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Abstract. In the quest to enhance thermochemical energy storage using promising sorbents,
this work presents a study on the optimization of Metal Organic Frameworks (MOFs) properties
for gas sorption, with a focus on CO2 and H2O adsorption. Through the analysis of
crystallographic descriptors, the study aims to streamline the selection of MOFs that could
potentially exceed the performance of existing water sorbent pairs. A comprehensive comparison
of sequential learning (SL) algorithms reveals a method for identifying the minimal set of
descriptors that influence adsorption properties of MOFs. The protocol involves constructing
and training machine learning (ML) models to determine the number of influential descriptors
and utilizing SHAP analysis to evaluate their importance. Findings suggest that including only
these critical descriptors in the exploration space reduces computational load. Notably, the
COMBO and the FUELS algorithms consistently outshine random guessing, validating their
efficacy in materials optimization. The challenge of accessing full adsorption properties across
the entire coverage range is addressed by a computational screening procedure requiring minimal
input data. This method suggests that some vanadium based MOFs, originally designed for
different purposes, could surpass the current leading compounds for thermal energy storage,
primarily due to their optimal Henry coefficient values for water adsorption.

1. Introduction
Metal-organic frameworks (MOFs) are crystalline structures comprising metal ions and organic
linkers, characterized by tunable porosity and remarkably large surface area [1]. Such unique
properties make MOFs suitable porous adsorbents for capturing CO2, potentially contributing to
the mitigation of greenhouse gas emissions [2]. However, in the realm of engineering applications,
optimization challenges arise from the presence of diverse inlet gas streams, different operating
conditions, and customized target properties for each specific scenario. This variability makes
complex to pinpoint an ideal MOF crystal that suits all applications [3], leading to a case-by-
case optimization. In this regard, modern sequential learning (SL) algorithms are becoming
notably effective for navigating into the high-dimensional (crystallographic) feature space of
materials. Specifically, when assessing a complex black-box function by means of resource-
intensive physical or numerical experiments, SL tools offer a systematic approach to smartly
explore the high-dimensional parameter (feature) space [4, 5, 6].

The primary goal of this study [7] is to identify the essential set of features (or descriptors
[8]) governing critical MOFs adsorption properties in the low-coverage regime. Specifically,
this pertains to the Henry solubility coefficients for both CO2-MOFs and H2O-MOFs working
pairs. This minimal set encompasses crucial crystallographic features that underlie a specific
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adsorption property of interest. In this context, each minimal set of descriptors can be considered
the genetic code for a particular property, and the identification process is outlined below.

First, we take advantage of a database made of 8206 hypothetical MOFs [9], featurizing the
corresponding Crystallographic Information Files (CIFs) with 1557 Classical Force fields Inspired
Descriptors (CFID) [10]. Subsequently, we train and validate regression models for predicting
key properties in heat storage applications [11, 12]. We thus rank and select the minimal
set of such descriptors by assessing the importance of each feature over the corresponding
model outputs via the Tree SHAP interpretation algorithm [13], which is indeed widely used
in Materials Science [14, 15, 16]. Moreover, we investigate the role of those descriptors in SL
optimization over several strategies from three SL different methodologies: (a) Random Forests
with Uncertainty Estimates for Learning Sequentially (FUELS) [17]; (b) kriging algorithm [18];
(c) COMmon Bayesian Optimization Library (COMBO) [19]. Also, we evaluate the performance
of SL optimization using both the minimal subset of features (derived from the pipeline and
SHAP analysis) and a more extensive set of variables. This comparison aims to reveal the
impact of descriptor identification on the minimum number of experiments required to identify
a MOF with the highest value of the desired property. Finally, engineering figures of merit
optimization requires getting access to the material characterization in a wide coverage range.
However, often only the low coverage regime (i.e., Henry coefficient) is known. Therefore, we
propose a fast procedure assessing a crucial performance metric in closed water-sorption seasonal
thermal energy storage applications, i.e., the specific stored energy.

2. Descriptors of sorption properties in MOFs and their use in SL algorithms
In the database by Boyd et al. [9], simulated sorption properties are available for over 8000
hypothetical MOFs, together with the corresponding CIFs. We thus generated four datasets,
each encompassing the same (both chemical and structural) 1557 Matminer-based [20] features,
and a target property among Henry coefficient for CO2 (8194 entries), working capacity for CO2

(8202 entries), Henry coefficient for H2O (8202 entries), and surface area (5028 entries). The
variation in the number of entries is attributed to missing values for certain properties in ref. [9].
Based on such data and using a Random Forest-based pipeline with hyperparameter tuning in a
five-fold cross-validation, we trained four distinct ML models to predict the four aforementioned
properties.

Via the TreeSHAP routine [21, 13], we identified the important features as those contributing
to the 75% of the cumulative curves over the importance coefficients, assessing the performance
of SL algorithms for the targeted sorption properties. This evaluation involved comparing
the use of two sets of descriptors: (a) the reduced set of important descriptors and (b) a
larger set comprising 100 descriptors, which includes the aforementioned important ones and
some additional (non-meaningful) ones. Surprisingly, optimization with SL in the space of
relevant descriptors does not consistently guarantee a quicker convergence of the procedure
toward the optimum property value. Moreover, among the three examined methodologies, both
COMBO and FUELS methods consistently demonstrated faster convergence to the optimum
value compared to the random choice strategy.

3. Optimization under incomplete access to the isosteric field of candidate
MOFs-water working pairs
Our objective is to assess the performance of hypothetical MOFs for a significant energy
engineering application, i.e., seasonal thermal energy storage through water sorption. To this
end, we propose a methodology to obtain the complete isosteric field for each hypothetical MOF-
water pair, whereas only the Henry low-coverage regime is available; by taking advantage of such
procedure, we rank the hypothetical MOFs by Boyd et al. [9] in terms of the specific stored
energy over a seasonal cycle.
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Specifically, having in mind space heating applications in temperate climates, we define a
thermodynamic ideal cycle bounded by four operating temperatures: TA = 308K (the minimum
temperature on the user side), TC = 353K (the maximum temperature on the source side),
TE = 278K (the average winter temperature), TF = 303K (the average summer temperature).
The equilibrium water vapor pressures pE = 866.2Pa and pF = 4231.6Pa at evaporator and
condenser respectively are also defined considering the Antoine equation at the average winter
and summer temperatures.

In particular, the adsorption/desorption of an infinitesimal amount of adsorbate moles dn
is possible upon exchanging an infinitesimal heat dQ = qstdn, where qst denotes the isosteric
heat. It can be demonstrated that the specific stored energy over the cycle is approximately
nTOTqst∆θ, with nTOT denoting the available adsorption sites per unit of dry adsorbent mass,
and ∆θ the coverage span over the cycle. We report here below the primary simplifying
assumptions of our approach:

• The quantity nTOT is closely related to the water uptake, which is not available from the
published data in ref. [9]. However, by means of data published by Chaemchuen et al.
[22], we found a good correlation between the water uptake and the internal surface area,
yielding the relation water uptake = η × surface area, with η = 3.875× 10−4 gH2Om−2.

• To draw the adsorption isotherms over the entire coverage regime we adopted the
Frumkin–Fawler–Guggenheim (FFG) model, which is suitable for the S-shaped isotherms
typically observed in MOFs/water systems. Such model relies upon only the Henry
coefficient H(T ) in units of Pa−1 at a certain temperature T . However, Boyd et al.

[9] made available such Henry coefficients H̃(T0) in units of molH2O kg−1
MOF bar−1 at

the reference temperature T0 = 298K. We demonstrate [7] that a proper conversion

formula yields H(T0) = H̃(T0)MH2O/(ηS) × 10−8, with S being the internal surface
area, MH2O the molecular weight of water and where the factor 10−8 appears because

[MH2O] = gH2Omol−1
H2O, [η] = gH2Om−2, [S] = m2 g−1

MOF, and so [H̃(T0)MH2O/(ηS)] =

gMOF kg−1
MOF bar−1. Also, in order to reconstruct adsorption isotherms at a generic

temperature T , we adopted the Polanyi potential theory. Indeed, the Polanyi potential
is defined as A = −RT ln (ps(T )/p), where R = 8.314 Jmol−1K−1, ps(T ) denotes the
saturation pressure of water at temperature T , while p is the pressure of the vapor phase
on the adsorbent surface [23]. From the practical standpoint, since A is a constant of the
sorption pair for a specific pressure p, we calculated A at T0; subsequently, we adjusted
the abscissa p of the isotherm obtained at temperature T0 by scaling it according to
p = ps(T ) exp(A/(RT )).

• We computed the isosteric heat by means of the Clausius-Clapeyron equation, yielding:

qst =
R

3

TCTA

TC − TA

3∑
i=1

ln
p2(θi)

p1(θi)
, (1)

where points 1 and 2 denote the intersections of an isosteric transformation with the
respective isotherms at temperatures TA and TC; we reiterated the methodology for three
coverage values (θ1 = 0.4, θ2 = 0.5, θ3 = 0.6), getting the average.

• Ultimately, after determining the two isotherms at TA and TC, we derived the coverage span
∆θ based on the thermodynamic ideal cycle within the θ − p chart.

The whole procedure above is summarized in Fig. 1. We thus calculated the objective
function Sqst∆θ, representing the specific stored energy up to a constant, for the complete
set of 5028 hypothetical MOFs characterized by a positive surface area in ref. [9]. Notably, the
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Figure 1. Proposed methodology for determining the specific energy of MOF-water systems
when only partial information about the isosteric field is available. By utilizing the Henry
coefficient for H2O obtained from literature at a specific temperature, an isotherm is generated
using the Frumkin–Fawler–Guggenheim model. The Polanyi potential is employed for
temperature scaling. Once two relevant isotherms are identified and upon definition of the
necessary environmental conditions, the specific stored energy can be computed. This involves
calculating the isosteric heat qst and determining the coverage span ∆θ. In this study, β = 3.4
always (for details, see Supplementary Note 6 of ref. [7]).

top-performing potential MOFs, when ranked in terms of the specific energy, are all Vanadium-
based. This can be attributed to the Henry coefficient values for H2O falling within the optimal
range, resulting in a favorable coverage span ∆θ over the thermodynamic cycle. Among those,
the four top-performing are predicted to exhibit (material-based) specific energy values ranked
among the highest reported in the literature for sorption-based thermal energy storage under
similar operating conditions, as showcased in Fig. 2.

4. Conclusion
In this study we demonstrated that a general procedure for identifying the essential set of
governing descriptors for a specific adsorption property involves two key steps: i) developing
and training a ML model to detect the relevant descriptors; ii) assessing the relative importance
of each explanatory variable on the selected output by means of the SHAP analysis. We
obtained that incorporating the set of essential descriptors (pertaining to a specific property
of interest) within the feature space does not impact the SL convergence performance, even
though its computational load is influenced by the dimension of the parameter space under
investigation. Focusing solely on the most significant features may indeed be advantageous
in managing computational burden. Moreover, we noticed that the COMBO and FUELS
algorithms consistently perform better than random guessing.

Importantly, we proposed a fast procedure for assessing the performances of water-MOF
pairs according to an engineering figure of merit for thermal seasonal application (i.e., the
specific stored energy), without having explicitly access to the entire coverage regime. Such
methodology suggests that, in this regard, top performing hypothetical MOFs in the database
published by Boyd et al. [9] are all Vanadium based, and are worth of further investigation.
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Hypothetical MOFs by this work
C96H48O28N8V4

C88H36O20N8V4

C68H36O20V4

C69H38O20V4

C96H48O28N8V4 (TE = 283 K, TF = 293 K)
C88H36O20N8V4 (TE = 283 K, TF = 293 K)
C68H36O20V4 (TE = 283 K, TF = 293 K)
C69H38O20V4 (TE = 283 K, TF = 293 K)

Sorbent materials with specific energy by literature
MIL-101(Cr) - De Lange et al. (2015)
MOF-801(Zr) - ""
MOF-841(Zr) - ""
MIL-100(Fe) -""
AQSOA-Z02 - ""
MIL-160(Al) - Permyakova et al. (2017) ChemSusChem
MIL-127(Fe) - "" 
MIL-125(Ti)-NH2 - ""
UiO-66(Zr)-NH2 - ""
MIL-100(Fe) - ""
MIL-101(Cr) - ""
Zeolite 13X - ""
MIL-101(Cr)/CaCl2 (62% wt) - Permyakova et al. (2017) JMCa 
MIL-100(Fe)/CaCl2 (46% wt) - ""
MIL-127(Fe)/CaCl2 (40% wt) - ""
MIL-125(Ti)-NH2/CaCl2 (45% wt) - ""
UiO-66(Zr)-NH2/CaCl2 (43% wt) - ""
Vermiculite/CaCl2 (57.3% wt) - Lavagna et al. (2020)
Vermiculite/LiCl2 (59% wt) - ""
Zeolite13X/MgSO4 (10-25% wt) - ""
SAPO-34 - ""
AIPO-18 - ""
Silica gel/CaCl2 (33.7% wt) - ""
Zeolite 13X - ""
Zeolite 13X - ""
C1.0-SSS (best) (21% wt) - ""
C1.0-SSS (best) (21% wt) - ""
C1.0-SSS (worst) (21% wt) - ""
C1.0-SSS (worst) (21% wt) - ""

Figure 2. Comparison of the expected specific energy for various desorption temperatures,
denoted as TC, among the optimal MOFs identified in this study, with various water adsorbent
materials found in the literature [24, 25, 26, 27]. We consider either standard environmental
conditions, i.e. evaporation temperature TE = 278K and condensation temperature TF = 303K,
or conditions of TE = 283K and TF = 293K, adsorption temperature TA = 308K always. This
figure is taken from [7].
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