack-free system is
observable, i.e., rank(O) = n. In principle, we can estimate
(x,a) by solving

y = (O I)


x
a


(3)

in the variables x ∈ Rn, a ∈ Rpτ . Nevertheless, since
(O I) ∈ Rpτ,n+pτ , the system is inherently underdeter-
mined. However, by taking into account the sparsity of
a, we can exploit the compressed sensing theory to find
a sparse solution to (3); see, e.g., Foucart and Rauhut

(2013). Some works assume that the attack support is
time-invariant, with cardinality s ≪ p, i.e., a is block-
sparse. In particular, Fawzi et al. (2014) exploit an ℓ1/ℓr
norm approach for block-sparse signal recovery, while
Shoukry and Tabuada (2016) develop a block-based hard
thresholding algorithm, that alternates gradient descent
and event-triggered projection onto Rn × Ss, where Ss ⊂
Rpτ is the set of block s-sparse vectors.

We remark that equation (3) has a unique solution in
Rn × Ss if and only if the CPS defined in (1) is 2s-
sparse observable, that is, by removing any subset of
2s sensors, the attack-free system remains observable;
see, e.g., (Shoukry and Tabuada, 2016, Theorem 3.2). In
other terms, 2s-sparse observability is equivalent to the
injectivity of the map f : Rn × Ss → Rpτ defined as
f(x, a) = Ox+a. This condition is necessary condition for
secure state estimation, independently from the estimation
algorithm.

If on the one hand the prior information on the block-
sparsity pattern of a can improve the state estimation, on
the other hand it ties the solution to constant attack sup-
ports and it originates more complex recovery algorithms.
For these motivations, in this work we propose a sparse
optimization approach that neglects the possible block-
sparsity.

Beyond the seminal contributions briefly described in this
section, we remark that substantial recent work addresses
specific aspects of SSE of CPSs of the kind (1). For ex-
ample, Mao et al. (2022) and Lu and Yang (2023) develop
decomposition techniques, Zhao et al. (2023) propose a
data-driven approach; Lei et al. (2023); Mao and Tabuada
(2023) focus on distributed algorithms for SSE.

3. LASSO APPROACH

The proposed Lasso formulation for problem (3) is

(x⋆, a⋆) = argmin
x∈Rn,a∈Rpτ

1

2
∥y −Ox− a∥22 + λ∥a∥1 (4)

where λ > 0. Problem (4) is a partial Lasso because only a
part of the vector to estimate is sparse, i.e., we apply the
ℓ1 regularization only on a.

We notice that constrained counterparts of Lasso are the
bases for the ℓ1-based, block-sparsity decoders proposed by
Fawzi et al. (2014), for the noise-free case, and by Pajic
et al. (2017), in the presence of bounded measurement
noise. The Lasso formulation in (4) may envisage the
presence of measurement noise as well; moreover, we can
resort to several effective algorithms for unconstrained
optimization to solve it.

In this work, we consider the iterative soft thresholding
algorithm (ISTA) proposed by Daubechies et al. (2004),
which is a proximal gradient algorithm. ISTA iteration
consists of a gradient step and a componentwise soft
thresholding operation, defined by Sνλ[w] = w−νλsign(w)
if |w| ≥ νλ, and 0 otherwise; ν > 0 is the gradient step
size. Accelerated versions of ISTA are available, see, e.g.,
Beck and Teboulle (2009) and Cerone et al. (2023). Its
simple structure allows us to build a state observer upon
it, as illustrated in Sec. 4.
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new data as soon as they become available, with the final
aim of performing online SSE. More precisely, we design
a sparsity-promoting Luenberger-like observer by starting
from the iterative soft thresholding algorithm for Lasso.

Finally, we propose numerical experiments that show the
effectiveness of the proposed methods with respect to
the state-of-the-art approaches, in terms of estimation
accuracy and execution time.

We organize the paper as follows. In Sec. 2, we state
the problem and we illustrate the background. In Sec.
3, we introduce the proposed Lasso approach and we
theoretically analyse it. In Sec. 4, we extend the method to
recursive and online SSE, by developing a state observer.
Finally, we devote Sec. 5 to numerical experiments and we
draw some conclusions in Sec. 6.

2. PROBLEM STATEMENT

By following Fawzi et al. (2014); Shoukry and Tabuada
(2016), we consider CPSs that can be modeled as DT LTI
dynamical systems

x(k + 1) = Ax(k)

y(k) = Cx(k) + a(k)
(1)

where x(k) ∈ Rn is the state, y(k) ∈ Rp is the measure-
ment vector, a(k) ∈ Rp is the attack vector, A ∈ Rn,n

and C ∈ Rp,n. We assume that each sensor i takes a
measurement yi(k); if ai(k) ̸= 0, sensor i is under attack.
We assume that a(k) is sparse, i.e., few sensors are under
attack at each k. Since the presence of a known input
does not impact on the formulation of the problem, see
Shoukry and Tabuada (2016), for simplicity of notation we
consider a zero-input model. Moreover, as in Fawzi et al.
(2014); Shoukry and Tabuada (2016), we consider a noise-
free model for our theoretical analysis, while we envisage
measurement noise in some numerical experiments.

The SSE problem is as follows.

Problem 1. For some τ ≤ n and k ≥ τ − 1 given A, C
and y = (y(k − τ + 1)⊤, . . . , y(k)⊤)⊤ ∈ Rpτ , estimate the
τ -delayed state x(k−τ+1) in the presence of sparse sensor
attacks.

Let us denote a = (a(k − τ + 1)⊤, . . . , a(k)⊤)⊤ ∈ Rpτ and
x = x(k− τ +1) ∈ Rn, while I ∈ {0, 1}pτ,pτ is the identity
matrix. From (1), we have

y = (O I)

x
a

, where O =




C
CA
...

CAτ−1


 ∈ Rpτ,n (2)

If τ = n, O is the observability matrix of the attack-
free system. We assume that the attack-free system is
observable, i.e., rank(O) = n. In principle, we can estimate
(x,a) by solving

y = (O I)


x
a


(3)

in the variables x ∈ Rn, a ∈ Rpτ . Nevertheless, since
(O I) ∈ Rpτ,n+pτ , the system is inherently underdeter-
mined. However, by taking into account the sparsity of
a, we can exploit the compressed sensing theory to find
a sparse solution to (3); see, e.g., Foucart and Rauhut

(2013). Some works assume that the attack support is
time-invariant, with cardinality s ≪ p, i.e., a is block-
sparse. In particular, Fawzi et al. (2014) exploit an ℓ1/ℓr
norm approach for block-sparse signal recovery, while
Shoukry and Tabuada (2016) develop a block-based hard
thresholding algorithm, that alternates gradient descent
and event-triggered projection onto Rn × Ss, where Ss ⊂
Rpτ is the set of block s-sparse vectors.

We remark that equation (3) has a unique solution in
Rn × Ss if and only if the CPS defined in (1) is 2s-
sparse observable, that is, by removing any subset of
2s sensors, the attack-free system remains observable;
see, e.g., (Shoukry and Tabuada, 2016, Theorem 3.2). In
other terms, 2s-sparse observability is equivalent to the
injectivity of the map f : Rn × Ss → Rpτ defined as
f(x, a) = Ox+a. This condition is necessary condition for
secure state estimation, independently from the estimation
algorithm.

If on the one hand the prior information on the block-
sparsity pattern of a can improve the state estimation, on
the other hand it ties the solution to constant attack sup-
ports and it originates more complex recovery algorithms.
For these motivations, in this work we propose a sparse
optimization approach that neglects the possible block-
sparsity.

Beyond the seminal contributions briefly described in this
section, we remark that substantial recent work addresses
specific aspects of SSE of CPSs of the kind (1). For ex-
ample, Mao et al. (2022) and Lu and Yang (2023) develop
decomposition techniques, Zhao et al. (2023) propose a
data-driven approach; Lei et al. (2023); Mao and Tabuada
(2023) focus on distributed algorithms for SSE.

3. LASSO APPROACH

The proposed Lasso formulation for problem (3) is

(x⋆, a⋆) = argmin
x∈Rn,a∈Rpτ

1

2
∥y −Ox− a∥22 + λ∥a∥1 (4)

where λ > 0. Problem (4) is a partial Lasso because only a
part of the vector to estimate is sparse, i.e., we apply the
ℓ1 regularization only on a.

We notice that constrained counterparts of Lasso are the
bases for the ℓ1-based, block-sparsity decoders proposed by
Fawzi et al. (2014), for the noise-free case, and by Pajic
et al. (2017), in the presence of bounded measurement
noise. The Lasso formulation in (4) may envisage the
presence of measurement noise as well; moreover, we can
resort to several effective algorithms for unconstrained
optimization to solve it.

In this work, we consider the iterative soft thresholding
algorithm (ISTA) proposed by Daubechies et al. (2004),
which is a proximal gradient algorithm. ISTA iteration
consists of a gradient step and a componentwise soft
thresholding operation, defined by Sνλ[w] = w−νλsign(w)
if |w| ≥ νλ, and 0 otherwise; ν > 0 is the gradient step
size. Accelerated versions of ISTA are available, see, e.g.,
Beck and Teboulle (2009) and Cerone et al. (2023). Its
simple structure allows us to build a state observer upon
it, as illustrated in Sec. 4.

3.1 Analysis of the irrepresentable condition

An interesting feature of Lasso is that there is a tight
condition, denoted as “irrepresentable”, that guarantees
the recovery of the correct support in the noise-free case,
see Fuchs (2004). Extensions to the noisy measurements
are possible as well, see, e.g., Fuchs (2005).

In a nutshell, given a classic Lasso 1
2 ∥y −Qz∥22 + λ∥z∥1,

the irrepresentable condition states that the columns of
the sensing matrix Q on the true support must be “suf-
ficiently orthogonal” to the columns outside the support.
The irrepresentable condition cannot be priorly checked,
because it involves the knowledge of the support; however,
it provides interesting insights on the necessary features of
Q to recover the support through Lasso; see, e.g., Zhao and
Yu (2006); Hastie et al. (2015); Cerone et al. (2020).

In the considered SSE problem, the sensing matrix (O I)
has a peculiar structure, with an identity matrix in its
right part. In this section, we perform an irrepresentable
condition analysis that takes into account this structure.
We focus on the attack support recovery because its
correct estimation allows us to recover the state from the
safe sensors.

Let S be the support of ã, and |S| = h ≪ pτ . If the
attack support is time-invariant, h = sτ . In the rest of the
paper, we use the following notation: IS ∈ {0, 1}pτ,h is the
submatrix of I with columns indexed in S. OS ∈ Rh,n and
OS̄ ∈ Rpτ−h,n are the submatrices of O with rows in S and

in S̄, respectively. O†⊤
S̄ = OS̄ [O⊤

S̄OS̄ ]
−1 ∈ Rpτ−h,n is the

right pseudo-inverse of O⊤
S̄ . Finally, we denote by ∥ · ∥∞

the ℓ∞ matrix norm, defined as ∥M∥∞ = maxi
∑

j |Mi,j |
for any matrix M . If M is a row vector, the ℓ∞ matrix
norm corresponds to the ℓ1 vector norm.

The following result holds.

Theorem 1. Let us assume that (O IS) ∈ Rpτ,n+h is full
rank. Lasso is successful, i.e., by solving it we identify the
attack support, if and only if∥∥∥O†⊤

S̄ O⊤
S sign(ãS)

∥∥∥
∞

< 1 (5)

provided that λ > 0 is sufficiently small. As a consequence,
Lasso is successful if∥∥∥O†⊤

S̄ O⊤
S

∥∥∥
∞

< 1. (6)

Proof. (x⋆, a⋆) is a global minimum of (4) if and only
if it fulfills the zero-subgradient condition: there exists
ζ ∈ ∂∥a⋆∥1 such that(

O⊤

I

)
(Ox⋆ + a⋆ − y) + λ

(
0
ζ

)
= 0 (7)

where ∂∥a⋆∥1 ⊂ Rpτ is the subdifferential of ∥a⋆∥1: for
each i ∈ S, ζi = sign(a⋆i ), while ∥ζS̄∥∞ ≤ 1; see Fuchs
(2004) for details. In particular, if ∥ζS̄∥∞ < 1, then (x⋆, a⋆)
is a strict minimum.

We construct the candidate (x⋆, a⋆) ∈ Rn+pτ as follows:
we set a⋆S̄ = 0, while

(x⋆, a⋆S) = argmin
x∈Rn,aS∈Rh

1

2
∥y −Ox− ISaS∥22 + λ∥aS∥1 (8)

which is a Lasso restricted on the non-zero components of
the true vector. The so-built (x⋆, a⋆) is a solution of Lasso
(4) if it satisfies (7); let us verify under which conditions
this occurs.

By distinguishing the zero-subgradient equations on (x⋆, a⋆S)
and on a⋆S̄ and by recalling that y = Ox̃+ IS ãS , we have

(O IS)
⊤
(O IS)

(
x⋆ − x̃
a⋆S − ãS

)
+ λ

(
0

sign(a⋆S)

)
= 0 (9)

I⊤S̄ (O IS)

(
x⋆ − x̃
a⋆S − ãS

)
+ λζS̄ = 0. (10)

We notice that

(O IS)
⊤
(O IS) =

(
O⊤O O⊤

S
OS Ih

)
(11)

where Ih ∈ {0, 1}h,h is the identity matrix of dimension h.
Then, from (9) and (11), we compute

(
x⋆ − x̃
a⋆S − ãS

)
= −λ

(
O⊤O O⊤

S
OS Ih

)−1 (
0

sign(a⋆S)

)
. (12)

The inverse matrix exists because the rows of (O IS)
⊤ ∈

Rn+h,pτ , n + h < pτ , are linearly independent by as-
sumption. Moreover, from (12), the difference a⋆S − ãS
is proportional to λ; therefore, if λ is sufficiently small,
sign(a⋆S) = sign(ãS). We remark that, in the noise-free
case, we can design λ as arbitrarily small without loss of
generality.

By replacing (12) in (10), we obtain;

ζS̄ = I⊤S̄ (O IS)

(
O⊤O O⊤

S
OS Ih

)−1 (
0

sign(ãS)

)
. (13)

Now, (x⋆, a⋆) is the unique minimum of Lasso if ∥ζS̄∥∞ <
1. Therefore, we study the inequality∥∥∥∥∥I

⊤
S̄ (O IS)

(
O⊤O O⊤

S
OS Ih

)−1 (
0

sign(ãS)

)∥∥∥∥∥
∞

< 1. (14)

Since I⊤S̄ IS = 0,

I⊤S̄ (O IS) = (OS̄ 0) . (15)

From Schur’s complement arguments,(
O⊤O O⊤

S
OS Ih

)−1

=

(
Ω1 Ω2

Ω3 Ω4

)
(16)

where

Ω2 = −[O⊤O −O⊤
SOS ]

−1OS = −[O⊤
S̄OS̄ ]

−1O⊤
S . (17)

By applying (15),(16) and (17) to (14),

(OS̄ 0)

(
Ω1 Ω2

Ω3 Ω4

)(
0

sign(ãS)

)
= −O†⊤

S̄ O⊤
S sign(ãS). (18)

In conclusion, condition (14) is equivalent to (5).

Since
∥∥∥O†⊤

S̄ O⊤
S sign(ãS)

∥∥∥
∞

≤
∥∥∥O†⊤

S̄ O⊤
S

∥∥∥
∞

then (6) is

sufficient for a successful Lasso. □

Since ρ :=
∥∥∥O†⊤

S̄ O⊤
S

∥∥∥
∞

= maxj

∥∥∥∥OS

(
O†

S̄

)
j

∥∥∥∥
1

, a qualita-

tive interpretation of (6) is as follows: the term ρ must be
small, i.e., the rows of OS must be “sufficiently orthogo-

nal” to the columns of O†
S̄ . This implies some observations.

Since x̃ = O†
S̄yS̄ , then
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OS x̃ = OSO†
S̄yS̄ . (19)

In particular, OS x̃ = 0 would be the ideal case to identify
the attacks, which would be directly observable from yS =
aS . Nevertheless, this is not realistic, in particular because
it depends on the specific initial state x̃. However,

∥OS x̃∥1 ≤ ρ ∥yS̄∥1 (20)

that is, ρ controls the “orthogonality” between the rows
of O indexed in S and x̃: a small irrepresentable term ρ
implies a small energy of OS x̃, which, in turn, implies that
the attacks are more exposed to identification.

Differently from previous conditions considered in the
literature, see for example Theorem 4.4 in Shoukry and
Tabuada (2016), the irrepresentable condition well cap-
tures the ability of CPS to identify attacks. We illustrate
this point with a simple illustrative example.

Example 1. Let us consider a simple static model with

A = I, n = 1 and O = C = α (1 1 1)
⊤
for any α ∈ R, i.e.,

we have 3 equivalent sensors. We assume that one of them
is under attack. If we know that h = 1, the identification
of the attack is trivial: the sensor that provides a different
measurement is clearly under attack and we can recover
the state from the other two sensors. The irrepresentable
condition well captures this resilience; in fact, we have

O†⊤
S̄ = 1

2α (1 1)
⊤

and O⊤
S = α, thus

∥∥∥O†⊤
S̄ O⊤

S

∥∥∥
∞

= 1
2 < 1

for any α ∈ R and Lasso is successful.

In contrast, we notice that condition 2 of Theorem 4.4
in Shoukry and Tabuada (2016) that guarantees the con-
vergence of ETPG is not satisfied. In fact, the maximum

eigenvalue of (O I)
⊤
(O I) is q = 3α2 + 1, while the

minimum eigenvalue on all the possible subsets of 2 sensors

is r = 3α2+1−
√
9α4+2α2+1
2 . Then, r < 4

9q, which contradicts
condition 2.

4. SPARSE SOFT OBSERVER FOR ONLINE SSE

In this section, we move towards recursive, online SSE. We
consider Problem 1 in a dynamic perspective: we aim at
estimating the current state, or a delayed version, using the
last pτ measurements, and, at each k we include the new
measurements and we discard the oldest ones. If τ = 1, this
an online (not delayed) SSE. This calls for fast recursive
online algorithms.

Shoukry and Tabuada (2016) address this problem by
developing a recursive version of ETPG, named ETPL.
At time k, instead of running ETPG to convergence to
estimate x(k − τ + 1), ETPL runs some steps of the
algorithm, then it moves to step k + 1 and it takes new
measurements, in the philosophy of a Luenberger observer.
As an alternative, we develop an online version of ISTA,
that we name sparse soft observer and that we summarize
in Alg. 1. We use the following notation: a(k) = (a(k−τ+
1)⊤, . . . , a(k)⊤)⊤, y(k) = (y(k − τ + 1)⊤, . . . , y(k)⊤)⊤.

The basic idea is to run one ISTA step, as described
in Sec. 3, at each time instant k. Then, we update the
estimate of the state by leveraging the knowledge of A, as
in Luenberger observer. Step 3. in Alg. 1 can be repeated
more than one time to enhance the estimation, but we do
not run the complete algorithm to converge to the Lasso
solution. Moreover, in case of online estimation, i.e., τ = 1,

Algorithm 1 Sparse soft observer

Input: τ ≤ n, λ > 0, ν > 0, A, O, y(k)

Output:

(
x̂(k)
â(k)

)
= estimate of

(
x(k − τ + 1)

a(k)

)

1: for all k = τ − 1, τ, . . . do
2: Measurements and estimated measurements update

y(k) = Ox(k − τ + 1) + a(k)

ŷ(k) = Ox̂(k) + â(k)
(21)

3: ISTA step: gradient step + soft thresholding(
x̂+

â+

)
=

(
x̂(k)
â(k)

)
− ν

(
O I

)⊤
[ŷ(k)− y(k)] (22)

â(k + 1) = Sνλ
[
â+

]
(23)

4: State update

x̂(k + 1) = Ax̂+ (24)

5: end for

the current p measurements are expected to be insufficient
to have a successful Lasso; therefore, the observer approach
is necessary.

5. NUMERICAL RESULTS

In this section, we propose some numerical results to inves-
tigate the performance of the proposed Lasso approach and
sparse soft observer, in terms of state estimation accuracy
and execution time. We perform all the simulations in
MATLAB R2023 on a processor i7 @ 1.80 GHz × 8, with
16 GB of RAM.

5.1 Lasso approach

We test Lasso, solved by FISTA, see Beck and Teboulle
(2009), on random, synthetic CPSs and we compare it to
ETPG by Shoukry and Tabuada (2016) and Imhotep-SMT
by Shoukry et al. (2017); the code for this last one is taken
at ”Imhotep-SMT” (2015). We generate the elements A
and C independently, according to a standard normal
distribution; then we normalize A to guarantee stability.
We assume that the attack support is time-invariant and
cardinality s and we generate it uniformly at random. The
initial state x(0) has uniformly distributed components
with magnitude in [2, 3]. The attacks have magnitude
in [4, 5], which is sufficiently large to sabotage the state
estimation, but not enough large to produce clear, plainly
detectable outliers in the measurements.

In the first experiment, we vary p, while n = 20 and s = p
5 ;

in the second experiment, we vary s, while n = 20 and
p = 30. We perform 50 runs for each experiment; we depict
the averages results in Fig. 1 and in Fig. 2. We assess the
accuracy in terms of state estimation error ∥x̂− x̃∥2/∥x̃∥2.
We consider either noise-free and noisy measurements, i.e.,
y(k) = Cx(k)+a(k)+η(k), where η(k) ∈ Rp is a uniformly
random, bounded noise with ∥η(k)∥∞ ≤ 10−4.

As we can see in Fig. 1 and in Fig. 2, in this experiment,
Lasso outperforms ETPG both in accuracy and run time.
Since we consider small/medium dimensions, Imhotep-
SMT is the best approach to provide the exact solution in
fast time, in the noise-free case; nevertheless, its accuracy
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OS x̃ = OSO†
S̄yS̄ . (19)

In particular, OS x̃ = 0 would be the ideal case to identify
the attacks, which would be directly observable from yS =
aS . Nevertheless, this is not realistic, in particular because
it depends on the specific initial state x̃. However,

∥OS x̃∥1 ≤ ρ ∥yS̄∥1 (20)

that is, ρ controls the “orthogonality” between the rows
of O indexed in S and x̃: a small irrepresentable term ρ
implies a small energy of OS x̃, which, in turn, implies that
the attacks are more exposed to identification.

Differently from previous conditions considered in the
literature, see for example Theorem 4.4 in Shoukry and
Tabuada (2016), the irrepresentable condition well cap-
tures the ability of CPS to identify attacks. We illustrate
this point with a simple illustrative example.

Example 1. Let us consider a simple static model with

A = I, n = 1 and O = C = α (1 1 1)
⊤
for any α ∈ R, i.e.,

we have 3 equivalent sensors. We assume that one of them
is under attack. If we know that h = 1, the identification
of the attack is trivial: the sensor that provides a different
measurement is clearly under attack and we can recover
the state from the other two sensors. The irrepresentable
condition well captures this resilience; in fact, we have

O†⊤
S̄ = 1

2α (1 1)
⊤

and O⊤
S = α, thus

∥∥∥O†⊤
S̄ O⊤

S

∥∥∥
∞

= 1
2 < 1

for any α ∈ R and Lasso is successful.

In contrast, we notice that condition 2 of Theorem 4.4
in Shoukry and Tabuada (2016) that guarantees the con-
vergence of ETPG is not satisfied. In fact, the maximum

eigenvalue of (O I)
⊤
(O I) is q = 3α2 + 1, while the

minimum eigenvalue on all the possible subsets of 2 sensors

is r = 3α2+1−
√
9α4+2α2+1
2 . Then, r < 4

9q, which contradicts
condition 2.

4. SPARSE SOFT OBSERVER FOR ONLINE SSE

In this section, we move towards recursive, online SSE. We
consider Problem 1 in a dynamic perspective: we aim at
estimating the current state, or a delayed version, using the
last pτ measurements, and, at each k we include the new
measurements and we discard the oldest ones. If τ = 1, this
an online (not delayed) SSE. This calls for fast recursive
online algorithms.

Shoukry and Tabuada (2016) address this problem by
developing a recursive version of ETPG, named ETPL.
At time k, instead of running ETPG to convergence to
estimate x(k − τ + 1), ETPL runs some steps of the
algorithm, then it moves to step k + 1 and it takes new
measurements, in the philosophy of a Luenberger observer.
As an alternative, we develop an online version of ISTA,
that we name sparse soft observer and that we summarize
in Alg. 1. We use the following notation: a(k) = (a(k−τ+
1)⊤, . . . , a(k)⊤)⊤, y(k) = (y(k − τ + 1)⊤, . . . , y(k)⊤)⊤.

The basic idea is to run one ISTA step, as described
in Sec. 3, at each time instant k. Then, we update the
estimate of the state by leveraging the knowledge of A, as
in Luenberger observer. Step 3. in Alg. 1 can be repeated
more than one time to enhance the estimation, but we do
not run the complete algorithm to converge to the Lasso
solution. Moreover, in case of online estimation, i.e., τ = 1,

Algorithm 1 Sparse soft observer

Input: τ ≤ n, λ > 0, ν > 0, A, O, y(k)

Output:

(
x̂(k)
â(k)

)
= estimate of

(
x(k − τ + 1)

a(k)

)

1: for all k = τ − 1, τ, . . . do
2: Measurements and estimated measurements update

y(k) = Ox(k − τ + 1) + a(k)

ŷ(k) = Ox̂(k) + â(k)
(21)

3: ISTA step: gradient step + soft thresholding(
x̂+

â+

)
=

(
x̂(k)
â(k)

)
− ν

(
O I

)⊤
[ŷ(k)− y(k)] (22)

â(k + 1) = Sνλ
[
â+

]
(23)

4: State update

x̂(k + 1) = Ax̂+ (24)

5: end for

the current p measurements are expected to be insufficient
to have a successful Lasso; therefore, the observer approach
is necessary.

5. NUMERICAL RESULTS

In this section, we propose some numerical results to inves-
tigate the performance of the proposed Lasso approach and
sparse soft observer, in terms of state estimation accuracy
and execution time. We perform all the simulations in
MATLAB R2023 on a processor i7 @ 1.80 GHz × 8, with
16 GB of RAM.

5.1 Lasso approach

We test Lasso, solved by FISTA, see Beck and Teboulle
(2009), on random, synthetic CPSs and we compare it to
ETPG by Shoukry and Tabuada (2016) and Imhotep-SMT
by Shoukry et al. (2017); the code for this last one is taken
at ”Imhotep-SMT” (2015). We generate the elements A
and C independently, according to a standard normal
distribution; then we normalize A to guarantee stability.
We assume that the attack support is time-invariant and
cardinality s and we generate it uniformly at random. The
initial state x(0) has uniformly distributed components
with magnitude in [2, 3]. The attacks have magnitude
in [4, 5], which is sufficiently large to sabotage the state
estimation, but not enough large to produce clear, plainly
detectable outliers in the measurements.

In the first experiment, we vary p, while n = 20 and s = p
5 ;

in the second experiment, we vary s, while n = 20 and
p = 30. We perform 50 runs for each experiment; we depict
the averages results in Fig. 1 and in Fig. 2. We assess the
accuracy in terms of state estimation error ∥x̂− x̃∥2/∥x̃∥2.
We consider either noise-free and noisy measurements, i.e.,
y(k) = Cx(k)+a(k)+η(k), where η(k) ∈ Rp is a uniformly
random, bounded noise with ∥η(k)∥∞ ≤ 10−4.

As we can see in Fig. 1 and in Fig. 2, in this experiment,
Lasso outperforms ETPG both in accuracy and run time.
Since we consider small/medium dimensions, Imhotep-
SMT is the best approach to provide the exact solution in
fast time, in the noise-free case; nevertheless, its accuracy

Figure 1. Lasso vs ETPG vs Imhotep-SMT, n = 20,
s = p/5, noise-free and with noise bound 10−4

is critical in the presence of small measurement noise. In
contrast, Lasso and ETPG are robust to small noise, with
a very slight degradation in the estimation accuracy.

5.2 Sparse soft observer

In this section, we test the proposed sparse soft observer
for recursive and online SSR. We perform 100 random
runs and we show the average results, in terms of time
evolution of the state estimation error ∥x̂− x̃∥2/∥x̃∥2 and
support error, defined as

∑
j |1(âj ̸= 0)−1(ãj ̸= 0)|, where

1(v) = 1 if v is true and 0 otherwise.

We generate noise-free dynamical models as in the pre-
vious experiments, with n = 10, p = 15, s = 3, and we
run each system for 300 time steps. We implement the
proposed sparse soft observer and, for comparison, ETPL
by Shoukry and Tabuada (2016). We show the results in
Fig. 3 and in Fig. 4. In Fig. 3, we set τ = n, that is, at
each time step k we use the previous pτ measurements to
estimate the delayed x(k − τ + 1). Then, at each k, we
remove the oldest p measurements to introduce the new
p ones. This is the case considered also by Shoukry and
Tabuada (2016). Instead, in Fig. 4, we consider τ = 1, that
is, the algorithms use the current set of measurements y(k)
to provide an online estimate of x(k). In the sparse soft
observer, we repeat the step 3 of Alg. 1. for 5τ times. We
can see that ETPL is more accurate for τ = n, in particular
it converges more quickly than the sparse soft observer to
the correct attack support. However, the execution time
at each k is 2 ·10−3 seconds for ETPL and 4 ·10−4 seconds
for the sparse soft observer, so the latter is adaptable to

Figure 2. Lasso vs ETPG vs Imhotep-SMT, n = 20,
p = 30, noise-free and with noise bound 10−4

Figure 3. Sparse soft observer vs ETPL; n = 10, p = 15,
s = 3, τ = n
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Figure 4. Sparse soft observer vs ETPL; n = 10, p = 15,
s = 3, τ = 1

fast time scales. On the other hand, for τ = 1, the sparse
observer is more accurate and ETPL does not always
converge to the right support. In this case, the execution
times are 7 · 10−5 seconds for ETPL and 4 · 10−6 seconds
for the sparse soft observer.

6. CONCLUSIONS

We propose a Lasso approach for secure state estimation
in cyber-physical systems under sparse sensor attacks. We
analyse the properties of Lasso to identify the attack and,
as a consequence, to recover the state. Furthermore, by
starting from the iterative soft thresholding algorithm for
Lasso, we develop a sparse soft observer to perform online
estimation. Through numerical results, we show that the
proposed Lasso approach is valuable with respect to state-
of-the-art methods, although it exploits less information,
e.g., on the sparsity pattern. Moreover, in our experiments,
the sparse soft observer converges to sufficiently accurate
solutions, with a reduced execution time. Future work
includes the extension of the analysis to noisy models and
the study of the convergence of the sparse soft observer.
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