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A Scalable Algorithm to Explore the Gibbs Energy
Landscape of Genome-Scale Metabolic Networks
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Abstract

The integration of various types of genomic data into predictive models of biological networks is one of the main
challenges currently faced by computational biology. Constraint-based models in particular play a key role in the attempt to
obtain a quantitative understanding of cellular metabolism at genome scale. In essence, their goal is to frame the metabolic
capabilities of an organism based on minimal assumptions that describe the steady states of the underlying reaction
network via suitable stoichiometric constraints, specifically mass balance and energy balance (i.e. thermodynamic feasibility).
The implementation of these requirements to generate viable configurations of reaction fluxes and/or to test given flux
profiles for thermodynamic feasibility can however prove to be computationally intensive. We propose here a fast and
scalable stoichiometry-based method to explore the Gibbs energy landscape of a biochemical network at steady state. The
method is applied to the problem of reconstructing the Gibbs energy landscape underlying metabolic activity in the human
red blood cell, and to that of identifying and removing thermodynamically infeasible reaction cycles in the Escherichia coli
metabolic network (iAF1260). In the former case, we produce consistent predictions for chemical potentials (or log-
concentrations) of intracellular metabolites; in the latter, we identify a restricted set of loops (23 in total) in the periplasmic
and cytoplasmic core as the origin of thermodynamic infeasibility in a large sample (106) of flux configurations generated
randomly and compatibly with the prior information available on reaction reversibility.
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Introduction

Constraint-based models of cellular metabolism are important

tools to analyze and predict the chemical activity and response to

perturbations of cells without relying on kinetic details that are

often unavailable. In such frameworks, the metabolic capabilities

of a cell are inferred from the overall configuration space

compatible with minimal physico-chemical constraints describing

the non-equilibrium steady state of the underlying reaction

network. First, feasible reaction flux vectors need to satisfy mass-

balance conditions. Then, according to the second law of

thermodynamics, in an open chemical network at steady state

and constant temperature and pressure the direction of each

reaction should ensure a decrease in Gibbs energy. Thermody-

namic consistency of flux configurations satisfying mass-balance

alone is in general not guaranteed due to the presence of infeasible

cycles [1–3], even if reaction reversibility is pre-assigned based on

careful estimations of chemical potentials in physiologic conditions

[4] (a procedure that was recently extended to genome-scale [5,6]).

Besides the flux organization, several other aspects involved in the

analysis of genome-scale metabolic networks hinge directly on the

explicit inclusion of thermodynamic constraints into the models,

like the estimation of metabolite concentrations or the identifica-

tion of reactions subject to regulation [7].

Much work has been concerned with implementing thermody-

namic constraints in genome-scale models of metabolism. The

removal of thermodynamic inconsistencies was proved to be useful

in estimating concentrations and affinities besides fluxes in Flux-

Balance-Analysis [8,9], whose goal is to identify mass-balanced

flux configurations maximizing a pre-determined physiological

objective function [10,11]. This has been achieved for instance by

building mixed integer-linear or non-linear optimization problems

that minimize the Euclidean distance of concentration levels from

experimentally known values [12], or ensure the absence of cycles

in the resulting flux pattern [13–15]. On the other hand,

information on feasible Gibbs energy ranges can be retrieved by

exploiting the patterns of reaction interconnections encoded in the

stoichiometry to narrow the experimental bounds [7]. These

procedures may however require reliable prior thermodynamic

information on metabolites and/or reactions, a type of knowledge

that is often unavailable. An important lesson of this kind of

approaches is that the key input for the thermodynamic profiling

of a reaction network is often provided by the stoichiometric

matrix [16].

The scalability of algorithms to solve mixed integer-linear (or

non-linear) programming problems may become an issue when

the underlying network size is large or when one is interested in

sampling the solution space (for both free energies and fluxes)

rather than focusing on a potentially small set of configurations

(e.g. optima). Luckily, however, solutions to computationally hard

problems can often be generated efficiently with the help of
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heuristic algorithms based on simple local rules. The use of message-

passing algorithms to characterize the high-dimensional volume of

the solution space of FBA models [17] (with a convex, continuous

solution space) or to solve large combinatorial constraint-satisfaction

problems [18] (with a discrete and possibly fragmented solution

space) is an example of the success of this kind of strategy.

Our goal in this paper is to obtain information about the

landscape of Gibbs free energies compatible with a given vector of

reaction directions by following a route that allows to use all

stoichiometric information via heuristics inspired by perceptron

learning. In a nutshell, the method we propose consists in

exploiting the network’s structure to iteratively build up correla-

tions between the chemical potentials of the reacting species

starting from a seed of empirical biochemical knowledge, until a

thermodynamically consistent profile is achieved. The resulting

algorithm is completely scalable and can be employed for different

purposes, like checking the feasibility of flux configurations,

identifying and removing infeasible cycles, estimating reaction

affinities, and obtaining bounds for (log2)concentrations and free

energies of formation.

In the following, we describe the method in detail, providing a

mathematical proof of convergence as well as theoretical

arguments highlighting the main idea behind the procedure. As

applications, we focus on two metabolic networks of rather

different complexity. First, we shall obtain a detailed reconstruc-

tion of the Gibbs energy landscape underlying metabolic activity

in the human red blood cell (hRBC) starting from the flux maps

obtained in [19,20]. Then, the metabolic network of Escherichia coli,

iAF1260 [21], will be analyzed to eliminate infeasible cycles from

randomly generated flux configurations.

Materials and Methods

Materials
The cellular systems analyzed in this study are (i) the model of

the hRBC metabolism developed in [22] and discussed in [19],

and (ii) the reconstructed metabolic network of the bacterium

Escherichia coli iAF1260, presented in [21]. The former consists of 35

intracellular reactions among 39 metabolites subject to 12 uptake

fluxes. The latter includes 2381 reactions among 1039 metabolites.

The basic information extracted from these models is the M|N
stoichiometric matrix (with M and N the number of metabolites

and reactions, respectively), denoted below as S. For Escherichia coli,

we will consider the inner matrix of periplasmic and cytoplasmic

reactions without repetitions, which consists of 1767 reactions

among 1349 chemical species, once periplasmic and cytoplasmic

metabolites are distinguished. According to the reversibility

assignment given in [21], 1475 of the 1767 processes above are

unidirectional, with 292 being reversible. The biochemical data we

shall refer to or make use of include the standard free energies of

formation of metabolites, given in [23], where they are computed at

T~298 K, P~1 atm, pH~7:6 and ionic strenght 0:15 M,

according to the prescriptions of [4]. The estimated intracellular

concentration ranges for the hRBC were extracted from the

Bionumbers database [24] and refer to measurements in different

settings. It is worth to notice that the experimental errors on such

values reflect the intrinsic uncertainty due to statistical cell-to-cell

fluctuations (since measurements of concentration levels are usually

carried out by averaging over numbers of cells ranging from 102 to

108) and analytical error. The stoichiometric matrix and thermo-

dynamic potentials employed for the analysis of the hRBC are

respectively available as Supporting Datasets S1 and S2.

Methods
Algorithm to compute chemical potentials. According to

the second law of thermodynamics, in an open system at constant

temperature T and pressure P the Gibbs energy G~

E{PV{TS (where E, V , S are respectively the energy, volume

and entropy of the system) never increases spontaneously. This

means that the direction ui[f{1,1g (z1 for forward, {1 for

backward) of every chemical reaction i[f1, . . . ,Ng occurring in

the system should be opposite to the Gibbs energy change DGi

induced by reaction i, i.e.

uiDGiƒ0 Vi: ð1Þ

The equality holds if reaction i is in equilibrium. Denoting by Sa,i

the stoichiometric coefficient of reactant a[f1, . . . ,Mg in reaction

i, with the standard sign convention to distinguish substrates

(Sa,iv0) from products (Sa,iw0), the vector of DGi’s for a well-

mixed system can be written in terms of the chemical potentials

m~fmag (where ma is the Gibbs energy per mole of species

a[f1, . . . ,Mg) as (see e.g. [1], Ch. 1)

DG~ST m ð2Þ

Given flux vectors v such that Sv~0 (i.e. steady-state flux

configurations), equation (2) implies that v:DG~0, i.e. that the

‘loop law’ holds. The Gibbs energy landscape reconstruction

problem consists, given a vector u~fuig of reaction directions

(ui[f{1,1g), in generating vectors m that satisfy the system of

linear inequalities

xi:{ui

XM

a~1

Sa,ima§0 Vi: ð3Þ

Note that the solution space of (3) for fixed directions is convex

(while non-convexity can arise if directions are allowed to vary).

Relaxation methods (see e.g. [25], Ch. 12, or [26]) are among the

Author Summary

The operation of biological systems is constrained under
all circumstances by the laws of physics. Thermodynamics,
in particular, dictates preferential directions in which
biochemical reactions should flow at stationarity. When
applied to cellular reaction systems (like metabolic
networks), it favors the emergence of some (thermody-
namically feasible) ways to organize the flow of matter
while prohibiting others. The development of detailed
predictive models for the biochemical activity of a cell
relies on the possibility to integrate the laws of thermo-
dynamics in genome-scale reconstructions of cellular
metabolic networks. In this work we have devised an
efficient relaxation algorithm to implement thermodynam-
ic constraints in genome-scale models. Besides allowing to
check for thermodynamic feasibility of reaction flow
configurations, it is also capable of providing information
on other relevant physico-chemical quantities. We have
applied it to two cellular metabolic networks of different
complexity, namely that of human red blood cells and that
of the bacterium Escherichia coli. In the former case, we
have obtained predictions for the intracellular chemical
state (in terms of metabolite concentrations and reaction
free energies) consistent with empirical knowledge; in the
latter, we have effectively corrected thermodynamically
infeasible flux configurations.

Exploring the Gibbs Energy Landscape of Metabolism
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most effective procedures to find solutions of systems such as (3).

These techniques date back at least to the Jacobi method for

solving systems of linear equalities, and were extended to

inequalities in the 1950’s [27,28]. In essence, they are iterative

methods in which variables are updated so that at every iteration

one of the violated inequalities is fixed. While this readjusts the

entire vector without a guarantee that constraints that were

previously satisfied will be broken, convergence to a solution (if it

exists) is guaranteed if the update step is chosen wisely. We shall

employ a relaxation algorithm known as MinOver, which was

developed in the context of neural network learning [29], and has

been employed, in a slightly modified form [30], to explore the

space of flux states compatible with minimal stability constraints à

la Von Neumann [31,32]. Figure 1 displays a flowchart of the

procedure for the present case. One starts from a ‘trial’ probability

distribution P0(m) of chemical potential vectors. Its role for the

moment is simply that of initializing the algorithm, which is done

by generating a random vector m under P0(m). For simplicity, one

may think that P0(m)~PM
a~1 Pa

0(ma), with prescribed distributions

Pa
0, e.g. uniform over a given interval: in this case each initial ma is

selected randomly and independently from its trial distribution Pa
0.

On the other hand, Pa
0 might contain prior biochemical

information, e.g. by being a uniform distribution centered around

the known experimental values of ma and of sufficiently large width

to span several orders of magnitude in concentrations. (The precise

construction of P0(m) for our case studies is discussed below.) The

algorithm is based on the following steps:

1. Generate a chemical potential vector m~fmag from P0(m).

2. Compute x~fxig from (3) and i0~arg mini xi (i.e., i0 is the

index of the least satisfied constraint).

3. If xi0§0 then m is a thermodynamically consistent chemical

potential vector for u; exit (or go to 1 to obtain a different

solution).

4. If xi0v0, update m as

m?m{lui0
Si0

ð4Þ

(where lw0 is a constant and Sj is the j-th column of matrix

S), go to 2 and iterate.

As is generally true in MinOver schemes, the reinforcement

term in (4) drives the gradual adjustment of chemical potentials by

ensuring that, at every iteration, the least satisfied constraint

(labeled i0) is improved. Convergence to a solution, if one exists, is

guaranteed for any aw0. To see it, suppose that a vector m? exists,

such that

{ui(Si
:m?)§c Vi, ð5Þ

with cw0 a constant (in other words, m? is a solution of (3)). From

Eq. (4), the chemical potential vector at the ‘-th iteration step,

m(‘), satisfies

m(‘):m?~m(‘{1):m?{lsi0(‘{1)(Si0(‘{1)
:m?)

§m(‘{1):m?zlc

§m(0):m?z‘lc, ð6Þ

Figure 1. Flowchart of the algorithm. Given a stoichiometric matrix S and a generic vector u of reaction directions, the algorithm generates a
vector m of chemical potentials if u is thermodynamically feasible. u may for instance be taken from a steady state flux configuration.
doi:10.1371/journal.pcbi.1002562.g001

Exploring the Gibbs Energy Landscape of Metabolism

PLoS Computational Biology | www.ploscompbiol.org 3 June 2012 | Volume 8 | Issue 6 | e1002562



where i0(‘) is the value taken by i0 at step ‘. Similarly, one finds

m(‘):m(‘)ƒm(0):m(0)z‘l2A, ð7Þ

with A~ maxi

P
a (Sa,i)

2. As a consequence,

d(‘):
m(‘):m?

Dm(‘)DDm?D
§

m(0):m?z‘lc

Dm?D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dm(0)D2z‘l2A

q ð8Þ

However by the Cauchy-Swartz inequality d(‘)ƒ1, and an upper

bound for the number of steps can be obtained from d(‘c)~1
which to leading orders in 1=c and 1=l gives

‘c^
d1

c2
z

d2

l2
z

d3

lc
, ð9Þ

where d1w0, d2w0 and d3 are constants proportional to A.

Hence starting from an initial random vector of chemical

potentials the algorithm is able to obtain a new vector ensuring

that (3) is satisfied. Re-initializing the algorithm from a different

random vector sampled from P0(m) allows to retrieve another

solution and in turn explore the space of m’s satisfying (3).

In essence, the final outcome of multiple (random) initializations

of the above algorithm is a set of correlated probability distributions

for the ma’s (at odds with the P0(m), which was assumed to be a

product measure, so that no correlations were present initially).

The algorithmic origin of such interdependencies can be

understood considering that chemical potentials are updated

dynamically through a series of reinforcement steps of the form

luiSa,i. It follows that the final value of ma can be written as

ma~mtr
a za

P
i hiSa,i, where mtr

a is the trial chemical potential

sampled from P0 (i.e. the initial value of ma) and hi[f0,1g is an

index which is updated (increased or decreased by one according

to the sign of the reaction) each time reaction i tries to invert. The

connected correlations SmambTc:SmambT{SmaTSmbT between

chemical potentials (where S � � � T is an average over all possible

choices of the initial conditions) can thus be decomposed as

SmambTc~dabs2
azl

XN

i~1

Sa,iSmtr
b hiTcz

l
XN

i~1

Sb,iSmtr
a hiTczl2

X
i,j

Sa,iSb,jShihjTc,

ð10Þ

where s2
a is the variance of Pa

0 and dab~1 if a~b and ~0

otherwise (so that Smtr
a mtr

b Tc~dabs2
a). In the Gaussian approxima-

tion for
PN

i~1 Sa,ihi, the leading term (of O(N)) in the above sum

is

l2
XN

i~1

Sa,iSb,is
2
hi

(a=b): ð11Þ

Therefore to leading order, the dynamics tends to correlate (resp.

anti-correlate) the chemical potentials of metabolites typically

appearing on the same (resp. opposite) side of the reaction

equations. In a sense, the above scheme allows to modify P0 by

building up correlations between chemical potentials according to

the interconnections encoded in S. Note that, at odds with the

method proposed in [7], the resulting ma’s can exceed the initial

bounds defined by P0(m).

If there is no prior information on the direction of some

reactions (e.g. because they are putatively reversible), the

corresponding constraints (3) are formally absent, as if ui~0.

However, the above method still allows to retrieve information

about the chemical potential of a metabolite involved in them,

provided it is not employed in reversible processes only, in which

case its ma clearly is never updated.

Finally, some observations are in order about the solution space

of (3), which in general has the form of an unbounded cone passing

trough the origin. If one is interested in uniform sampling the

space of m’s making S thermodynamically feasible, boundedness is

an essential precondition. The simplest way to obtain a bounded

solution space consist in clamping some ma’s, i.e. in keeping them

fixed at definite values throughout the updating. Note that fixing

some ma’s is also crucial to set a scale for chemical potentials. The

same effect can be achieved by assigning hard ranges of variability

for potentials in the form of bounds like mmin
a ƒmaƒmmax

a (e.g.

according to experimental or biochemical information). Such

inequalities can simply be added to the list of thermodynamic

constraints (3). Alternatively, one may add other types of global,

non-homogeneous constraints bearing a physical justification. For

instance, if uptake fluxes are included in S, the chemical potentials

of the external metabolites should be fixed; or, volume constraints

for the feasible ranges of concentrations could be added if the

standard free energies of formation are known. Once this is done,

the system (3) becomes inhomogeneous and its solution space is

formed by the union of a convex polyhedron and a cone;

boundedness can be achieved if and only if the cone shrinks to the

null vector, which occurs if the related homogeneous system of

equations has no solutions apart from the trivial one, ma~0 Vm
[33]. In synthesis, one can obtain a bounded solution space for (3)

by clamping the chemical potential of a sufficient number of

metabolites to ensure that the homogeneous system of equalities

associated to the inhomogeneous system of inequalities obtained

by clamping some ma’s in (3) admits the null vector as its only

solution.

A number of interesting theoretical and computational ques-

tions arise at this stage, regarding e.g. the minimal amount of prior

information on chemical potentials needed to bound the solution

space of (3), or computationally efficient and scalable methods to

obtain uniform sampling (besides Monte Carlo, which may be

infeasible at high dimensions as suggested by the ‘‘curse of

dimensionality’’, see e.g. [34]). To our knowledge, there is no

mathematical proof that MinOver schemes are capable of

sampling a bounded solution space uniformly, although low

dimensional tests suggest that this might indeed be the case [31].

Our goal in the present paper, rather than uniformly sampling the

space of chemical potentials granting feasibility, is that of exploring

feasible configurations ‘‘close’’ to the prior biochemical informa-

tion we have injected. To quantify this idea, we have explicitly

compared the solutions obtained via the above procedure with

those retrieved from the minimization of a cost function (the

average Euclidean distance d between the prior and the solution)

and by a standard relaxation method (see Results: Exploring the

Gibbs energy landscape of the hRBC metabolic network). The

heuristics we present indeed turns out to roughly minimize d , with

the advantage of being considerably faster than a penalty method.

In addition, it allows to access refined information on the Gibbs

energy landscape (i.e. compute chemical potentials and Gibbs

energy changes) even when the initialization is complemented by a

noisy or inconsistent biochemical prior, since the algorithm

correctly identifies and gradually removes inconsistencies. The

solutions thus obtained identify a restricted and statistically well-

behaved set of chemical potentials with physiological significance.

Exploring the Gibbs Energy Landscape of Metabolism
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We are currently unable to go beyond this point. In addition, we

shall see that by the same method one can verify the

thermodynamic consistency of, and eventually adjust, specific flux

configurations of biochemical reaction networks.

Algorithm to identify and remove loops. The algorithm just

discussed generates chemical potential vectors given a thermody-

namically feasible vector of reaction directions. A generic assign-

ment of reaction directions, however, could be such that the system

(3) has no solutions apart from the trivial one. In accordance with

the Farkas-Minkowski lemma [33] this happens if and only if there is

at least one infeasible loop, i.e. if there is a set L of intracellular

reactions for which positive constants kiw0 exist such that

X
i[L

kiuiSa,i~0 Va: ð12Þ

In presence of a loop, relaxation methods (MinOver included) do

not converge, just because the least satisfied constraint moves along

the loop causing the iteration to cycle indefinitely. More precisely, in

presence of a loop the MinOver dynamics becomes periodic or

almost periodic. For a periodic dynamics m(‘zL)~m(‘) so that,

using (4), for any ‘ we have

0:ma(‘zL){ma(‘)~{l
XL

t~1

si0(tz‘)Sa,i0(tz‘) Va: ð13Þ

Comparing this with (12) it can be gathered that reactions updated

over a period define a loop of length L (setting ki to the number of

times constraint i has been updated). This suggests a simple way to

correct configurations of reaction directions that are thermody-

namically infeasible to start with:

1. While running the algorithm to compute chemical potentials

for a large number of iteration steps T , keep track of the last

say K least unsatisfied constraints, i.e. store i0(‘) for

‘~T{Kz1, . . . ,T , with K a reasonably large number (e.g.

500), and count the number n of different reactions appearing

in the series.

2. Search, within such subset of reactions, for a loop of length L

by looking for solutions to equation (12) with ki=0 for L
reactions only, for all L-uples, starting from L~3 and

increasing L.

3. If a loop is found, change the direction of one of its reversible

reactions chosen with uniform probability.

In the Results section we shall use this heuristics to spot loops

and eliminate them in all of the infeasible configurations we shall

generate for a large metabolic network (E. coli iAF 1260). For this

network, it turns out that nƒ50 in all runs and that accounting for

short loops (of length up to 6) suffices to correct all 105 randomly-

generated configurations we tested. This is rather important since,

in principle, step (ii) of the above procedure could be exponential

in L.

A computer code implementing the algorithms to compute

chemical potentials and identify and remove infeasible loops is

downloadable http://chimera.roma1.infn.it/SYSBIO/.

Results

Exploring the Gibbs energy landscape of the hRBC
metabolic network

As a first application, we have employed the MinOver scheme

outlined above to analyze the thermodynamic landscape of the

hRBC metabolic network. As a starting point, we have considered

Figure 2. Estimated log-concentrations of metabolites in the hRBC metabolic network. The input information used to initialize the
algorithm (with error bars) is denoted by black markers (see text for details). Values obtained starting from direction assignments corresponding to a
sample of 105 MBE and VNC solutions are shown respectively as red and green markers.
doi:10.1371/journal.pcbi.1002562.g002

Exploring the Gibbs Energy Landscape of Metabolism
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the flux configurations obtained in [19] and [20] respectively by

Monte Carlo sampling of the solution space of mass balance

equations (MBE) and by MinOver sampling of states compatible

with Von Neumann’s constraints (VNC). In brief, MBE describe

steady-state fluxes in terms of Kirchhoff-type laws enforced at

metabolite nodes of the network as Sv~0. In such a scenario,

intracellular concentrations are clamped. VNC, instead, ‘soften’

the mass-balance equations by requiring that, for intracellular

metabolites, Sv§0. In the underlying steady state intracellular

concentrations can grow in time if flux vectors allowing for it

exist. Once the nutrient availability is set, VNC define a self-

consistent flux problem where the system selects how much of

the nutrients to use and, eventually, which metabolites are

globally produced. For intracellular metabolites, VNC corre-

spond to a stability requirement since, in a dynamical setup, a

violation of one of the inequalities implies the existence of a

metabolite whose total amount used as input in metabolic

processes exceeds the total amount returned as output (see e.g.

[35,36]). VNC are also closely linked to the metabolite

producibility problem introduced in [37]. We shall thus make

use of the reaction direction vectors u obtained in [19,20] for

the hRBC. In summary:

N according to [19], the net flux of all reactions is in the forward

direction, except PGI, R5PI and ApK, which are found to

operate bidirectionally;

N according to [20], the net flux of all reactions is in the forward

direction, except R5PI (which is found to be operating

bidirectionally), and PGI and ApK (which are found to have

a net backward flux).

As a first step, we tested the thermodynamic feasibility of these

direction assignments, solving (3) by starting from the vector mtr
a ~1 Vm.

A solution is found for both MBE and VNC assignments. Both sets of

assignments then turn out to be (expectedly) thermodynamically

feasible. In this case, however, it is the emerging thermodynamic

landscape that is of interest to us. As the initial distribution of chemical

potentials P0 we selected a product of independent uniform

distributions Pa
0. The Pa

0 for compounds with known empirical

bounds on concentrations were centered at a value SmaT computed

from the Gibbs energy of formation m0,a and the estimated intracellular

concentration ca under the hypothesis of a dilute solution, i.e. at

SmaT~m0,azRT log ca, ð14Þ

Figure 3. Estimated Gibbs energy changes of reactions in the hRBC metabolic network. The input information used to initialize the
algorithm (with error bars) is denoted by black markers; the values obtained starting from direction assignments corresponding to MBE and VNC
solutions are shown respectively as red and green markers. Note that the input information is consistent with reactions operating in the reverse
direction for GAPDH, PGK, PGM, LDH, G6PDH, TA and PNPase. The algorithm is able to correct these inconsistencies starting from both MBE- and
VNC-compatible direction assignments.
doi:10.1371/journal.pcbi.1002562.g003

Exploring the Gibbs Energy Landscape of Metabolism
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and were taken to span two standard deviations in concentrations. The

Pa
0 for metabolites whose concentration estimates were unavailable

(namely 6PGL, RL5P, X5P, R5P, S7P) were taken to be centered

again at (14) but with ca~10{4 M, and were assumed to span four

orders of magnitude uniformly in the chemical potential scale. Finally,

the chemical potential of water was clamped.

Results for the estimated concentrations and Gibbs energy

changes (computed from (2) using the final chemical potential

vectors) are showcased in Figures 2 and 3, respectively. Note that

several of the bounds encoded in P0 (black markers) indicate that

the Gibbs energy change in a reaction is positive and in contrast

with the reaction direction assignment from the flux problem.

Specifically this happens for GAPDH, PGK, PGM, LDH,

G6PDH, TA and PNPase, due either to the actual experimental

estimates for the affinities or to the initial uncertainty we place on

concentrations. Such bounds turn out to be altered by MinOver in

a direction compatible with direction assignments based on mass

balance, as final affinities display significant changes with respect

to the picture embedded in P0. At the same time, we observe that

in some cases the fluctuations of ma do exceed the initial boxes

defined by P0, leading to an estimate for the concentration range

also for metabolites whose level has not been experimentally

probed (6PGL, RL5P, X5P, R5P, S7P). Our predictions for the

levels of (1,3)-diphosphoglycerate ((1,3)-DPG), 2-phosphoglycerate

(2PG) and phosphoenolpyruvate (PEP) slightly differ from the

experimental estimates. This is most likely a consequence of the

fact that we are forcing the phosphoglycerate kinase (PGK) and

the glyceraldehyde phosphate dehydrogenase (GAPDH) reactions

in the forward direction, in agreement with the steady state

direction assignments for glycolysis, even if the experimental

values would classify them as reversible. In addition, we obtain

levels of key metabolites like ATP and inorganic phosphate that

differ slightly from experimental estimates, while our predictions

for ADP and AMP fail under the MBE and VNC direction

assignments, respectively. On one hand this could be due to errors

in the prior information on standard free energies but on the other

hand, precise experimental estimates of the levels of such highly

interchanging metabolites might be difficult to achieve.

We can now quantify the extent to which the solutions we

generate are ‘‘close’’ to the prior. In Figure 4 we compare the

Gibbs energy changes obtained for the hRBC using MBE

directions in three different ways: (a) the MinOver algorithm

introduced here, with update given by (4); (b) a penalty method

defined by the update rule

Figure 4. Estimated Gibbs energy changes of reactions in the hRBC metabolic network: comparison of different algorithms. The
results obtained starting from direction assignments corresponding to MBE solutions are shown here for three different methods: (a) MinOver with
l~0:01 (this paper, free markers); (b) a penalty method using the Euclidean distance between the solution and the prior as the cost function (blue
markers); (c) a relaxation method optimized to be faster (red markers). For (b), we have set l1~0:001 while l2 is initialized at 10 and grows in steps of
10 each time a minimum is found, until the configuration is feasible. These results show that MinOver roughly minimizes the average Euclidean
distance between the solution and the prior (as the penalty method), albeit with running times over 100 times shorter (see text for details).
doi:10.1371/journal.pcbi.1002562.g004
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In short, algorithm (b) minimizes the Euclidean distance between

the prior m(0) and the solution under the thermodynamic

constraint, which is enforced through the term proportional to

l2. The relaxation method (c) simply corresponds to a particular

choice of the constant l appearing in (4): in specific, the step size is

required to be proportional to the amount by which the least

satisfied constraint is violated. One sees that the penalty method

and MinOver produce almost identical solutions. Measuring

explicitly the average Euclidean distance between the prior and

the solution (the average being taken over the choice of the priors),

one indeed finds d^15 KJ=mol (penalty method) versus

d^15:2 KJ=mol (MinOver), while d^22:4 KJ=mol for the

relaxation method (c). Note that the gap between the performance

of MinOver and that of the penalty method (0:2 KJ=mol,

corresponding to a relative error on d of just over 1%) provides

a very rough estimate of the average distance between the

solutions obtained by MinOver and those obtained by cost

function minimization, and is much smaller than the spread of the

initial configurations of chemical potentials, which in this case is

about 15 KJ=mol. Comparing running times for this case,

moreover, one sees that MinOver is about 140 times faster than

the penalty method (19 versus roughly 2700 seconds), while the

standard relaxation method is even faster (about 2:4 seconds).

Identifying and removing thermodynamically infeasible
loops in the Escherichia coli metabolic network model
iAF1260

The application that we have just discussed shows that the

algorithm we present can provide information on the Gibbs

energy landscape, even correcting inconsistent input knowledge.

We shall now employ the procedure outlined in the Materials and

Methods section to efficiently identify and eliminate loops from

thermodynamically infeasible flux configurations of the recon-

structed metabolic network of Escherichia coli iAF1260 [21]. We

shall focus specifically on the periplasmic and cytoplasmic core of

the network, which presents the advantage that the cycles

identified here are independent of the transport and environment

Figure 5. Histogram of the convergence times of the algorithm. Convergence times shown are for the identification and elimination of the
thermodynamically infeasible loops and for the verification of thermodynamic feasibility of randomly generated flux configurations from the
Escherichia coli iA1260 metabolic network model (on an Intel dual core at 3.06 GHz).
doi:10.1371/journal.pcbi.1002562.g005
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selections. The network includes 1767 reactions among 1349
chemical species.

Since we are not focusing on the reconstruction of the Gibbs

energy landscape but simply on the existence of solutions of (3), a

detailed biochemical prior is not needed. Therefore, for the

present purposes we have taken P0(m) to be product of identical

uniform distributions. To begin with, we have fixed the direction

of reactions that are putatively irreversible in the reconstructed

network (1475 in total) and verified that this assignment is indeed

thermodynamically feasible by finding a solution of (3) restricted to

irreversible processes. Then we integrated the above assignments

by fixing randomly and independently with equal probability the

directions of the 292 processes that are putatively reversible. A

large ensemble of u vectors (105 instances) thus obtained was tested

for thermodynamic feasibility. Note that by excluding the

possibility that reactions are not operating we are considering a

worst-case scenario in which all reactions bear a non-zero flux.

Only about 1.5% of these configurations turned out to be

thermodynamically feasible, i.e. free from loops. We focus on

infeasible instances, for which no vector m of chemical potentials

was found to satisfy (3), applying to them the loop identification

and removal protocol. Figure 5 shows the histogram of conver-

gence times for the above procedure, i.e. the times required to

verify that a given vector of flux directions is thermodynamically

infeasible and to correct it. On an Intel dual core at 3.06 GHz the

average CPU time for convergence is of the order of a few seconds,

while it exceeds 10 seconds in about 5% of the (random) instances.

In the worst case within our ensemble, convergence time was

around 100 seconds.

We have furthermore studied the set of loops that were thus

identified and corrected. Quite remarkably this analysis revealed

that thermodynamical infeasibility is related to the presence of a

small set of cycles, 23 in total. These are reported in Table 1 and

three of them are depicted explicitly in Figure 6. Note that some of

Figure 6. Three of the 23 thermodynamically infeasible cycles identified in the E. coli metabolic network iAF1260. Rectangles (resp.
ellipses) denote metabolites (resp. reactions). The cycles depicted here are n. 8 (A, top left), 18 (B, top right) and 22 (C, bottom) from Table 1. The star
indicates reversible reactions according to [21]. See Supporting Table S1 for abbreviations.
doi:10.1371/journal.pcbi.1002562.g006
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these cycles include a single reversible reaction. This implies that

in order to ensure that such cycles will not be present in the final

configuration it is necessary to fix the direction of the reactions

SERt2rpp, GLUt2rpp, ACt2rpp, GLYCLTt2rpp, THRt2rpp,

SUCOAS, PPAKr and PROt2rpp opposite to that shown in

Table 1 (see the Supporting Table S1 for abbreviations). In turn,

this is easily seen to impose a further constraint on the direction of

the reversible fluxes CAt6pp and GLUABUTt7pp (via cycles of

length 4). Finally we checked that excluding these loops guarantees

thermodynamic feasibility of 106 randomly generated flux

configurations

We remark that the corrected flux configurations thus obtained,

like the starting ones (which were drawn from a uniform product

measure over reactions), are not guaranteed to be consistent with

any steady state assumption. On the other hand, see Supporting

Text S1, starting from a mass-balanced configuration one retrieves

another mass-balanced configuration. Clearly, a method that

directly generates thermodynamically steady state flux vectors and

chemical potentials would be highly welcome. Nevertheless, we

note that our analysis focuses on a worst-case scenario where all

reactions bear a non-zero flux. In a more realistic case where

reactions may be inactive it is reasonable to expect that the flux

directions we generate will allow for a steady state. In turn, the

identification of these loops might be weakly conditioned on the

sample of flux assignments we employed. We can’t rule out the

possibility that assigning directions based e.g. on mass balance

constraints provides a selection criterion for flux configurations

that differs substantially from the uniform measure we employed.

However we expect that our sample allows to correctly identify

loops involving at most log2 S^16 reversible reactions, S being

the number of distinct direction assignments in our sample. Only

loops that include a larger number of reversible processes might

therefore play a role in a differently selected set of direction

assignments.

Discussion

Ideally, constraint-based models of metabolic activity allow to

appraise the energetic potential of cells based on minimal

constraints related to local mass-balance and thermodynamic

feasibility rules, possibly complemented with optimization princi-

ples that can encode for functional constraints. As a result, the flow

of matter in non-equilibrium steady states could be characterized

in terms of the Gibbs energy change of reactions, which specifies

the directionality of interconversions, and of the average number

of turnovers per time per volume, i.e. the flux, without the need of

detailed information on enzyme kinetics or transport mechanisms.

Thermodynamic constraints, strongly linked to overall intracellu-

lar conditions like ionic strength and pH [38], are particularly

subtle and rich of consequences. It has indeed been argued that

the Gibbs energy landscape contains important regulatory

information [7]. Reactions far from equilibrium are expected to

be roughly insensitive to fluctuations in metabolite concentrations,

so that they will be driven mostly by enzyme regulation. On the

other hand, reactions close to equilibrium (i.e. with a net Gibbs

energy change close to zero) bear a high sensitivity to variations in

metabolite levels and are therefore unlikely targets for tight

regulation. Besides, knowledge of reaction free energies (or more

precisely of the chemical potentials of the metabolites involved)

provides clues on metabolite levels which would be hard to obtain

from mass-balance constraints only. Therefore, developing effec-

tive procedures to deal with the complexity of flux models

encompassing both mass and energy constraints at genome scale is

a central challenge for computational systems biology.

Many important steps have been taken recently to tackle it. At

one level, thermodynamic feasibility can be translated into

topologic constraints (‘absence of loops’) for the flux configuration

emerging from mass-balance constraints [39]. This suggests than

an improvement in reversibility assignments (e.g. along the lines of

[23]) can be a key to ensure energy balance a priori in metabolic

network reconstructions, with the caveat that the possibility that a

reaction reverses can depend on the boundary conditions (e.g. the

external supply of a certain metabolite) or on intracellular

perturbations (e.g. a knockout causing the accumulation of an

intermediate metabolite) [12]. Another possibility consists in

building mixed integer-linear constraint-based models that include

thermodynamic requirements in the form of consensus rules (using

information on standard Gibbs free energies) [13] or as additional

constraints on metabolite levels (using information on measured

intracellular concentrations) [12]. Here we have followed a

different though related route that in our view complements the

approaches just described. The starting point is the fact that, given

a flux configuration, thermodynamic constraints can be written as

simple stoichiometric inequalities for the chemical potentials.

Feasibility implies the existence of a vector of chemical potentials

Table 1. Thermodynamically infeasible cycles for the E. coli
metabolic reaction network iAF1260.

Cycle ID Length Formula

1 3 SERt4ppzNAt3pp{SERt2rpp(R)

2 3 NAt3ppzGLUt4pp{GLUt2rpp(R)

3 3 NAt3pp{ACt2rpp(R)zACt4pp

4 3 NAt3pp{GLYCLTt2rpp(R)zGLYCLTt4pp

5 3 PROt4pp{PROt2rpp(R)zNAt3pp

6 3 HPYRRx{TRSARr(R){HPYRI(R)

7 3 CRNDt2rpp(R){CRNt2rpp(R)zCRNt8pp

8 3 VPAMT{ALATAL(R)zVALTA(R)

9 3 ABUTt2ppzGLUABUTt7pp(R){GLUt2rpp(R)

10 3 NAt3pp{THRt2rpp(R)zTHRt4pp

11 3 ADK3(R){ADK1(R)zNDPK1(R)

12 3 ACCOALzPPCSCT{SUCOAS(R)

13 3 PPAKr(R)zACCOALzPTA2

14 4 ACt4pp{CAt6pp(R){ACt2rpp(R)zCA2t3pp

15 4 CA2t3pp{GLYCLTt2rpp(R)zGLYCLTt4pp{CAt6pp(R)

16 4 SERt4pp{CAt6pp(R){SERt2rpp(R)zCA2t3pp

17 4 GLUt4pp{CAt6pp(R)zCA2t3pp{GLUt2rpp(R)

18 4 CA2t3pp{PROt2rpp(R)zPROt4pp{CAt6pp(R)

19 4 THRt4pp{CAt6pp(R){THRt2rpp(R)zCA2t3pp

20 5 ADK1(R){ACKr(R)zACSzPTAr(R){PPKr(R)

21 5 R15BPK{PPM(R){PRPPS(R){ADK1(R)zR1PK

22 6 R1PK{NDPK1(R){PPM(R){PRPPS(R)zR15BPK{ADK3(R)

23 6 ADK3(R){ACKr(R)zPTAr(R)zNDPK1(R){PPKr(R)zACS

The list provides the complete set of cycles turned out in the thermodynamic
feasibility analysis of a sample of 105 different randomly generated flux
configurations. Plus (resp. minus) signs indicate that the reaction participates in
the cycle in its forward (resp. backward) direction. (R) indicates that the
corresponding reaction is putatively reversible according to [21]. Analyzing
interdependencies in the above cycles, one sees that the directions of the
putatively reversible fluxes SERt2rpp, GLUt2rpp, ACt2rpp, GLYCLTt2rpp,
THRt2rpp, SUCOAS, PPAKr, PROt2rpp, CAt6pp and GLUABUTt7pp are in fact
constrained. See Supporting Table S1 for abbreviations.
doi:10.1371/journal.pcbi.1002562.t001
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satisfying such system. We have presented an algorithm that is able

to construct solutions starting from a possibly limited and noisy

biochemical prior. Our approach differs substantially from

previous methods in that it relies on modifying the structure of

correlations between chemical potentials (after fixing some

variables to set a scale) using the stoichiometric information on

reaction connectivity to drive the updating process. In this sense,

the important difference with [7] is that the prior information is

used only to initialize the algorithm, and a large flexibility is

allowed in deforming it until a viable solution is obtained.

The usefulness of the algorithm in the analysis of genome-scale

networks has been tested in two different cases. For the metabolic

network of the human red blood cell, our approach has proved

capable of reconstructing the Gibbs energy landscape correcting

inconsistent prior information. In turn, this has lead to predictions

for intracellular metabolite levels. It is important to stress that the

bounds on concentrations we have obtained (which vary rather

heterogeneously across compounds) only reflect stoichiometric

information. For the metabolic network of Escherichia coli, instead,

we have focused on the problem of correcting thermodynamically

infeasible flux states in the core formed by the periplasmic and

cytoplasmic matrix. We have thoroughly analyzed a large

ensemble of configurations of reaction directions, identifying the

cycles responsible for thermodynamic inconsistency and correcting

them in a very modest amount of CPU time. Quite intriguingly,

we have related infeasibility to the existence of a relatively small

number of short cycles in the flux configuration, whose removal

suffices to ensure thermodynamic feasibility in worst-case flux

configurations.

The main advantage of our method consists in our view in its

efficient implementation. On the critical side, we point to two

aspects that deserve further study. In first place, our tool requires

flux configurations as inputs, i.e. it is still unable to produce

thermodynamically feasible configurations of fluxes and chemical

potentials starting from no previous reversibility hypothesis.

However it may provide the basis of a more general procedure

for the analysis of genome-scale metabolic networks that couples

flux- and thermodynamic profiling, a challenging open problem in

computational biology. Secondly, our method relies on prior

biochemical information and it would be desirable for it to be

effective even if much or most biochemical priors are unknown. As

we pointed out, some information has to be injected into the

problem for the sake of definiteness. The interesting question is

therefore what is the minimum necessary prior needed to

reconstruct the Gibbs energy landscape and how are predictions

affected by restricted priors. Such problems are mathematical in

nature and could bear a particularly high significance for modeling

purposes.
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