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ASYMPTOTIC ANALYSIS OF A FAMILY OF NON-LOCAL

FUNCTIONALS ON SETS

Michela Eleuteri1, Luca Lussardi2,* and Andrea Torricelli1

Abstract. We study the asymptotic behavior of a family of functionals which penalize a short-range

interaction of convolution type between a finite perimeter set and its complement. We first compute

the pointwise limit and we obtain a lower estimate on more regulars sets. Finally, some examples are

discussed.
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1. Introduction

In this paper we study the asymptotic behavior, as ε→ 0, of the family of functionals

Fε(E) =
1

ε

∫
Ec∩Ω

f(Gε ∗ χE∩Ω) dx.

where Ω ⊂ RN is open and bounded, N > 1, E is a set of finite perimeter in Ω, f is given and Gε(z) = 1
εN
G( zε )

where G is a suitable kernel. Our analysis has been inspired by a paper by Miranda et al. in [8] where the case

f(t) = t is considered and G is the Gauss-Weierstrass kernel, namely G(z) = 1
(4π)N/2

e−|z|
2/4 (see also [6, 7]

for smoother sets and [1] for similar convolution approximation). More precisely, in [8] it is proven that the

pointwise limit is, up to a constant, the perimeter of E in Ω. A more general kernel G has been investigated,

in the context of optimal partition problems, by Esedoḡlu and Otto [5] where G is smooth and non-negative,

radially symmetric and satisfying the following conditions:∫
RN

G(z) dz = 1,

∫
RN
|z|G(z) dz < +∞, |∇G(z)| . G

(z
2

)
, ∇G(z) · z ≤ 0.
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213, 41125 Modena, Italy.
2 Dipartimento di Scienze Matematiche “G.L. Lagrange”, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino,

Italy.

* Corresponding author: luca.lussardi@polito.it

© The authors. Published by EDP Sciences, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/cocv/2022080
https://www.esaim-cocv.org
mailto:luca.lussardi@polito.it
https://creativecommons.org/licenses/by/4.0


2 M. ELEUTERI ET AL.

On the other hand, as in [5], Esedoḡlu and Otto consider only the case f(t) = t, but they prove a complete

Γ-convergence result for the family {Fε}ε>0 on finite perimeter sets with respect to the strong L1-convergence.

We point out that for the simpler class of functionals with f(t) = t there is a much simpler proof of gamma

convergence in L1 subsequently given by Esedoḡlu and Jacobs in [4]. In particular, they deal with more general

convolution kernels, which in particular can be non-radially symmetric, thus including anisotropy, and even

change sign to a certain extent, which turns out to be necessary for the approximation of certain anisotropies.

A very similar result has been obtained more recently by Berendsen and Pagliari [3]. As far as we know, the

last result is due to Pagliari [9] where he essentially remove the radial symmetry of G and he obtain, as limit,

an anisotropic perimeter.

In this paper we try to investigate the general situation. We assume that G is even, non-negative, supported

on the unit closed ball and with
∫
RN G(z) dz = 1. First of all we are able to compute the pointwise limit, as

ε → 0, of Fε(E) whenever f is C1, non-decreasing and f(0) = 0. It turns out (see Thm. 3.1) that for any

E ⊂ RN with finite perimeter in Ω

lim
ε→0

Fε(E) =

∫
∂∗E∩Ω

∫ 1

0

f

(∫
{z·νE(x)≥t}

G(z) dz

)
dtdHN−1(x)

where ∂∗E is the reduced boundary of E and νE(x) is the outer unit normal at E. In view to have a Γ-

convergence result we investigate also the lower estimate. Unfortunately, the technique of Esedoḡlu and Otto

[5] does not work in our situation: it is crucial for them to switch the order of integration, that is impossible for

us since we have f between the exterior integral and the convolution one. It seems that this difficulty cannot

be easily overcome in the general situation. We are able to show (see Thm. 3.2) a Γ-liminf inequality only on

graphs of C1 functions with respect to the C1-uniform convergence. Actually, it is easy to generalize such a

inequality in the case of sets which are locally graphs of C1 functions with respect to a suitable convergence

(see Rem. 3.3). Finally, we also prove (see Thm. 3.6) that if f is also convex, then the pointwise limit is lower

semicontinuous with respect to the strong L1-convergence, which suggests that for f convex the Γ-limit in the

strong L1-convergence should be the pointwise limit. At the end of the paper we will also discuss some examples.

2. Notation and preliminaries

2.1. Notation

In what follows N ∈ N with N ≥ 1. For any r > 0 and x ∈ RN the notation Bdr (x) stands for the open ball

in Rd centered at x with radius r, while SN−1 = ∂BN1 (0). If A ⊆ RN we also denote by Hk(A) the Hausdorff

measure of A of dimension k ∈ {0, 1, . . . , N} (H0 is the counting measure). If Ah, A are measurable subsets of

RN , then Ah → A in L1(RN ) (or L1
loc(RN )) means that χAh → χA in L1(RN ) (respectively L1

loc(RN )). Finally,

for any A ⊆ RN we let Ac = RN \A.

2.2. Finite perimeter sets

We recall some notion on finite perimeter sets in euclidean space; for details we refer to [2]. Let Ω be an open

subset of RN . A measurable set E ⊆ RN is said to be a set of finite perimeter in Ω if

P(E,Ω) = sup

{∫
E

divX(x) dx : X ∈ C1
c (Ω;RN ), ‖X‖∞ ≤ 1

}
< +∞.
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The quantity P(E,Ω) is called perimeter of E in Ω. Finite perimeter sets have nice boundary in a measure

theoretical sense. Precisely, one can define a subset of E as the set of points x where there exists a unit vector

νE(x) such that:

x− E
r
→ {y ∈ RN : y · νE(x) ≥ 0}, in L1

loc(RN ) as r → 0, (2.1)

and which is referred to as the outer normal to E at x. The set where νE(x) exists is called the reduced

boundary of E and is denoted by ∂∗E. It turns out that, for any E set of finite perimeter in Ω, we have

P(E,Ω) = HN−1(∂∗E ∩ Ω). The reduced boundary of E plays the role of the topological boundary also in the

sense of the integration by parts. Indeed, one can show that, if E is a set of finite perimeter in Ω, then the

following Gauss-Green formula holds true:∫
E

divX(x) dx =

∫
∂∗E

X(x) · νE(x) dHN−1(x), ∀X ∈ C1
c (Ω;RN ). (2.2)

Finite perimeter sets satisfy good properties for the Calculus of Variations: for instance, if Eh, E have finite

perimeter in Ω and Eh
L1

→ E, then

P(E,Ω) ≤ lim inf
h→+∞

P(Eh,Ω).

3. Setting of the problem and main results

Let N > 1, let G : RN → [0,+∞) be of class C∞ such that

suppG = BN1 (0), G(−x) = G(x),

∫
RN

G(x) dx = 1.

For any ε > 0 and for any x ∈ RN , let

Gε(x) =
1

εN
G
(x
ε

)
.

We consider a continuous and non-decreasing function f : [0,+∞) → R with f(0) = 0. Let Ω ⊂ RN be open

bounded. We denote by PN (Ω) the set of all sets of finite perimeter in Ω. For any ε > 0, we introduce the

functional Fε : PN (Ω)→ [0,+∞) defined by

Fε(E) =
1

ε

∫
Ec∩Ω

f(Gε ∗ χE∩Ω) dx. (3.1)

In order to state our main results, we introduce the function θ : SN−1 → [0,+∞) given by

θ(ν) =

∫ 1

0

f

(∫
{x·ν≥t}

G(x) dx

)
dt. (3.2)

Let F : PN (Ω)→ [0,+∞) be the functional given by

F (E) =

∫
∂∗E∩Ω

θ(νE(x)) dHN−1(x).
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Our first main result concerns the pointwise limit of Fε on PN (Ω).

Theorem 3.1. (Pointwise limit) Assume f of class C1. Let E ∈ PN (Ω). Then

lim
ε→0

Fε(E) = F (E).

On the other hand, we are also able to prove a lower estimate on graphs.

Theorem 3.2. (Lower estimate) Let D ⊂ RN−1 be open and bounded with Lipschitz boundary, let uh, u ∈
C1,1(D), with uh, u > 0 on D such that uh → u uniformly in C1(D). Let Eh, E be given by

Eh = {(x, y) ∈ RN−1 × R : x ∈ D, 0 ≤ y ≤ uh(x)},

E = {(x, y) ∈ RN−1 × R : x ∈ D, 0 ≤ y ≤ u(x)}.

Then, for any positive infinitesimal sequence (εh) it holds

lim inf
h→+∞

Fεh(Eh) ≥ F (E).

Remark 3.3. It is not difficult to see that Theorem 3.2 can be generalized to uniformly C1,1-regular sets in

Ω with respect to a suitable notion of uniform convergence. Precisely, a set E ⊂ RN is said to be uniformly

C1,1-regular set in Ω if there exist L, δ > 0 such that for every x ∈ ∂E ∩ Ω there exist Dx ⊆ RN−1 open and a

function ux ∈ C1,1(Dx) such that:

– ∂E ∩ Ω ∩BNδ (x) is the graph of ux;

– ‖∇ux‖∞ ≤ L.

On the set of all uniformly C1,1-regular sets in Ω we put a convergence of sequences. Precisely, we say that Eh
converges to E if there exist δ, L > 0 such that for every x ∈ ∂E ∩Ω there exist Dx ⊆ RN−1 open and functions

uxh, u
x ∈ C1,1(Dx) such that:

– ∂Eh ∩ Ω ∩BNδ (x), ∂E ∩ Ω ∩BNδ (x) are the graphs of uxh, u
x respectively;

– ‖∇uxh‖∞ ≤ L and ‖∇ux‖∞ ≤ L;

– uxh → ux uniformly in C1(Dx).

It is easy to see that with respect to this type of convergence the lower estimate

lim inf
h→+∞

Fεh(Eh) ≥ F (E)

follows as a simple consequence of Theorem 3.2.

Combining Theorem 3.1 with Theorem 3.2 and Remark 3.3 we eventually obtain a Γ-convergence result.

Corollary 3.4. The family {Fε}ε>0 Γ-converges to F as ε→ 0 on uniformly C1,1-regular sets with respect to

the convergence introduced in Remark 3.3.

Remark 3.5. We do not expect compactness of equibounded sequences of uniformly C1,1-regular sets. Nev-

ertheless, at least if f(t) ≥ mt for some m > 0, equibounded sequences are compact in L1. Indeed, if (εh) is a
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positive and infinitesimal sequence and (Eh) be a sequence in PN (Ω) with Fεh(Eh) ≤ c for some c ≥ 0, we get

c ≥ Fεh(Eh) ≥ m

ε

∫
Ec∩Ω

Gε ∗ χE∩Ω dx

and the compactness follows by Lemma A.4 of [5] (see also [1], Thm. 3.1).

The next and last result suggests that the Γ-limit on PN (Ω) of the family (Fε)ε>0 with respect to the

L1-convergence could be really F , at least if f is convex.

Theorem 3.6. If f is convex then the functional F : PN (Ω)→ R is lower semicontinuous with respect to the

L1-topology.

4. The pointwise limit

In this section we prove Theorem 3.1. The main idea comes from the technique used in [8]. We divide the

proof in some steps.

Step 1. We claim that for any E ∈ PN we have

Fε(E) =
1

ε

∫
∂∗E

∫ ε

0

X(η, x) · νE(x) dη dHN−1(x), (4.1)

where for any η > 0 and for any x ∈ ∂∗E

X(η, x) =
1

ηN

∫
Ec
f ′(Gη ∗ χE(y))G

(
y − x
η

)
y − x
η

dy.

For any η > 0 and any y ∈ RN we have, using the Gauss-Green formula (2.2),

d

dη
f(Gη ∗ χE(y))

= −f ′(Gη ∗ χE(y))
1

ηN+1

∫
RN

(
NG

(
y − x
η

)
+∇G

(
y − x
η

)
· y − x

η

)
χE(x) dx

= f ′(Gη ∗ χE(y))
1

ηN

∫
RN

divx

(
G

(
y − x
η

)
y − x
η

)
χE(x) dx

= f ′(Gη ∗ χE(y))
1

ηN

∫
∂∗E

G

(
y − x
η

)
y − x
η
· νE(x) dHN−1(x).

Now notice that, since Gε ∗ χE → χE in L1(RN ) as ε→ 0, we can say that for any y ∈ RN

f(Gε ∗ χE(y))− f(χE(y)) =

∫ ε

0

d

dη
f(Gη ∗ χE(y)) dη,



6 M. ELEUTERI ET AL.

from which we get, using the fact that f(0) = 0,

Fε(E) =
1

ε

∫
Ec
f(Gε ∗ χE(y))− f(χE(y)) dy

=
1

ε

∫
Ec

∫ ε

0

d

dη
f(Gη ∗ χE(y)) dη dy

=
1

ε

∫
∂∗E

∫ ε

0

1

ηN

∫
Ec
f ′(Gη ∗ χE(y))G

(
y − x
η

)
y − x
η

dy dη · νE(x) dHN−1(x)

=
1

ε

∫
∂∗E

∫ ε

0

X(η, x) · νE(x) dη dHN−1(x)

hence (4.1).

Step 2. We claim that for any x ∈ ∂∗E we have

lim
ε→0

X(ε, x) =

∫
{z·νE(x)≥0}

f ′

(∫
{(v−z)·νE(x)≥0}

G(v) dv

)
G(z)z dz. (4.2)

First of all we have

X(ε, x) =
1

εN

∫
Ec
f ′(Gε ∗ χE(y))G

(
y − x
ε

)
y − x
ε

dy

=
1

εN

∫
Ec
f ′
(

1

εN

∫
E

G

(
y − w
ε

)
dw

)
G

(
y − x
ε

)
y − x
ε

dy.

Performing first the change of variable y = x+ εz and then w = x+ εz − εv, we obtain

X(ε, x) =

∫
Ec−x
ε

f ′
(

1

εN

∫
E

G

(
x+ εz − w

ε

)
dw

)
G(z)z dz

=

∫
Ec−x
ε

f ′

(∫
x−E
ε +z

G(v) dv

)
G(z)z dz.

Passing to the limit as ε→ 0 using (2.1) and applying the Dominated convergence Theorem we easily get (4.2).

Step 3. We claim that for any x ∈ ∂∗E it holds

∫
{z·νE(x)≥0}

f ′

(∫
{(v−z)·νE(x)≥0}

G(v) dv

)
G(z)z dz · νE(x) = θ(νE(x)). (4.3)

First of all observe any z ∈ RN with z · νE(x) ≥ 0 can be written in a unique way as z = z̄ + tνE(x) with

z̄ · νE(x) = 0 and t ≥ 0. In particular, z · νE(x) = (z̄ + tνE(x)) · νE(x) = t. Moreover, since G is supported on



ASYMPTOTIC ANALYSIS OF A FAMILY OF NON-LOCAL FUNCTIONALS ON SETS 7

BN1 (0), we can consider t ∈ [0, 1] obtaining

∫
{z·νE(x)≥0}

f ′

(∫
{(v−z)·νE(x)≥0}

G(v) dv

)
G(z)z dz · νE(x)

=

∫
{z·νE(x)≥0}

f ′

(∫
{(v−z)·νE(x)≥0}

G(v) dv

)
G(z)z · νE(x) dz

=

∫ 1

0

∫
{z̄·νE(x)=0}

f ′

(∫
{v·νE(x)≥t}

G(v) dv

)
G(z̄ + tνE(x)) tdtdz̄

=

∫ 1

0

f ′

(∫
{v·νE(x)≥t}

G(v) dv

)∫
{z̄·νE(x)=0}

G(z̄ + tνE(x)) tdz̄ dt

=

∫ 1

0

f ′

(∫
{v·νE(x)≥t}

G(v) dv

)∫
{z·νE(x)=t}

G(z) dHN−1(z) tdt.

Finally, we remark that

d

dt

∫
{v·νE(x)≥t}

G(v) dv

= lim
h→0

1

h

(∫
{v·νE(x)≥t+h}

G(v) dv −
∫
{v·νE(x)≥t}

G(v) dv

)

= − lim
h→0

1

h

∫
{t≤v·νE(x)≤t+h}

G(v) dv

= −
∫
{v·νE(x)=t}

G(v) dv.

Integrating by parts we finally get

∫ 1

0

f ′

(∫
{v·νE(x)≥t}

G(v) dv

)∫
{z·νE(x)=t}

G(z) dHN−1(z) tdt

= −
∫ 1

0

d

dt
f

(∫
{v·νE(x)≥t}

G(v) dv

)
tdt

= −f

(∫
{v·νE(x)≥t}

G(v) dv

)
t

∣∣∣∣1
0

+

∫ 1

0

f

(∫
{v·νE(x)≥t}

G(v) dv

)
dt

= θ(νE(x))

where θ has been introduced in (3.2). This concludes the proof of (4.3).

Step 4. We easily conclude. Using (4.1), (4.2), (4.3), De l’Hôpital rule and the Dominated convergence Theorem
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we deduce that

lim
ε→0

Fε(E) = lim
ε→0

1

ε

∫
∂∗E

∫ ε

0

X(η, x) · νE(x) dη dHN−1(x)

=

∫
∂∗E

lim
ε→0

X(η, x) · νE(x) dη dHN−1(x)

=

∫
∂∗E

θ(νE(x)) dHN−1(x)

and this ends the proof of Theorem 3.1.

Remark 4.1. We remark that if E is a C1,1-regular set in Ω then the computation of the pointwise limit is

easier. Indeed, for such sets the following geometric property holds true (for details see [10], Sect. I.2): there

exists r > 0 such that the map

Ψr : ∂E × [0, r]→ {y ∈ Ec : d(y, ∂E) ≤ r}, Ψr(x) = x+ tνE(x)

is a C1,1-diffeomorphism. Thus, performing change of variable x = y − εz we have

Fε(E) =
1

ε

∫
{y∈Ec:d(y,∂E)≤ε}

f

(
1

εN

∫
E

G

(
y − x
ε

)
dx

)
dy

=
1

ε

∫
{y∈Ec:d(y,∂E)≤ε}

f

(∫
y−E
ε

G(z)dz

)
dy

=
1

ε

∫
Ψε(∂E×[0,ε])

f

(∫
y−E
ε

G(z)dz

)
dy.

For any (x, t) ∈ ∂E × [0, ε] let Jε(x, t) = |detDΨε(x)|. Then, using also t = εs,

Fε(E) =
1

ε

∫
∂E

∫ ε

0

f

(∫
x−E
ε + t

ενE(x)

G(z)dz

)
Jε(x, t) dHN−1(x) dt

=

∫
∂E

∫ 1

0

f

(∫
x−E
ε +sνE(x)

G(z)dz

)
Jε(x, εs) dHN−1(x) ds.

Since the regularity of E we have

lim
ε→0

Jε(x, εs) = 1

from which, applying again (2.1),

lim
ε→0

Fε(E) =

∫
∂E

∫ 1

0

f

(∫
{v·νE(x)≥t})

G(z) dz

)
dt dHN−1(x) = F (E).
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5. The lower estimate

In this section we will prove our second main result, that is Theorem 3.2. First of all at any x ∈ D we let

νh(x) =
(−∇uh(x), 1)√
1 + |∇uh(x)|2

.

It turns out that νh(x) is the exterior unit normal to ∂∗Eh at (x, uh(x)). For any η > 0 small enough

Dη = {x ∈ D : d(x, ∂D) > η}.

It turns out that Dη ↗ D in L1 as η → 0+. If z ∈ RN we will use the notation z = (z̄, zN ). We now divide the

proof into several steps.

Step 1: We claim that for any σ > 0, for any x ∈ D3σ and for any h ∈ N with εh < σ we have

BN−1
2 (0) ⊂ x−Dσ

εh
. (5.1)

Indeed, x ∈ D3σ means that BN−1
2σ (x) ⊂ Dσ. If now z ∈ RN−1 and |z| ≤ 2 then |x− εhz − x| ≤ 2εh < 2σ which

implies that x− εhz ∈ Dσ and then (5.1).

Step 2: For any x ∈ D3σ, s ∈ [0, 1] and ξ ∈ RN−1 we let

ah(x, s, ξ) =
uh(x)− uh(x+ εhsνh(x)− εhξ)

εh
+ sνh(x)N .

We claim that

lim
h→+∞

ah(x, s, ξ) = ∇u(x) · (ξ − sν(x)) + sν(x)N . (5.2)

Indeed,

uh(x+ εhsνh(x)− εhξ)− uh(x)

εh

=
1

εh

∫ εh

0

d

dt
uh(x+ t(sνh(x)− ξ)) dt

=
1

εh

∫ εh

0

∇uh(x+ t(sνh(x)− ξ)) · (sνh(x)− ξ) dt

=
1

εh

∫ εh

0

(∇uh(x+ t(sνh(x)− ξ))−∇u(x+ t(sνh(x)− ξ))) · (sνh(x)− ξ) dt

+
1

εh

∫ εh

0

(∇u(x+ t(sνh(x)− ξ))−∇u(x+ t(sν(x)− ξ))) · (sνh(x)− ξ) dt

+
1

εh

∫ εh

0

∇u(x+ t(sν(x)− ξ)) · (sνh(x)− ξ) dt =: I1 + I2 + I3.
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Concerning the first integral, we have

|I1| ≤ (s+ |ξ|)‖∇uh −∇u‖∞ → 0 as h→ +∞.

On the other hand, if L is the Lipschitz constant of ∇u, we get

I2 ≤ L(s+ |ξ|)‖νh − ν‖∞ → 0 as h→ +∞.

Finally, for the third integral, let g(t) = ∇u(x+ t(sν(x)− ξ)). Then g is continuous, hence

lim
h→+∞

1

εh

∫ εh

0

g(t) dt = g(0)

from which

lim
h→+∞

I3 = ∇u(x) · (sν(x)− ξ)

as claimed.

Step 3: Let M = suph ‖uh‖∞ and let σ ∈ (0,M/2). We claim that for any h ∈ N with εh < σ it holds

Fεh(Eh) ≥
∫
D3σ

∫ 1

0

f

(∫
BN−1

1 (0)

∫ 1

ah(x,s,ξ)

G(ξ, η) dη dξ

)
ds
√

1 + |∇uh(x)|2 dx. (5.3)

Indeed, first of all notice that

{z ∈ Ech : Bεh(z) ∩ Eh 6= ∅} ⊃ {(x− rνh(x), uh(x) + rνh(x)N ) : x ∈ Dσ, r ∈ (0, εh)},

As a consequence,

Fεh(Eh) ≥ 1

εh

∫
D3σ

∫ εh

0

f
(
Gεh ∗ χEh(x− rνh(x), uh(x) + rνh(x)N )

)
dr
√

1 + |∇uh(x)|2 dx.

We concentrate now on the term Gεh ∗ χEh(x − rνh(x), uh(x) + rνh(x)N ) and we rewrite it in a suitable way

by performing some changes of variables. First of all, by noticing that Eh = {(z, w) ∈ D × R : 0 ≤ w ≤ uh(z)}
we have

Gεh ∗ χEh(x− rνh(x), uh(x) + rνh(x)N )

≥
∫
Dσ

1

εNh

∫ uh(z)

0

G

(
x− rνh(x)− z

εh
,
uh(x) + rνh(x)N − w

εh

)
dw dz.

We now perform the change of variables in the following order:

η =
uh(x) + rνh(x)N − w

εh
, ξ =

x+ rνh(x)− z
εh

.
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We obtain

Gεh ∗ χEh(x− rνh(x), uh(x) + rνh(x)N ) ≥
∫
x+rνh(x)−Dσ

εh

∫ uh(x)+rνh(x)N

εh

ah(x,r/εh,ξ)

G(ξ, η) dη dξ.

Recalling that f is non-decreasing and operating the change of variable r = εhs we arrive to

Fεh(Eh) ≥
∫
D3σ

∫ 1

0

f

(∫
x−Dσ
εh

+sνh(x)

∫ uh(x)

εh
+sνh(x)N

ah(x,s,ξ)

G(ξ, η) dη dξ

)
ds
√

1 + |∇uh(x)|2 dx.

Now, since (5.1) we deduce that for any x ∈ D3σ and for any s ∈ [0, 1]

x−Dσ

εh
+ sνh(x) ⊃ BN−1

2 (0) + sνh(x) ⊃ BN−1
1 (0).

Moreover, using σ < M/2 we get also

uh(x)

εh
+ sνh(x)N > 1.

As a consequence, recalling that G is supported on BN1 (0) we obtain (5.3).

Step 4: Passing to the limit as h→ +∞ in (5.3), using Fatou’s Lemma (5.2) and the Dominated convergence

Theorem we obtain

lim inf
h→+∞

Fεh(Eh)

≥
∫
D3σ

∫ 1

0

f

(
lim inf
h→+∞

∫
BN−1

1 (0)

∫ 1

ah(x,s,ξ)

G(ξ, η) dη dξ

)
ds
√

1 + |∇u(x)|2 dx

=

∫
D3σ

∫ 1

0

f

(∫
BN−1

1 (0)

∫ 1

∇u(x)·(ξ−sν(x))+sν(x)N
G(ξ, η) dη dξ

)
ds
√

1 + |∇u(x)|2 dx.

By the arbitrariness of σ small we get

lim inf
h→+∞

Fεh(Eh)

≥
∫
D

∫ 1

0

f

(∫
BN−1

1 (0)

∫ 1

∇u(x)·(ξ−sν(x))+sν(x)N
G(ξ, η) dη dξ

)
ds
√

1 + |∇u(x)|2 dx.

step 5: We conclude the proof showing that

∫
D

∫ 1

0

f

(∫
BN−1

1 (0)

∫ 1

∇u(x)·(ξ−sν(x))+sν(x)N
G(ξ, η) dη dξ

)
ds
√

1 + |∇u(x)|2 dx = F (E).
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First of all, we notice that

η = ∇u(x) · (ξ − sν(x)) + sν(x)N = ∇u(x) · ξ + s
√

1 + |∇u(x)|2

is the equation of an affine hyperplane in RN orthogonal to ν(x) whose distance from the origin is

s
√

1 + |∇u(x)|2√
1 + |∇u(x)|2

= s.

As a consequence,

∫
BN−1

1 (0)

∫ 1

∇u(x)·(ξ−sν(x))+sν(x)N
G(ξ, η) dη dξ =

∫
{z·νE(x,u(x))≥s}

G(z) dz

from which

∫
D

∫ 1

0

f

(∫
BN−1

1 (0)

∫ 1

∇u(x)·(ξ−sν(x))+sν(x)N
G(ξ, η) dη dξ

)
ds
√

1 + |∇u(x)|2 dx

=

∫
D

∫ 1

0

f

(∫
{z·νE(x,u(x))≥s}

G(z) dz

)
ds
√

1 + |∇u(x)|2 dx

=

∫
∂E

∫ 1

0

f

(∫
{z·νE(y)≥s}

G(z) dz

)
dsdHN−1(y) = F (E)

and the proof is complete.

6. L1-lower semicontinuity of F

We are going to prove Theorem 3.6. It is well known (see for instance [2], Thm. 5.14) that is sufficient to

check that the positively one-homogeneous extension of θ given by

θ̃(v) =

 |v|θ
(
v

|v|

)
dt if v 6= 0,

0 if v = 0,

is convex. First of all, by direct computation for each v ∈ RN with v 6= 0 we have

θ

(
v

|v|

)
=

∫ 1

0

f

(∫
{z·v≥|v|t}

G(z) dz

)
dt
|v|t=s

=
1

|v|

∫ |v|
0

f

(∫
{z·v≥s}

G(z) dz

)
ds

from which we obtain

θ̃(v) =


∫ |v|

0

f

(∫
{z·v≥s}

G(z) dz

)
ds if v 6= 0,

0 if v = 0.



ASYMPTOTIC ANALYSIS OF A FAMILY OF NON-LOCAL FUNCTIONALS ON SETS 13

Now it is east to see that θ̃ is convex. Indeed, since f is convex there exist (αh), (βh) such that

f = lim
h→+∞

fh uniformly on compact sets, where fh(t) = αht+ βh.

For any h ∈ N let

θ̃h(v) =


∫ |v|

0

fh

(∫
{z·v≥s}

G(z) dz

)
ds if v 6= 0,

0 if v = 0.

Since fh → f uniformly on [0, 1] we can say that θ̃h → θ̃ pointwise. In order to conclude it is sufficient to show

that θ̃h is convex. For any v 6= 0 we let v̂ = v
|v| . Then

θ̃h(v) = αh

∫ |v|
0

∫
{z·v≥s}

G(z) dz ds+ βh|v|

= αh

∫ |v|
0

∫
{z̄·v=0}

∫ +∞

s/|v|
G(z̄ + tv̂) dz̄ dtds+ βh|v|

= αh

∫ +∞

0

∫
{z̄·v=0}

∫ t|v|

0

G(z̄ + tv̂) dsdtdz̄ + βh|v|

= αh|v|
∫ +∞

0

∫
{z̄·v=0}

tG(z̄ + tv̂) dtdz̄ + βh|v|

= αh

∫
{z̄·v≥0}

G(z)z · v dz + βh|v|

=
αh
2

∫
RN

G(z)|z · v|dz + βh|v|

where the last equality follows since G is even. Notice that the last expression is convex in v and this ends the

proof.

7. Some examples

In this section we characterize the limit functional F in some interesting cases.

7.1. G radially symmetric

Assume G(z) = g(|z|) for some g : [0,+∞)→ R. Take ν ∈ SN−1 and t ≥ 0. Notice that the quantity∫
{z·ν≥t}

G(z) dz

does not depend on ν. Take now E ∈ PN and x ∈ ∂∗E. We have

∫ 1

0

f

(∫
{z·νE(x)≥t}

G(z) dz

)
dt = c
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where c is a constant that depends only on N, f and G. Then

F (E) = cHN−1(∂∗E).

7.2. The case f(t) = t

When f is the identity function for any E ∈ PN and for any x ∈ ∂∗E we have

θ(νE(x)) =

∫ 1

0

∫
HνE(x)+tνE(x)

G(z) dz dt

=

∫ 1

0

∫
{z̄·νE(x)=0}

∫ 1

t

G(z̄ + sνE(x)) dsdz̄ dt

=

∫ 1

0

∫
{z̄·νE(x)=0}

∫ s

0

G(z̄ + sνE(x)) dtdz̄ ds

=

∫ 1

0

∫
{z̄·νE(x)=0}

sG(z̄ + sνE(x)) dz̄ ds

=

∫
HνE(x)

G(z)z · νE(x) dz

=
1

2

∫
RN

G(z)|z · νE(x)|dz.

Then the limit F is given by

F (E) =
1

2

∫
∂∗E

∫
RN

G(z)|z · νE(x)|dz dHN−1(x).

This is in accordance to [9].

Remark 7.1. If N > 1 and G is radially symmetric we have, if g : [0,+∞)→ R is such that G(z) = g(|z|),

1

2

∫
RN

G(z)|z · νE(x)|dz =
1

2

∫
RN

g(|z|)|z · νE(x)|dz

=
1

2

∫ +∞

0

∫
SN−1

g(r)r|ξ · νE(x)| dr dHN−1(ξ)

= |BN−1
1 (0)|

∫ +∞

0

g(r)r dr

=
|BN−1

1 (0)|
HN−1(SN−1)

∫
RN

G(z)|z|dz

since it is well known that for any ν ∈ SN−1 it holds

1

2

∫
SN−1

|ξ · ν|dHN−1(ξ) = |BN−1(0)|.
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We thus deduce that

F (E) = cN,GHN−1(E), cN,G =
|BN−1

1 (0)|
HN−1(SN−1)

∫
RN

G(z)|z|dz.

This is in accordance to [5].
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