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Abstract. This work investigates the effect of three different driveabil-
ity constraints on the optimal energy management strategy for a p2 par-
allel hybrid. Two of these constraints are used to prevent frequent gear
shifting and engine start/stops, while the third is used to increase the
sportiness of the vehicle by maximizing the available torque reserve at
all times. The constraints are imposed by reformulating them as penalty
terms to be added to the base running cost of the control strategy, which
is fuel consumption. Dynamic programming, a popular optimal control
technique, is then used to design the energy management strategy that
minimizes the total cost. A case study is developed for a p2 parallel hy-
brid and simulated on a combination of the Artemis driving cycles. The
impact of each driveability constraint is analyzed with respect to a set
of relevant features of the control strategy, such as the choice of engine
operating points and the gear shift pattern. The resulting discussion pro-
vides some useful insight for the design of real-time, rule-based control
strategies.

Keywords: SDG13, hybrid vehicles, driveability, energy management
strategy, sportiness

1 Introduction

Hybrid electric vehicles (HEVs) enable fuel economy improvement by exploit-
ing the additional degree of freedom granted by the presence of an electrical
power source to operate the thermal engine at higher efficiencies. A dedicated
controller, often called the energy management system (EMS), is needed to de-
fine how these two power sources are used to meet the driver’s power demand.
Additionally, since HEVs generally employ automated transmissions, its con-
trol is also included in the EMS [4, 13]. The EMS has a strong influence on the
powertrain’s performance in terms of fuel economy, emissions and driveability.
Hence, a great deal of attention has been devoted to EMS design both within
the industry and in academic research, and a wide range of techniques has been
proposed.

Among these, dynamic programming is one of the most popular. Because of
its flexibility and guaranteed optimality, it can be easily and effectively used to
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analyze optimal control strategies in the design phase, in an off-line simulation
environment. Its most notable drawbacks are a general inability to deal with
complex simulation models because of its computational burden and the need for
advance knowledge of the vehicle’s speed profile in time. The latter in particular
makes the technique unsuitable for real-time control.

Still, dynamic programming can be highly effective in supporting the design
of real-time control strategies. For example, rule-based controllers can be de-
signed by applying some rule extraction procedure to the control trajectories
generated by dynamic programming [7, 15, 9], or the same results can be used
to calibrate some other optimizationbased EMS [3]. Unfortunately, when used
to derive fuel-optimal control strategies, dynamic programming typically induce
a number of undesirable driveability issues such as frequent engine start/stops,
erratic gear shifting, and a general lack of sportiness. This is also typical of other
common optimal control approaches such as equivalent consumption minimiza-
tion strategies (ECMS) and Pontryagin’s minimum principle (PMP).

Many works can be found in the literature which address some or all of these
problems, which are commonly referred to as driveability issues. Possibly the
earliest of such applications can be found in [8], where a penalty term associated
with gear shifting was included in a dynamic programming algorithm whose
results were then used to develop a rule-based control strategy. Several authors
used stochastic dynamic programming to reduce the frequency of gear shifts [6],
engine starts [5], or both [14], by adding corresponding penalty terms to the
running cost in the cost functional. Similarly, the authors in [2, 1] embedded
penalty terms for gear shifts and engine starts in an heuristic framework named
SERCA and in a dynamic programming application to act as a benchmark.

Torque (or power) reserve appears to be the least considered among drive-
ability aspects. To the best of our knowledge, only two works have tackled this
issue, both of which employed some variant of the ECMS. One approach for a
multi-mode PHEV with heuristic penalty factors for each mode transition was
developed in [12], while also including a hard constraint for the available torque
reserve at the wheels. In contrast, [16] dealt with torque reserve by adding a
penalty term to the equivalent consumption, in addition to a gear shift penalty.

In this work, we developed a four-term cost functional to be used in a dynamic
programming framework, which includes fuel consumption, penalties for gear
shifts and engine starts and a penalty term for the available torque reserve. We
then developed a case study with a p2 parallel hybrid, whose main parameters
can be found in Table 1, and assessed the effect of each penalty term on the
obtained control strategies. Finally, we discuss the implications of our results on
the development of real-time heuristic control strategies.

2 Simulation model

The simulation model was developed using a backward-facing approach [4, 13],
as is typical for control-oriented models in EMS design. The tractive effort Fveh

was evaluated with a simple longitudinal model considering the resistant forces
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Table 1. Main vehicle data.

Component Parameter Value

Vehicle Mass 1300 kg
First coast-down coefficient 150 N
Second coast-down coefficient 2.24 N/(m · s)
Third coast-down coefficient 0.44 N/(m · s)2

Tyre radius 0.327 m
Transmission Gear ratios [3.46, 1.844, 1.258, 1.027, 0.85]

Efficiency [0.93, 0.94, 0.947, 0.948, 0.946]
Engine Displacement 0.9 l

Rated power 52 kW
Maximum torque 85 Nm

E-machine Rated power 30 kW
Maximum torque 200 Nm

Battery Type Li-ion
Nominal capacity 5.3 Ah
Nominal voltage 295 V

Fres (using road load coefficients k0, k1 and k2) and the vehicle’s inertia

Fveh = Fres +mvehaveh = k0 + k1vveh + k2v
2
veh +mvehaveh. (1)

A quasi-static powertrain model was then used to propagate this tractive
effort through the wheels, final drive and gearbox to obtain a torque demand
Td, which for the p2 hybrid considered in this work refers to the gearbox input.

Td =
Fvehrwh

τfdτgb(γ)
, (2)

Here, rwh is the wheel radius, τfd and τgb are the final drive and gearbox speed
ratios, and γ represents the gear number. This torque demand was then split
between the engine and the e-machine based the torque-split factor αeng:

αeng =
Teng

Td
. (3)

The engine and e-machine were characterized by a steady-state fuel flow rate
map ṁf(ωeng, Teng) and an efficiency map ηem(ωem, Tem), as well as torque limit
curves and speed constraints. The e-machine efficiency was used to evaluate the
battery electrical power Pb. The battery current ib was evaluated as a function
of the battery power Pb with an equivalent circuit model:

Pb = vbib = (voc(σ) +R0(σ)ib) ib. (4)

where σ is the battery state of charge and voc(σ) and R0(σ) are the open-circuit
voltage and internal resistance characteristics.
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3 EMS design with dynamic programming

Dynamic programming is an optimal control technique to control the evolution
of a dynamical system in time while minimizing some additive cost J . In the
context of dynamic programming, the simulation is discretized in N time steps.
The model is characterized by a set of control variables u which influence the
system’s state evolution as defined by the state dynamics xk+1 = f(xk, uk, wk)

while incurring in a total cost J(x0) =
∑N−1

k L(xk, uk, wk), where L is the stage
cost. The exogenous input wk is used to characterize the set of variables which
affect the simulation without being influenced by the controls; in powertrain
simulation models, they are generally identified with the speed and acceleration
profiles of the prescribed driving mission.

The model that was developed for this work uses three state variables to
characterize the battery’s state of charge σ, the gear number for the previous
time step γp and the engine state for the previous time step ϵp, i.e.

x =

 σ
γp
ϵp

 , (5)

and two control variables to set the engine torque-split factor αeng and the gear
number for the current time step γ, i.e.

u =

(
αeng

γ

)
. (6)

The engine torque-split ratio was selected to characterize the powerflow over
other common choices as it highly interpretable, i.e. there is a direct correspon-
dence between the value of αeng and the operating mode [10].

The running cost was set to a trade-off of four different terms:

L = ṁfuel ∆t+ Lγ + Lϵ + LTres . (7)

The first term is the fuel consumption over a time step ∆t (ṁfuel being the fuel
flow rate), so that the fuel consumption over the whole mission will be minimized.
The remaining three terms Lγ , Lϵ, LTres are penalty terms that penalize gear
shifting, engine starts and low torque reserve availability respectively.

The gear shift penalty was defined by a factor ϕγ which is applied each time
a gear shift occurs:

Lγ =

{
ϕγ if γ ̸= γp,

0 otherwise.
(8)

Similarly, the engine start penalty was defined by a factor ϕϵ which is applied
each time the engine is turned on. An engine start occurs when a non-zero torque
is set and the engine was off at the previous time step:

Lγ =

{
ϕϵ if αeng > 0 ∧ ϵp = 0,

0 otherwise.
(9)
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The torque reserve penalty was defined as the ratio between the used power-
train torque Tpwt and the available powertrain torque Tpwt,max, multiplied by a
tunable factor ϕTres . The penalty is only applied if the vehicle is neither braking
nor at standstill:

LTres
=

{
ϕTres ·

Tpwt

Tpwt,max
if Treq > 0 ∧ vveh > 0,

0 otherwise.
(10)

More specifically, the powertrain torque is defined as the sum of the engine and
e-machine torque at the gearbox input:

Tpwt = Teng +max (Temτtc, 0). (11)

Note that the e-machine torque was subject to lower saturation at zero in order to
prevent its torque in generator mode being counted while using the powertrain in
battery charging mode. Finally, available powertrain torque Tpwt,max was simply
defined as

Tpwt,max = Teng,max + Tem,maxτtc. (12)

Since both the engine and e-machine maximum torque are dependent on their
speed, they are influenced by the gear engaged in the gearbox. Hence, the torque
reserve penalty can be affected by the EMS by changing the gear number.

4 Case study

In order to assess the effect of driveability constraints on the fuel-optimal control
strategy, we implemented the simulation model described in the previous sec-
tion in MATLAB and we used a dedicated dynamic programming solver called
DynaProg [11] to obtain optimal control strategies with the cost functional for-
mulated in Eq. 7. For the driving cycle, a combination of the Artemis Urban,
Artemis Rural Road and Artemis Motorway 130 cycles was used as shown in
Fig. 1, with a total length of 51 kilometers and duration of 52 minutes.
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Fig. 1. The simulated driving cycle.

With this framework, we developed four different cases by tuning the cost
functional. In the first case, we set all driveability penalties to zero, considering
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fuel economy only as our objective. In the remaining three cases, we considered
fuel economy and one driveability penalty at a time, disregarding the other two.
In the remainder of this section, these strategies will be referred to as:

a) fuel-optimal: no penalty terms for driveability are considered.
b) gear shift-penalty: fuel-optimal with a penalty term for gear shifting.
c) engine start penalty: fuel-optimal with a penalty term for engine starts.
d) torque reserve penalty: fuel-optimal with a penalty term for torque reserve.

The fuel-optimal strategy produced a fuel economy of 4.58 l/100km, an average
of 18 gear shifts per minute and 3.1 engine starts per minute, with an average
torque reserve of 58.3 %. The penalty factors for the other strategies were tuned
with three separate parameter sweeps to obtain a sensible trade-off between fuel
economy and each driveability objective. In particular, we aimed at less than one
gear shift per minute for strategy b), less than 0.67 engine starts for strategy c)
and an average torque reserve of at least 65 % for strategy d). The corresponding
fuel consumption increase for each strategy is reported in Table 2.

Table 2. Performance of the four strategies.

Fuel economy Gear shifts Engine starts Torque reserve
#/min #/min %

a) fuel-optimal 4.58 l/100km 18 3.1 58.3 %
b) gear shift-penalty +1.6 % 0.93 2.7 60.7 %
c) engine start penalty +3.2 % 14 0.67 55.6 %
d) torque reserve penalty +2.5 % 16.4 3.3 65.8 %

Fig. 2 shows the engine operating points throughout the mission for the
four different strategies, color-coded based on the adopted operating mode. As
expected, the engine tends to work near the optimal operating line (OOL) for the
fuel-optimal control strategy. Introducing the gear shift penalty in b), the most
notable difference is that the pure thermal operating points are now concentrated
into two distinct and narrower speed ranges. These points are operated with the
third and fourth gear engaged; clearly, the unconstrained strategy in a) uses
frequent shifting between this two to move more points closer to the OOL.

Considering the engine start penalty in c), we can note an increased usage of
the pure thermal mode and a decrease in the usage of power-split mode, which
is also evident from Table 3. In particular, this strategy makes a wider use of
pure electric mode during the Urban phase of the driving cycle, discharging the
battery, and uses the Rural Road phase to charge the battery back up; this is
clearly visible from the state of charge profiles in Fig. 3. Still, the areas where
the engine operating points concentrate remain similar.

Finally, the effect of the torque reserve penalty in d) generates a large number
of pure thermal points in the low-speed region of the map. These points are
all points that provide a good trade-off between fuel economy and sportiness,
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Fig. 2. Comparison of engine operating maps with four different cost functions.

Fig. 3. Comparison of the battery state of charge profile with the four strategies.
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Table 3. Time shares spent in each operating mode with the four strategies.

Pure electric Pure thermal Power-split Battery charging

a) fuel-optimal 42.8 % 7.91 % 26.2 % 23.1 %
b) gear shift-penalty 43.3 % 6.64 % 25.9 % 24.1 %
c) engine start penalty 61.8 % 11.4 % 8.42 % 18.4 %
d) torque reserve penalty 40.4 % 17.6 % 24.5 % 17.5 %

because they are concentrated along the OOL and at the same time they leave
the full torque of the e-machine, in its constant torque region, available.

We now turn our attention to gear shift behavior in Fig. 4, which shows how
the engaged gears relate to the vehicle speed and engine power; this is a typical
analysis tool when designing gear shift schedules for automated transmissions.
Note that only hybrid modes are represented, i.e. pure electric points are not
depicted.

Considering the fuel-optimal strategy in a), we observe that a clear shift-
ing pattern emerges as the operating points are neatly separated based on the
engaged gear. We also note that the first gear is almost never engaged, as low
speed operation is driven almost exclusively in pure electric.

Introducing a gear shift penalty in b), however, complicates the shifting be-
havior. Although it is still possible to identify preferred areas for each gear, there
are significant overlays such as the third and fourth gear being engaged in the
area previously reserved to the fifth gear at several speeds. This is likely a con-
sequence of the strategy having to sometimes operate in a non-efficient way in
order to limit the number of gear shifts.

The strategy with a penalty for engine starts in c) instead shows a more
regular shifting pattern; the most notable difference with respect to the fuel-
optimal strategy is a reduced usage of the fifth gear, which is mostly engaged
at high power; further inspection revealed that these points were engaged in
battery charging mode. Also noticeable is an increased usage of the third gear at
higher power; these correspond to the additional pure thermal operating points.

Finally, introducing the torque reserve penalty in d) generated a larger con-
centration of operating points at high power and high speed for the fourth and
fifth gear, which correspond to the additional pure thermal and battery charging
points that we previously observed in Fig. 2.

5 Conclusions

In this work, we implemented dynamic programming to investigate the effect
of three different driveability constraints on the optimal energy management
strategy for a p2 parallel hybrid. The constraints were implemented by adding
three different penalty terms to the base cost of the optimal control problem,
which is fuel consumption.
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Fig. 4. Comparison of gear shifting patterns with the four strategies. Only hybrid
operating modes are represented (pure electric points are not shown).

By testing each penalty term individually, we were able to assess the im-
pact of each corresponding driveability aspect on a set of relevant features of
the control strategy, such as the choice of engine operating points and the gear
shift pattern. These considerations provide useful insight for the development of
real-time, rule-based control strategy that minimize fuel consumption while pre-
venting unrealistic and potentially damaging gear shifting and engine start/stop
behavior, as well as targeting varying levels of sportiness.

References

1. Anselma, P.G.: Computationally efficient evaluation of fuel and electrical energy
economy of plug-in hybrid electric vehicles with smooth driving constraints. Ap-
plied Energy 307 (Feb 2022). https://doi.org/10.1016/j.apenergy.2021.118247

2. Anselma, P.G., Biswas, A., Belingardi, G., Emadi, A.: Rapid assessment of the fuel
economy capability of parallel and series-parallel hybrid electric vehicles. Applied
Energy 275 (Oct 2020). https://doi.org/10.1016/j.apenergy.2020.115319

3. Anselma, P.G., Spano, M., Capello, M., Misul, D., Belingardi, G.: Calibrating a
real-time energy management for a heavy-duty fuel cell electrified truck towards



10 F. Miretti and D. Misul

improved hydrogen economy. In: SAE Technical Paper Series. SAE International
(jun 2022). https://doi.org/10.4271/2022-37-0014

4. Guzzella, L., Sciarretta, A.: Vehicle Propulsion Systems Introduction to Modeling
and Optimization. Springer London, Limited (2007)
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