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Abstract. In this work, we first abstract a block cipher to a set of
parallel Boolean functions. Then, we establish the conditions that allow
a multilayer perceptron (MLP) neural network to correctly emulate a
Boolean function. We extend these conditions to the case of any block
cipher. The modeling of the block cipher is performed in a black box
scenario with a set of random samples, resulting in a single secret key
chosen plaintext/ciphertext attack. Based on our findings we explain the
reasons behind the success and failure of relevant related cases in the
literature. Finally, we conclude by estimating what are the resources to
fully emulate 2 rounds of AES-128, a task that has never been achieved
by means of neural networks. Despite the presence of original results and
observations, we remark the systematization of knowledge nature of this
work, whose main point is to explain the reason behind the inefficacy of
the use of neural networks for black box cryptanalysis.

Keywords: black-box · cryptanalysis · neural networks · cipher emula-
tion · AES

1 Introduction

The similarities between finding the cryptographic key of a symmetric cipher
and finding the unknown weights of a neural network have been known since
long time. See for example Rivest’s survey at Asiacrypt 1991 [1] and references
therein. Due to the impressive and constant progress of technology, the adoption
of neural networks is becoming increasingly popular and effective in solving more
and more complex problems. This success of neural networks has tempted many
cryptographers to exploit them for cryptanalysis. While there are several ways
of using neural networks and, more in general, machine learning in conjunction
with cryptography, we want to focus our attention on the use of neural networks
in the context of black box cryptanalysis. The black box approach attempts to
cryptanalyze a family of symmetric ciphers by only interrogating an oracle which
can compute plaintext/ciphertext pairs coming from a specific instantiation of
this family. No other information are allowed to the attacker, hence the name
“black box”. If a family of ciphers can be attacked in the black box scenario this



implies that these ciphers are not suitable for practical applications. The most
popular ciphers are believed to be secure under this scenario, and, moreover, are
even secure in weaker scenarios, where the knowledge of the internal structure
of the cipher is accessible by the attacker. Intuitively, being secure in a weaker
scenario gives little hope of finding a complete break in a stronger scenario
such as the black box one. In spite of this maybe simplistic intuition, we can
count numerous attempts of using neural networks to either distinguish the
output of a cipher from that of a random function, or to discern the output
of different cipher families, or to emulate, or, the hardest case, to even recover
the key of a particular cipher instance. However, to date none of these attempts
has outperformed existing conventional cryptographic attacks. In this work, we
provide insights on why using neural networks in black box cryptanalysis gives
little hope of success. We would like to stress that in this work we do not consider
cryptanalysis techniques based on the knowledge of the internal structure of the
cipher.

The remainder of this paper is structured as follows. After a brief introduction
on neural network terminology and basic notions regarding Boolean functions,
block ciphers and how the latter can be abstracted by the former (section 2),
we speculate on the hardness of emulating a random Boolean function and,
consequently, a block cipher (section 3). We analyze prior works on the subject
under the light of this abstraction (section 4). We support with experimental
evidence our claims on the hardness of emulating Boolean functions (section 5).
Finally, in the light of the developed theory, we estimate the resources needed to
fully emulate 2 rounds of AES (section 6), a task that has never been performed
by neural networks.

2 Preliminaries

In this section we introduce basics of neural networks for black box cryptanalysis,
Boolean functions, and how block ciphers can be defined in terms of Boolean
functions.

2.1 Neural Networks

We refer the interested reader to educative theoretical [2] and practical [3] intro-
ductions to neural networks and the field of deep learning. Here, we concentrate
on condensed explanations of concepts elementary for understanding the follow-
ing sections of this work.

The neural networks usually applied in cryptanalysis are MLP, LSTM and
CNN networks (see Table 1). MLP, LSTM and CNN refer to multilayer percep-
tron, long-short term memory and convolutional neural network, respectively. All
three network types contain artificial neurons organized in layers and “learn”
by adjusting a set of trainable parameters: the weights w with which the neurons
are connected to each other and a so-called bias value b for each neuron. During
the learning phase the network is presented with a training dataset. The success
of learning is quantified by the network’s performance on previously unseen sam-
ples from the validation dataset, i.e. the goal of learning is generalization [2]. To
achieve such generalization, deep learning is concerned with the identification of
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Fig. 1: (a) Example of a multilayer perceptron (MLP) architecture: The neurons
at the input layer receive x1, x2, x3. Each neuron is connected with weights wi
to all neurons in the following layer. The input signals cause a feed-forward
activation to propagate through the hidden layers and produce the outcomes
y1, y2 in the output layer. (b) CNN-like layers consist of neurons which are
connected only to neurons within their receptive field in the previous layer. (c)
In a recurrent neural network (RNN) layers receive an input which depends on
their output at a previous time. The LSTM cell is a well known representative
of a recurrent structure.

the main features which represent a concept [2]. The respective representational
features are worked out by one or multiple hidden layers. Training a neural
network is most commonly achieved by applying a backpropagation algorithm
[4]. First, a batch of training samples is presented at the input of the neural
network. The consequent activations propagate through the neural network, re-
sulting in a signal in the output layer. In a supervised setting, this output signal
can be compared to the known labels of the training samples. The distance of
the output signal to the known label is quantified by a loss function. During
backpropagation the contribution of each neuron’s parameters to the total loss
of the loss function is evaluated and the network parameters are adjusted by
an optimizer, aiming at a minimal loss after each batch. Typical optimizers are
the gradient descent and its advanced variants. The step size taken during the
gradient descent is determined by the learning rate. Once all training samples
have been presented to the neural network, one epoch is over. Often, training
involves several hundred epochs and batch sizes can vary between 1 (stochastic
gradient descent) to the full size of the training data set (deterministic gradient
descent).

Figure 1 illustrates the differences between MLP, LSTM and CNN. The MLP
constitutes the ”quintessential example of a deep learning model“ [2]. Here, each
neuron in one layer is connected to all neurons in the next layer in a feed-forward
manner. The MLP can have a single or multiple hidden layers. The CNN, like
the MLP, is a feed-forward network. However, its design is motivated by the
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mammalian visual cortex and each neuron is only connected to neurons in its
receptive field in the previous layer. In contrast to the feed-forward structure of
MLP and CNN, the LSTM contains so-called recurrent connections between the
neurons. The output of the neuron becomes dependent on a past state of the
network which leads to a kind of “memory” [5].

Essential to all network types is the introduction of nonlinearity in the form
of an activation function a(w, b) which determines the output of each neuron
in a single layer. It can be shown that the introduction of nonlinearity in the
activation function, as well as minimally one hidden layer leads to universality
of the neural network in its ability to model any continuous [6,7,8] function.
In general, the representational power [9] will rise with increasing depth (i.e.
the number of layers) and width (i.e. number of neurons in a single layer) of
the neural network. Practically, however, the problem of successfully training a
neural network with sufficient representational power can still be NP-hard [10],
resulting in unmanageable training time.

2.2 Boolean functions and block ciphers

Block ciphers For simplicity, in this work we will focus our attention only on
block ciphers, but all our arguments can be easily extended to other symmetric
ciphers such as hash functions, stream ciphers or cryptographic permutations.

LetM (plaintext/ciphertext space) and K (key space) be the set of b-bit and
κ-bit vectors, respectively. Note that b is usually called the block size, while κ the
key size. A block cipher Ek(x) : Fb2 × Fκ2 7→ Fb2 is a family of permutations over
the plaintext/ciphertext spaceM. Each permutation of the family is indexed by
a key k ∈ K. Modern block ciphers are built by composing several times a round
function taking as input the current state of the cipher and a round key that is
derived from the master key k by means of an algorithm called key schedule. So
the block cipher operation can be expressed as Erk(x) = Rkr ◦Rkr−1

◦ · · · ◦Rk1 ,
where (k1, . . . , kr) = KeySchedule(k). While a specific block cipher is usually
defined for a precise number of rounds r, to assess their security, it is common to
study reduced-round ciphers. Alternatively, cryptographers also consider scaled
versions of ciphers, i.e. ciphers performing similar operations but with respect
to a smaller block and key size.

Block ciphers as Boolean functions Each ciphertext bit of a block cipher
can be defined by a Boolean function whose variables represents the plaintext
and key bits. More precisely, the i-th bit of the ciphertext can be expressed as:

fi(x1, . . . , xb, k1, . . . , kκ) =
∑

(v1,...,vb)∈Fb2

c(v1,...,vb)(k1, . . . , kκ)xv11 · · ·x
vb
b , (1)

where c(v1,...,vb)(k1, . . . , kκ) =
∑

(v′1,...,v
′
κ)∈Fκ2

a
(v1,...,vb)
(v′1,...,v

′
κ)
k
v′1
1 · · · k

v′κ
κ . Note that once

the key k = (k1, . . . , kκ) is fixed, each fi is a Boolean function of degree at most
b with at most 2b coefficients. When uniformly sampling a Boolean function f
from the set of all Boolean functions over b variables, f will have on average 2b−1

nonzero coefficients. A secure cipher should be such that the Boolean functions
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representing its output bits appear uniformly sampled. For real ciphers, b is at
least 64 bits (128, 192, or 256 are also very common), which makes it impossible
to even list all the coefficients of the Boolean function representing one output
bit. On the other hand, the Boolean function representing the output of a single
round (with respect to the input bits of the round) does not look random in
general. In particular, one output bit of the round function usually depends
on only some of the input bits. As we will explain in the upcoming sections,
we believe this property to be crucial in explaining the success and failure of
previous works.

3 On the hardness of emulating Boolean functions

In this section we first recall some of the main works that are related to the
hardness of learning Boolean functions. We then provide further motivations on
why it is hard to model Boolean functions, especially in cryptographic scenarios.

3.1 Related work

The problem of learning Boolean circuits by means of neural networks has been
extensively studied by the machine learning community. On the other hand, we
are aware of only few direct applications of such results in cryptographic scenar-
ios. For example, already in the early nineties, Kearns [11, Chapter 7] showed
that the Boolean circuits representing some trapdoor functions used in asym-
metric cryptography (such as RSA function) are hard to learn in a polynomial
time. A similar hardness result was demonstrated in the work of Goldreich et al.
[12] for the class of random functions. Indeed, in spite of these negative results,
the attempts of modeling symmetric ciphers by means of neural networks are
numerous, as we show in section 4.

Many works analyze what is the largest family of Boolean functions that can
be modelled by a single neuron. For example, Steinbach and Kohutin [13] show
that, using a polynomial as transfer function, a single neuron is able to represent
a non-monotonous Boolean function. They also show how to decrease the num-
ber of inputs in the neural network by encoding the binary values of the Boolean
variables as integers. Finally, they also propose an algorithm to compute the min-
imal number of neurons. In [9], Antony studies which type of Boolean functions
a given type of single or multi neuron network (using either threshold, sigmoid,
polynomial threshold, and spiking neurons) can compute, and how extensive or
expressive the set of such computable functions is. Among these results, he shows
that any Boolean function with m variables can be modelled by a neural network
with a single hidden layer of 2m neurons with threshold activation function [9,
Theorem 3.9]. Indeed, only Ω(2m/m2) neurons are sufficient.

In general, even if any function that can be run efficiently on a computer
can be modelled by a deep neural network, the learning procedure can be com-
putationally hard [14]. It is an important open problem to understand if there
exists properties of the data distributions that can facilitate the training phase.
As an example of works in this direction, Malach and Shalev-Shwartz [15] show
that the correlation between input bits and the target label affects the learn-
ability of a Boolean function. Following this line, in appendix D we analyze the
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dependence of the learning rate and certain cryptographic properties of Boolean
functions.

3.2 Block ciphers and permutations

Let us consider the simplest block cipher, taking 1 bit input, 1 bit key and 1 bit
output: y0 = Ek0(x0) . Once the key is fixed, the block cipher is a permutation
over the set of messages, in this case, the set 0, 1. The only possible permutations
are the identity and the bitflip. The permutations can be indexed by the value
of the key k0. Let us now consider the 2-bit block cipher, with a 2 bit input,
2 bit key and 2 bit output: (y0, y1) = E(k0,k1)(x0, x1) . Once the key is fixed,
the block cipher is a permutation over the set of messages, in this case, the set
{00, 01, 10, 11}. The number of possible permutations over a set of 4 elements is
4! = 24.

The permutations are represented by the concatenation of two Boolean func-
tions.

Notice that with 2 bits we only have 4 possible values of the key, which means
we cannot represent all possible permutations over the set {00, 01, 10, 11} with
a 2 bit key.

When we consider a 3-bit cipher the permutations are 8! = 40320, and only
23 = 8 of them can be indexed by a 3 bit key. For the three bit cipher, we
finally have permutations that are represented by nonlinear Boolean functions.
In principle, it is possible to compute the Boolean functions representing the
output bits of a full real cipher. The problem is that, with this method, one has
to know the outputs of all possible inputs, which, for example for AES-128, are
2128. For a reduced-round cipher (i.e. a cipher that does not use all the rounds it
was designed to use), it is possible that a single output bit is not influenced by
all input bits, but only by a subset of them of size m. In this case, the Boolean
function will have O(2m) coefficients.

3.3 Emulating the behaviour of a Boolean function

Without knowing the entire truth table or, equivalently, the entire set of coeffi-
cients, it is impossible to reconstruct the remaining missing values of a randomly
selected Boolean function.

In appendix C, by means of a tiny example, we give an intuition of how
one can measure the accuracy of an algorithm guessing the missing values of a
randomly selected Boolean function.

Types of accuracy In general, we can define the following types of accuracy:

1. m′-ary (or block) accuracy : measuring how many output blocks are fully
guessed correctly in the validation phase. In other words, we consider a
sample guessed correctly if and only if all its bits match with the correct
output. To compute the accuracy, divide the counter by the total number of
m-bit output that have been guessed;

2. Relative binary or (bit per block) accuracy : measuring how many bits per
output block are guessed correctly in the validation phase. To compute the
accuracy, divide the counter by the total number of m-bit output that have
been guessed;
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3. Absolute binary (or bit) accuracy : measuring how many output bits are fully
guessed correctly in the validation phase. To compute the accuracy, divide
the counter by the product of the number of bits per block (2) and the total
number of m-bit output that have been guessed.

Randomly guessing the output of a set of Boolean functions We now
provide the probabilities of randomly guessing the output of a Boolean func-
tion in three different scenarios, which corresponds to three different ways of
measuring the accuracy of a neural network.

Proposition 1. Consider a set of m′ Boolean functions with m variables. Sup-
pose the value of t m-bits inputs is known for each function. The probability of
randomly guessing correctly all m′ bits for each of t′ new outputs is given by
1/2t

′m′ .

Proposition 2. Consider a set of m′ Boolean functions with m variables. Sup-
pose the value of t m′-bits outputs is known for each function. The probability
of randomly guessing correctly at least s bits of a new m′-bit output is given by∑m′

k=s (m
′
k )

2m′
. The probability of randomly guessing correctly at least s bits for each

m′-bit output for t′ new output is given by
∑m′
k=s (m

′
k )

2m′
t′.

Proposition 3. Consider a set of m′ Boolean functions with m variables. Sup-
pose the value of t m-bits inputs is known for each function. The probability of
randomly guessing correctly at least s bits among t′ new m′-bit outputs is given

by
∑t′m′
k=s (t

′m′
k )

2t′m′
.

Note that in all previous propositions, the value of t and m do not appear in
the probability. This is because, for a random Boolean function, the output bits
of its truth table are uniformly distributed, and knowing part of the truth table,
does not give any information about the missing part. On the other hand, if the
guessing algorithm had some extra information about the Boolean functions, for
example it knew that the output has to form a permutation, this probabilities
could be improved. Unfortunately, we are not aware of how to incorporate the
structure of a permutation over Fm2 into a neural network. Similarly, these prob-
abilities might be lower if the Boolean function representing one output bit only
depends on m̃ of the m input variables (as for a cipher that is not ideal, e.g. a
reduced-round cipher). In this case, 2m̃ samples might be enough to train the
network so that it can fully emulate the Boolean function. We analyze this case
in Experiment 1 of section 5.

Trained neural networks are no better than random guessing One
is interested in checking if a trained neural network can correctly predict new
inputs better than an algorithm guessing uniformly at random would do. In
our case, the block accuracy of the network should be higher than 1/2t

′m′ , the

relative binary accuracy should be higher than
∑m′
k=s (m

′
k )

2m′
t′, and the absolute

binary accuracy should be higher than
∑t′m′
k=s (t

′m′
k )

2t′m′
.
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Conjecture 1. Let N be a multi-layer perceptron with m binary inputs and m′

binary outputs. Suppose N has been trained with t < 2m samples, taken from
m′ parallel Boolean functions. Then we claim that the validation accuracy of
the neural network cannot be better than the accuracy of an algorithm that
uniformly guesses new outputs. More precisely,

1. the validation block accuracy measured over t′ new samples is 1/2t
′m′

2. the validation relative binary accuracy measured over t′ new samples is∑m′
k=s (m

′
k )

2m′
t′

3. the validation absolute binary accuracy measured over t′ new samples is∑t′m′
k=s (t

′m′
k )

2t′m′

We give experimental evidence of the above conjecture in section 5. Also, in
the remaining part of the manuscript, we will only consider the absolute binary
accuracy, and we will refer to it as simply the binary accuracy.

3.4 Noisy bits

Because of what we explained in the previous section, training a neural network
to fully model a block cipher is exponentially hard. In particular, for an n-bit
block cipher in which each output bit depends on all n input bits, the cost of
the training is O(2n) (n = 128 for the case of AES-128). On the other hand,
for a reduced number of rounds, it is possible (especially in the early rounds),
that each output bit only depends on m < n input bits. If an adversary knew
the position of the m input bits, it could train a network with only m inputs in
time O(2m). We call noisy bits those n−m bits for which the output does not
depend on. For example, after 2 rounds of AES-128, each output bit depends on
m = 32 input bits, and has 96 noisy bits. Unfortunately, in a black box scenario,
the attacker has no knowledge about the position of the noisy input bits, so it
is forced to use a neural network with n inputs. Suppose we are interested in
modeling a single output bit. In this case, the neural network needs to understand
which are the n −m noisy bits that are not influencing the output bit. As we
show in Experiment 2, it turns out that the complexity of the training increases
exponentially with the number of noisy bits.

4 Analysis of previous results

In this section we analyze previous attempts of modelling symmetric ciphers in
the black box scenario by means of neural networks.

By black-box neural cryptanalysis (or direct attacks with no prior informa-
tion), we mean attacks that can be performed on any cipher, regardless of the
cipher structure, except the input/output/key size. This type of attacks can be
divided in attacks that aim at 1. distinguishing the output of the cipher from
the output of another cipher, or distinguishing the output of the cipher from
a random bit string; 2. emulating the behaviour of a cipher; 3. finding the key
of the cipher. Of course, an attacker able to perform item 3 can also perform
item 2, and being able to perform item 2 implies being able to perform item 1.
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Usually, these kind of attacks are performed in the chosen plaintext scenario,
so the attacker is given access to an oracle that can provide plaintext-ciphertext
pairs encrypted under a certain key only known by the oracle. Furthermore, the
attack is repeated for several keys, and in the case of key recovery, a new key
(different from the ones used in the training) needs to be predicted. Here we
describe in details only the previous attempts of cipher emulation, since they
are relevant to our work. In Table 1, we provide a more complete summary,
while in appendix B we provide further discussion on the topic.

Topic Year Target cipher ML techniques Ref.

identification of encryp-
tion
methods

2006,
2010

DES, 3DES, Blowfish,
AES, RC5 in CBC

SVM and regression [16,17]

identification of encryp-
tion
methods

2012 DES/AES in ECB/CBC Linear Classifier and SVM [18]

identification of encryp-
tion
methods

2018 DES, Blowfish, ARC4,
Rijndael, Serpent and
Twofish in ECB/CBC,
RSA

C4.5, PART, FT, Com-
plement Naive Bayes,
MLP and WiSARD

[19]

decryption and distin-
guishing

2018 DES in ECB/CBC LSTM and CNN [20]

ciphertext prediction 2019 DES,Triple-DES 4 or 5 layer MLP [21,22]
ciphertext prediction 2019 3round-DES, Hitag2 1-6 Layer MLP/Cascade

networks
[23]

key recovery 2010,
2012

Simplified DES Levenberg–Marquardt &
single MLP

[24,25]

key recovery & un-
derstand differential
cryptanalysis relation
with MLP

2014 Simplified DES MLP [26]

key recovery (ASCII key) 2020 S-DES, SIMON32/64,
SPECK32/64

3 to 5 layer MLP [27]

key schedule inversion 2020 PRESENT 3 layer MLP [28]

Table 1: Summary of the main results regarding machine learning techniques
applied to black box cryptanalysis.

The closest related work to this one is [23]. In this work the authors claim to
be able to mimic the 1-round DES with accuracy of 99.7% and 2-rounds DES
with accuracy of 60% with 217 plaintext/ciphertext pairs. In the same paper,
they also analyze the stream cipher Hitag2, being able to mimic the full cipher
with 216 input/output pairs, obtaining about 60% accuracy. In this section we
analyze this work from the Boolean functions point of view.

Analysis of reduced-round DES. In a reduced 1-round DES not all the bits
depend on the same number of inputs. In particular, since DES has a Feistel
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structure, the dependencies are different for the bits in the two words, the left
and the right one. For the 32 bits of the right word, the dependency is exactly
on 1 input bit each, so there should be no problem in learning this word. For the
other word, the only non-linearity is given by the S-Box. DES’ S-Boxes take 6
input bits, so each bit should depend on a maximum of 7 input bits (the 6 S-Box
inputs and the bit itself at the input). Therefore, we think that it is possible
to mimic the 1-round DES with neural networks, also reducing the data from
217 to at most 32 · 27 = 212 chosen inputs. In the case of 2-rounds DES we can
apply a similar reasoning from the previous paragraph. The right word at the
end of the second DES round will depend on the left word of the output of the
first round, so every bit will depend roughly on 7 input bits. For the other word,
things become harder: using a similar reasoning with the S-Boxes of DES we can
see that every bit of the left word will depend on at most 6 · 7 + 1 = 43 input
bits. In this case, we think that it is possible to mimic the right word, while a
lot of data will be required for the left one. Notice that in this case it is possible
to reach 75% accuracy with only 212 chosen inputs as follows: 1. Train a neural
network to recognize only the right word. Since the depencency is only on the
output of the first round, this can be done as described before for 1-round DES.
This will get accuracy 100% for this part. 2. For the other word, roughly 248

chosen inputs are necessary, so we assume that this is not feasible and leads to
accuracy 50%. 3. The average accuracy of the network will then become 75%.

Analysis of Hitag2. Hitag 2 is a stream cipher based on an LFSR and several
Boolean functions. In this case it is not very clear what the authors are doing.
From what we understood, they are training the neural network using the “serial”
as input and predicting one bit of output, in a fixed-key setting. This is in line
with our analysis, since the output bit depends only on 15 bits of the serial
number, and so 216 training pairs are more than enough to obtain 60% accuracy.

Other works. In [22,21] the author claim to be able to mimic the full DES and
3DES with 211 and 212 plaintext/ciphertext pairs respectively. We think that,
following our previous discussion, these results are unlikely to be reproducible.
The same thesis is supported by the authors of [23].

5 Emulating Boolean functions using neural networks

In this section we first describe some experimental results to confirm the the-
oretical claims we made in section 3 on the minimum number of samples or
on the minimum number of neurons (in a single hidden layer MLP) that are
needed to obtain accuracy 1 when emulating a Boolean function. Some of these
experiments determine the fundamental blocks we used to model 2 rounds of (a
reduced version of) AES in section 6. As a side result, we briefly try to correlate
the learning rate of a training with some of the main cryptographic properties
of a Boolean function in appendix D.
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5.1 Experimental results when varying number of samples and
neurons

Experiment 1 - Modeling Boolean function depending on a subset of
all variables. In this test we investigate Boolean functions which only depend
on a subset of all variables. This experiment is motivated by the fact that,
in the first rounds, before full diffusion is reached, the output bits of a block
cipher usually depend on only some of the input bits. We show that in this case,
to reach high accuracy, the needed number of samples grows exponentially in
the variables on which the Boolean function actually depends on. Let us recall
that we call noisy the bits from which the Boolean function does not depend
on. In Experiment 2 we will show that the needed number of samples grows
exponentially also with the noisy bits.

The experiment works as follows. Pick a random Boolean function of m
variables x0, . . . , xm−1 which only depends on at most mp of the possible inputs.
For example, consider m = 4,mp = 2 and the functions f0(x0, x1), f1(x0, x1),
f2(x2, x3), f3(x2, x3). Train an MLP with an input layer of m neurons, a single
hidden layer of 2m neurons and an output layer with a single neuron using t
samples.

(a)
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from fig.

Fig. 2: Results on Experiment 1 for Random Boolean functions of m = 7 bits
and mp = 1, . . . ,m dependent variables. Figure (a) shows the block accuracy on
the validation dataset for training samples t between 1, . . . , 2m − 1. Each black
line shows the mean of ten Random Boolean functions (shown in grey) with
m = 7 and the indicated mp. Figure (b) shows the number of samples at which
a validation accuracy of 100% has been reached in (a). The number of samples
shown are (13 ± 4, 21 ± 8, 35 ± 11, 56 ± 11, 88 ± 16, 113 ± 3) for the different
values of mp = 1, . . . , 6. For comparison, 2mp is shown.

The results on this experiment for m = 7 (mp = 1, . . . , 7) are shown in Fig-
ure 2. Indeed, for mp = 7 the absolute validation accuracy never reaches 100%,
as predicted in Conjecture 1. However, when the number of dependent variables
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mp is smaller, already a fraction of the training samples is sufficient to reach
100% prediction accuracy on an unknown sample.

In particular, for mp bits, we only need the 2mp possible values to be pre-
sented at least once. So, in principle, 2mp samples would be enough to reach
full accuracy on an unknown sample. In order to estimate how many of the 2m

samples we need (on average) to have the 2mp values represented, we refer to
a modified version of the coupon collector problem. If m −mp is not too small,
the expected value for the number of needed samples can be approximated with
the classic bound 2mp ln (2mp) [29]. Using again mp = 2 we have that on average
5.55 samples are enough to have all 4 values for those bits represented. However,
as shown in figure Figure 2b more samples are needed.

Experiment 2 - Adding noisy bits to the training. The purpose of this
experiment is to show that if we try to model a Boolean function depending
on m bits with a neural network taking m + s inputs of which s (the noisy
bits) are either fixed to zero or to a random value, it becomes more difficult
to obtain a good accuracy, even though for the fixed zero case, accuracy 1 is
reached eventually. The experiment works as follows. Pick 1 Boolean function of
m variables, add s bits of noise (either fixed to 0 or randomly chosen) and train a
neural network with 2m samples and 2m+s neurons. The results of Experiment 2
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Fig. 3: Results on Experiment 2 for m = 8 and s = 0, . . . , 13. Figure (a) shows the
final binary accuracy on the validation dataset when the noise bits are either fixed
to 0 (“0 noise”) or random (“random noise”). Figure (b) shows the validation
binary accuracy during training for the final values shown in figure (a). A darker
shade corresponds to more noisy bits s.

are shown in Figure 3. We conclude that training becomes harder with increasing
s, and that the random noise accentuates this difference.

Experiment 3 - Finding minimum number of samples. The purpose of
this experiment is to determine the minimum number of samples for which we
reach a high accuracy in the presence of noisy bits, with just one epoch and then
with more than one epoch. The experiment works as follows. Pick a random
Boolean function of m + s variables f(x0, . . . , xm+s−1) such that m variables
bring information and s variables bring noise. Then find the minimum number
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m n=#Samples l = log2(n) l/m

4 25650 14.6 3.65
6 52652 16.7 2.78
8 194385 17.6 2.20
10 2097056 21.0 2.10

m n=#Samples l = log2(n) l/m

4 24883 14.6 3.65
6 36153 15.1 2.52
8 103932 16.7 2.09
10 952149 19.9 1.99

m n=#Samples l = log2(n) l/m Epochs

4 195 7.6 1.90 336
6 1663 10.7 1.78 151
8 9927 13.3 1.66 103
10 424209 18.7 1.87 78

Table 2: Results for Experiment 3 for one epoch (on the left the results for
accuracy=1, in the middle for accuracy≥0.95) and multiple epochs (on the right,
with threshold accuracy 0.9, the last column includes 75 epochs of patience,
where the training binary accuracy does not improve).

of samples (e.g. with a binary search) for which the neural network reaches an
accuracy above the chosen threshold. For the experiment, we fixed s = 3m, so
that in total we have 4m bits of input to the network (this proportion is the
same as in 2 rounds of AES-128).

The results are shown in Table 2. From those results, one could estimate
that, with just one epoch, 22.1m samples are enough to reach accuracy 1, while
22m samples are enough to reach at least accuracy 0.95. In the case of more than
one epoch, this bound seems to lower towards 21.9m. As we explain in section 6,
after 2 rounds of AES-128, each output bit is a Boolean function of 32 of the
128 input bits of the cipher. This means that, if our assumption on the growth
of the difficulty of the training is correct, then, in order to emulate 2 rounds of
AES-128, we need 267 samples to reach accuracy 1 and 264 samples to overcome
accuracy 0.95. Since this numbers are too prohibitive for our resources, we will
prove our claim to be true for a smaller version of AES (see section 6).

Experiment 4 - Finding the minimum number of neurons. The purpose
of this experiment is to determine the minimum number of neurons in the hidden
layer which is sufficient to obtain a binary accuracy close to 1. We start picking
a random Boolean function of m + s variables f(x0, . . . , xm+s−1) such that m
variables contain information and s variables are noisy bits. As in Experiment
3, we fixed s = 3m and the number of samples and epochs according to Ta-
ble 2. MLPs with different number of neurons in the hidden layer are trained.
The relationship between the number of neurons and the accuracy is shown in
Figure 4.

Experiment 5 - Finding the optimal shape of the network. We tried to
train networks with increasing number of layers while keeping the same numbers
of neurons. We observed no improvements: the reached accuracy is the same of
(or even lower than) the networks with a single hidden layer. This was expected,
since a single layer neural network with m inputs and 2m neurons is a universal
approximator.

6 Emulating AES using neural networks

In this section we first introduce the internal structure of AES and of a scaled
variant. We then use this variant to demonstrate how one can fully model 2
rounds of AES with a limited number of samples.
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Fig. 4: Training binary accuracy of the neural network from Experiment 4 with
a batch size of 100, number of samples and of epochs from Table 2 for different
values of m = 4, 6, 8, 10.

6.1 AES specifications

In 1997 the National Institute of Standards and Technology (NIST) called for
proposals for a new block cipher standard, to be named the Advanced Encryption
Standard (AES). In October 2000, the Rijndael algorithm, a Belgian block cipher
designed by Joan Daemen and Vincent Rijmen [30], was selected as the winner.
Nowadays, AES is the most used block cipher.

The AES comes in three different versions that share the same encryption
algorithm. At a high level, it can be seen as an alternating key cipher, that
is an iterated cipher with the following structure: E(k,m) = kd ⊕ πd(kd−1 ⊕
πd−1(. . . π1(k0 ⊕ m) . . . )). The XOR operation ⊕ is usually referred to as the
AddRoundKey operation, where each πi is defined as the composition of three op-
erations: SubBytes, ShiftRows and MixColumns. For design reasons, πd omits
the MixColumn step. Reduced versions of the AES can be considered for experi-
mental purposes, as it was done for example in [31] or [32]. Following a similar
approach, in our experiments, we consider a reduced version of the AES where
we change the word size and, accordingly to that, the block size. In particular, we
consider 4×4 states and 3 bit words. We chose the Sbox of the SubBytes opera-
tion as the inversion over Fw2 , and an MDS matrix for the MixColumn operation
[30].

All the operations are computed over Fw2 were w is the word size in bits. In
particular, for 3 bit words, the modulus is the polynomial x3 + x + 1. Like the
standard AES, the AES version that we propose reaches full diffusion within 4
rounds. We denote it by AESw3s4.

6.2 AES emulation

Experiment 2 in section 5 is equivalent to predicting a word of a reduced version
of AES that performs at most 2 rounds (from the third round, each output bit
depends on all the input ones). As noted in the previous section, each output
bit of 2 rounds of AES-128 depends on m = 32 bits only (1/4 of the total input
bits). In the toy AESw3s4, after 2 rounds, each output bit depends on m = 12
bits only (again 1/4 of the total input bits). According to Table 2, one needs
22m samples to be able to emulate the Boolean function defining each output bit
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with accuracy of 95%. For AES-128, this means 264, which is out of reach for our
resources. For AESw3s4, only 224 samples are needed. So, we tried to emulate a
single output bit of 2 rounds of AESw3s4, using an MLP of 224 neurons fed by
224 samples in the training phase. The experiment was run on a GPU server with
8 Quadro RTX 8000 GPUs, 256 GB RAM and 2 CPUs Intel(R) Xeon(R) Gold
5122 at 3.80 GHz. The test reached a peak of approximately 80 GB of RAM and
was terminated after 40 minutes of data generation, 30 minutes of training and
15 minutes of validation. We reached a validation loss of 0.018 and a validation
accuracy of 99.6% after 10 epochs.

7 Conclusion

In this work we have shown that to model with high accuracy a random Boolean
function one needs to train a neural network with the entire set of all possible
inputs of the function. Since the output of any modern block cipher can be rep-
resented as a vector of random Boolean functions of n inputs, this means that 2n

samples needs to be used for the training phase, which makes this approach im-
practical. Nonetheless, there are examples in the literature where this approach
was successful, either on full or reduced round ciphers. We explain that when
this was possible, it was due to the fact that the output bits of the cipher depend
only on a small number of input bits. We exploit this observation to model 2
rounds of (a scaled version of) AES.
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Appendix A Preliminaries on Boolean functions

We introduce here, for completeness, the relevant notions concerning Boolean
functions. For a complete overview of the topic see [33] or [34].

We denote by F2 the binary field with two elements. The set Fn2 is the set of
all binary vectors of length n, viewed as an F2-vector space. A Boolean function
is a function f : Fn2 7→ F2. The set of all Boolean functions from Fn2 to F2 will
be denoted by Bn.

We assume implicitly to have ordered Fn2 , so that Fn2 = {x1, . . . , x2n}. A
Boolean function f can be specified by a truth table (or evaluation vector),
which gives the evaluation of f at all xi’s. Once the order on Fn2 is chosen, i.e.
the xi’s are fixed, the truth table of f uniquely identifies f .

A Boolean function f ∈ Bn can be expressed in another way, namely as a
unique square free polynomial in F2[X] = F2[x1, . . . , xn], more precisely f =∑

(v1,...,vn)∈Fn2
b(v1,...,vn)x

v1
1 · · ·xvnn . This representation is called the Algebraic

Normal Form (ANF).

There exists a simple divide-and-conquer butterfly algorithm ([33], p. 10)
to compute the ANF from the truth-table (or vice-versa) of a Boolean function,
which requires O(n2n) bit sums, while O(2n) bits must be stored. This algorithm
is known as the fast Möbius transform.

We now define a set of properties of Boolean functions that are useful in
cryptography. In appendix D we study the relation of this properties with the
learnability of a Boolean function. We refer to [33] for more details.

The degree of the ANF of a Boolean function f is called the algebraic degree
of f , denoted by deg f , and it is equal to the maximum of the degrees of the
monomials appearing in the ANF. The correlation immunity of a Boolean func-
tion is a measure of the degree to which its outputs are uncorrelated with some
subset of its inputs. More formally, a Boolean function is correlation-immune of
order m if every subset of at most m variables in {x1, . . . , xn} is statistically
independent of the value of f(x1, . . . , xn). The parameter of a Boolean function
quantifying its resistance to algebraic attacks is called algebraic immunity. More
precisely, this is the minimum degree of g 6= 0 such that g is an annihilator of f .

The nonlinearity of a Boolean function is the distance to the linear functions,
i.e. the minimum number of outputs that need to be flipped to obtain the output
of a linear function.

Finally, a Boolean function is said to be resilient of order m if it is balanced
(the output is 1 or 0 the same number of times) and correlation immune of
order m. The resiliency order is the maximum value m such that the function
is resilient of order m.

Appendix B Neural networks in black box cryptanalysis:
previous results

B.1 Cipher identification

Neural networks can be used to distinguish the output of a cipher from random
bit strings or from the output of another cipher, by training the network with
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Fig. 5: (a) Generic multilayer perceptron (MLP) architecture to perform a dis-
tinguisher attack in known plaintext scenario. The MLP receives n-bit plaintext
p1, . . . , pn and ciphertext c1, . . . , cn as input. Each bit serves as input to one
neuron, therefore the input layer consists of 2n neurons. The output layer con-
sists of a single neuron with two possible outputs, depending on the outcome of
the distinguishing attack. (b) Generic multilayer perceptron architecture to per-
form ciphertext emulation in a known plaintext scenario. (c) Generic multilayer
perceptron architecture to map a key recovery attack in the known plaintext
scenario. Given plaintext p1, . . . , pn/ciphertext c1, . . . , cn pairs as input, each
neuron in the output layer predicts one bit of the key k1, . . . , km.

pairs of plaintext-ciphertext obtained from a single secret key (single secret-key
distinguisher) or from multiple keys (multiple secret-key distinguisher). Varia-
tions of these attacks might exist in the related key scenario, but we are not aware
of any work in this direction related to neural networks. The general architecture
of neural networks used for distinguisher attacks is shown in Figure 5a.

A direct application of ML to distinguishing the output produced by modern
ciphers operating in a reasonably secure mode such as cipher block chaining
(CBC) was explored in [18]. The ML distinguisher had no prior information
on the cipher structure, and the authors conclude that their technique was not
successful in the task of extracting useful information from the ciphertexts when
CBC mode was used and not even distinguish them from random data. Better
results were obtained in electronic codebook (ECB) mode, as one may easily
expect, due to the lack of semantic security (non-randomization) of the mode.
The main tools used in the experiment are Linear Classifiers and Support Vector
Machine with Gaussian Kernel. To solve the problem of cipher identification,
the authors focused on the bag-of-words model for feature extraction and the
common classification framework previously used in [16,17], where the extracted
features of the input samples are mostly related to the variation in word length.
In [18], the considered features are the entropy of the ciphertext, the number of
symbols appearing in the ciphertext, 16-bit histograms with 65536 dimensions,
the varying length words proposed in [16].

Similar experiments to the one of [18] have also been presented, essentially,
with similar results. For example, in [19], the authors consider 8 different plain-
text languages, 6 block ciphers (DES, Blowfish, ARC4, Rijndael, Serpent and
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Twofish) in ECB and CBC mode and a “CBC”-like variation of RSA, and
perform the identification on a higher-performance machine (40 computational
nodes, each with a 16-core Opteron 6276 CPU, a NVIDIA Tesla K20 GPU and
32GB of central memory) compared to [18], by means of different classical ma-
chine learning classifiers: C4.5, PART, FT, Complement Naive Bayes, MLP and
WiSARD. The NIST test suite was applied to the ciphertexts to guarantee the
quality of the encryption. The authors conclude that the influence of the idiom
in which plaintexts were written is not relevant to identify different encryption.
Also, the proposed procedures obtained full identification for almost all of the
selected cryptographic algorithms in ECB mode. The most surprising result re-
ported by the author is the identification of algorithms in CBC mode, which
showed lower rates than the ECB case, but, according to the authors, the lower
rate is “not insignificant”, because the quality of identification in CBC mode is
still “greater than the probabilistic bid”. Moreover, the authors point out that
rates increased monotonically, and thus can be increased by intensive computa-
tion. The most efficient classifier was Complement Naive Bayes, not only with
regard to successful identification, but also in time consumption.

Another recent work is the master thesis of Lagerhjelm [20], in 2018. In this
work, long short-term memory networks are used to (unsuccessfully) decipher
encrypted text, and convolutional neural network are used to perform classifica-
tion tasks on encrypted MNIST images. Again, with success when distinguishing
the ECB mode, and with no success in the CBC case.

B.2 Cipher emulation

Neural networks can be used to emulate the behaviour of a cipher, by training
the network with pairs of plaintext and ciphertext generated from the same
key. The general architecture of such networks is shown in Figure 5b. Without
knowing the secret key, one could either aim at predicting the ciphertext given
a plaintext (encryption emulation), as done, for example, by Xiao et al. in [23],
or to predict a plaintext given a ciphertext (decryption emulation), as done, for
example, by Alani in [21,22].

In 2012, Alani [21,22] implements a known-plaintext attack based on neu-
ral networks, by training a neural network to retrieve plaintext from ciphertext
without retrieving the key used in encryption, or, in other words, finding a func-
tionally equivalent decryption function. The author claims to be able to use
an average of 211 plaintext-ciphertext pairs to perform cryptanalysis of DES
in an average duration of 51 minutes, and an average of only 212 plaintext-
ciphertext pairs for Triple-DES in an average duration of 72 minutes. His re-
sults, though, could not be reproduced by, for example, Xiao et al. [23], and
no source code is provided to reproduce the attack. The adopted network lay-
outs were 4 or 5 layers perceptrons, with different configurations: 128-256-256-
128, 128-256-512-256, 128-512-256-256, 128-256-512-128, 128-512-512-128, 64-
128-256-512-1024 (Triple-DES), and similar. The average size of data sets used
was about 220 plaintext-ciphertext pairs. The training algorithm was the scaled
conjugate-gradient. The experiment, implemented in MATLAB, was run on sin-
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gle computer with AMD Athlon X2 processor with 1.9 Gigahertz clock frequency
and 4 Gigabytes of memory.

In 2019, Xiao et al. [23] try to predict the output of a cipher treating it
as a black box using an unknown key. The prediction is performed by training
a neural network with plaintext/ciphertext pairs. The error function chosen to
correct the weights during the training was mean-squared error. Weights were
initialized randomly. The maximum numbers of training cycles (epochs) was set
to 104. Then, the measure of the strength of a cipher is given by three metrics:
cipher match rate, training data, and time complexity. They perform their ex-
periment on reduced-round DES and Hitaj2 [35], a 48-bit key and 48-bit state
stream cipher, developed and introduced in late 90’s by Philips Semiconductors
(currently NXP), primarily used in Radio Frequency Identification (RFID) ap-
plications, such as car immobilizers. Note that Hitaj2 has been attacked several
times with algebraic attacks using SAT solvers (e.g. [36,37]) or by exhaustive
search (e.g. [38,39]).

Xiao et al. test three different networks: a deep and thin fully connected net-
work (MLP with 4 layers of 128 neurons each), a shallow and fat network (MLP
with 1 layer of 1000 neurons), and a cascade network (4 layers with 128, 256,
256, 128 neurons). All three networks end with a softmax binary classifier. Their
experiments show that the neural network able to perform the most powerful
attack varies from cipher to cipher. While a fat and shallow shaped fully con-
nected network is the best to attack the round-reduced DES (up to 2 rounds),
a deep-and thin shaped fully connected network works best on Hitag2. Three
common activation functions, sigmoid, tanh and relu, are tested, however, only
for the shallow-fat network. The authors conclude that the sigmoid function al-
lows a faster training, though all functions eventually reach the same accuracy.
Training and testing are performed on a personal laptop (no details provided),
so the network used cannot be too large. The training has been performed with
up to 230 samples.

B.3 Key recovery attacks

Neural networks can be used to predict the key of a cipher, by training the
network with triples of plaintext, ciphertext and key (different from the one
that needs to be found). The general architecture of such networks is shown in
Figure 5c.

In 2014, Danziger and Henriques [26] successfully mapped the input/output
behaviour of the Simplified Data Encryption Standard (S-DES) [40]3, with the
use of a single hidden layer perceptron neural network (see Figure 5c). They also
showed that the effectiveness of the MLP network depends on the nonlinearity
of the internal s-boxes of S-DES. Indeed, the main goal of the authors was to
understand the relation between the differential cryptanalysis results and the
ones obtained with the neural network. In their experiment, given the plaintext
P and ciphertext C, the output layer of the neural network is used to predict the

3 Notice that S-DES uses 10 bit keys, 8 bit messages, 4 to 2 sboxes, and 2 rounds.
This parameters are very far from the real DES.
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key K. Thus, for the training of the weights and biases in the neural network,
training data of the form (P,C,K) is needed. After training has finished, the
neural network was expected to predict a new value of K (not appearing in the
training phase) given a new (P,C) pair as input.

Prior works on S-DES include [24,25], where Alallayah et al. propose the use
of Levenberg-Marquardt algorithm rather than the Gradient Descent to speed
up the training. Besides key recovery, they also use a single layer perceptron
network to emulate the behaviour of S-DES, modelling the network with the
plaintext as input, and the ciphertext as output. Their results is positive due to
the small size of the cipher, and a thorough analysis of the techniques used is
lacking.

In 2020, So et al. [27] proposed the use of 3 to 7 layer MLPs (see Figure 5c) to
perform a known plaintext key recovery attack on S-DES (8 bit block, 10 bit key,
2 rounds), Simon32/64 (32 bit block, 64 bit key, 32 rounds), and Speck32/64 (32
bit block, 64 bit key, 22 rounds). Besides considering random keys, So et al.
additionally restricts keys to be made of ASCII characters. In this second case,
the MLP is able to recover keys for all the non-reduced ciphers. It is important
to notice that the largest cipher analyzed by So et al. has a key space of 264

keys, which is reduced to 248 = 648 keys when only ASCII keys are considered.
The number of hidden layers adopted in this work ranges between 3,5,7, while
the number of neurons per layer ranges between 128, 256, 512. In the training
phase, So et al. use 5000 epochs and the Adam adaptive moment algorithm as
optimization algorithm for the MLP. In comparison to regular gradient descent,
Adam is a more sophisticated optimizer which adapts the learning rate and
momentum. The training and testing are run on GPU-based server with Nvidia
GeForce RTX 2080 Ti and its CPU is Intel Core i9-9900K.

B.4 Key-schedule inversion

As for the emulation of cipher decryption described in subsection B.2, one might
try to invert the behavior of the key schedule routine, as done for example by
Pareek et al. [28], in 2020. In their work, they considered the key schedule of
PRESENT and tried to retrieve the 80-bit key from the last 64-bit round key,
using an MLP network with 3 hidden layers of 32, 16, and 8 neurons. Unfortu-
nately, the authors concluded that, using this type of network, the accuracy of
predicting the key bits, were not significantly deviating from 0.5.

Appendix C A tiny example

We consider here two parallel Boolean functions f1(x1, x2) and f2(x1, x2), and
suppose we know how two inputs are mapped, i.e. f1(00) = 00, f2(01) = 11.
To evaluate the accuracy of an algorithm guessing the output of 10 and 11, one
might consider to increase a counter every time

1. the output of the full 2-bits block is guessed correctly. To compute the accu-
racy, divide the counter by the total number of 2-bit output that have been
guessed.
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2. the output of the full 2-bit block is guessed correctly for at least 1 bit. To
compute the accuracy, divide the counter by the total number of 2-bit output
that have been guessed.

3. a single bit is guessed correctly (over all guessed outputs). To compute the
accuracy, divide the counter by the product of bits per block (2) and the
total number of 2-bit output that have been guessed.

As an example, let us suppose that the correct missing values are mapped to
f1(10) = 01, f2(11) = 11. Let us also suppose that an algorithm A made the
following guess 10 7→ 00, 11 7→ 10. According to the first metric the accuracy of
A is 0. According to the second metric the accuracy of A is 1. According to the
third metric, the accuracy of A is 3/4.

Note that if we have to guess two 2-bit Boolean functions mapping 00 7→ 00,
01 7→ 11, 10 7→ 01, then we can correctly guess where the value 11 will be
mapped to with probability 1/4. On the other hand, if we know that the two
Boolean functions have to form a permutation over the set {00, 01, 10, 11}, then
we only have the option 11 7→ 10. In general, if there are r missing values for a
set of m′ m-bit Boolean functions, and we know they have to form a permutation
(m′ = m), we can guess correctly with probability 1/r!. If the m′ m-bit Boolean
function does not necessarily form a permutation, then we can guess correctly
with probability 1/(2rm

′
), which is much lower than 1/r!. In the case of a block

cipher, we also know that not all permutations are possible, but only the ones
indexed by the n-bits keys, which are 2n.

Appendix D Emulating Boolean functions with different
cryptographic properties

In this section, we want to determine if there exist a correlation between the
learnability of a Boolean function and some of its most relevant cryptographic
properties, namely: algebraic degree, algebraic immunity, correlation immunity,
nonlinearity and resiliency order (see appendix A or [33] for definitions).

We randomly picked ten Boolean functions, in m = 10 variables, for each
algebraic degree from 1, . . . , 9 (i.e. 90 Boolean functions in total). A neural net-
work was trained to predict the output of these functions. In Figure 6a it is
shown how the neural network parameters affect the accuracy of the predictions
(for the case of algebraic degree property), while Figure 6b shows the network
performance during the training. In both graphs, we take, for each value of the
algebraic degree, the average of the accuracy and the loss over the ten Boolean
functions considered.

In particular, we notice two facts. The first one is that we need the full
dataset in order to be able to predict the outcome of the Boolean functions.
The second one is the similarity of the training progress for all algebraic degrees
(with a slight irregularity in linear functions) in Figure 6b, which points out that
the algebraic degree is not causing major differences in the learnability of the
Boolean functions.

The panels in figure Figure 6c show the training progress for the algebraic
immunity, the correlation immunity, the nonlinearity and the resiliency order.
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While for the algebraic immunity and nonlinearity no major differences in the
training progress are visible, we notice that for correlation immunity and re-
siliency order there are some differences in the training progress. The results
on correlation immunity are in line with the work from Malach et al. [15], but
a detailed investigation is beyond the scope of this work and is left for future
research.
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Fig. 6: Binary accuracy (blue) and binary crossentropy loss (red) of an MLP
learning Boolean functions of varying algebraic degree. The left hand side fig-
ure (a) shows the final accuracy and loss values obtained on the validation dataset
for different configurations e = 1, . . . , 10. In detail the number of neurons in the
hidden layer of the MLP was varied (2e = 21, . . . , 210), as well as the number of
samples (2e) and number of training epochs (2e). The right hand side figure (b)
shows the training progress of a neural network with 1024 neurons, 1024 samples
and 1024 epochs. Figure (c) in the lower panel shows the training progress of
a neural network with 1024 neurons, 1024 samples and 1024 epochs for various
other considered properties of Boolean functions.
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