
22 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

IntelliGame in Action: An Experience Report on Gamifying JavaScript Unit Tests / Straubinger, Philipp; Fulcini,
Tommaso; Fraser, Gordon; Torchiano, Marco. - ELETTRONICO. - (2024), pp. 110-114. (Intervento presentato al
convegno IDE '24: 1st ACM/IEEE Workshop on Integrated Development Environments tenutosi a Lisbon (PT) nel 20
April 2024) [10.1145/3643796.3648466].

Original

IntelliGame in Action: An Experience Report on Gamifying JavaScript Unit Tests

Publisher:

Published
DOI:10.1145/3643796.3648466

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2986568 since: 2024-03-05T11:24:18Z

ACM

IntelliGame in Action: An Experience Report on
Gamifying JavaScript Unit Tests

Philipp Straubinger∗

University of Passau
Passau, Germany

Tommaso Fulcini∗

Politecnico di Torino
Torino, Italy

Gordon Fraser
University of Passau
Passau, Germany

Marco Torchiano
Politecnico di Torino

Torino, Italy

ABSTRACT

This paper investigates the integration and assessment of IntelliGame,

a gamification plugin initially designed for Java development, within

the realm of JavaScript unit testing. We aim to verify the gener-

alizability of IntelliGame to JavaScript development and to pro-

vide valuable insights into the experiment’s design. For this, we

first customize IntelliGame for JavaScript, and then conduct a

controlled experiment involving 152 participants utilizing the Jest

testing framework, and finally examine its influence on testing be-

havior and the overall developer experience. The findings from this

study provide valuable insights for improving JavaScript testing

methodologies through the incorporation of gamification.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Integrated and visual development environments.

KEYWORDS

Gamification, IDE, IntelliJ, Software Testing

ACM Reference Format:

Philipp Straubinger, Tommaso Fulcini, Gordon Fraser, and Marco Torchiano.

2024. IntelliGame in Action: An Experience Report on Gamifying JavaScript

Unit Tests. In 2024 First IDE Workshop (IDE ’24), April 20, 2024, Lisbon,

Portugal.ACM, NewYork, NY, USA, 5 pages. https://doi.org/10.1145/3643796.

3648466

1 INTRODUCTION

IntelliGame [8] is a plugin for the popular IntelliJ IDEA, which

enables gamification covering various aspects of software testing,

such as test execution, coverage evaluation, debugging, and test

refactoring. It introduces 27 different achievements, each with incre-

mental levels, providing positive feedback when developers exhibit

commendable testing behavior. IntelliGame provides real-time

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IDE ’24, April 20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0580-9/24/04
https://doi.org/10.1145/3643796.3648466

analysis of developer interactions, notifications, and a user interface

within IntelliJ to display achievements and progress.

In its original evaluation [8], we conducted a controlled experi-

ment with 49 participants to study the impact of IntelliGame on

testing behavior. The experiment involved a Java programming task

with participants divided into different groups, aiming to assess the

impact of the gamified environment on testing behavior, test suites,

achievement levels, code functionality, and the overall developer

experience. The results showed clearly that IntelliGame had a

positive effect on testing behavior. Participants using IntelliGame

wrote more tests, achieved higher code coverage and mutation

scores, ran tests more frequently, and implemented functionality

earlier compared to the control group. The impact on resulting test

suites was substantial, and achievements correlated positively with

various testing metrics.

The goal of this paper is to build upon these promising results

achieved with IntelliGame for Java environments, and to assess

whether these outcomes can be replicated on a larger scale and in a

different context. In particular, the extension of the positive impact

of achievements in the IDE to various programming languages

remains unexplored. Thus we shifted the focus of this study to

JavaScript (JS), recognized as the most used language as of 2023 [6].

With the growing importance of JS, there is an increasing demand to

instruct and practice language-specific testing activities. Expanding

beyond the previous sample, this study engages a broader audience

with multiple tasks, allowing for more extensive code development

and testing. This expansion, coupled with the shift to a different

programming language, considers both generalizability and effec-

tiveness beyond a short-term context.

The objective of this paper is to provide an in-depth descrip-

tion of the experiment’s design, including challenges encountered,

lessons learned, and recommendations for future iterations of JS-

based experiments. Notably, there is a gap in the existing literature

regarding programming experiments centered on an open-source

JavaScript target [9], emphasizing a fully replicable and system-

atic approach. In Section 2 we provide some background about the

topic of the paper with also some examples of related works, inSec-

tion 3 the implementation approach for the JavaScript version of

IntelliGame is described, while Section 4 shows the selection pro-

cess for the project as a subject is meticulously detailed, shedding

light on the rationale behind the choice.

110

2024 First IDE Workshop (IDE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643796.3648466&domain=pdf&date_stamp=2024-08-07

IDE ’24, April 20, 2024, Lisbon, Portugal Philipp Straubinger, Tommaso Fulcini, Gordon Fraser, and Marco Torchiano

2 BACKGROUND AND RELATED WORK

Compared to writing code, testing is often viewed as less rewarding

by software developers, requiring significant effort without always

resulting in due recognition frommanagement [7]. To address issues

related to motivation and acknowledgment of testers’ contributions,

various solutions have been proposed, encompassing both extrinsic

and intrinsic motivators. Gamification, a rising trend in this domain,

has experienced substantial growth over the past decade [3], even

leading to dedicated conferences in the academic sector.

Defined as the use of game elements in a non-playful context by

Deterding et al. [2], gamification involves creating a playful environ-

ment in which users can accomplish their daily tasks. Completing

daily goals within such an environment allows users to benefit

from the motivators associated with the designed game elements,

making the underlying activity more engaging and satisfying.

Software testing has been successfully gamified in particular

in the context of education. For example, Code Defenders [5] is a

gamified application to teach mutation testing concepts in an aca-

demic setting, where students assume either of two roles: attackers

or defenders. Users from both sides engage in a mutual challenge

on a shared Java class, applying mutation testing. The attackers’

goal is to create code mutants (variants of the class with the same

functionality), while the defenders’ objective is to enhance the ex-

isting test suite with new test cases to detect the code mutants.

The gamified platform incorporates mechanics and dynamics that

integrate social interaction, creativity, and competition.

Gamification has also been applied in a practical rather than

educational context. For example, Coppola et al. [1] propose a

framework to gamify exploratory GUI testing using a Capture and

Replay tool for web applications. The gamification layer introduces

common game elements such as scores and leaderboards, as well

as novel elements not previously explored in the literature, includ-

ing dynamic visual bug injection with related visual feedback and

scores, along with a progress bar tracking the tester’s exploration,

i.e., the achieved widget coverage of a specific web page.

As indicated in a recent survey on gamified software testing [3],

current trends in the literature show that unit testing is the most

targeted level, with the most focused testing phase being test cre-

ation and execution. Popular techniques considered by researchers

and practitioners include Mutation, Black Box, and White Box test-

ing. While IntelliGame initially emerged as a unit test tool, its

achievement-based structure allows for extensibility across various

testing dimensions, introducing achievements specific to each.

3 IMPLEMENTATION

To enable JavaScript support in IntelliGame, we transitioned from

using IntelliJ Community Edition to IntelliJ Ultimate1. This shift

was necessary because JavaScript support is exclusively available

in the latter. While we managed to adapt most of the existing test

achievements for JavaScript, some proved challenging to port, and

a few were even deemed impossible.

Adjusting for test execution tracking, such as the number of

tests and assertions, was straightforward, thanks to the Jest testing

framework’s syntax2. However, obtaining coverage information

1https://www.jetbrains.com/products/compare/?product=idea&product=idea-ce
2https://jestjs.io/

Figure 1: IntelliJ window showing achievements and progress

posed a greater challenge. The built-in test engine of IntelliJ lacks

the same coverage details for JavaScript as it does for Java, such as

covered branches or methods.

To address this, we devised a specialized test execution configura-

tion that utilizes Jest to output overall coverage information to the

console. We extract and employ this information for our achieve-

ments. Additionally, Jest writes coverage details to a JSON file,

offering comprehensive class-specific information that we leverage

for the remaining achievements. In summary, we extract JavaScript

111

IntelliGame in Action: An Experience Report on
Gamifying JavaScript Unit Tests IDE ’24, April 20, 2024, Lisbon, Portugal

coverage information from three sources: the built-in test engine,

the console, and summary files.

Another obstacle arose with the JavaScript debugger, which lacks

support for method breakpoints and field watchpoints, required by

the implementation of some of the achievements. Unfortunately,

we could not find suitable alternatives for these features. Similarly,

most of the refactoring-related achievements, implemented using

RefactoringMiner for Java3, lacked equivalent tools for JavaScript.

Despite facing challenges, we successfully transferred 19 achieve-

ments out of 26 from Java to JavaScript. These achievements can be

identified by a small JavaScript symbol (see Fig. 1). Each achieve-

ment is represented by a trophy indicating the level, a progress

bar showing the current progress towards the next level, and a de-

scription detailing the progress required for reaching the next level,

accessible by hovering over the question mark. For further details

and explanations of the achievements, refer to related work [8].

4 EXPERIMENT

The primary aim of the experiment was to replicate the conditions

outlined in the original validation paper [8], adhering to the guide-

lines set by Jedlitschka et al. [4]. However, as the goal was not to

assess the effectiveness of the tool but rather to test its applicability

with a different programming language and subjects, we introduced

some modifications to the experimental approach.

4.1 Participant Selection

We invited graduate students from the Software Engineering course

at Politecnico di Torinoto participate voluntarily in the experiment.

Successful participation earned students additional points for their

Software Engineering exam, with the assurance that their perfor-

mance would not impact their bonus points to avoid bias. All par-

ticipating students possessed prior JavaScript testing experience, as

the Software Engineering course extensively covered unit testing

using the Jest framework.

The sample of participants in this study comprised 152 individu-

als, with 85% identifying as male and the remaining 15% as female.

Over 90% fell within the age range of 22 to 25, being graduate

students. The participants were randomly assigned to one of two

groups: treatment and control.

The majority of participants had less than three months of ex-

perience with JavaScript, and it is worth noting that the treatment

group had less experience compared to the control group with 59%

and 47% having less than three months of experience, respectively.

Additionally, 96% of participants in both groups had less than three

months of experience with Jest. In fact, the majority of participants

were introduced to JavaScript and Jest during the course’s lectures.

4.2 Project Selection

Initially, with a shift in the reference programming language, the

need arose to select an alternative project, departing from the Fixe-

dOrderComparator Java class used in the original study [8].

Our criteria for project selection involved finding a subject that

presented both challenge and feasibility within a 150-minute time-

frame. We sought a real existing project to capture the complexity

3https://github.com/tsantalis/RefactoringMiner

of a real-world scenario, emphasizing documentation, a compre-

hensive test suite, and modularity. Modularity was crucial, allowing

participants to choose among modules, and deciding whether to

tackle more complex or simpler functions.

The selection process began by exploring JavaScripting4, a repos-

itory of publicly available JavaScript projects. Given the extensive

collection, including popular frameworks like React, React Native,

Vue, and Angular, we narrowed down our search to importable

lightweight libraries with standardized functionalities. We focused

on the miscellaneous category for a subject meeting our criteria.

The first project suiting our needs was Date Fns5, an open-source

project featuring 244 functions related to the date data type. Func-

tions ranged from trivial tasks like determining the order between

two dates to more complex operations like formatting data with

ISO or RFC representation. The project, widely used (over two mil-

lion times) and well-maintained by 300+ contributors with over a

thousand forks, met our requirements.

The project, however, was developed in TypeScript (TS) rather

than JS. Notwithstanding the difference between the two program-

ming languages, given the high project usage and reliability, the full

interoperability of JS code in TS and the possibility of directly trans-

posing TS code into JS, was deemed that this language difference

was not a reason for exclusion. Moreover, we consider it valuable

for the reader to discuss in section 5.2 the problems encountered

and the solutions put in place to resolve them.

For these reasons, we used the JS version obtained through tran-

spilation [10]. The seamless interoperability between the two lan-

guages facilitated the conversion of functions from TS to JS, made

possible with the help of the open-source automatic tool transform6.

4.3 Experiment Task

We carefully chose a set of 23 functions from the original GitHub

Date Fns project, prioritizing simplicity in terms of complexity and

lines of code. The aim was to ensure that most students could confi-

dently build and test these functions without feeling overwhelmed

by their difficulty.

Before assigning the experiment task, we conducted a pilot study

with three master’s students nearing graduation. This helped vali-

date the task’s scalability. While no data was collected from them,

the pilot ensured proper calibration by adjusting the assignment’s

complexity, excluding the three most challenging functions.

The functions’ bodies were removed, leaving the requirements,

function names, and parameters intact. The project incorporated

complete JavaScript documentation for built-in date functions, elim-

inating the need for online references. Two verification methods

were provided: a Jest configuration with empty test files for partici-

pants to complete and run, and a main.js file acting like the Main

class in Java, mirroring the original experiment’s setup [8].

Two sessions were held: the first with 60 participants and the sec-

ond with the remaining individuals. This division allowed potential

data discarding from the first day if any issues arose. Participants

were split into a control group, tackling tasks without achievements,

and a treatment group, completing tasks with the plugin enabled.

4https://www.javascripting.com/
5https://github.com/date-fns/date-fns
6https://github.com/ritz078/transform

112

IDE ’24, April 20, 2024, Lisbon, Portugal Philipp Straubinger, Tommaso Fulcini, Gordon Fraser, and Marco Torchiano

25%

21%

64%

68%

12%

11%

23%

25%

39%

51%

38%

24%

57%

55%

14%

23%

29%

23%

44%

37%

48%

43%

8%

20%

65%

60%

23%

28%

12%

12%

16%

23%

44%

48%

40%

29%

71%

59%

14%

21%

14%

20%

48%

41%

44%

52%

8%

7%

10%

13%

69%

65%

21%

21%

13%

12%

68%

69%

19%

19%

The target class was easy to understand.

It was easy to implement the target class.

I wrote tests during development.

I have produced a good test suite.

I have produced a good implementation.

I had enough time to finish testing the class

I had enough time to finish implementing the
class

I applied TDD.

I am certain my implementation is correct.

I actively tested my code.

100 50 0 50 100

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Control

Treatment

Percentage

Fully disagree Partially disagree Neither agree nor disagree Partially agree Fully agree

Figure 2: General survey responses – ranging from negative

on the left to positive on the right

Participants from the treatment group were instructed on how

the gamification plugin works but were not shown in detail the

conditions for unlocking each achievement. These were shown in

an overlay box displayed on the screen when hovering the mouse

over each achievement of the list.

During the experiment, a custom event logger recorded achieve-

ment states after each user interaction. An automated script com-

mitted and pushed current implementations and log files to a Git

repository every minute.

Following the 150-minute implementation phase, an exit ques-

tionnaire featured general questions for both groups. The treatment

group received an additional page at the end of the survey inquiring

about their plugin experiences, with answers on a five-point Likert

scale. An optional free-text question allowed participants to share

individual comments and feedback.

5 RESULTS

While the analysis of results is ongoing, we provide a preliminary

overview by addressing the challenges encountered, our problem-

solving approaches, and insights from the exit survey completed

by students regarding their perceived user experience.

5.1 Survey Answers

Based on the responses to the exit survey (Fig. 2), the chosen tar-

get class was well-received by all groups. All groups unanimously

agreed that the class was easy to comprehend and implement. How-

ever, it is noteworthy that just under half of the participants in the

treatment group and fewer than 40% in the control group indicated

they had sufficient time to complete the implementation. Conse-

quently, it is not surprising that only approximately 25% in both

groups felt they had enough time to conduct thorough testing of

their implementations.

Interestingly, around two-thirds of all participants actively tested

their code. Notably, a smaller percentage of participants wrote tests

during the development phase, with 52% in the treatment group

compared to 44% in the control group. Roughly 50% of participants

in both groups were confident in the correctness of their implemen-

tations. Conversely, only 21% in the treatment group and 14% in

the control group were certain about the quality of their test suites.

No significant differences were observed between the two groups.

Concerning the responses of the treatment group regarding

IntelliGame, they are predominantly positive or, at worst, un-

decided (Fig. 3). Participants demonstrated a clear understanding of

the tool’s descriptions and how to make progress in the presented

achievements. They also appreciated the frequency of the notifica-

tions. About 40% of the participants reported that the achievements

positively influenced their testing behavior, and an equivalent per-

centage mentioned being motivated by both the notifications and

the plugin itself. Encouragingly, 42% of participants expressed a

desire to use IntelliGame in their own projects.

5.2 Problems Faced and Lessons Learned

In the initial adaptation phase, we faced challenges while tran-

sitioning the original TypeScript project to JavaScript. Although

automatic transpilation facilitated obtaining the correct JavaScript

code, the hurdle lies in converting the TS configuration to a JS-

compatible one. Since the original project used another testing

framework, i.e., Karma, we had to modify the configuration to fit

Jest.

Another challenge arose when configuring the main.js file for

manual function assessment. Unlike Java, where a Main class de-

fines the starting point, JavaScript, especially in the Node frame-

work, lacks that. So, in order to reproduce the same setting as the

original validation experiment [8], we had to create a custom file

for this purpose.

113

IntelliGame in Action: An Experience Report on
Gamifying JavaScript Unit Tests IDE ’24, April 20, 2024, Lisbon, Portugal

28% 42%30%

23% 45%32%

18% 54%28%

18% 58%24%

23% 42%35%

23% 42%35%

12% 65%23%

The progress of the individual achievements was
visible and easy to understand.

The plugin motivated me to test my code better.

The notifications have spurred me on to make
progress.

The individual achievements were well described
and I knew how to achieve them.

The frequency of notifications was good.

The achievement system improved my programming
behaviour.

I would also like to use the plugin in everyday
programming myself.

100 50 0 50 100

Treatment

Treatment

Treatment

Treatment

Treatment

Treatment

Treatment

Percentage

Fully disagree Partially disagree Neither agree nor disagree Partially agree Fully agree

Figure 3: Answers regarding the IntelliGame plugin – ranging

from negative on the left to positive on the right

Throughout the experiment, additional issues surfaced and re-

quired adaptation of the plugin. In the first session, participants

could only choose between running the project via tests or main

execution due to the provided configuration. Despite being shown

how to switch between configurations, most participants stuck with

one method for the entire session.

Upon reflection, we observed that the number of tasks over-

whelmed participants, leading them to feel demotivated despite

knowing that their performance would not be evaluated. While

they found the functions appropriately challenging, the abundance

of tasks influenced their survey responses negatively (e.g., rating

their implementation/test suite as being not good enough and ex-

pressing dissatisfaction with the tool).

We attribute the superior performance of students in the pilot

study to their greater experience and a less pressured environment.

To address this, future experiments will involve students with com-

parable experience levels to the overall sample. We hypothesize

that incorporating gamification elements aimed at promoting TDD

approach to the plugin may yield to even more encouraging results.

Minor issues included students incorrectly selecting a parent

directory when opening the project, interrupting the script that

committed their progress to the repository. We promptly identified

and resolved these problems. General challenges with the com-

mitting process stemmed from variations in participants’ laptop

configurations, which we sometimes deemed unsolvable, opting to

collect the final project state at the designated time.

6 CONCLUSIONS

This paper presents the integration and empirical evaluation of

IntelliGame, a gamification plugin originally designed for Java

development, in the realm of JavaScript unit testing. The study

aimed to validate IntelliGame’s effectiveness in JavaScript, adapt-

ing it to the popular Jest testing framework. Despite challenges

such as transitioning from IntelliJ Community Edition to Ultimate

for JavaScript support and addressing differences in coverage in-

formation, we successfully ported 19 out of 26 achievements. The

controlled experiment with 152 participants revealed mixed per-

ceptions of IntelliGame’s impact, with achievements influencing

testing behaviour and participants’ motivation. We will continue

with an in-depth analysis of the experimental measures and the code

written by the participants to gain more insights and to broaden

our knowledge of IntelliGame.

ACKNOWLEDGEMENT

This study was carried out within the łEndGame - Improving End-

to-End Testing of Web and Mobile Apps through Gamificationž

project (2022PCCMLF) ś funded by European Union ś Next Gen-

eration EU within the PRIN 2022 program (D.D.104 - 02/02/2022

Ministero dell’Università e della Ricerca). This manuscript reflects

only the authors’ views and opinions and the Ministry cannot be

considered responsible for them. This work is also supported by the

DFG under grant FR 2955/2-1, łQuestWare: Gamifying the Quest

for Software Testsž.

REFERENCES
[1] Riccardo Coppola, Tommaso Fulcini, Luca Ardito, Marco Torchiano, and Emil

Alègroth. 2023. On Effectiveness and Efficiency of Gamified Exploratory GUI
Testing. IEEE Transactions on Software Engineering (2023), 1ś16. https://doi.org/
10.1109/TSE.2023.3348036

[2] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From
Game Design Elements to Gamefulness: Defining "Gamification". In Proceedings
of the 15th International Academic MindTrek Conference: Envisioning Future Media
Environments (Tampere, Finland) (MindTrek ’11). Association for Computing
Machinery, New York, NY, USA, 9ś15. https://doi.org/10.1145/2181037.2181040

[3] Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2023.
A Review on Tools, Mechanics, Benefits, and Challenges of Gamified Software
Testing. ACM Comput. Surv. 55, 14s, Article 310 (jul 2023), 37 pages. https:
//doi.org/10.1145/3582273

[4] Andreas Jedlitschka and Dietmar Pfahl. 2005. Reporting guidelines for con-
trolled experiments in software engineering. In 2005 International Symposium on
Empirical Software Engineering, 2005. IEEE, 10śpp.

[5] José Miguel Rojas and Gordon Fraser. 2016. Code Defenders: A Mutation Testing
Game. In 2016 IEEE Ninth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 162ś167. https://doi.org/10.1109/ICSTW.
2016.43

[6] Statista. 2023. Most used programming languages among developers worldwide
as of 2023. https://www.statista.com/statistics/793628/worldwide-developer-
survey-most-used-languages/ Accessed: 2023-12-05.

[7] Philipp Straubinger andGordon Fraser. 2023. A Survey onWhat Developers Think
About Testing. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE). 80ś90. https://doi.org/10.1109/ISSRE59848.2023.00075

[8] Philipp Straubinger and Gordon Fraser. 2024. Improving Testing Behavior by
Gamifying IntelliJ. In Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM,
49:1ś49:13. https://doi.org/10.1145/3597503.3623339

[9] Kwangwon Sun and Sukyoung Ryu. 2017. Analysis of JavaScript programs:
Challenges and research trends. ACM Computing Surveys (CSUR) 50, 4 (2017),
1ś34.

[10] Bo Wang, Aashish Kolluri, Ivica Nikolic, Teodora Baluta, and Prateek Saxena.
2023. User-Customizable Transpilation of Scripting Languages. Proc. ACM
Program. Lang. 7, OOPSLA1 (2023), 201ś229. https://doi.org/10.1145/3586034

114

