
03 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Self-Test Library Generation for In-field Test of Path Delay faults / Anghel, Lorena; Cantoro, Riccardo; Masante,
Riccardo; Portolan, Michele; Sartoni, Sandro; SONZA REORDA, Matteo. - In: IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS. - ISSN 0278-0070. - 42:11(2023), pp. 4246-4259.
[10.1109/TCAD.2023.3268210]

Original

Self-Test Library Generation for In-field Test of Path Delay faults

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCAD.2023.3268210

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992028 since: 2024-08-28T21:29:43Z

IEEE

Self-Test Library Generation for
In-field Test of Path Delay faults

Lorena Anghel†, Riccardo Cantoro∗, Riccardo Masante∗,
Michele Portolan‡, Sandro Sartoni∗, Matteo Sonza Reorda∗

∗Politecnico di Torino
†Univ Grenoble Alpes, CEA,

CNRS, Grenoble INP

‡Univ Grenoble Alpes,
CNRS, Grenoble INP

Turin, Italy INAC-SPINTEC, 38000 Grenoble, France TIMA, 38000 Grenoble, France

Abstract—New semiconductor technologies for advanced ap-
plications are more prone to defects and imperfections related,
among several different causes, to the manufacturing process,
aging and cross-talks. These phenomena negatively affect the
circuit’s timing and can be effectively modeled by means of
the path delay fault (PDF) model. While path delay testing
is currently supported by commercial Automatic Test Pattern
Generation tools for scan designs, functional testing covering
PDFs is not widely adopted, mainly because of the high cost
for test generation. On the other side, functional test is already
widely adopted for in-field test of stuck-at faults, which is often
performed resorting to the execution of suitable test programs
(Self Test Libraries, or STLs). This approach is attractive, since it
can be performed at-speed with limited time constraints and high
flexibility, making it a suitable in-field test solutions. Previous
work assessed the feasibility and validity of functional approaches
based on test programs targeting PDFs. In this work, we present
the first systematic method for the development of very high fault
coverage test programs for PDFs, which largely outperform test
programs written for other fault models. Moreover, the proposed
method allows the identification of functionally untestable faults.
The effectiveness of the proposed approach was proven on an
open-source RISC-V processor core, where 100% coverage of
the functionally testable longest paths was achieved, compared
with an initial coverage of 0.52% achieved with test programs
targeting stuck-at faults. Results demonstrate that shorter paths
are also effectively covered.

Index Terms—software-based self-test, self test libraries, on-
line test, path delay faults, safety

I. INTRODUCTION

Several emerging applications increasingly require the use
of advanced semiconductor technologies, due to their high
computational capabilities in association with low power
consumption. Such technologies use complex and sophisti-
cated manufacturing processes, adopting advanced transistor
designs, and allowing high operations frequencies and dense
integrated circuit (IC) designs. However, these processes intro-
duce new issues, including higher physical defects rates. Some
of these defects can also arise during the device lifetime: in
most cases they are related to ageing effects and overheating-
related issues, making systems more sensitive to degradation
than older generations. Other defects are also generated due
to ElectroMagnetic Interference (EMI) or parasitic effects. For
these reasons, testing the target device during the operation
phase (in-field test) is becoming increasingly important, es-

pecially when the device is used in a safety-critical system.
When dealing with the test (both at the end of manufacturing
and in field) of ICs manufactured with the most advanced
technologies, it is not possible to keep on relying on traditional
fault models anymore, e.g., the stuck-at fault model, and efforts
should be made towards replacing them with more advanced
models, including delay faults, able to cover these newly
identified issues. Transition and path delay faults (TDFs and
PDFs, respectively), however, are not as popular and widely
adopted as the stuck-at fault model, and solutions for dealing
with TDFs and PDFs are not as mature. This poses new
challenges for testing.

Current solutions to test delay faults are mainly based on
Design for Testability (DfT) approaches, heavily relying on
scan and Built-In Self-Test (BIST) circuitry. Such solutions
have the advantage of being based on mature design and in-
tegration approaches currently supported by most commercial
tools, providing also widely accepted coverage metrics. On
the other side, DfT approaches require additional hardware,
leading to an increase in area overhead and a decrease in the
timing performance [1]. In addition to that, DfT solutions can
lead to overtesting, since they test the circuit in a configuration
which is different from the operational one. Finally, DfT
solutions are rather invasive, since they require reconfiguring
the circuit before running the test, hence destroying its current
status. This may represent a critical point for in-field test.
When the device under test (DUT) includes or is based on
CPUs, functional solutions, mainly in the form of Software-
Based Self-Test (SBST) [2], can be used to overcome the
aforementioned issues. SBST approaches rely on forcing the
CPU to execute a suitably crafted program, able to excite and
propagate the effects of possible faults to some visible loca-
tion. SBST solutions do not require the insertion of additional
test structures (therefore, the DUT is not modified), they can be
run at speed (which is a crucial aspect when dealing with delay
faults), and they are particularly effective when performing in-
field test, since they do not require any tester. Finally, they are
less intrusive with respect to the system and the application.
The test is conducted by executing a Software Test Library
(STL) with purely functional stimuli applied to the DUT: in
this way, “Functionally Untestable Faults” (FUFs) – i.e., faults
whose effects never impact the DUT functionality – are never

1

detected, thus avoiding any form of overtesting. Given that a
test based on STLs can be split in chunks of small duration and
minimal invasiveness, the proposed methodology is especially
well suited whenever in-field testing is required, allowing the
system to be tested during idle time slots. It can be used to
enhance DUT’s safety throughout its operational lifetime, as
required by standards like ISO26262. STLs are commonly
provided by semiconductor companies, to be used on their
CPUs or SoCs whenever these components are part of safety-
critical systems that require comprehensive in-field testing
[3]–[8]. Unfortunately, at the moment, functional testing for
sequential circuits targeting path delay faults through an SBST
approach lacks sufficient support from EDA tools, making it
difficult to both develop the test and estimate its coverage.
There are several works in the literature dealing with the
functional test of generic circuits targeting path delay faults
[9]–[16]. These works, however, are geared towards relatively
simple circuits, usually taken from ISCAS workbenches and
sometimes consisting of combinational circuits, only. As a
consequence, none of the aforementioned works makes use
of SBST solutions: for all these reasons, the scope of the
presented work is quite different from that of the large majority
of work in literature. The works [17], [18] describe techniques
to test 100% of path delay faults on combinational circuits
developed through a Reduced Order Binary Decision Diagram
approach. Although effective, these works are not intended
for in-the-field testing of complex sequential circuits such
as processor cores. The article [19] describes an instruction-
based self-test mechanism for pipelined processors targeting
delay faults. This approach requires the device under test to
be represented by means of graphs, hence leading to a high
complexity when dealing with advanced processor cores. The
authors in [20] present a methodology for the development of
test programs for processor cores, focusing however on faults
stemming from the datapath module only of non-pipelined
CPUs.

Some works have investigated the topic of generating effec-
tive STLs for delay faults, specifically transition delay faults
[21], [22]. The work in [23] represents the first step towards
a functional test of PDFs by defining an appropriate test flow
and analyzing the coverage achieved by STLs developed for
stuck-at faults.

To the best of our knowledge, no strategies to develop STLs
for path delay faults from all modules in modern pipelined
CPUs are available to this day. This goal is particularly impor-
tant today, given the widespread usage of STLs for in-field test
of complex devices used in safety-critical applications, and the
growing relevance of path delay faults to model aging effects.
This paper proposes new solutions to generate STLs targeting
PDFs and assessing the quality of the achieved results on a
representative CPU core.

Our strategy is based on a two-steps approach. First, we
generate test patterns for the combinational part of each target
module within the DUT by using Automatic Test Pattern
Generation (ATPG) methods. Patterns generated by the ATPG,
however, might not be replicable by functional means only, as

it might not be possible to generate them using the available
instructions. For this reason, we provide functional constraints,
so that patterns that cannot be replicated by functional means
for a given CPU level are discarded. Generated patterns are
then turned into CPU-related instructions by a semi-automatic
procedure that involves automatic parsing and manual adjust-
ments.

The main contributions of this paper are:
• A systematic and effective development methodology of

PDF-oriented test programs for fully pipelined processor
cores, leading to an important improvement with respect
to the results achieved in [23],

• An effective test flow for functionally untestable faults
identification,

• An experimental assessment of the effectiveness of the
new method, which is shown to be able to detect 100.00%
of the most critical paths and 87.31% of short paths on
an open-hardware RISC-V based CPU.

To the best of our knowledge, this is the first work that
tackles STL generation for path delay faults on complex
pipelined CPUs, showing that it is possible to achieve very
high results for PDF coverage on complex processor cores,
targeting paths from the whole CPU.

The remaining of the paper is organized as follows: Sec-
tion II outlines the background related to the path delay fault
model, and the state-of-the-art works. Due to the lack of
commercial solutions for path delay functional fault simula-
tions, in Section III we introduce the fault simulation flow
we devised, while in Section IV we present a systematic
methodology for STL development capable of testing a generic
processor core based on the fault simulation flow previously
described. Section V gives details about the case study, and
Section VI presents the achieved results. Section VII draws
the conclusions.

II. BACKGROUND

A. Path Delay fault model

Sequential circuits are systems where inputs and outputs are
synchronized by a specific periodic clock signal. Such signal
staggers the functioning of the whole circuit, by dividing it
into clock cycles. For a sequential circuit to function correctly,
all signals must keep a steady value for a certain time after a
clock transition (hold time) and before the next clock transition
(setup time), while transitions may occur within the clock cy-
cle. Failures in satisfying these requirements may result in an
erroneous logic behavior; the causes of such failures are known
as delay faults. Combinational gates in a circuit are arranged
into paths, from a “startpoint” to an “endpoint”. Startpoints
can either be primary inputs (PIs) or pseudo primary inputs
(PPIs) – i.e., outputs of sequential elements. Similarly, primary
outputs (POs) and pseudo primary outputs (PPOs) – inputs
of sequential elements – are the endpoints. Critical paths are
those paths whose slack – i.e., the difference between the clock
period and the time it takes the signal to propagate through
the whole path – is minimum. Path delay faults are used to

2

model physical defects, distributed along a path, that affect
the nominal propagation delay of a given path. For each path,
there are 2 PDFs: slow-to-rise (str), associated with a rising
transition on the startpoint, and slow-to-fall (stf), associated
with a falling transition on the startpoint. To test both path
delay faults it is necessary to apply pairs of test vectors to the
DUT at the maximum working frequency. Test vectors ensure
that the correct transition is applied to any path’s startpoint
and is propagated to the endpoint by appropriately driving its
off-path inputs, as shown in Fig. 1.

Fig. 1. Slow-to-Rise test vectors pair

The PDF model is currently supported by EDA tools
through the adoption of Design for Testability techniques. Un-
fortunately, functional test of PDFs is not currently supported
by any commercial fault simulation tool. For this reason, in
this article we use the functional PDF test flow based on an
SBST approach introduced in [23]. Faults are initially tested
at a combinational level, by applying patterns recorded during
the simulation of the test program execution by the DUT,
obtaining a combinational fault coverage. Detected faults are
then injected in the top-level netlist at the time of their
detection in the previous step, and their effects are propagated
through the sequential circuit to the POs. In this way, a final
fault coverage is returned. A detailed explanation on the path
delay functional fault simulation flow is given in Section III.

B. Related work
An exhaustive review of the state of the art on delay faults

is given in [24]. An approach similar to our work has been
followed in [25], where an ATPG is used to produce test
instructions on a pipelined processor core targeting, however,
stuck-at faults. Our work is complementary to [26], [27], in
which the authors present strategies on how to insert monitors
at the end of the most critical paths, so that slack violations
are avoided, with a focus on aging effects. In [20], [28]–
[31] methodologies for generating PDF-oriented test programs
are presented. Works [20], [30] and [31] describe methods
for generating test programs targeting specific computational
blocks (e.g., datapath), both in non-pipelined and pipelined
processors. Although results are significant, our work shows
that testable critical paths can also be found in other modules,
e.g., Control or Instruction Fetch Units, where the translation
of patterns into pieces of code is much harder. In fact, testing
paths from the latter modules is much harder with an SBST
approach than those found in the datapath, requiring different
testing strategies. Works [28], [29] propose a methodology for
developing STLs based on evolutionary tools, targeting small

non-pipelined processor cores. Unfortunately, such approach
may not be easily extended to larger or more complex CPUs.
Additionally, custom fault simulation tools are used [20], [28],
[29]. Lastly, the authors of [19] present a test pattern gener-
ation method based on a graph representation of pipelined
processors. However, creating such a representation can be a
nontrivial task when dealing with advanced processor cores.

Works [9]–[12], on the other hand, focus on the generation
of functional testing procedures through the use of scan chains
and BIST modules. [9] presents a methodology to detect path
delay faults by means of broadside (launch-on-capture) tests,
in order to avoid overtesting due to path delay faults associated
with long paths that cannot be sensitized during functional
operations. Works [10], [11] discuss multicycle broadside tests
applied to delay faults, with [11] focusing on transition delay
fault diagnosis, showing relevant fault coverages. [12], finally,
discusses a static test compaction procedure for test sets
consisting of both broadside and skewed-load (launch-on-shift)
tests, achieving a reduction in the test set size, as well as an
increase in the fault coverage whenever a test set does not de-
tect all the detectable faults. These works show that functional
testing solutions for delay faults can achieve significant results.
However, they require the usage of hardware structures to
apply those tests, e.g., scan chains and BIST, while in this work
we focus on the generation of test vectors to be converted into
instructions belonging to STLs, without any other hardware
support. Moreover, the previously aforementioned works are
validated on small sequential circuits, while we focus on larger
and more complex processor cores: generating instructions to
test path delay faults is a much more complex task with respect
to generating test vectors for sequential circuits.

III. PDF FUNCTIONAL FAULT SIMULATION FLOW

Path delay fault simulation is currently supported by com-
mercial fault simulation tools only through the adoption of
scan chains. Fault simulations for path delay faults in a scan
circuit through commercial fault simulation tools is carried out
as follows:

• Load a test vector through scan chains
• Apply a finite number (normally small) of functional

clock cycles for the vector to propagate through the
circuit and capture the response

• Download the response through scan chains, then repeat
for all test vectors.

This mode is capable of fault simulating the circuit under
test in a functional fashion, provided that such circuit is
equipped with scan chains. The amount of functional clock
cycles, however, is rather small compared to those needed
by a typical STL; moreover, it requires the presence of
DfT hardware. This, unfortunately, is not sufficient for a full
sequential fault simulation targeting path delay faults. For this
reason, prior to the description of the test program generation
methodology, we present in detail the architecture of the flow
we developed in order to perform path delay fault functional
fault simulations.

3

This flow is devised such that, by providing the gate-level
netlist of the DUT and a test program to be executed, the
behaviour produced by each fault is evaluated. This allows
identifying faults detected by the test program. Notice that,
since this flow is devised for functional testing, the netlist
should not use any scan chains. This implies that any fault
is only observable, hence detectable, through at least one
PO1. The STL generation methodology for the in-field testing
of PDFs presented in this article is aimed towards modern
pipelined processor cores, hence why from now onwards we
will imply our DUT to be a generic pipelined CPU.

A schematic representation of the path delay fault simu-
lation flow is given in figure 2. For the synthesized core, a
list of paths is extracted by a Static Timing Analysis (STA)
tool as well as the input stimuli obtained by performing a
logic simulation of the test program. Then, the fault simulation
process can be launched targeting path delay faults on the
extracted paths. The fault simulation is divided into two steps,
the first one is performed on the combinational modules of
the DUT, the other one propagates faults observed at the
combinational level to the POs through the pipeline stages
of the sequential circuit.

Fig. 2. Path delay test flow diagram

1Alternative observation mechanisms for test programs exist, such as
checking the memory content at the end of the program execution [32], or
observing the response of available safety mechanisms for in-field testing of
safety-critical systems.

In the following subsections, a thorough explanation of all
different steps is given.

A. Synthesis

The preliminary requirement to perform path delay fault
simulations is to synthesize the target device such that the
combinational cells of the gate-level netlist are grouped to-
gether separately from the sequential ones. In this way, we
create a large submodule within the CPU that comprises all
combinational cells; such submodule is then connected to
sequential cells in the processor gate-level netlist.

Two netlists are then produced, one that is specific for
the submodule holding all combinational cells, hereinafter
referred to as combinational netlist, and one for the top-
level module including both the combinational submodule and
sequential cells, hereinafter referred to as top-level netlist. The
output signals of the combinational netlist are either POs or
PPOs, in case they are connected to the output signals of the
top-level netlist or to inputs of sequential cells, respectively.
We synthesize the circuit into these two netlists because in
Section III-D the combinational netlist will be the module
under test, while in Section III-E the top-level netlist will be
needed.

B. Logic simulation

The second step consists in performing a logic simulation of
test programs using any available logic simulation tools, with
the main goal of generating input patterns for the subsequent
fault simulation process. This step requires that the top-level
netlist is instantiated as a component in the testbench, so
that test program golden responses can be recorded both
for combinational and top-level circuits. From now on, such
golden responses are referred to as patterns lists. Such lists
contain the value held by every combinational/top-level input
and output port at any clock cycle during the execution of the
test program, and will be used in Section III-D as test vectors
for the fault simulation.

C. Static Timing Analysis

As a last preliminary step, the test flow generates the list
of paths to be tested during the fault simulation. The standard
approach consists in using a Static Timing Analysis tool to
produce a list of combinational paths in ascending order of
slack. In this way, in case the amount of extracted paths is too
high, only the subset of combinational paths with the most
stringent timing requirements is considered. In this regard, it
is worth mentioning that STA tools are very pessimistic in
performing their analysis and are not able to recognize false
paths; such paths cannot be sensitized in the final design and
would introduce untestable faults in the fault list. Therefore, a
subsequent pruning of those paths from the initial path list is
needed; this is only partially performed by commercial fault
simulators as a preliminary phase of the fault simulation. As an
example, the authors of [33] developed an algorithm to prune
untestable paths, taking into account the circuit topology,

4

process variations, and aging effects; remarkably, this reduced
the path count by 70.87%.

The benefits of refining the path list are non-trivial: if the
list contains paths that cannot be tested by any means, the test
engineer will fruitlessly try to activate and detect faults whose
effects cannot be observed in any way, and the fault coverage
will artificially drop. This is why we aim at improving the
path extraction process, thus enhancing the standard STA-
based methodology. To do so, we propose an iterative approach
based on commercial Static Timing Analysis (STA) and ATPG
tools, showed in figure Fig. 3.

Fig. 3. Paths extraction flow

Iterating through several small slack intervals allows us to

carefully pick the largest amount of testable paths throughout
the whole slack range. In this way, we are sure that structurally
untestable faults – i.e., faults that could not be tested even
having full access to the input and output signals of the
combinational block they are located in – are excluded. Not
all structurally testable faults, however, are of interest when
adopting an in-field test approach (e.g., for safety-critical
applications), as some of them cannot be properly simulated
or observed within functional scenarios. Such faults are known
as Functionally Untestable Faults (FUFs). Consequently, it is
crucial to identify as many functionally untestable faults as
possible, removing them from the list of target faults to be
considered.

The path list we generate is then used in the following
fault simulation steps. Hereinafter, the set of produced paths
is referred to as path definition list. Once the path definition
list has been generated, it can be modified as needed: the
proposed flow accepts any path definition list, hence every
possible optimization or subset extraction is allowed.

When extracting paths for the subsequent fault simulation,
timing information such as the slack associated to the path
may be included as well. When performing path delay fault
simulations, however, current commercial tools tend to neglect
such timing information. For this reason, all data regarding
slack or timing behaviors can be safely omitted in the path
definition list.

D. Combinational-level fault simulation

Once the preparatory steps are cleared, the flow moves on to
the fault simulation process, which is divided into two steps.
In this first step, a fault simulation tool is used to feed, at
any clock cycle, the input ports of the combinational netlist
with patterns produced by the test program and stored in the
Patterns list. This process allows us to identify all PDFs that
produce a difference on at least a PO or a PPO when the
considered test program is executed. Moreover, we identify the
clock periods when this happens and the specific POs or PPOs
affected by each fault. This information will be used at a later
time on the top-level netlist. Fault simulators can also report,
given any detected fault, which and how many patterns are able
to detect it; however, for optimization reasons the simulators
might "drop" (i.e. stop considering) some faults that are either
already covered in other vector or that are not getting detected
in a given time window. This analysis is accurate only when
fault simulations are performed without fault dropping — that
is, whenever a fault belonging to the active fault list is never
dropped from it after being detected by any pattern.

The fault simulator reads the combinational netlist, the
library files, the path definition list, and the combinational
patterns list. More in detail, netlist and library files are used
to build an internal model of the device under test, while
the path definition list is analyzed to exclude false paths —
hence, untestable faults — from the simulation. Lastly, signals
included in the patterns list are interpreted as a list of pairs of
vectors to be applied in sequence.

5

More accurate results in the overall flow can be achieved by
running fault simulation without fault dropping; disabling fault
dropping, however, significantly increases the fault simulation
time. For this reason, by default, fault simulation tools drop
every fault after being detected once. As previously mentioned,
enabling the no fault-dropping option consists in never deleting
faults, even when detected, from the active fault list. As
a consequence, for each fault, we can obtain all patterns
detecting it at the combinational level, instead of just the first
one. This allows us to consider, in the following steps, the
propagation of fault effects through the sequential logic not
only for the first pattern, but for the whole test set.

E. Sequential-level fault simulation

Once we know which output of the combinational netlist
is possibly affected by a certain fault at a specific time
step or clock cycle, we have to propagate the fault effect
throughout the sequential logic and check whether it reaches
an observable point or the fault is vanishing. We modeled
this sequential-level fault simulation by means of bit-flips
injected in the sequential elements that capture the fault effect.
For this purpose, we used a commercial tool different from
what we have used in the previous step. The detected faults
list obtained with previous strategies was made compatible
with the tool used for the sequential-level fault simulation. In
details, that means that each detected fault, together with its
possible propagation endpoint and the time instant at which it
reaches the sequential element, were translated into a bit-flip,
applied to the faulty path endpoint at the aforementioned time
instant.

It is worth noting that it is not obvious that each detected
fault from the combinational circuits that could provoke a
bit-flip can, in turn, be propagated to the POs. This is why,
in the previous step, the fault-dropping option needs to be
disabled: by allowing the generation of more patterns for each
fault, it is also possible to generate several bit-flips at different
time instants, hence increasing the accuracy of fault coverage
evaluation. As a consequence, there may be more than one
time instant at which a given fault is detected at combinational
level.

Due to this reason, for each fault detected in the sequential-
level fault simulation, the minimum number of patterns re-
quired to detect a fault can be defined. This value can be
described in terms of the number of patterns generated by the
functional fault simulation at the combinational level needed
until the effect of the detected fault is propagated to the POs.
The smaller this value is, the easier its test generation at
sequential level is.

IV. STL DEVELOPMENT METHODOLOGY

In this section, we thoroughly describe our STL develop-
ment methodology, built on top of the previously presented
fault simulation flow. Such STL development strategy is
divided into three steps: functional constraint identification,
test patterns generation using ATPG, and conversion of those

patterns into instructions. This approach is summarized in
Fig. 4.

Fig. 4. Patterns generation flow

In the following, the three steps are described in detail.

A. ATPG pattern extraction

To test PDFs, test patterns must be able to generate and
propagate specific transitions through the targeted paths. This
task, however, cannot be fulfilled by any generic couple of
vectors: very few patterns are capable of driving all PIs and
PPIs properly. This is especially true when dealing with long
paths: using random programs or even programs developed for
other fault models, such as stuck-at faults (SAFs) or transition
delay faults (TDFs), does not work effectively, and leads to a
very small coverage. For this reason, special emphasis on the
test pattern generation step should be placed.

The strategy we adopted for generating test vectors is
summarized in Fig. 5.

The pattern generation task is managed by an ATPG,
that requires the DUT’s combinational netlist and the path
list to produce the aforementioned test patterns. This allows
producing effective and reliable patterns in a relatively short
amount of time. It is noted, however, that the ATPG is not
aware of the fact that these patterns have to be functionally
applicable: this could lead to the generation of test patterns
that cannot be translated into instructions. To mitigate this
problem, we apply a set of functional constraints to the ATPG
in order to promote the generation of test patterns that can be
mapped into instructions belonging to the CPU’s instruction
set architecture (ISA). Such feature is described thoroughly in
Section IV-B.

Faults managed by the ATPG following this approach may
belong to one of the following categories:

• Detected group: the fault has been detected and the
relative couple of test vectors have been produced,

• ATPG Untestable group: the ATPG could not generate
test vectors capable of testing the fault under the specified
constraints.

6

Fig. 5. ATPG-based test vectors generation

The latter category requires some observations. Based on
what we presented in Section III-C, faults produced by our
flow are known to be testable by the ATPG when no con-
straint is applied. As a consequence, if a fault is marked as
ATPG untestable it means that this fault is also functionally
untestable, as the ATPG cannot produce test vectors when
functional constraints are applied. In this way, we are able
to remove most FUFs from the fault list, obtaining a list
of faults whose patterns can be converted into instructions.
Nevertheless, it is still possible that there might be a small
subset of functionally untestable faults among the detected
ones. The reason for this lies in the architecture of the DUT,
but also on how instructions are issued and executed by the
processor core. To give an example, let us consider a fault that
affects the arithmetic unit of a pipelined, in-order processor
and the test pair produced by the ATPG requires launching
a division followed by another ALU operation. Given this
premise, the targeted fault is a FUF: divisions require more
than one clock cycle to complete, and their execution stalls
the whole CPU, hence it will be impossible to execute an
ALU operation at the clock cycle following the issuing of
the division. It is worth reiterating, however, that functionally
untestable faults cannot be detected by SBST means, due to
the fact that they cannot be excited under functional scenarios.

B. Functional constraints identification

Functional constraints are a crucial component of the ATPG
pattern extraction process, as they ensure that the produced test
vectors can be effectively translated into instructions belonging
to the DUT’s instruction set architecture (ISA). For this reason,
identifying and defining a set of functional constraints is a key
task in our methodology, and is presented separately.

The problem of producing instruction sequences for CPUs is
well-known in academia, with several works in literature that
tackle it. [34] presents a technique to generate instructions to
test delay faults on pipelined processor cores. This is done in
three steps, namely an ATPG-based delay test generator to be
applied to the combinational portion of the device under test,
a verification engine based instruction mapper, and a feedback
mechanism. The generation of functional instructions to test
delay fault is done by means of a set of Verilog properties
to be fed to a bounded model checker. This, however, can
be quite taxing, as properties are built looking at inputs of
paths to be tested, leading to a large number of properties to
be fed to the bounded model checker. Moreover, writing all
these properties requires a non-negligible amount of manual
work. In this paper, we propose a semi-automatic methodology
to developing functional constraints, capable of identifies all
inputs that cannot be controlled once sub-modules of the DUT
are provided. [35] proposes an algorithm, based on formal
techniques, that takes the gate-level description of a pipelined
processor as input and generates a sequence of assembly
instructions able to stress any module within it by maximizing
the switching activity. Although effective, this methodology
is geared towards the generation of stress-oriented assembly
instructions, while our goal is to excite and propagate faults
affecting paths inside CPUs. In addition, formal techniques
may require a non-negligible amount of time. [36] introduces
an approach to generate instruction sequences for SBST, and
makes use of a Validity Checker Module to limit test sequences
to valid RISC-V instructions and the given environment. This
approach deals with the well-known stuck-at fault model,
which is quite different with respect to the path delay fault
one. Moreover, for larger circuits it was not able to complete
the generation of SBST-based routines. Finally, [37] proposes
an approach for the automatic generation of SBST programs.
This is done by generating functional test sequences through
the usage of an ATPG, followed by the adoption of a validity
checker module (VCM) which allows the specification of
constraints with regard to the generated sequences. The VCM
is the used to express typical constraints that exist when SBST
is adopted for in-field test. This approach shows that it is
possible to automatically develop effective test programs for
in-field testing. The fault model targeted in [37], however, is
the stuck-at fault one, while in this paper we focus on path
delay faults.

The functional constraint identification algorithm is briefly
summarized in Algorithm 1.

In this work, the set of functional constraints needed to
generate valid test patterns is directly applied to the ATPG.

7

Algorithm 1: Functional Constraint Identification
Input : A set S:=(Si), where Si is a sub-module of the

device under test
Input : A set D:=(Pi, Ci), where Pi is a path to be tested

and Ci is the list of the i-th path’s input cone logic
Output: A list of functional constraints to be applied to the

ATPG
begin

F := empty list of functional constraints
/* Repeat for every sub-module */
foreach Si in S do

NC:= empty set of non-controllable input signals;
select all paths Pi belonging to Si;
extract all Ci related to paths Pi;
run logic simulation of ad-hoc programs;
store non-controllable input signals into NC;
/* Check whether non controllabe

inputs belong to the Ci of a Pi

within the considered Si */
foreach signal in NC do

if signal in Ci then
add signal with its tied value to F ;

end
end

end
return F

end

Such constraints come in the form of values applied to the
PIs and PPIs of the DUT: for this reason, prior to any further
step, we perform an off-path inputs analysis, i.e., for each path
we analyze the path’s input cone logic, starting from off-path
inputs and moving towards the cone of influence inputs. This,
together with a list of sub-modules into which the DUT is
divided, are the input of our functional constraint identification
algorithm.

Identifying the values to be applied to the input pins is not
an easy task. We devised a semi-automatic approach to tackle
this problem. For each sub-module, first we identify all paths
within the sub-module and the input cone logic for each path.
Next, we employ an automatic tool capable of performing
logic simulations of carefully devised programs. Each program
consists of every possible combination of instructions that
affect the targeted sub-module: for instance, if we take into
account the LoadStore unit, one given program will contain
all possible combinations of load and store instructions. While
simulating, our automatic tool records all input values. Once
all simulations are completed, it identifies all the input pins
that cannot be controlled when running test programs. Once
this is cleared, the last step consists of annotating the set of
input signals, together with their value, into a list of constraints
to be fed to the ATPG. In this way, we make sure that the
produced test patterns only involve those pins that can be
driven through SBST means with replicable values.

C. Pattern conversion

Once the test pairs have been generated, it is necessary
to translate them into instructions. The very first step in
performing such conversion consists of mapping the values

stored in the test patterns into signal groups, e.g., the opcode,
ALU operands, registers, etc. Afterwards, the test engineer
must choose a set of instructions that is capable of replicating
the generated test pair. This process is quite complex for two
reasons. First, for each available instruction, it is necessary
to understand which signals are controllable and how the
instruction affects them; this could be non-trivial depending
on the signal group. The second reason is due to the fact
that values from the test vector must be applied concurrently
on CPU pipeline stages. As a consequence, a single vector
has to be mapped to several instructions, each one controlling
signals in one pipeline stage. This has to be carefully selected
such that they reproduce a test vector in a given clock
cycle. In our methodology, this is done employing a semi-
automated approach: a parser maps the test vectors into the
aforementioned signal groups, while the test engineer defines
a sequence of instructions and simulates them to make sure
that they reproduce the required values.

A generic sequence of instruction is divided into three
blocks:

1) Initialization instructions: mainly in the form of load
instructions, they are used to initialize the DUT so that
the test can be effectively applied.

2) Test instructions: once the DUT is prepared, these in-
structions generate and propagate the intended transition
through the targeted path.

3) Store instructions: to propagate data affected by errors
to POs, where mismatches due to faults are finally
observed.

To better clarify, in the following we report an example
of pattern conversion of a real test vector couple, depicted in
a simplified version in Fig. 6. To give some reference, the
path targeted by the ATPG in the figure belongs to an adder
embedded in the jump address sub-module. To start off, in
the upper table we reported a subset of the two test vectors,
namely First Vector and Second Vector, whose values have
already been mapped into their respective signal groups. More
in details, we highlighted signals that could be easily identified
within modules of the processor core: in this example, registers
from the register file are showed in the upper part, while
portions of the fetched instruction are showed in the lower
part. The dash symbol, ’-’, has been used to represent the
"don’t care" value, while in all other cases hexadecimal values
are reported. In this specific example, we decided to split the
instruction into several fields:

• id_instruction[6:0]: contains the opcode of the instruction
(bold black text),

• id_instruction[14:12]: contains a special function field
(func3) or the lower portion of the immediate field
depending on the instruction (bold pink text),

• id_instruction[19:15]: contains the register source 1 field
or a portion of the immediate field depending on the
instruction (bold green text),

• id_instruction[24:20]: contains the register source 2 field
or a portion of the immediate field depending on the

8

instruction (bold red text),
• id_instruction[31:25]: contains a special function field

(func7) or the upper portion of the immediate field
depending on the instruction (bold brown text).

Fig. 6. Example of test program

Next, we look for instructions that can match the required
transitions, following the model previously discussed: such
instructions are grouped within the Instructions block box.

This code snippet is divided into three sections, reflecting
the previously described blocks. Starting with the first one,
highlighted in light blue, it is possible to see the set of
initialization instructions, consisting of all load immediate (li)
that set the registers to their appropriate value. Following, the
two instructions responsible for the generation of the required
transition are reported in the white block below. The first
instruction serves the purpose of initializing the path to be
tested with the appropriate set of values, while the second
triggers the transition so that it propagates through the path
towards its endpoints. Finally, we introduce a store instruction
to propagate the effects of the previously excited faults towards
one of the POs, hence observing data affected by the targeted
path delay fault. This is done so that the faulty value can
be stored into a non-volatile memory, possibly after being
compacted into a signature, to be compared against the golden
circuit’s one. In this sense, observing a faulty value at the

primary output equals to detecting its relative fault. Choosing
the right instructions is not trivial as they must be carefully
picked to replicate all the signals in the test vectors without
any mismatch, bearing into mind how they behave across all
pipeline stages.

Finally, the STL consists of every sequence of instructions
generated for each path. One of the strengths of this approach
consists in being modular: depending on the length of the test
slot, i.e., the time slot in which the DUT can be tested, the
test engineer can decide whether to run the test program as
a whole, or split it into several submodules. The only rule to
be observed is not to split a single instruction block that must
always be run as a whole, since the ability of testing a path
strictly depends on the execution of the instruction sequence
without interruptions.

V. CASE STUDY

A. Processor core

The adopted DUT is an open hardware single-core SoC
platform centered on PULPino, a 32-bit RISC-V core de-
veloped by ETH Zurich and Università di Bologna [38].
In our work, PULPino was configured to use the RI5CY
core, an in-order, single-issue core with 4 pipeline stages,
capable of supporting the RV32ICM instruction set which
includes integer, compressed, and multiplication instructions.
Its schematic representation is showed in Fig. 7.

Fig. 7. PULPino Core Representation

This processor core was synthesized using the open hard-
ware 45nm Nangate OpenCell Library provided by Silvaco
[39]. Data regarding the synthesized core can be found in
Table I.

TABLE I
CASE STUDY GENERAL INFO

Parameter Value

Number of gates 46,850
Total Area (eq. gates) 51,001.65
Clock Period (ns) 5.00

Table II reports additional information on the extracted
paths. These paths are the result of the extraction process
described in Section III-C; as a consequence, only paths that
can be tested through ATPG are reported here and targeted

9

in our fault simulation experiments. Two types of paths were
extracted: long paths, whose slack is small, and short paths,
with a larger slack. Paths from both these categories have been
targeted in our fault simulation experiments.

TABLE II
PATHS REPORT

Paths class #Paths extracted Slack range (ns)

Long paths 5,009 [1.3 : 2.5]
Short paths 5,137 [4.8 : 4.97]

Longer paths have been extracted by looking at all paths in
the slack range [0 : 2.5]ns: the reason for not having any path
in the [0 : 1.3]ns slack range lies in the fact that the ATPG did
not find any testable path among those. From a topological
point of view, long paths are divided into three groups:

1) 45 paths in an adder of the divider module of the ALU,
2) 540 paths in an adder of the load/store unit,
3) 4, 424 paths in an adder inside the jump address module

of the decode stage.
Shorter paths, on the other hand, have been limited to

those belonging to the [4.8 : 5.0]ns slack range. As there are
plenty of short paths in a circuit, the extracted ones do not
belong to single modules of the CPU, rather they are scattered
throughout the whole processor core.

B. Test programs

Since we are working with two different classes of paths
– long paths and short paths – we decided to develop two
separate STLs.

Starting with the long paths STL, this set of procedures was
developed completely from scratch, and it can be thought of
as three independent procedures that aim at testing faults in
the three aforementioned submodules. For the vast majority of
faults, our methodology was capable of producing appropriate
testing instructions that excite faults and propagate their effects
towards primary outputs. For a very small percentage of all
faults (45 out of 10, 018, to be found in the divider unit),
however, the test vectors could not be replicated due to
physical constraints: such couples required a division promptly
followed by another ALU-related instruction, which cannot be
executed at the immediately following clock cycle as divisions
take more than one clock cycle to complete, making those 45
faults functionally untestable.

As for the short paths STL, experimental data from [23]
shows that programs developed for SAFs and TDFs are
somehow capable, although not with high coverages, to test
short paths. For this reason, we decided to start from the
already available SAF and TDF-oriented programs. In this
way, we could discard the faults that are already covered by
them, and focus on the remaining ones through our proposed
methodology. Thanks to this approach, we were able to easily
identify a large number of FUFs, as well as to further increase
the number of detected faults. These results validate our
approach, as it succeeded in producing effective STLs even

though long and short paths are quite different in terms of
topological distribution and functionalities.

VI. EXPERIMENTAL RESULTS

The experimental results reported in this article have been
obtained through the adoption of several different commercial
tools coordinated through the usage of Bash and Python scripts
as described in Section III. Regarding the preliminary steps,
we used Design Vision, provided by Synopsys, for the synthesis
step, together with Questasim by Mentor Graphics for logic
simulations and PrimeTime for path extraction in conjunction
with TetraMAX, both by Synopsys, for path refinement. The
combinational-level fault simulation has been performed using
TetraMAX, while the sequential-level fault simulation makes
use of Z01X, a fault simulator specifically designed for func-
tional safety by Synopsys.

The experimental results we gathered are referred to the
processor core and synthesis library described in Section V,
and are reported separately for long and short paths. The STLs
we generated were capable of covering 100% of testable long
paths and 87.31% of testable short paths of the chosen DUT.
In both cases, the STL generation required about 8 days of
ATPG time, using 5 cores of an Intel Xeon CPU E5-2680 v3
server.

Starting with the long paths STL, the whole test program
requires 26kB of memory space, and a total amount of 45, 605
clock cycles to execute. The amount of clock cycles has been
computed by executing the whole STL in a single simulation;
depending on the situation, the test engineer can then split
the STL into several shorter testing sub-routines to adapt
them to the available idle time slots, matching the strict time
constraints of in-field test. Since no methodologies to develop
STLs for all PDFs in a processor core are currently available in
literature, to assess the validity of the proposed methodology
we decided to compute the fault coverage figures for STLs
intended for other fault models – namely, SAFs and TDFs –
used as a reference case. Stuck-at fault oriented test vectors are
not compatible with delay faults when generating test patterns
for scan chains through ATPG. Nevertheless, in this article
we adopt the SBST paradigm, where test vectors are applied
through functional at-speed clock cycles throughout the whole
STL duration. For this reason, it is appropriate to compare our
results with those achieved by SAF-oriented test programs.
In particular, we run 5 different SAF programs and 1 TDF
program, able to achieve 90.91% (cumulatively) and 74.25%
wrt their target faults, respectively. All these data are reported
in Table III. The Combinational Fault Coverage column shows
the path delay FC achieved on the combinational portion of
the DUT while Final Fault Coverage reports the fault coverage
for the whole CPU. The last row reports information about the
test program generated by our method.

The table clearly shows that our method dramatically im-
proves the FC figures of existing test programs. The reason
for this significant difference is that in our test program’s
instructions and values are carefully chosen to test specific
paths; other test programs, instead, can be approximated to a

10

TABLE III
LONG PATH FAULT COVERAGE

Program #Clock Cycles Combinational
Fault Coverage

Final Fault
Coverage

SAF Program 1 64,502 0.33% 0.32%
SAF Program 2 36,394 0.27% 0.27%
SAF Program 3 42,970 0.27% 0.22%
SAF Program 4 118,098 0.40% 0.32%
SAF Program 5 17,269 0.09% 0.08%

TDF Program 23,451 0.27% 0.23%

PDF Program 45,605 99.50% 99.50%

random – and thus ineffective – approach due to the significant
differences between the three fault models. We also analyzed
the FC figures on the three submodules of the CPU into which
the longest paths are found, as reported in Table IV.

TABLE IV
LONG PATH FAULT COVERAGE PER MODULE

Module #Faults Combinational
Fault Coverage

Final Fault
Coverage

Testable Fault
Coverage

ALU_Div Adder 90 50.00% 50.00% 100.00%
LoadStore Adder 1,080 100.00% 100.00% 100.00%
Jump_Addr Adder 8,848 100.00% 100.00% 100.00%

Total 10,018 99.50% 99.50% 100.00%

We achieved a 100% FC in both the load/store unit and the
jump address adder, while we were able to cover 45 out of
the 90 faults of the divider. The remaining 45 faults have been
identified as FUFs, as previously explained. Consequently, if
we exclude such FUFs from the final fault coverage, we obtain
a testable fault coverage for all three modules – and, thus, for
all long paths – equal to 100%.

Similarly, Table V reports data for the STL developed for
short paths (last row). This program requires 18kB of memory
space and a total amount of 279, 253 clock cycles to execute
completely. Since short paths are distributed among the whole
CPU, we decided to associate them to the module, or set of
PIs, from which the path’s startpoint stems, also reporting the
relative FC. Table VI reports such data.

TABLE V
SHORT PATH FAULT COVERAGE

Program #Clock Cycles Combinational
Fault Coverage

Final Fault
Coverage

SAF Program 1 64,502 71.98% 50.10%
SAF Program 2 36,394 73.76% 58.00%
SAF Program 3 42,970 74.78% 55.70%
SAF Program 4 118,098 76.51% 67.60%
SAF Program 5 17,269 73.16% 51.25%

TDF Program 23,451 73.60% 56.70%

PDF Program 279,253 83.77% 77.15%

For each module, we show the total amount of faults,
the combinational and final fault coverages, as well as the
testable fault coverage achieved by removing FUFs from the
final FC. Most paths belong to the ID_Stage, which is well

TABLE VI
SHORT PATH FAULTS COVERAGE PER MODULE

Startpoint #Faults Combinational
Fault Coverage

Final Fault
Coverage

Testable Fault
Coverage

Debug_PIs 666 0.00% 0.00% 100.00%
Other_PIs 299 92.31% 81.60% 81.60%
CS_Registers 290 69.56% 34.48% 41.38%
Debug_Module 287 0.00% 0.00% 100.00%
ID_Stage 7,714 97.54% 94.28% 94.82%

Controller 80 0.00% 0.00% 50.00%
Pipeline_Regs 744 94.35% 69.22% 69.49%
Registers 6,890 99.01% 98.08% 98.08%

EX_Stage 652 57.05% 22.38% 22.65%
ALU 182 11.53% 11.53% 17.37%
Multiplier 48 33.33% 33.33% 43.33%
Sparse_logic 422 79.38% 25.82% 25.82%

LoadStore_Unit 366 81.15% 81.15% 84.70%

Total 10,274 83.77% 77.15% 87.31%

covered by our STL. Two blocks of faults are marked as
completely untestable, namely those that stem from debug-
related circuitry, as they are not controllable by functional
programs. Faults that originate from non-debug PIs are easily
controllable – hence a 92.31% combinational coverage – but
not always easily propagated to primary outputs, with a final
81.60% coverage. Moving to faults related to CS_Registers,
20 of them are also affected by clock gating circuitry and,
hence, untestable. As for faults belonging to the EX_Stage, in
most cases they are found in control-related logic, making it
hard to either control or observe them. Lastly, looking at the
LoadStore_Unit, some faults could not be properly excited due
to the presence of off-path inputs from other modules and PIs;
observability however is quite easy to achieve, as every fault
detected at the combinational level is also observed at the POs.

As a final note, we would like to highlight the fact that the
fault list we produced and used throughout all fault simulation
steps is a generic one, not depending on the application the
DUT is executing. This detail is relevant as, based on the
application, some working modes, and hence circuitry, of the
DUT might never be used. Consequently, faults located in the
unused circuitry can be effectively marked as Safe Faults (i.e.,
FUFs), as per ISO26262 standard. The results achieved in this
work can thus be enhanced by a careful analysis of those
working modes that we can neglect, e.g., identifying a set of
constraints to be fed to a formal verification tool that identifies
the aforementioned FUFs, as described in [40].

VII. CONCLUSIONS

In this paper we presented a systematic STL generation
methodology targeting path delay faults in fully pipelined
CPUs and compared its results with those obtained by using
test programs developed for other fault models. Even though
this approach is still not fully automated, thanks to it, we were
able to cover 100% of all testable long paths, which were very
poorly tested by other test programs, as well as to enhance
the coverage of short paths by identifying large portions of
untestable paths as well as testing some more, reaching a final
87.31% coverage.

11

To the author’s best knowledge, this is the very first ap-
proach that allows a semi-automated and deterministic ap-
proach to functional test generation for PDFs by leveraging
industrial ATPG capabilities. Moreover, its flexibility and
limited runtime make the method an ideal candidate for the
on-line periodical tests mandated by safety standards such as
ISO 26262.

Future works will focus on the inclusion of aging effects, a
major contributor to in-field delay faults. In this context, our
approach will be the basis to create STL routines able to detect
aging-induced PDFs without the need of embedded hardware
monitors.

REFERENCES

[1] A. D. Singh, “Scan based two-pattern tests: should they target opens
instead of tdfs?” in 16th IEEE Latin-American Test Symposium (LATS),
March 2015, pp. 1–2.

[2] M. Psarakis et al., “Microprocessor software-based self-testing,” IEEE
Design Test of Computers, vol. 27, no. 3, pp. 4–19, 2010.

[3] Hitex, “Microcontroller self-test libraries.” [Online]. Avail-
able: https://www.hitex.com/tools-components/software-components/
selftest-libraries-safety-libs/pro-sil-safetlib/

[4] STMicroelectronics, “Guidelines for obtaining IEC 60335 Class B
certification for any STM32 application,” Mar 2016. [Online]. Available:
http://www.st.com/content/ccc/resource/technical/document/application_
note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/
jcr:content/translations/en.CD00290100.pdf

[5] Cypress Semiconductor, “FM3 and FM4 Family, IEC61508 SIL2
Self-Test Library.” [Online]. Available: https://www.cypress.com/file/
249196/download

[6] Renesas Electronics, “SSP Supplemental Add-Ons.” [Online]. Available:
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html

[7] Microchip Technology Inc., “16-bit CPU Self-Test Library
User’s Guide,” 2012. [Online]. Available: http://ww1.microchip.com/
downloads/en/DeviceDoc/52076a.pdf

[8] ARM, “Enabling Our Partnership to Bring Safer Solutions to
the Market Faster.” [Online]. Available: https://developer.arm.com/
technologies/functional-safety

[9] I. Pomeranz, “On the detection of path delay faults by functional
broadside tests,” in 2012 17th IEEE European Test Symposium (ETS),
2012, pp. 1–6.

[10] ——, “Generation of multi-cycle broadside tests,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 8, pp. 1253–1257, 2011.

[11] ——, “On transition fault diagnosis using multicycle at-speed broadside
tests,” in 2011 Sixteenth IEEE European Test Symposium, 2011, pp.
189–194.

[12] ——, “Static test compaction for delay fault test sets consisting of
broadside and skewed-load tests,” in 29th VLSI Test Symposium, 2011,
pp. 84–89.

[13] M. Srinivas et al., “Functional test generation for path delay faults,” in
Proceedings of the Fourth Asian Test Symposium, 1995, pp. 339–345.

[14] M. Micheal et al., “Atpg for path delay faults without path enumeration,”
in Proceedings of the IEEE 2001. 2nd International Symposium on
Quality Electronic Design, 2001, pp. 384–389.

[15] I. Pomeranz et al., “Vector-based functional fault models for delay
faults,” in Proceedings Eighth Asian Test Symposium (ATS’99), 1999,
pp. 41–46.

[16] M.-T. Hsieh et al., “High quality pattern generation for delay defects
with functional sensitized paths,” in 2008 17th Asian Test Symposium,
2008, pp. 131–136.

[17] A. Matrosova et al., “Pdf testability of the circuits derived by special
covering robdds with gates,” in East-West Design & Test Symposium
(EWDTS 2013), 2013, pp. 1–5.

[18] T. Shah et al., “Test pattern generation to detect multiple faults in
robdd based combinational circuits,” in 2017 IEEE 23rd International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2017, pp. 211–212.

[19] V. Singh et al., “Instruction-based self-testing of delay faults in pipelined
processors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 11, pp. 1203–1215, Nov 2006.

[20] Wei-Cheng Lai et al., “Test program synthesis for path delay faults in
microprocessor cores,” in IEEE Intl. Test Conference, 2000, pp. 1080–
1089.

[21] R. Cantoro et al., “Self-test libraries analysis for pipelined processors
transition fault coverage improvement,” in 2021 IEEE 27th International
Symposium on On-Line Testing and Robust System Design (IOLTS),
2021, pp. 1–4.

[22] ——, “Effective techniques for automatically improving the transition
delay fault coverage of self-test libraries,” in 2022 IEEE European Test
Symposium (ETS), 2022 [In press].

[23] R. Cantoro et al., “New perspectives on core in-field path delay test,”
in 2020 IEEE International Test Conference (ITC), 2020, pp. 1–5.

[24] J. Mahmod et al., “Special session: Delay fault testing - present and
future,” in 2019 IEEE 37th VLSI Test Symposium (VTS), 2019, pp. 1–
10.

[25] S. Gurumurthy et al., “Automatic generation of instruction sequences
targeting hard-to-detect structural faults in a processor,” in 2006 IEEE
Intl. Test Conference, 2006, pp. 1–9.

[26] Z. Ghaderi et al., “Sensible: A highly scalable sensor design for path-
based age monitoring in fpgas,” IEEE Transactions on Computers,
vol. 66, no. 5, pp. 919–926, 2017.

[27] A. Sivadasan et al., “Nbti aged cell rejuvenation with back biasing and
resulting critical path reordering for digital circuits in 28nm fdsoi,” in
2018 Design, Automation Test in Europe Conference Exhibition (DATE),
2018, pp. 997–998.

[28] P. Bernardi et al., “On the automatic generation of test programs for
path-delay faults in microprocessor cores,” in 12th IEEE European Test
Symposium (ETS’07), May 2007, pp. 179–184.

[29] K. Christou et al., “A novel sbst generation technique for path-delay
faults in microprocessors exploiting gate- and rt-level descriptions,” in
26th IEEE VLSI Test Symposium (vts 2008), April 2008, pp. 389–394.

[30] N. Hage et al., “On testing of superscalar processors in functional mode
for delay faults,” in 30th IEEE Intl. Conference on VLSI Design and
16th IEEE Intl. Conference on Embedded Systems (VLSID), 2017, pp.
397–402.

[31] C. H. . Wen et al., “On a software-based self-test methodology and its
application,” in 23rd IEEE VLSI Test Symposium (VTS’05), 2005, pp.
107–113.

[32] J. Perez Acle et al., “Observability solutions for in-field functional
test of processor-based systems: A survey and quantitative test case
evaluation,” Microprocessors and Microsystems, vol. 47, pp. 392 – 403,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0141933116301867

[33] J. Chen et al., “Identification of testable representative paths for low-
cost verification of circuit performance during manufacturing and in-field
tests,” in 32nd IEEE VLSI Test Symposium (VTS), April 2014, pp. 1–6.

[34] S. Gurumurthy et al., “Automatic generation of instructions to robustly
test delay defects in processors,” in 12th IEEE European Test Symposium
(ETS’07), 2007, pp. 173–178.

[35] N. I. Deligiannis et al., “Effective sat-based solutions for generating
functional sequences maximizing the sustained switching activity in a
pipelined processor,” in 2021 IEEE 30th Asian Test Symposium (ATS),
2021, pp. 73–78.

[36] T. Faller et al., “Towards sat-based sbst generation for risc-v cores,”
in 2021 IEEE 22nd Latin American Test Symposium (LATS), 2021, pp.
1–2.

[37] A. Riefert et al., “A flexible framework for the automatic generation
of sbst programs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, pp. 3055–3066, 2016.

[38] ETH Zurich and Università di Bologna, “PULPino microcontroller
system.” [Online]. Available: https://github.com/pulp-platform/pulpino

[39] Silvaco, “Silvaco 45nm open cell library.” [Online]. Available:
https://si2.org/open-cell-library/

[40] F. A. da Silva et al., “Determined-Safe Faults Identification: A step
towards ISO26262 hardware compliant designs,” in IEEE European Test
Symposium (ETS), 2020, pp. 1–6.

12

https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/jcr:content/translations/en.CD00290100.pdf
https://www.cypress.com/file/249196/download
https://www.cypress.com/file/249196/download
https://www.renesas.com/en-eu/products/synergy/software/add-ons.html
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
https://developer.arm.com/technologies/functional-safety
https://developer.arm.com/technologies/functional-safety
http://www.sciencedirect.com/science/article/pii/S0141933116301867
http://www.sciencedirect.com/science/article/pii/S0141933116301867
https://github.com/pulp-platform/pulpino
https://si2.org/open-cell-library/

Lorena ANGHEL is Full Professor at Grenoble
INP and member of the research staff of SPINTEC
Laboratory. She received the PhD from Grenoble
INP in 2000, Cum Laudae. Her research interests
include hardware design and test of neural networks,
on-line testing, fault tolerance, and reliable design
and verification. She had fulfilled positions such as
General Chair, Program Chair, for many prestigious
IEEE conferences such as IEEE VTS, IEEE ETS,
IEEE On-Line Test Symposium. Dr. Anghel has
been recipient of several Best Paper and Outstanding

Paper Awards and she has published more than 130 publications in interna-
tional conferences and symposia. She has supervised 24 PhD Students. From
2016 to 2020 Dr. Anghel was Vice President at Grenoble INP, in charge of
Industrial relationships and she is currently Scientific Director for Grenoble
INP.

Riccardo CANTORO received the MS degree and
the PhD in computer engineering from Politecnico
di Torino, Italy, in 2013 and 2017, respectively. He
is currently a researcher with the Department of
Computer Engineering of the same university. His
research interests include functional testing of SoCs
and memories, data analysis, and machine learning
applied to test and diagnosis. He was involved in
the program committees and organizing committees
of several IEEE conferences and workshops and is
currently the Program Co-Chair of the Test Technol-

ogy Educational Program of the Test Technology Technical Council. He is a
member of the IEEE and the IEEE Computer Society.

Riccardo MASANTE received the MS degree in
Electronics Engineering - Embedded Systems from
Politecnico di Torino, Italy, in 2020. His thesis
focused on finding new procedures to write ASM
programs able to reach high fault coverages for
path delay faults. He received the graduation award
"Techniques for aging detection of processors in a
safety-critical environment".

Michele PORTOLAN received his PhD in Micro-
electronics in 2006 from Grenoble-Institute of Tech-
nology (Grenoble-INP), France. In 2003 her received
both a Masters in Telecommunication Engineering
from Grenoble-INP a Master in and Electronics
Engineering and Politecnico di Torino, Italy, as
part of a Double-Degree program. He has been an
IEEE member since 2007 He is currently Associate
Professor at Grenoble-INP (since 2013), member of
the TIMA Laboratory. Previously he was a Member
of Technical Staff at Bell Labs Alcatel-Lucent (now

Nokia) in Ireland and France from 2007 to 2013. His main research themes
are Digital Testing, Automation, Embedded Systems and Reliability. He is one
of the signing member of the IEEE 1687-2014 standard and part of several
Working Groups, such as IEEE P1687.1. He is the author of papers in Journals
and International Conferences and has been granted several Patents from the
USPTO and the EPO.

Sandro SARTONI received the MS degree in
Electronics Engineering - Embedded Systems from
Politecnico di Torino, Italy, in 2019, where he is
currently pursuing his PhD in Computer Engineer-
ing. His research focuses on devising new strategies
for functional test of path delay faults in advanced
semiconductor technologies, also taking into account
how such technologies are affected by aging. He is a
student member of IEEE and IEEE-HKN, the honor
society of IEEE.

Matteo SONZA REORDA received the MSc de-
gree in electronics and the Ph.D. degree in Com-
puter Engineering from Politecnico di Torino, Italy,
in 1986 and 1990, respectively. He is currently a
Full Professor with the Department of Control and
Computer Engineering of the same institution. He
published more than 400 papers in the area of
test and fault tolerant design of reliable circuits
and systems, receiving several Best Paper Awards
at major international conferences. He is involved
in numerous research projects with companies and

other research centers worldwide. He is a Fellow of the IEEE.

13

	Introduction
	Background
	Path Delay fault model
	Related work

	PDF Functional Fault Simulation Flow
	Synthesis
	Logic simulation
	Static Timing Analysis
	Combinational-level fault simulation
	Sequential-level fault simulation

	STL Development Methodology
	ATPG pattern extraction
	Functional constraints identification
	Pattern conversion

	Case Study
	Processor core
	Test programs

	Experimental results
	Conclusions
	References
	Biographies
	Lorena ANGHEL
	Riccardo CANTORO
	Riccardo MASANTE
	Michele PORTOLAN
	Sandro SARTONI
	Matteo SONZA REORDA

