
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

High-Level Design of Precision-Scalable DNN Accelerators Based on Sum-Together Multipliers / Urbinati, Luca; Casu,
Mario R.. - In: IEEE ACCESS. - ISSN 2169-3536. - ELETTRONICO. - 12:(2024), pp. 44163-44189.
[10.1109/access.2024.3380472]

Original

High-Level Design of Precision-Scalable DNN Accelerators Based on Sum-Together Multipliers

Publisher:

Published
DOI:10.1109/access.2024.3380472

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2987476 since: 2024-04-02T09:25:09Z

IEEE

Received 27 February 2024, accepted 17 March 2024, date of publication 21 March 2024, date of current version 28 March 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3380472

High-Level Design of Precision-Scalable DNN
Accelerators Based on Sum-Together
Multipliers
LUCA URBINATI , (Graduate Student Member, IEEE),
AND MARIO R. CASU , (Senior Member, IEEE)
Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

Corresponding author: Luca Urbinati (luca.urbinati@polito.it)

ABSTRACT Precison-scalable (PS) multipliers are gaining traction in Deep Neural Network accelerators,
particularly for enabling mixed-precision (MP) quantization in Deep Learning at the edge. This paper
focuses on the Sum-Together (ST) class of PS multipliers, which are subword-parallel multipliers that can
execute a standard multiplication at full precision or a dot-product with parallel low-precision operands.
Our contributions in this area encompass multiple aspects: we enrich our previous comparison of SoA
ST multipliers by including our recent radix-4 Booth ST multiplier and two novel designs; we extend
the explanation of the architecture and the design flow of our previously proposed ST-based PS hardware
accelerators designed for 2D-Convolution, Depth-wise Convolution, and Fully-Connected layers that we
developed using High-Level Synthesis (HLS); we implement the uniform integer quantization equations
in hardware; we conduct a broad HLS-driven design space exploration of our ST-based accelerators,
varying numerous hardware parameters; finally, we showcase the advantages of ST-based accelerators when
integrated into System-on-Chips (SoCs) in three different scenarios (low-area, low-power, and low-latency),
running inference onMP-quantizedMLPerf Tinymodels as case study. Across the three scenarios, the results
show an average latency speedup of 1.46x, 1.33x, and 1.29x, a reduced energy consumption in most of the
cases, and a marginal area overhead of 0.9%, 2.5% and 8.0%, compared to SoCs with accelerators based on
fixed-precision 16-bit multipliers. To sum up, our work provides a comprehensive understanding of ST-based
accelerators’ performance in an SoC context, paving the way for future enhancements and the solution of
identified inefficiencies.

INDEX TERMS Deep learning, hardware accelerators, high-level synthesis, mixed-precision quantization,
precision-scalable MAC unit, sum-together multipliers.

I. INTRODUCTION
In the context of Deep Learning (DL) at the edge, quan-
tization is an established method for reducing memory
footprint and bandwidth, saving energy, and performing
faster inference when dealing with Deep Neural Networks
(DNNs) on resource limited devices [1]. Recently, there has
been a growing interest in academia and industry towards
Mixed-Precision Quantization (MPQ) [2]. This technique

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

leverages the different sensitivity to quantization of each
DNN layer [3], [4] to search for the optimal number of
activation and weight bits for each individual layer, enabling
accuracy vs latency and accuracy vs energy trade-offs [5].

To take advantage of MPQ, several Precision-Scalable
(PS)multipliers,Multiply-and-Accumulate (MAC) units, and
DNN accelerators have been recently proposed targeting
Machine-Learning (ML) workloads [6], [7], [8], [9], [10],
[11], [12]. In this paper, we focus on a particular family of
PS multipliers called Sum-Together (ST). These are special
reconfigurable subword-parallel multipliers that, depending

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 44163

https://orcid.org/0000-0001-5317-1960
https://orcid.org/0000-0002-1026-0178
https://orcid.org/0000-0001-8336-9150

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

on the selected configuration, not only perform N multiplica-
tions in parallel among multiple low-precision operands, but
also sum together the results of theseN multiplications within
the multiplier itself, i.e., without requiring external addition.
At full precision, they performN = 1 standardmultiplications
(e.g., on 16 bits), whereas at reduced precision they compute
N = 2 or 4 parallel dot-products using the low-precision
operands packed in the multiplier’s inputs (e.g., operands on
8 or 4 bits). In other words, the bitwidth of the operands is
inversely proportional to N (e.g., 16/N bits). ST multipliers
are well-suited for integration within MAC units [6],
[9]. They enable parallel multiplications of low-precision
quantized data in a Single Instruction Multiple Data (SIMD)
fashion and, at the same time, their sum together feature
contributes to further speeding upMAC operations, by saving
N-−1 MAC additions compared to conventional MAC units.
For this reason, ST-based PS MAC units have recently found
application in layer-specific DNN hardware accelerators,
providing MPQ support and speeding up the overall layer
computation by a factor up to N [8], [10], [11].

The contributions of this paper in this field cover multiple
aspects:
1) We enrich our previous performance, power, and area

(PPA) comparison of SoA ST multipliers [8] by
introducing two novel designs. The first, which we name
BW-ADD, is an improved Baugh-Wooley (BW) multi-
plier with a modified final adder that provides a shorter
critical path than the original Ripple Carry Adder (RCA)
used in [6]. The second, which we call HLS ST, is an ST
multiplier derived from High-Level Synthesis (HLS).
Indeed, one of our objectives is to evaluate the capability
of HLS to generate a competitive ST multiplier in
terms of PPA compared to manually-designed Register-
Transfer Level (RTL) implementations. We also add to
the PPA comparison our radix-4 Booth ST multiplier,
recently presented in [7].

2) We provide an extended explanation of the architec-
ture of our ST-based PS hardware accelerators for
2D-Convolution (2D-Conv), Depth-wise Convolution
(DW-Conv) and Fully-Connected (FC) layers, devel-
oped using HLS and previously proposed in [8],
[10], and [11], respectively. Specifically, we present
a comprehensive overview of our accelerators design
flow, from C/C++ to final hardware implementation.

3) We also add the hardware support for uniform integer
quantization (UIQ) [1], [13], [14] to quantize the output
activations, which was not present in our previous
accelerators’ designs.

4) We perform an extensive design space exploration
(DSE) for our ST-based accelerators using HLS. This
involves varying many knobs, including parallelism,
clock frequency, and especially the type of ST mul-
tiplier, which is a novelty of this work with respect
to [8].

5) We illustrate the advantages achieved by our ST-based
accelerators in terms of reduced latency and energy

consumption, comparing them to accelerators equipped
with non-ST fixed-precision 16-bit multipliers, which
we call standard accelerators and standard multipliers,
respectively. For this assessment, we integrate the
accelerators into System-on-Chips (SoCs) under three
different scenarios (low-area, low-power, and low-
latency) and, as case study, we execute the models of
the MLPerf Tiny benchmark [15], previously quantized
in mixed-precision (MP) with a custom version of
QKeras [16] for which we release the source code.

The results of the PPA comparison of ST multipliers
showed that architectures having dedicated multipliers for
each precision configuration tend to be less area-efficient
than those employing a single but reconfigurable multiplier.
Moreover, there is not a single winner that satisfy all PPA
scenarios, but rather a set of optimal STmultipliers depending
on the specific PPA constraints.
The results of the execution of the four MP-quantized

MLPerf Tiny networks, using SoCs integrating ST-based
accelerators tailored to different PPA scenarios (i.e., low-area,
low-power, and low-latency), revealed: an average inference
latency speedup, across the four models, of 1.46x, 1.33x, and
1.29x, respectively; a reduced average energy consumption,
in most of the cases; and a marginal area overhead compared
to SoCs equipped with standard accelerators.
The article is structured as follows. In Sec. II we present

the related work, whereas in Sec. III we provide some back-
ground on DNN quantization, UIQ and the four MLPerf Tiny
models. In Sec. IV we describe the concept of ST multiplier,
we outline the architectures of the SoA ST multipliers,
and we present the newly proposed ones. In Sec. V we
detail the working principle and hardware architecture of our
ST-based DNN accelerators, whereas in Sec. VI we describe
the accelerators design flow. Finally, in Sec. VII we present
the results in three parts: in the first we compare the ST
multipliers in terms of PPA; in the second we report the
Pareto-optimal accelerators, resulting from the HLS-driven
DSE, in Latency vs Area and Power vs Area spaces; in
the last we showcase the achievable latency speedup and
energy reduction of the ST-based accelerators when running
inference on MP-quantized MLPerf Tiny models, against
standard accelerators.

II. RELATED WORK
Although the definition of ST mode was introduced with
the subword-parallel BW ST multiplier of [6], earlier works
already proposed reconfigurable multipliers that support
both single high-precision multiplications and parallel low-
precision dot-products.
The authors of [17] and [18] introduce SIMD extensions to

the Instruction Set Architecture (ISA) of a RISC-V processor
featuring a multiplication unit that behaves like an ST
multiplier.
In [19], a general-purpose systolic array for DL is pro-

posed. It is made of reconfigurable Fusion Units (FUs) that
exploit low-precision multipliers by dynamically merging or

44164 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

keeping their results separate. The architecture of these FUs
falls within the divide-and-conquer (D&C) category, as per
the taxonomy outlined in [9]. To this category also belong
the optimized versions in [12] and [20], and their ancestor
in [21].

In [22], the authors present a reconfigurable fixed-point
multiplier originally designed for digital signal processing
(DSP) applications.

In [9], various PS MAC unit (PSMAC) architectures are
benchmarked and categorized in subword-parallel, D&C and
bit-serial. However, in [6] and [19] are the only ST-based
PSMACs considered here. In [8], instead, we compared all
the main previously described SoA ST multipliers in PPA.

Recently, we have also contributed to the SoA of ST multi-
pliers with a subword-parallel radix-4 Booth architecture that
requires a light-weight reconfiguration logic [7].

Regarding ST-based DNN accelerators, there are a few
examples in the literature: in [19] the authors proposed a
general-purpose systolic array architecture, in [6] the authors
describe their implementation of an FC kernel, whereas we
derived 2D-Conv [11], DW-Conv [10] and FC [8] layer-
specific accelerators using an HLS flow. In particular, in [8]
we also carried out a DSE varying several hardware knobs,
from clock frequency to HLS directives, to explore a wide
range of Pareto-optimal solutions in area, power or latency.
The authors of [9] and [12] have already conducted an
exhaustive comparison of various PS hardware accelerators,
including [6], [19], [23], [24], [25], and [26]. To the best of
our knowledge, no other works have focused on employing
HLS techniques for the development of ST-based hardware
accelerators and PS accelerators in general.

In this work, we enrich the SoA portfolio by introducing
two novel ST multipliers (a BW multiplier with a modified
final adder and an ST multiplier derived from a functional
C/C++ description by an HLS tool) and we perform a
comprehensive PPA analysis of all the SoA ST multipliers.
We then derive ST-based PS DNN accelerators, like in [8];
however, a distinctive feature of our work is the support
for UIQ for the quantization of the final result, which is
not mentioned in any of the previously cited accelerators.
In this regard, we propose an accelerator design flow
that includes minimizing the bitwidths of the fixed-point
variables required by the UIQ formulas. We also expand
our previous DSE [8] by introducing new hardware knobs.
One of these is the selection of the type of ST multiplier
inside the accelerators’ MAC units, which can be chosen
among all the manually-designed RTL descriptions of SoA
STmultipliers (like in [8]), and also among the STmultipliers
inferred by the HLS tool from a high-level description.
Furthermore, we show the latency and energy benefits of
ST-based accelerators, against equivalent accelerators based
on standard multipliers, when running entire MP-quantized
DNNs. Such comparison, except for our previous work that
focused solely on isolatedDNN layers [10], [11], has not been
extensively examined in the literature.

III. BACKGROUND
A. DEEP NEURAL NETWORKS’ QUANTIZATION
The quantization of DNNs is now a common practice that
decreases the numerical precision of weight parameters and
activation values of neural networks layers. This process
reduces the model size, lowering memory requirements to
store weigths and activations, as multiple low-precision
feature maps and weights can be efficiently packed into
the same memory word [14]. For the same reason, it also
reduces data transfers costs. Additionally, quantization can
improve inference latency, throughput and energy by taking
advantage of high-throughput integer instructions, such as
SIMD instructions in microprocessors [18], or specialized
hardware operators like subword-parallel ST multipliers [7].

In this paper we focus on UIQ, even though various other
quantization techniques exist [1]. This choice is driven by the
simple mathematical formulation, the availability in common
ML frameworks (e.g., TensorFlow Lite), its efficient mapping
on existing hardware (e.g., on 8-bit microcontrollers), and
thus its widespread adoption on embedded devices for
non-extreme quantization (> 2 bits) [1], [13], [27]. Moreover,
when it comes to ASIC implementation, integer/fixed-point
math pipelines are more efficient in terms of silicon area and
power consumption when compared to floating-point (FP)
ones [28], not to mention the faster execution times. In the
following, we introduce the UIQmathematical background in
the context of DNNs, borrowing some definitions from [13]
and [14]. Notice that, since we target ST-based accelerators
only for the inference phase of DNNs, our focus is only on
UIQ for inference, and not for training.

1) UNIFORM INTEGER QUANTIZATION
Given a set of real numbers in the real range [α, β]
(e.g., a tensor with a high-precision FP format like FP32),
UIQ maps each x ∈ [α, β] to an integer value xq ∈

[αq, βq] represented uniformly on b bits, where [αq, βq] is
the quantized range: for asymmetric or symmetric signed
integers it is equal to [−2b−1, 2b−1

−1] or [−2b−1
−1, 2b−1

−

1], respectively; for unsigned integers it is [0, 2b − 1]. The
process of quantization is defined as:

xq = clip
(
round

(1
s
x + z

)
, αq, βq

)
(1)

where s is the scaling factor, z is the zero-point (i.e.,
the integer value to which the real value zero is exactly
represented), round is the rounding function (e.g., round-to-
nearest), and clip keeps the output range within the quantized
range by saturating the outliers. In turn, s and z are defined
from the chosen real and quantized ranges as:

s =
β − α

βq − αq
(2)

z = round
(βαq − αβq

β − α

)
(3)

VOLUME 12, 2024 44165

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

The opposite operation, which brings back xq to the real
range, is defined as:

x̂ = s(xq − z) (4)

where x̂ is the closest real value (but not necessarily equal) to
the original x, because rounding and clipping functions may
introduce an irrecoverable error.

The quantization mapping discussed so far, with asym-
metric ranges and z ̸= 0, is known as affine quantization.
Instead, when both ranges are symmetric, z becomes zero
and (1) performs only the scale transformation. In this case,
the quantization mapping is commonly known as scale or
symmetric [29] quantization. Moreover, when s is a unique
scalar value for all the channels of a tensor, quantization is
referred to as per-layer; instead when s is a one-dimensional
vector of scalars, each corresponding to a different channel of
a tensor, quantization is called per-channel.

2) INTEGER-ONLY DNN KERNELS
Now consider the expression of an FC layer:

Yk = bk +

C∑
c=1

XcWc,k ∀ k ∈ [1,K] (5)

where X ∈ RC is the input vector of neurons, W ∈ RK×C

is the weight matrix, b ∈ RK is the bias array, Y ∈ RK

is the output array, C and K are the number of input and
output activations processed by the FC layer, respectively.
By applying (4) to each of the four real variables in (5), setting
their own quantized ranges a priori, andmoving the quantized
output array Yq,k to the left hand side, we obtain the quantized
FC expression valid for the k-th output activation:

Yq,k = zY︸︷︷︸
(a)

+
sb
sY

(bq,k − zb)︸ ︷︷ ︸
(b)

+
sX sW
sY

[(C∑
c=1

Xq,cWq,c,k

)
︸ ︷︷ ︸

(c)

−

(
zW

C∑
c=1

Xq,c

)
︸ ︷︷ ︸

(d)

−

(
zX

C∑
c=1

Wq,c,k

)
︸ ︷︷ ︸

(e)

+CzX zW︸ ︷︷ ︸
(f)

]

∀ k ∈ [1,K] (6)

where Xq, Wq, bq, Yq are the integer values; sX , sW , sb, sY
are the scaling factors; and zX , zW , zb, zY are the zero-points,
associated with X ,W , b, Y , respectively. Term (c) in (6) is the
integer dot product, i.e., the core of the computation, instead
term (d) introduces an overhead that causes a performance
penalty. Both of them must be computed online because
they depend on Xq, which is known only at runtime. On the
contrary, terms (a), (b), (e), and (f) are constant, thus can be
computed offline. Notice that in case of scale quantization
for weights and affine quantization for activations, which
is a common practice in the literature [13], [14], zW and
zb become null, and so also terms (d) and (f), while (b)
simplifies. This is also our assumption in this work. The

result of (6), before being assigned to Yq, is also rounded and
clipped to fit the desired output quantized range of Yq (not
shown in the formula for better readability).

The mathematical derivations of the integer-only kernels
for 2D- and DW-Conv closely follow that of FC. We report
them in AppendixA. Hereafter, we will refer to (14), (16),
and (6) as the UIQ formulas.

Now we focus on the integration of the rectified linear
unit (ReLU) into the expressions of the integer-only kernels.
In fact, to optimize inference on DNNs in embedded devices,
some adjacent DNN layers can be typically combined into
a single one. This operation, called Layer Fusion, is usually
performed between convolutional/fully-connected layers and
the Batch Normalization (BN) or activation layers (e.g.,
ReLU), and can be applied to both FP and quantized models.
Since our ST-based accelerators support layer fusion with
ReLU, as elaborated in Sec. V-B, we explain here the fusion
process considering an FC layer with a subsequent ReLU
layer. We choose ReLU because it stands out as the most
common activation function when it comes to efficient
hardware implementations of DNNs. By applying the ReLU
non-linearity to the FP output Yk of (5), we derive the
expression of the FP FC-ReLU fused layer:

Rk =

{
0 if Yk < 0
Yk if Yk ≥ 0

∀ k ∈ [1,K] (7)

where Rk is the k-th output of the ReLU layer. By repeating
the same steps that brought to the derivation of (6) from (5)—
applying (4) to each real variable of (7), setting their
quantized ranges, and moving the quantized ReLU output
Rq,k to the left hand side—we obtain the quantized FC-ReLU
fused layer valid for the k-th ReLU element:

Rq,k =

{
zR if T < 0
zR + sR · T if T ≥ 0

∀ k ∈ [1,K] (8a)

where

T = sb(bq,k − zb) + sX sW

[(C∑
c=1

Xq,cWq,c,k

)

−

(
zW

C∑
c=1

Xq,c

)
−

(
zX

C∑
c=1

Wq,c,k

)
+ CzX zW

]
. (8b)

sR and zR are the scaling factor and the zero-point
associated toRq,k , whereas all the other variables are the same
of those that appear in (6). Notice thatRq,k undergoes a round-
and-clip operation, not shown for clarity in (8), to fit into the
desired quantized range of the ReLU layer.

The expressions for the quantized 2D-Conv-ReLU and
DW-Conv-ReLU fused layers can be obtained through the
same steps shown here for the quantized FC-ReLU.

B. MLPERF TINY BENCHMARK
The Machine Learning Performance Benchmark (MLPerf)
is a widely recognized set of benchmarks in the field

44166 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

of ML created by the collaborative effort of more than
fifty organizations from both academia and industry [15].
In particular, the Tiny benchmark is a suite of four lightweight
ML models representing real-world applications: Visual
Wake Words (VWW), Image Classification (ImgClass),
Keyword Spotting (KS), and Anomaly Detection (AD).
MLPerf Tiny was designed to assess the performance of edge
devices and ultra-low-power tiny ML systems with a limited
energy, memory and/or computational power budget (such as
mobile phones, microcontrollers, Internet of Things devices),
by measuring accuracy, latency and energy during inference
on those four MLmodels. In this respect, MLPerf Tiny is also
a competition that encourages innovation in the field of Tiny
ML [30]. For these reasons, each application not only comes
with its own dataset for development and testing, but alsowith
a dedicated performance evaluation dataset (Perf test set).

1) VISUAL WAKE WORDS
TheVWWdataset [31] is a collection of 109619 96×96 RGB
images which contain persons or not-persons, derived from
the MSCOCO 2014 dataset [32]. The use-case of this dataset
is for a device to wake up when a person is present, covering
smart doorbell and occupancy applications. The model to use
with this dataset is a smaller version of MobilenetV1, [33]
that we defineMobileNetV1Tiny.

2) IMAGE CLASSIFICATION
The ImgClass benchmark uses the CIFAR-10 dataset [34],
which consists of 60000 32 × 32 RGB images belonging
to 10 unique classes of 6000 images each. The use-case
is for compact vision systems, including manufacturing,
Internet-of-Thing sensor nodes, and autonomous agents and
vehicles. The model to use is a custom ResNetV1 [35] that
we define ResNetV1Tiny, which has no pooling layer after
the first convolutional layer, fewer residual stacks, and lower
dimension of filters and convolution strides than the original
ResNetV1.

3) KEYWORD SPOTTING
The KS benchmark uses a large collection of English words,
pronounced by persons with various accents, and derived
from the Speech Commands v2 dataset [36]. It contains
twelve classes: ten with keywords (down, go, left, no, off,
on, right, stop, up, yes), one with background noises and one
with silence. The use-case is for human-machine interaction,
including wakeword detection and remote control of smart
devices by voice. The benchmark’s target network is the small
Depth-wise Separable Convolutional Neural Network (DS-
CNN) of [37].

4) ANOMALY DETECTION
This benchmark uses one of the six machine types present
in the DCASE2020 competition’s dataset [38], the toy-car
machine type (ToyADMOS [39]), which contains single-
channel 10-seconds length audio samples recorded from

FIGURE 1. Reference ST multiplier, modified from [7]. The 16-bit inputs (A
and B) are partitioned in 4-bit chunks to enable multiple operations,
as defined by the 3-bit configuration input (CONFIG) and shown in
Table 1. The X/· symbol indicates that the multiplier is capable of
multiplication and dot-product operations, depending on the
configuration.

TABLE 1. Supported precision configurations and operations of the
reference ST multiplier of Fig. 1. The last three configurations correspond
to dot-product operations at low precision.

seven different toy cars (1000 each) mixed with environ-
mental noise. The use-case is early detection of machine
anomalies, a common industrial problem. The model of this
benchmark is the reference implementation of DCASE2020
which is an FC-based autoencoder [38] (thus, we name it
FC-AutoEncoder). Differently from the other MLPerf Tiny
models, the main metric used in AD is not accuracy, but the
Area Under The Receiver Operating Characteristics Curve
(AUC).

IV. SUM-TOGETHER MULTIPLIERS
The new ST multipliers that we introduce, as well as all the
others that we analyze in this work, have I/O signals and
behave as the reference component described in Fig. 1 and
Table 1. Depending on the CONFIG configuration signal,
this can perform one 16 × 16.16×8 multiplication, or two
8 × 8.8×4 or four 4 × 4 dot-products in parallel, using
the signed operands packed in the 16-bit inputs A and B.
Depending on the configuration, a subset or the entire 32 bits
of the multiplier’s output P contain the operation result.

We focus on these precisions for the following reasons.
In applications that require utmost accuracy, a common

VOLUME 12, 2024 44167

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

choice is to use 16 bits to quantize activations and weights.
Some examples are safety-critical applications, such as
image segmentation in foggy environments for autonomous
driving [5]; others are image processing applications that
work with high-resolution satellite images, or high dynamic
range (HDR) images and super-resolution [27]. 8 bits is
the default precision to quantize DNNs while avoiding
performance degradation [27] and is therefore the most
commonly used. When smaller bitwidths for inputs and
weights are needed, quantization techniques targeting 4 bits
already provide an acceptable tradeoff between model size
reduction and retained performance for most applications [1],
[40]. Instead, when dealing with extreme low-bit quantization
(< 4 bits), existing methods incur a serious accuracy loss
compared to the baseline, unless very extensive tuning and
hyperparameter search is performed. Hence, this is still an
active line of research [1]. In light of these motivations,
we work with ST multipliers that support operands with
precision between 16 and 4 bits.

Regarding the asymmetric configurations (i.e., 16× 8 and
8×4), we support them because they enable efficient packing
of lower-precision operands, such as DNN weights, without
compromising the precision of other operands, like DNN
activations. Thus, they contribute to reducing the memory
footprint of ML models. These configurations are used in
SoAML accelerators and processors [9], [18], and can also be
found in commercial ML frameworks such as TFLite Micro.1

In the following, we first describe the architectures
of the SoA ST multipliers as proposed in the literature
and emphasize the differences between these and our re-
implemented versions. Indeed, since the original SoA ST
multipliers support a broad range of bitwidths for input and
weights, we introduce minor modifications to align their
configurations with the reference ST mentioned in Table 1.
This is important to guarantee fair comparisons in all our
experiments of Sec. VII. Lastly, we present the two newly
proposed ST multipliers.

A. SOA ST MULTIPLIERS
The original subword-parallel BW multiplier of [6] is
composed of a reconfigurable partial product matrix (PPM)
and a final RCA [41]. The PPM can be reconfigured to
compute one 16× 16 multiplications or 16/m dot-products at
m= 8, 4, or 2 bit precision in parallel. Our re-implementation
of [6] (made with a structural RTL description) is reported
on the left side of Fig. 2(a). From top to bottom, it has the
same architecture of the original version. We also draw, for
clarity, the output concatenation block (&), which merges the
least significant output bits coming from the PPM with the
most significant ones exiting from the final adder. However,
in our version we introduce the following modifications.
First, we remove the 2-bit support from the PPM, since we

1An example of a TFLite Micro kernel for 2D-convolution sup-
porting asymmetric configurations: https://github.com/tensorflow/tflite-
micro/blob/main/tensorflow/lite/micro/kernels/conv.cc. Accessed on: Jan
19, 2024.

use precision between 4 and 16 bits as motivated before.
This can be seen from the precision of the main building
block of the PPM, which is a 4 × 4 BW multiplier. Second,
in low-precision configurations, we right shift the final output
to the least-significant bit (LSB) position, sign-extending it
to 32 bits (right shift & ext block). On the right side of
Fig. 2(a), we illustrate how the PPM is reconfigured in the five
operating modes of Table 1. In the 16×16 and 16×8 modes,
all the PPs of the PPM contribute to the multiplier’s output P
and the result is represented on 32 bits, making valid—i.e.,
yellow in Fig. 2(a)—the entire result P. At lower precision,
only the yellow PPs on the left-to-right diagonal of the PPM
remain active and behave like two 8 × 8 (8 × 8 / 8 × 4 in
Fig. 2(a)) or four 4 × 4 (4 × 4 in Fig. 2(a)) BW multipliers,
respectively. These PPs produce the valid (yellow) output
bits of P, which are less than 32 in this case and require
the alignment to the LSB position. The remaining grey PPs
are gated, using AND gates, and generate the invalid (grey)
output bits.

The multiplication unit of RI5CY [17], a RISC-V proces-
sor featuring a SIMD ISA extension, comprises a standard
32-bit integer multiplier, a 32-bit fixed-point multiplier and
two subword-parallel dot-product units. These units accept
two 16-bit or four 8-bit operands (packed in one 32-bit
register) and accumulate the 32-bit result in one cycle, hence
performing simultaneously up to four multiplications and
accumulations. The architecture of the two dot-product units
consists of either two 17-bit multipliers or four 9-bit multipli-
ers, respectively, followed by a compression tree. In [18], the
same authors extend the multiplication unit with other two
subword-parallel dot-product units supporting 4- and 2-bit
operands, respectively. They also added the ISA support for
some asymmetric configurations (8 × 4, 4 × 8 and 16 × 2).
In this work, we implement the high-precision fixed-point
multiplier and the two low-precision dot-product units of [17]
as three mutually exclusive datapaths in a single design,
scaling their precision to 16, 8 and 4 bits, respectively. Our
re-implementation, illustrated in Fig. 2(b), uses a behavioral
RTL description, as the authors of [17] declared that it gives
the synthesizer the maximum optimization freedom.

The Fusion Unit of Bit Fusion [19] dynamically composes
and decomposes 2-bit multipliers (called BitBricks) through
a shift-and-add logic. It supports one 8 × 8, two 4 × 8, four
4 × 4, four 2 × 8, eight 2 × 4, sixteen 2 × 2 input/weight
multiplications in one clock cycle. Several optimizations to
the original work of [19] are proposed in [12] and [20],
which reduce complexity and reconfigurability overhead of
the shift-and-add logic at the expense of a lower number of
supported input/weight precisions (2 × 2, 4 × 4, 8 × 8).
However, the ancestor of all these D&C architectures is the
reconfigurable and parallel inner-product processor of [21].
This uses larger BitBricks on 4 or 8 bits and a higher
input precision. In fact, each of the two input operands can
accommodate one 64-bit, four 32-bit, sixteen 16-bit, or sixty-
four 8-bit items. It also maintains a fixed bitwidth for the
two input operands, ensuring a constant memory bandwidth

44168 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

FIGURE 2. (a) Our version of BW ST [6]: architecture overview (left), PPM reconfiguration (right). (b) Our version of ST multiplier [17]:
16-bit high-precision multiplier (left), 8-bit and 4-bit low-precision dot-product units (middle, right). (c) Our version of D&C ST [21]: four
FUs with four 4-bit BitBricks each, interconnected by shift-and-add logics. (d) Our version of ST multiplier [22]: four 8-bit Booth
multipliers interconnected by muxes ending with an adder tree. (e) Radix-4 Booth ST (as in [7]): reconfiguration logic (blue), 16-bit
Booth multiplier (white and gray). (f) HLS ST derived from HLS (proposed in this paper): four multipliers and three adders
interconnected by a network of muxes and concatenations.

across different configurations. This contrasts with the D&C
architectures in [12], [19], and [20], which suffer from
memory bandwidth explosion at reduced precision, as noted
in [9]. Among these D&C ST multipliers we implement
the one from [21] for a fair comparison with the other

SoA ST multipliers on an equal memory bandwidth basis,
avoiding the problem of bandwidth explosion. In particular,
we re-implement it with 4-bit BitBricks to support 16, 8 and
4-bit precision, as shown in Fig. 2(c): four FUs based on
four 4-bit BitBricks each, interconnected by shift-and-add

VOLUME 12, 2024 44169

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

logic. We also right-shift its output to the LSB position and
sign-extend it to 32 bits in low-precision modes (right shift &
ext block as in [6]).

The reconfigurable fixed-point multiplier of [22] targets
DSP applications and consists of four 16-bit Booth multi-
pliers (without final adder), a configurable partial-products
compression array and three configurable 33-bit adders.
It supports symmetric (one 32 × 32, two 16 × 16 or four
8 × 8) and asymmetric (two 16 × 32) signed/unsigned
multiplication operations, and dot product/double dot product
operations (one or two 16 × 16±16 × 16 with saturation,
one or two 16 × 16±16 × 16.16 without saturation,
and one 8 × 8.8×8+8×8.8×8). In our version of [22],
we remove the extra logic that is not strictly necessary to
implement the reference ST multiplier behavior, such as
the saturation logic or the subtraction in the dot-products.
Next, we change the way the dot product is computed
for all precisions. For example, in configuration 8 × 8
we swap the lower part with the upper part of operand
B: A[15:8]×B[15:8] ± aL[7:0]×bL[7:0] of [22] becomes
A[15:8]×B[7:0] + A[7:0]×B[15:8], as reported in Table 1.
We also scale down maximum and minimum precision to
16 and 4 bits, respectively. The resulting architecture, shown
in Fig. 2(d), features four 8-bit Booth multipliers connected
by a network of multiplexers ending with an adder tree.

The subword-parallel radix-4 Booth architecture of [7]
already supports operands at 16, 8, and 4-bit precision, as the
reference ST multiplier in Table 1. As illustrated in Fig. 2(e),
it is composed of a lightweight reconfiguration logic (in blue)
placed between the two input operands and a standard 16-bit
Booth multiplier. The latter, drawn in white and gray, features
a Wallace’s reduction tree with 4:2 compressors and a Carry
Propagate Adder with Prefix Network [41]. We implement
the architecture of this Booth ST multiplier with a structural
description as in our original paper [7].
At last, within all SoA ST multipliers that do not natively

support the asymmetric configurations 16 × 8 and 8 × 4
(i.e., [6], [17], [21]), we add a sign-extension logic (not
shown in Fig. 2 for better readability) that extends the lower
precision operand B to either 16 or 8 bits before the actual
multiplication operation. For this reason, zero-padding of the
low-precision operands is not necessary in any configuration,
as these operands always fully utilize all the parallelism of the
multipliers’ inputs A and B.
As a final note, we implement all of these SoA ST

multipliers as signed multipliers.

B. BW-ADD: A BAUGH-WOOLEY ST MULTIPLIER WITH AN
IMPROVED FINAL ADDER
In light of the results of our previous work [7], [8],
we observe that the BW ST multiplier [6] is particularly
area-efficient at clock frequencies lower than 600MHz.
At higher frequencies, the long diagonal critical path of
the BW array and the carry chain of the final 16-bit
RCA, highlighted by the purple dotted line in Fig. 2(a), are
responsible for a significant area degradation [8], since the

LISTING 1. The C/C++ source code of the HLS ST multiplier.

logic synthesizer must infer large logic gates to meet the
stricter timing constraints. Thus, in this paper we address
this problem by letting the logic synthesizer select the most
suitable final adder implementation that meets the specified
timing constraints with the minimum area, rather than forcing
it to use an RCA.We name this multiplierBW-ADD. With this
change, we expect a lower multiplier’s area at high frequency,
while remaining unaltered at low frequency, compared to [6].

C. HLS ST: AN ST MULTIPLIER DERIVED FROM HLS
As we present in Sec. V, we use HLS to generate the
RTL of our PS DNN accelerators based on ST multipliers
starting from a high-level description. To infer a specific
implementation of an ST multiplier in the accelerators’
MAC units, we force the HLS tool to import its RTL
implementation. Usually, this RTL is described manually,
as in the case of the SoA ST multipliers of Sec. IV-A. As an
alternative, we decide to describe the ST functionality at a
high-level and let the HLS tool, which in this work is Siemens
Catapult, create automatically its RTL. The source code of
this new ST multiplier, which we name HLS ST, is listed in
Lst. 1. To easily access bit fields from integer data types,
we use the method slc available in the Catapult C++ library
ac_int.h (line 1): for example, A.slc<4>(12) is a 4-bit sub-
field from bit 15 down to bit 12 of the int16 signal A (line 12).

By inspecting the RTL generated by the HLS tool, which
corresponds to the schematic in Fig. 2(f), we notice that it
contains one 16-bit, two 8-bit and two 4-bit multipliers, three
adders with 8/12/16-bit bitwidth precision, and a network
of multiplexers and concatenation blocks (&) that unpacks
the 16-bit input operands, distributes them to the multipliers
and merges their low-precision results into the final 32-bit
output. Moreover, the result of low-precision configurations
is already aligned to the rightmost LSB position.

V. ST-BASED HARDWARE ACCELERATORS
A. WORKING PRINCIPLE
We now illustrate the working principle of our three DNN
accelerators integrating ST multipliers in their MAC units.
Fig. 3 shows the different access patterns (red) that the
2D-Conv, DW-Conv and FC accelerators use to read data

44170 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

FIGURE 3. Working principle of our ST-based DNN accelerators: 2D-Convolution (2D-Conv), Depth-wise Convolution (DW-Conv)
and Fully-Connected (FC).

from the activation (blue) and weight (orange) tensors, and
how these data are packed in the 16-bit inputs of the ST
multipliers.

1) 2D-CONV ACCELERATOR
For every orange filter with C kernels, a MAC unit of the
2D-Conv accelerator performs the multiplication of the C
channels of the blue input tensor with the corresponding
weight kernels, and the channel-wise accumulation of these
multiplications. At full precision (N = 1), the ST multiplier
within the MAC unit processes activations and weights from
one input channel at a time. Instead, at lower precision the ST
multiplier is fed with pairs of activation/weight data from two
(N = 2) or four (N = 4) input channels at a time. This process
is highlighted in red in the second column of Fig. 3 and
allows to exploit the dot-product feature of the ST multiplier
resulting in ideally fewer MAC cycles, which scale as C/N ,
and lower latency, which scales as 1/N .

2) DW-CONV ACCELERATOR
In DW-Conv, every output channel is the result of the
convolution between the corresponding blue input channel
and orange weight kernel, with no accumulation along the
channel dimension, as it happens instead in the 2D-Conv case.
Therefore, we need to use the ST multiplier in a different way
than for 2D-Conv: we can accumulate the partial products
between the N = 1, 2, or 4 input/weight pairs from the

receptive field of the input tensor and the corresponding
weight kernel. This new dataflow is reported in red in the third
column of Fig. 3.

Compared to 2D-Conv, this accelerator has an overhead
that affects the reduction of both MAC cycles and latency,
as we show later in Sec. VII-C. This is because the number
of accumulations is given by the square of the kernel size
(K 2), which is not a multiple of N at lower precision (i.e.,
N = 2 or 4). Let us consider the 3 × 3 kernel of Fig. 3 as an
example. With N = 2 or 4, we need five or three iterations,
respectively, to accumulate the products of input activations
and kernel weights. In the last iteration, however, only one
input pair is within the receptive field of the kernel. As a
result, we need to feed the STmultiplier with zeros in place of
the missing low-precision operands, but this clearly results in
under-utilization of the ST hardware. The number of MAC
cycles for DW-Conv is ⌈K 2/N⌉ and the latency reduction
scales as ⌈K 2/N/K 2

⌉, which typically is greater than 1/N ,
with this overhead decreasing as K increases [10].

3) FC ACCELERATOR
The working principle of this accelerator is shown in the
last column of Fig. 3. To compute each element of the green
output activation array (e.g., the one highligted in red),
a MAC unit computes the dot product between the blue array
of C input activations and one row of the orange weight
matrix. The ST multiplier in the MAC unit takes N pairs

VOLUME 12, 2024 44171

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

FIGURE 4. General architecture of the ST-based accelerators (bottom
right), HLS flow (bottom left), and pseudo-code of the high-level C/C++

description (top) that produces the general architecture.

at a time from the two arrays and either multiplies them
in high-precision mode (N = 1), or performs a dot-product
in low-precision mode (N = 2, or 4). Similarly to 2D-Conv,
C/N subsequent accumulations are needed to complete the
calculation. The process is repeated for every row of the
weight matrix, until the green output activation array is
complete. As a result, the number of MAC cycles and the
corresponding latency scale as C/N and 1/N , respectively,
like in the 2D-Conv case.

B. ACCELERATORS ARCHITECTURE
Our ST-based DNN accelerators share the same general
architecture, outlined in the grey rectangle of Fig. 4. It con-
sists of four parts as illustrated later in Secs. V-B1–V-B4:
internal buffers (for input, weight, and output data), mem-
ory addressing and concatenating logics, reconfigurable
ST-based PSMAC array, quantization logic and ReLU.

We obtain this architecture using the flow on the left side
of Fig. 4, starting from a high-level C/C++ description of
the ST-based accelerator (C/C++ (top) block) and using
HLS techniques to generate the final RTL implementation.
We provide a full description of this flow in Sec. VI-C.

Even though it is not the focus of our paper, we assume
that the three accelerators share an on-chip global buffer (not
shown in Fig. 4), as shown for example in [42] and other more
recent papers onMLSoCs [43], [44]. In particular, we assume
that the global buffer is large enough to store at least two tiles
(two is for double buffering) of each of the three relevant
tensors involved in the execution of a single accelerator:
input activation, weight, and output activation tensor. Indeed,
we assume that the complete tensors have been fragmented in
tiles [45] to exploit data locality in this on-chip global buffer.
Moreover, we assume that an on-chip embedded processor
invokes each accelerator to process those tiles one at a time.

Table 2 shows the maximum tiles dimensions (Part I) and
the maximum tiles sizes (Part II) that would be stored in
the global buffer. We determined these dimensions through a
statistical analysis of the layer shapes of the most common
DNNs for edge devices [10], [11] that are available in
public Model Zoos for computer vision applications, such
as TensorFlow [46], [47], Intel [48], [49], Xilinx [50], and
Nvidia [51], [52]. These networks include the well-known
families of ResNet, MobileNet, and EfficientNet. Based on
our survey, we select 18 and 22 as the input tile height/width
(IH / IW) and output tile height/width (OH /OW) dimensions
for 2D- and DW-Conv, respectively, because these values
represent a reasonable trade-off between area of the global
buffer and number of iterations over the tiles required by the
accelerators to complete the DNN layers [10], [11]. Height
and width of weight tiles (KH / KW) are instead 7 and
5 for 2D- and DW-Conv, respectively, to ensure that the
accelerators support the majority of DNNs (e.g., ResNetV1
uses 7 × 7 kernels).

Regarding the input tile channels/activations (IC / IA)
and output tile channels/activations (OC / OA), we vary
their size during the DSE of ST-based accelerators as
discussed in Sec. VII-B. The values explored are in the first
two rows of Table 3, which also contains HLS directives
and implementation constraints that we let vary during the
DSE. We call these variables hardware configuration knobs
because they affect how the RTL is synthesized by the HLS
tool. We use 32 as maximum value for IC and OC because
we found that the number of input and output channels of
activations and weight tensors of common DNNs are often
divisible by this value. For the FC accelerator, we select
values of IA and OA starting from those used in [6], which
were 256 and 8, respectively. Then, we add values in a
power-of-two fashion to expand the spectrum of solutions
for our design space and to ensure that the area covered by
all three accelerators ranges approximately from a minimum
to a maximum in the same manner. We will describe
the remaining hardware configuration knobs later in this
section.

44172 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

TABLE 2. Description of accelerators’ parameters related to the tiles (Part I and Part II) and accelerators’ internal buffers sizes (Part III). The values of the
parameters explored during the DSE of Sec. VII-B, denoted by the DSE entry, are listed in Table 3.

TABLE 3. Hardware configuration knobs explored in the DSE of Sec. VII-B, including maximum tiles size, HLS directives, and implementation constraints.

Let us now comment on the pseudo-code at the top of
Fig. 4. It is a concise version of the high-level C/C++

description that produces the general architecture of the
ST-based accelerators using HLS techniques. We first refer to
this simplified code to highlight the commonalities between
the high-level descriptions of the various accelerators. Then,
we provide specific details on how the key parts of this code
translate into the high-level C/C++ pseudo-codes of the three
accelerators, reported in Lsts. 2, 3, and 4, for 2D-Conv, DW-
Conv, and FC, respectively.

After a series of pipelined outermost loops L1–L3, the
accelerator reads activations from the internal input buffer
(IBUF) and prepares the first operand A for the ST multiplier
through the memory addressing and concatenating logic.
For 2D-Conv and FC, this operation takes place before
the innermost loop L4; however, in the case of DW-Conv,
it occurs within L4 because there is no input channels loop
in the DW-Conv algorithm. Then, in L4 the accelerator
reads weights from the internal weight buffer (WBUF) and
fills the second operand B. Subsequently, it performs the
multiplication/dot-product operation using the ST multiplier
configured via CONFIG and accumulates the result in the
internal output buffer (OBUF). The latter keeps stored

the result of the previous tile iteration, or is reset in L2
when the accelerator processes the initial input-weight pair
of tiles of a layer execution (see the RESET signal in
Lsts. 2–4).
Since L4 is unrolled, the HLS tool synthesizes it by

generating the array of M parallel reconfigurable ST-based
PSMAC units shown in Fig. 4. To comply with the working
principle presented in Sec. V-A, loop L3 needs to terminate
earlier in low-precision configurations: this happens when
the index of L3 reaches its maximum number of iterations
(L3max) divided by N , where L3max corresponds to the
number of input channels for 2D-Conv, the product of
the kernel dimensions for DW-Conv, or the number of
input activations for FC, of the current tile execution. This
is implemented by variables ic_lim, k_lim, and ia_lim in
Lsts. 2, 3, and 4, respectively. As the number of iterations
of loop L3 decreases at reduced precision, the remaining
readings from IBUF and WBUF are not performed. Thus,
there is no need to fill with zeros the unused parts of
these buffers. Finally, only when the accelerator creates
the last output tile, OBUF undergoes quantization using
the corresponding UIQ formula (i.e, Eq. (14) for 2D-Conv,
(16) for DW-Conv, (6) for FC), followed by ReLU (when

VOLUME 12, 2024 44173

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

LISTING 2. Pseudo-code of our ST-based 2D-Conv accelerator.

needed), preparing the output for the computation of the
next layer. Otherwise, OBUF keeps accumulating the partial
result/output inside the accelerator to avoid data transfers
in the external memory, thus following an output-stationary
dataflow [42].

Below we delve into the details of each architectural block
of the ST-based accelerator illustrated in Fig. 4, highlighting
the key differences between the three accelerators.

1) INTERNAL BUFFERS
Part III of Table 2 reports the accelerators’ internal buffers
sizes. These follow the same ordering of the parameters used

LISTING 3. Pseudo-code of our ST-based DW-Conv accelerator.

by the tile sizes in Part II. For IBUF and WBUF of 2D-
and DW-Conv we choose the minimum sizes that allow to
compute 1 × 1×OC output elements. In particular, we size
IBUF of 2D-Conv to store 4 input channels, to allow ST
multipliers to operate in all precision configurations. For
WBUF we choose the kernel dimensions of 7 and 5, following
the weight tile dimensions of Part I. For FC we size IBUF to
store 128 activations andOBUF to storeOA output elements,
to have a buffer area comparable with that of the other two
accelerators. The internal buffers use double buffering to
ensure uninterrupted operations by the accelerators while
fetching new data from the global buffer. Thus, from the
accelerators’ point of view, the whole memory hierarchy
composed of global buffer and internal buffers behaves as a
unified virtual memory that they can access transparently.

44174 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

LISTING 4. Pseudo-code of our ST-based FC accelerator (inspired by [6]).

The internal input and weight buffers are organized in
four 4-bit memory banks, named IBUF_A/B/C/D and
WBUF_A/B/C/D, respectively, to enable reading low-
precision data according to the memory access patterns
shown in Fig. 3. This is visible from the int4 datatype
in the function signatures of Lsts. 2–4. The output buffer
is organized in 28-bit banks to match the bitwidth of
the accumulators in the PSMAC array, as we will see in
Sec. V-B3.

To guarantee the proper accelerators’ execution, the
internal buffers are filled by a Direct Memory Access (DMA)
engine following the working principle illustrated in Fig. 3.
For 2D-Conv, in configurations 16 × 16 and 16 × 8, one

element of the input and weight tiles, once read from the
global buffer, is extended to 16-bit (if needed) and split
into four 4-bit chunks. Each input and weight chunk is then
stored, from the most to the least significant, into IBUF_A-D
and WBUF_A-D, respectively. In configurations 8 × 8 and
8 × 4, two input and two weight elements from the channels
dimension of the corresponding tiles are extended to 8-bit
(if needed) and split into 4-bit chunks. The chunks of the
first input and the first weight are stored in IBUF_A-B
and WBUF_C-D, respectively; the chunks of the second
input and the second weight are stored in IBUF_C-D and
WBUF_A-B, respectively. The 4-bit chunks are always stored
from most to least significant. In the 4 × 4 case, four input
and four weight elements from the channels dimension of
the corresponding tiles are all extended to 4-bit (if needed),
and then packed in IBUF_A/WBUF_D, IBUF_B/WBUF_C,
IBUF_C/WBUF_B, and IBUF_D/WBUF_A, respectively.

For the FC accelerator, the process to fill thememory banks
is similar to that of 2D-Conv. However, the number of the
4-bit memory banks is twice that of 2D-Conv (see lines 6–13
in Lst. 4) for a reason clarified in Sec.V-B3. In configurations
16 × 16 and 16 × 8, two consecutive activations from the
input tile and two consecutive weights from the same row
of the weight tile are read from the global buffer, extended
to 16-bit (if needed) and split into four 4-bit chunks. From
the most to the least significant, the four chunks of the two
inputs are stored into IBUF1_A-D and IBUF2_A-D, while
those of the two weights are stored into WBUF1_A-D and
WBUF2_A-D, respectively. In configurations 8 × 8 and
8 × 4, four consecutive activations and weights are read
along the input array and the same weight matrix row,
respectively. Then, they are all extended to 8-bit (if
needed) and each is split into two 4-bit chunks. The
two chunks of the four inputs are stored in this order:
IBUF1_A-B, IBUF1_C-D, IBUF2_A-B, and IBUF2_C-D,
whereas those of the four weights are stored in this
order: WBUF1_C-D, WBUF1_A-B, WBUF2_C-D, and
WBUF2_A-B. 4-bit chunks are always stored from most to
least significant. In the 4 × 4 case, eight pairs of consecutive
inputs and weights are read, extended to 4-bit (if needed),
and stored in the internal memory banks as follows: 1st
in IBUF1_A/WBUF1_D, 2nd in IBUF1_B/WBUF1_C, 3rd
in IBUF1_C/WBUF1_B, 4th in IBUF1_D/WBUF1_A, 5th in
IBUF2_A/WBUF2_D, 6th in IBUF2_B/WBUF2_C, 7th in
IBUF2_C/WBUF2_B, 8th in IBUF2_D/WBUF2_A.

Filling the memory banks of DW-Conv for configurations
16 × 16 and 16 × 8 follows the same steps of 2D-Conv.
However, for low-precision operating modes the filling
process is different. For configurations 8 × 8 and 8 × 4,
two consecutive input elements from the receptive field of
the activation tile and two consecutive weights from the
corresponding kernel of the weight tile are extended to
8-bit (if needed) and split into 4-bit chunks. The chunks
of the first and second inputs are stored in IBUF_A-B,
whereas those of the first and second weights are stored in
WBUF_C-D, leaving IBUF_C-D and WBUF_A-B unused.

VOLUME 12, 2024 44175

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

For configuration 4×4, four consecutive input elements from
the receptive field of the activation tile and four consecutive
weights from the corresponding kernel of the weight tile are
extended to 4-bit (if needed) and then stored in IBUF_A and
WBUF_D only, leaving the other banks unused.

The data organization discussed above for the three
accelerators is important as it enables the partitioning of the
internal buffers into smaller memory banks (through the HLS
directive interleave). This ensures that each bank contains
all the data required by a single PSMAC unit to compute
its own channel/activation output elements independently.
In this way, the PSMAC array can compute M output
channels/activations in parallel, as we show in detail in
Sec. V-B3. However, to provide the input operands of ST
multipliers in the PSMAC array in one clock cycle for
all configurations, as it happens for 2D-Conv and FC, the
memory organization of DW-Conv requires that IBUF_B
and WBUF_C have two reading ports, and IBUF_A and
WBUF_D have four reading ports, whereas all the other
banks still have one reading port. As implementing four ports
in SRAM ASIC technology would be critical, we decide to
use latch-based memories for IBUF_A and WBUF_D.

2) MEMORY ADDRESSING AND CONCATENATING LOGIC
These two logic circuits are designed to implement the
working principles outlined in Sec. V-A. Depending on the
type of accelerator and selected configuration (as depicted
in Fig. 3), the first is responsible for preparing the addresses
to properly access IBUF and WBUF and retrieve the four
4-bit data from each memory bank (e.g., lines 31–35 and
41–45 of Lst. 2 for operand A and B, respectively). The
second organizes these data into the 16-bit input operands of
the ST multipliers through shift-and-mask operations (e.g.,
lines 36–37 and 46–47 of Lst. 2). For DW-Conv, these logic
circuits are a bit more complex. Indeed, a pair of Look-Up
Tables (LUTs) is required to retrieve the proper indexes,
pre-computed offline, based on the values of CONFIG and
k , where k is the iteration counter of the loop over the
kernel (line 25 of Lst. 3). Moreover, as already discussed in
Sec. V-A2, DW-Conv requires that two or three 4-bit chunks
of A and B are filled with zeros in place of the missing low-
precision operands, in the last kernel iteration for N = 2 or
N = 4, respectively (lines 44–48 of Lst. 3).

3) RECONFIGURABLE ST-BASED PSMAC ARRAY
The PSMAC array of our ST-based accelerators contains M
MAC units, as shown in Fig. 4. Each MAC unit works on a
distinct output channel/activation, processing a different filter
for 2D-Conv, kernel for DW-Conv, or row of the weights
matrix for FC.

The PSMAC array parallelism (M), as listed in Table 3,
corresponds to the unrolling factor applied to the innermost
loops of the accelerators’ high-level code through the HLS
directive unroll. Specifically, M is equal to OC for 2D- and
DW-Conv, and toOA for FC. This causes the HLS tool to fully
unroll the innermost loops (line 39 for Lst. 2, 27 for Lst. 3

and 38 for Lst. 4), because the unrolling factor matches their
upper bound, thus replicating M times the ST-multiplier and
the accumulation adder. As introduced in Sec. V-B1, to fully
leverage this parallelism, we partition the internal buffers
into M memory banks, enabling the PSMAC units to access
their required data concurrently. For this purpose, we use the
interleave directive with OC (for 2D- and DW-Conv) or OA
(for FC) as argument. Table 3 also shows that the partitioning
is not required for IBUF of 2D-Conv and FC since operand
A is read outside the innermost unrolled loop (lines 31–37 in
Lst. 2, lines 28–36 in Lst. 4).
For 2D- and DW-Conv, each MAC unit consists

of one 16-bit ST multiplier (see the function call
st_multiplier_function), one 28-bit adder and one 28-bit
accumulation register (P) (lines 49–50 and lines 50–51 in
Lsts. 2 and 3). For FC, we got inspired from [6], thus each
MAC unit comprises two 16-bit ST multipliers (to process
two activation/weight pairs in parallel), two 28-bit adders
(to sum the outputs of the two multipliers and accumulate
this result, respectively), and one 28-bit accumulation register
(P1_plus_P2) (lines 50–53 in Lst. 4). This is also the reason
why we have twice the input and weight buffers at the
interface (lines 6–13 in Lst. 4).
The bitwidth of adders and accumulation registers is the

result of the ablation study discussed in Sec. VI-B.

4) QUANTIZATION AND RELU BLOCK
This block implements the UIQ formulas (14), (16), and (6)
(with zW = 0 and zb = 0 [13], [14]) into 2D-Conv, DW-Conv
and FC, respectively. For an efficient hardware implementa-
tion, we convert the division by the output scaling factor sY
into amultiplication by its inverse. Additionally, weminimize
the bitwidth of the C/C++ variables of the UIQ formulas
through the ablation study described in Sec. VI-B. When the
accelerator has processed the last pair of input/weight tiles
needed to complete a specific output tile, the accumulated
results in the PSMAC array are ready to be quantized using
the UIQ formulas. In fact, the accumulated results correspond
to term (c) in all the UIQ formulas (14), (16), and (6). The
remaining variables of the UIQ formula are passed to the
accelerator as inputs because they can be computed offline.

Furthermore, this block implements layer fusion between
UIQ formulas and ReLU as described in Sec. III-A1. Thus,
when ReLU is needed, the accelerators can be configured to
execute it in hardware. The related pseudo-code, omitted for
simplicity, would be at lines 58, 57, and 59 of Lst. 2, Lst. 3,
and Lst. 4, respectively.

Finally, all accelerators support per-layer quantization for
activations, and per-layer or per-channel quantization for
weights, as the latter offers superior performance for DNN
quantization, as shown in [14] and [27].

VI. ACCELERATORS DESIGN FLOW
To obtain our ST-based hardware accelerators, we use the
design flow outlined in Fig. 5. It consists of the following
three steps, which are analyzed in detail in Secs. VI-A–VI-C:

44176 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

FIGURE 5. Accelerators design flow.

A) MP Quantization and Fine Tuning. Quantizing a set
of DNN models in MP is the first step of the proposed
flow. For this paper, we choose as case study the
MLPerf Tiny benchmark [15] because its four networks
are well-suited for edge devices, which are the main
target for our accelerators. Specifically, we quantize
activations and weights of its models on 16-, 8- or 4-bit
integers, the same precisions supported by our ST-based
accelerators.

B) Minimization of UIQ Variables Bitwidth. The second
step is an ablation study aimed at optimizing the
hardware accelerators using an iterative approach. In this
process, we gradually reduce the bitwidth of the C/C++
fixed-point variables of the UIQ formulas, and, for
every bitwidth selection, we evaluate the performance
of the MP-quantized models, obtained from step A)
on their test sets. This process ends by reporting the
minimum bitwidths for which the models do not exceed
a user-defined degradation threshold.

C) Generation of Hardware Accelerators. Using the
optimal bitwidth precision determined in step B),

we perform a DSE in both latency vs area and latency
vs power for each accelerator. In the exploration we vary
many hardware configuration knobs, as listed in Table 3,
including HLS directives (e.g., pipelining and unrolling)
and type of ST multiplier for the PSMAC array.

A. MP QUANTIZATION AND FINE TUNING
We build the first step of our design flow on top of
QKeras [16], a Keras extension tailored for quantization
tasks. It provides drop-in replacement for some layers to
transform a FP Keras model into a quantized one. It supports
quantization-aware training by implementing fake-quantized
layers and straight through estimator for back propagation.
Since QKeras supports affine uniform quantization for
weights but not for activations, we create a new activations
layer class to implement Eqns. (1)–(4), resulting in a new
version of QKeras for integer-arithmetic-only inference. This
new version behaves similarly to TFLite [13], but, differently
from TFLite, it also supports precisions lower than 8 bits
for activations and weights. We release this modified version
of QKeras on GitHub as open-source code.2 As we show in
Tables 8–11 in Appendix B for the four MLPerf Tiny models,
we insert the new activation layer (calledQActivation) before
and after each Conv2D, DepthwiseConv2D, and Dense layer.
For the bit-width exploration, we use AutoQKeras [16],

an extension of QKeras that employs Bayesian Optimization
to determine the optimal number of bits for each DNN
layer. We constrain weights and activations to INT16,
INT8, or INT4 bits, and biases to INT313 or INT16,
since it is well known that quantizing biases to lower
precisions significantly hurts model performance [13], [27].
We configure AutoQKeras to maximize a score function
that is the product of the validation metric of the quantized
model (bounded between 0 and 1) and the total bit reduction
with respect to a 16-bit flat reference model (i.e., a model
with all activations and weights quantized to INT16 and
biases quantized to INT31). The total number of bits of a
model is the sum of the products between the number of
activations/weights of each layer and the number of bits used
to represent them. In our case study, we use the validation
accuracy as validation metric for all MLPerf Tiny models
except for FC-AutoEncoder, whose output metric is the mean
squared error loss between input and output predictions
(MSEloss). To map the +inf–0 range of the MSEloss to the
0–1 range of the other validation metrics (as required by
AutoQKeras), we create the following custom validation
metric for the AutoEncoder: 1/(1 +MSEloss/10).

For each network, we useAutoQKeras to iteratively sample
from the search space a different combination of feature
map, weight, and bias bitwidths for each layer. Then, we let
AutoQKeras fine-tune the resulting MP network for a few
epochs starting from pre-trained FP weights, when available,

2The modified QKeras supporting affine uniform quantization for activa-
tions is available at: https://github.com/LucaUrbinati44/qkeras-mod.git

3INT31 (31 bits) is the maximum precision supported by QKeras.

VOLUME 12, 2024 44177

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

to shorten the bitwidth exploration; otherwise, we let it train
the model from scratch. The training is performed using
QKeras’ quantization-aware training engine. In our case
study, since we can rely on the pre-trained weights provided
by the MLPerf Tiny repository,4 we follow the first approach.
To further speed up the exploration, we use subsets of the
full training and validation sets, together with early stopping.
We interrupt AutoQKeras’ search when the validation score
reaches convergence, i.e., stabilizes around a fixed value. This
happens approximately after 200, 400, 100, and 200 search
iterations for MobileNetV1Tiny, ResNetV1Tiny, DS-CNN,
and FC-AutoEncoder, respectively. Finally, for each model
we select the bitwidth combination that gives the best
validation score and we conclude by fine-tuning it. In our
case study, we use the default settings of the training scripts
included in the MLPerf Tiny GitHub repository.

In Sec. V-B, we did not discuss the hardware implemen-
tation of BN arithmetic, which we decide not to support in
our accelerators to keep lightweight designs. This is not a
limitation because BN parameters can be efficiently folded
offline with the weights of adjacent convolutional layers
using a technique known as BN folding [14]. BN folding
is a standard procedure for accelerating DNN inference in
embedded devices, as BN parameters remain constant after
training. To ensure that applying BN folding to the final MP
models obtained from AutoQKeras’ exploration would not
result in folded weights exceeding the supported bitwidths
of our accelerators (16, 8, 4 bits), we proactively provide
the FP models to AutoQKeras with pre-folded weights
since the beginning of the exploration. Thus, we replace
QConv2D+BatchNormalization with QConv2DBatchnorm,
and QDepthwiseConv2D+BatchNormalization with
QDepthwiseConv2DBatchnorm. At the time of our experi-
ments QKeras did not support BN-fused layers for FC layers
(i.e., QDenseBatchnorm was not yet available). Thus, in our
case study we do not apply BN folding to FC-AutoEncoder,
as shown in the architecture of the final MP FC-AutoEncoder
model (Table 11, AppendixB).

The final MP-quantized MLPerf Tiny models are reported
in Appendix B. Their FP and MP performance on the cor-
responding Perf test sets, using AUC (for FC-AutoEncoder)
and accuracy (for the other three models), are provided in
columns 4 and 5 of Table 4, respectively. To ensure a solid
FP baseline for our comparison with MP models, we re-
evaluate the performance of the FP models in our software
environment, rather than blindly relying on the values
reported in [15] (86, 86.5, 92.2, 88.0, for MobileNetV1Tiny,
ResNetV1Tiny, DS-CNN, FC-AutoEncoder, respectively).
For this task we use the pre-trained weights and test scripts
provided by the MLPerf Tiny repository. In Table 4 we also
report the total bits reduction of MP models against their
16-bit flat quantized counterparts (column 7), which are

4GitHub repository of the MLPerf Tiny benchmark: https://github.com/
mlcommons/tiny/tree/master/benchmark. Accessed on: Jan 19, 2024.

the reference models used by AutoQKeras for guiding the
minimization of its objective function, as discussed earlier.

The results show that theMPmodels exhibit approximately
a 1% decrease in accuracy compared to their FP counterparts
while still meeting the MLPerf Tiny Quality Targets (col-
umn 3), which correspond to the performance that the models
should retain after quantization and other optimizations [15].
Moreover, the total bits reduction (column 7) is greater than
50% for all models, confirming the effectiveness of the MP
optimization performed by AutoQKeras.

B. MINIMIZATION OF UIQ VARIABLES BITWIDTH
Meeting the hypothetical constraint of zero computational
errors in UIQ formulas would require mathematical operators
(i.e., multipliers and adders) with excessively large bitwidths,
due to the propagation of the bit precision through the
involved mathematical operations. This would result in an
impractically large accelerator area or could even prevent
the HLS tool from generating feasible solutions. Therefore,
in this second step of the design flow, we perform an ablation
study to optimize the hardware accelerators by reducing the
bitwidth of the C/C++ variables used in the UIQ formulas.
Let us consider the UIQ formula (6) of FC, with zW = 0

and zb = 0, as our reference. The same reasoning holds for
the UIQ formulas of the other accelerators. The variables that
we consider for the ablation study are listed in the column
header of Table 5. The first six are the actual variables shown
in theUIQ formula, whereas the last three are the intermediate
results v1q,k , v2q,k , v3q,k obtained from the decomposition
of (6) in (9)–(12):

v1q,k =

[C∑
c=1

Xq,cWq,c,k − zX
C∑
c=1

Wq,c,k

]
(9)

v2q,k = sX sW · v1q,k (10)

v3q,k = sbbq,k + v2q,k (11)

Yq,k = clip(round(zY + s−1
Y v3q,k), αq, βq) (12)

where Yq,k is the k-th output element, with k ∈ [1,K],
quantized on INTy bits (y = 16, 8, or 4) on the integer
quantized range [αq, βq]= [−2by−1

+ 1, 2by−1
− 1], and

all other variables are those introduced alongside (6) in
Sec. III-A1. In our accelerators we implement each of these
variables as a fixed-point or as an integer number.
Our ablation study aims at optimizing the hardware

accelerators using an iterative hardware-software co-design
approach. As a preliminary step, we replace the invocations
of the low-level TensorFlow routines inside the QKeras
QConv2DBatchnorm, QDepthwiseConv2DBatchnorm, and
QDense layer classes, with the invocations of the HLS
C/C++ code that describes the corresponding accelerator.
Then, we start by performing a statistical analysis of the
maximum and minimum values taken by each variable. This
analysis involves running inference on the MP-quantized
models obtained in the previous step of the flow. The infer-
ence is performed on small calibration subsets extracted from

44178 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

TABLE 4. Performance of MLPerf Tiny models (column 1) on the corresponding Perf test sets (column 2), using AUC for FC-AutoEncoder and accuracy for
the other three models, for their FP (column 4), MP (column 5) and MP with optimal C/C++ bitwidths (column 6) versions.

TABLE 5. Minimum bitwidths resulting from the ablation study.

the corresponding test sets. In this way, we determine the least
number of bits of the integer part of each fixed-point variable
that retains the maximum MP performance (i.e., AUC for
FC-AutoEncoder, or accuracy for the remaining MLPerf
Tiny models). Afterwards, with these numbers of integer
bits as starting point, we perform a bitwidth exploration
of the C/C++ variables of the UIQ formulas (including
intermediate variables v1, v2 and v3): we iteratively decrease
the number of fractional and/or integer bits, considering one
C/C++ variable at a time, and evaluate the effect on the test
metric of the considered models by performing inference on
their full test sets (the Perf test sets for MLPerf Tiny models).
We stop the exploration when it is no longer possible to
reduce precision without a reduction greater than a certain
threshold in the performance metric of at least one of the
analyzed DNNs. In our case study we set a threshold of 0.5%
with respect to the MP-quantized test metrics in column 5 of
Table 4. In the future, we plan to find these optimal bitwidths
automatically through hardware-aware training [53].
The so-obtained optimal bitwidths for the MLPerf Tiny

benchmark are in Table 5, whereas the inference results on
theMP-quantizedMLPerf Tinymodels, obtained by invoking
the accelerators in software with these bitwidths, are reported
in column 6 of Table 4. From these results we observe that:
FC-AutoEncoder has an additional penalty of 0.38% against
the FP model; MobileNetV1Tiny and ResNetTiny show no
further accuracy loss; for DS-CNN, there is even a slight
improvement of 0.4%, which is a positive side effect of
the quantization process that may occasionally occur [14].
We use these optimal values to synthesize the accelerators in
the third step of the accelerators design flow (Sec. VI-C).

C. GENERATION OF HARDWARE ACCELERATORS
In the last step of our design flow, we generate the ST-based
accelerators using HLS as shown in the left part of Fig. 4. The
procedure consists of two steps. The first performs the actual
HLS process by invoking Siemens Catapult (HLS block) with
the following three inputs:

1) The top C/C++ high-level description of the ST-based
accelerator to generate (C/C++ (top) block). It reflects
the pseudo-codes of Lsts. 2-4;

2) The description of the ST multiplier type to use in
the PSMAC array (RTL/C/C++ (ST) block): an RTL
Intellectual Property (IP) block (IP mode) or an inlined
C/C++ function (Inline mode). The distinction between
the two modes will be explained later in this subsection.

3) A set of hardware configuration knobs, sampled from
Table 3, and a set of HLS constraints and directives,
e.g., clock frequency, unrolling, pipelining, partitioning
(hardware configuration knobs block).

The second step (Implem. block) involves the logic synthe-
sizer, in our case Synopsys Design Compiler (DC), which
receives two inputs:
1) The RTL of the accelerator generated by the HLS tool;
2) A set of implementation constraints and usual logic

synthesis directives, e.g., clock frequency and clock
uncertainty, input/output ports delays, driving/load cells,
compilation strategy.

We use the HLS directives to perform several optimiza-
tions. As mentioned in Secs. V-B1 and V-B3, we fully unroll
the innermost loops in Lsts. 2–4 with the unroll directive
and partition in banks the accelerator’s memories with the
interleave directive. This combination infers the M parallel
MAC units in the PSMAC array and ensures parallel data
accesses. For all the other loops we set the Initiation Interval
to 1 to pipeline their execution and increase the accelerator’s
throughput. When the HLS tool is not able to find a suitable
schedule of the operations that satisfies the timing constraint,
we remove pipelining from the outer-most loops (more details
in Sec. VII-B). The clock frequency constraint is common to
both high-level and logic synthesis. However, in the HLS tool
we also set an additional constraint: a clock uncertainty of
50% through theClock Overhead directive, which divides the
target clock period in half to take into account the next steps
of the flow that might increase the delay, such as routing [54].
This technique helps reduce the critical paths in the generated

VOLUME 12, 2024 44179

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

RTL by pushing Catapult to insert additional control steps.
As a consequence, the logic synthesizer can achieve the
desired timing with smaller logic gates.

Concerning the kind of ST multiplier used in the MAC
array (RTL/C/C++ (ST) block), we have two options.
The first is to let the HLS tool map the C/C++ func-
tion of the ST multiplier in the high-level description
(st_multiplier_function) to one of the seven RTL descrip-
tions reported in Table 3. For this we use the directive
map_to_operator (e.g., line 3 of Lst. 2), followed by the
name of the multiplier’s RTL top-level entity that we want
to use X = { [6], [7], [17], [21], [22], BW-ADD, HLS ST }.
In other words, each ST multiplier type is treated as an IP
block calledCatapult COptimized Reusable Entity (CCORE)
that the tool uses in place of the st_multiplier_function
function call. In this case, the ST multiplier code is not
synthesized along with the accelerator during the HLS
process, but is rather instantiated as a component in the
generated accelerator’s RTL code. We call this first option IP
mode in Table 3. The second option, not explored in [8], is to
let the tool inline the C/C++ function of the ST multiplier
in the top high-level description of the accelerator, so that
it gets synthesized along with the rest of the accelerator.
We call this second option Inline mode in Table 3. In this
case, we just have to comment out the map_to_operator
directive from the accelerator’s C/C++ top function. Based
on Catapult’s documentation [54], implementing a function
that is called multiple times as a CCORE (in our case
the st_multiplier_function function subject to the unroll
directive) is expected to improve design regularity and
reduce the shared logic of multiplexers, leading to a better
area efficiency. However, we experiment also with function
inlining because the advantages of using CCOREs are not
always guaranteed and are design-dependent. For example,
the operators inside of the CCORE (e.g., multipliers) will not
be available for sharing with any other operator of the same
type outside the CCORE’s boundaries.

VII. EXPERIMENTAL RESULTS
A. PPA COMPARISON OF ST MULTIPLIERS
To compare all the STmultipliers considered in this paper and
identify the best in PPA, we follow the same methodology of
our previous work [8], which constists of synthesizing their
RTL descriptions using DC, on a 28-nm CMOS technology
at 0.9V, after adding I/O registers.

Fig. 6 reports the results of area and power vs clock period
obtained by varying the target clock frequency from 0.5 to
1.5GHz in ten steps. The solutions with the lowest area or
power for a given target clock period represent Pareto-optimal
points and are connected by a solid black line representing the
Pareto front. In both plots, we exclude the right-most outliers
to prevent the compression of the left and most significant
solutions. Power is calculated using random input bits evenly
distributed between zero and one. Although this approach
may not faithfully represent realistic ML workloads, it still
allows for a valid comparative analysis.

FIGURE 6. DSE of the SoA and newly proposed ST multipliers.

In the area vs clock period graph, the Booth design [7]
shares the primacy with [6] at 500MHz (2 ns), then out-
performs the other designs from 600 (1.67 ns) to 1400MHz
(0.71 ns) thanks to its low reconfigurability overhead com-
pared to a standard Booth multiplier, as discussed in [7].

The design of [17] is instead Pareto-optimal in area only
at 1500MHz (0.67 ns). The reason lies in the heuristics of
the logic synthesizer. Due to the behavioral description of
this ST multiplier, the tool has greater freedom in selecting
the best implementation for the internal multipliers and
adders in terms of area and timing. As the clock constraint
tightens, the tool progressively discovers more area-efficient
solutions. Conversely, when the constraint is less stringent,
the optimization process halts earlier upon finding solutions
that satisfy the desired clock period.

Our new BW-ADD is among the best in area in the low-
frequency range, being second best from 700 (1.43 ns) to
800MHz (1.25 ns), closer to the Pareto front than the original
BW [6]. Our results confirm that the BW architecture,
although very efficient at low frequencies, is not suitable for
higher frequencies [41], even with a faster adder, due to the
inherently long critical paths of its BW PPM.

44180 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

Solutions based on dedicated multipliers for each configu-
ration (like [17], [22], HLS ST) are inefficient in area because
of the redundant logic gates not shared among different
operating modes. In other words, their internal multipliers
operate in a mutually-exclusive manner based on the specific
operating mode. Instead, single high-precision multipliers
working in a subword-parallel manner (like [6], BW-ADD
and [7]) have a higher utilization ratio of their logic gates,
which is reflected in a lower area, especially when the timing
constraint is not too strict.

The D&C [21] is the second to last in terms of area, which
is most likely due to the shift-and-add logic that connects the
low-precision multipliers.

In the power vs clock period graph, all solutions are
in general very close. The most relevant results are the
following: from 400 to 800MHz, the optimal ST multipliers
are those with a BW architecture (e.g., [6] and BW-
ADD); from 1000 to 1300MHz, [7] progressively dominates
over [21] and [22]; at high frequencies [17] turns out to be the
most power efficient.

To sum up this comparison of ST multipliers, the optimal
solutions depend on the PPA constraints: [7] offers the best
trade-off in area vs clock period for most of the frequencies,
[6] and BW-ADD prove to be Pareto-optimal in power at low
frequencies, whereas [7] and [17] are the best in both area and
power at high frequencies.

B. DSE OF ST-BASED ACCELERATORS
Similarly to what we did in [8], we perform a DSE in
area, power and latency on a 28-nm CMOS technology
for the three ST-based accelerators. We use the HLS flow
described in Sec. VI-C and vary hardware configuration
knobs, implementation constraints, accelerators’ internal
buffers, and maximum tile sizes, according to the values in
Table 3. We also vary the target clock frequency (last row
of Table 3) in ten steps from 100 to 1000MHz, which we
verified being the maximum clock frequency reachable by
all the accelerators, and the kind of ST multiplier used in
the MAC array, for which we have the IP mode or the Inline
mode (HLS ST Inline in the keys of Figs. 7–8), as explained
in Sec. VI-C.
Despite the suboptimal performance of certain ST multi-

pliers, as indicated by our findings in Sec. VII-A, we still
incorporate all types of ST multipliers into the DSE of
ST-based accelerators to verify whether the ranking observed
at the multiplier level remains consistent at the accelerator
level.

As introduced in Sec. 4, when the HLS tool fails tomeet the
target clock frequency, we disable pipelining from some of
the outer-most loops of the accelerators. In Table 6 we report
the combinations of accelerator type, clock frequency value,
OC value, ST multiplier type, and loop name for which we
disable pipelining.

Area and power of the accelerators are measured through
DC, with the same methodology of Sec. VII-A. The latency
of each accelerator point is determined by multiplying the

TABLE 6. For loops of the high-level C/C++ descriptions Lsts. 2–3 for
which we disable pipelining in order to allow Catapult HLS to find a
schedulable design. We use the loop index as a reference to the loop.

execution time required by the accelerator to process one tile
by the total number of tiles into which a reference DNN layer
is divided. Such reference layer depends on the accelerator
type and is represented by the following (input tensor, weight
tensor) pair: (16 × 16×256, 3 × 3×256 × 256) for 2D-
Conv; (112 × 112×32, 3 × 3×32) for DW-Conv; (1024,
1000 × 1024) for FC. The first is the most frequent layer
among the selected DNNs for edge devices (Sec. V-B); the
second is the first depth-wise layer of MobileNetV1; the
third is rather arbitrary because FC layers vary significantly
from one network to another. In any case, by experimenting
with many other tensors sizes, we obtain very similar DSE
trends as those reported in Figs. 7–8, which can be therefore
extended to any DNN layer. Furthermore, we plot the results
normalized so as to make them layer-independent.

Figs. 7-8 do not report the results of the entire DSE, but
only the Pareto-optimal points. To obtain the two figures,
we project these points from the tri-dimensional PPA space
to two bi-dimensional spaces of Latency vs Area (LA)
and Latency vs Power (LP), respectively. An illustrative
example of a complete DSE for the 2D-Conv accelerator is
instead reported in Fig. 9, which shows the extensive range
of design variations explored. The points in Fig. 7 connected
by the solid line (the Pareto front) and labeled in black are
LA-optimal (Pareto-optimal in the LA space), whereas those
labeled in red are LP-optimal, that is, they belong to
the Pareto front in the Latency vs Power plot in Fig. 8.
These labels denote the number of input/output channels for
2D-Conv (m, n = IC , OC), output channels for DW-Conv
(m = OC), or input/output activations for FC (m, n = IA,
OA) used to generate the corresponding accelerator point,
according to the notation introduced in Table 2. In a dual
manner, Fig. 8 reports the LA and LP projections on the same
Latency vs Power graph: this time the black labels identify
the LP-optimal points, whereas the red labels mark the LA-
optimal ones.

We observe that the majority of optimal points in the
LA space are suboptimal in the LP space, and vice versa.
Consider an SoC designer aiming to allocate an area of
0.06mm2 for a 2D-Conv accelerator. The designer might
select solution (B) with (32, 8) input/output channels pair
optimized at 400MHz, achieving a normalized latency of

VOLUME 12, 2024 44181

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

FIGURE 7. Latency vs Area: results of DSE for 2D-Convolution (top),
Depth-wise convolution (middle), and Fully-Connected (bottom)
accelerators. Points with black and red labels are Pareto points in Latency
vs Area and Latency vs Power, respectively.

0.007, and using IP [7] as ST multiplier. However, for the
same latency, the power-optimal choice becomes solution
(C) with (32, 16) input/output channels pair optimized at
100MHz, having IP [6]. Note that (C) uses 1.6x more area
than (B), whereas (B) consumes around 2.5x more power
than (C).

There are also a few points that are optimal in both LA
and LP projections: for instance, the DW-Conv accelerator
(D), designed for low latency, featuring a 32 channels and
operating at 400MHz with HLS ST Inline.

The designer can also optimize the trade-off in the PPA
space by choosing solutions that are LA(LP)-optimal and sit

FIGURE 8. Latency vs Power: results of DSE for 2D-Convolution (top),
Depth-wise convolution (middle), and Fully-Connected (bottom)
accelerators. Points with black and red labels are Pareto points in Latency
vs Area and Latency vs Power, respectively.

close to the LP(LA) Pareto front. For example, solution (E)
with (1024, 4) activations pair, with normalized latency 0.23
and IP [7] at 100MHz is LA-optimal, but is also very close
to the LP Pareto point marked with (F) and using HLS ST
Inline, with 18% of power overhead. Conversely, LP-optimal
solution (G), with (1024, 32) activations pair and IP [21],
is also a valid solution in the LA space with only 8% area
overhead with respect to the nearest LA Pareto point (H),
which uses HLS ST as IP.

More in general, from Figs. 7–8 we observe that:

• The DSE and the PPA results are especially sensitive
to two main variables that control the PSMAC array

44182 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

FIGURE 9. Example of a complete DSE for 2D-Conv.

parallelism: OC and OA. As such parallelism increases,
the number ofMAC units and the size of weight and out-
put memories increase. This leads to an increase of area
and power, but more output channels/activations can be
simultaneously computed, thanks to the higher number
of MAC units, thus reducing latency considerably.

• As expected, very low clock frequencies (≤ 200MHz)
have to be preferred when low area and/or low power
are the goals. On the other hand, medium-high clock fre-
quencies are necessary to achieve higher performance.

• The majority of Pareto points for 2D-Conv and FC have
always large values of IC and IA, respectively. In fact,
increasing these values reduces the overall latency by
decreasing the number of tilesNT and increasing the size
of each tile ST (= IS, WS, or OS according to Table 2).
This is because, even though the product NT × ST is
constant, as NT decreases the overall latency decreases
in the same proportion, since fewer tiles correspond to
fewer times that the accelerator is executed; at the same
time, each execution has a latency that increases less
than proportionally as ST increases. This is visible in
Lst. 2 and Lst. 4: the latency contribution of the loops
that do not depend on IC or IA is amortized by the
increased latency of the loops that depend on those
variables.

• There is a strong correlation between the Pareto-optimal
ST multipliers of Fig. 6 and the types of ST multipliers
used in the dominating accelerators in Figs. 7–8.
This is evident especially in the LA space, where a large
percentage of the accelerators that sit on the Pareto front
(75% for 2D-Conv, 93% for DW-Conv, 80% for FC)
have a PSMAC array based on the ST multiplier that
we proposed in [7], the dominant point in the Clock
Period vs Area subplot of Fig. 6. A few Pareto points,
however, are based on BW-ADD and HLS ST, which
are indeed sub-optimal in the top graph of Fig. 6 but sit
close to the Pareto front. This is because sometimes the
optimization heuristics of the logic synthesizer manage

to obtain slightly better results with those STmultipliers.
Notice that in Fig. 7 no Pareto-optimal accelerators are
based on the ST multipliers that are largely sub-optimal
in the top graph of Fig. 6 ([17], [21], [22]).
Similarly, in the LP space, since in the Clock Period vs
Power graph at the bottom of Fig. 6 the ST multipliers
are all very close to the Pareto front, the dominant
accelerators present a more heterogeneous distribution
of ST multiplier’s types and the choice of the best IP
depends on the designer’s actual PPA constraints.

• Accelerators with ST multipliers designed manually
in RTL are not always the best choice. In fact, there
are accelerators with HLS-based ST multipliers or
fully-obtained from a C/C++ description (HLS ST
Inline) that belong to the Pareto front. In particular, there
are some design points using HLS ST in the LA space,
and many more using HLS ST Inline in the LP space.

To conclude, the outcomes of the accelerators’ DSE do not
reveal a single winner, but rather a wide variety of Pareto-
optimal solutions, offering SoC designers the flexibility to
choose the most suitable implementation aligned with their
target, being low area, low power, or high performance.
We will see a practical example in the following subsection.

C. INFERENCE ON MP-QUANTIZED MLPERF TINY
MODELS
In this subsection, we showcase the benefits in latency and
energy achieved by ST-based accelerators when running
inference on the four MLPerf Tiny models, quantized in
MP as discussed in Sec. VI-A. This is achieved through a
comparative analysis against standard accelerators. These
accelerators use standard 16-bit multipliers and sign-extend
to 16 bits both activations and weights when quantized with
a lower precision.

We carry out this comparison in three different constrained
PPA scenarios: low-area, low-power, and low-latency, the
latter being defined with a significantly larger area constraint
than the first.

For each scenario, from the DSE plots of Figs. 7–8 we
select a set of ST-based accelerators to be integrated in a
hypothetical SoC with the global buffer and an embedded
processor. The set comprises one 2D-Conv, one DW-Conv
and one FC accelerator, all having the lowest latency while
satisfying the given area or power constraint. The processor
orchestrates the sequential execution of each layer of the
MP-quantized MLPerf Tiny models exploiting tensor tiling
and the transparent memory transfers to/from the external
memory due to the double bufferingmechanism (as explained
in Sec. V-B). In particular, for synchronization between
embedded processor and accelerators, the double buffering
mechanism ensures a smooth and synchronized execution of
two subsequent tensor tiles. This method involves utilizing
double buffers, enabling the immediate start of the next
tile’s execution without delay, as the required data for the
subsequent tile is already available thanks to the DMA
engine. The latter is initialized by the processor at the start

VOLUME 12, 2024 44183

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

of a layer execution and operates concurrently with the
accelerator to fill the double buffers with activation and
weight data for the next tile. Upon completion of the last
tile of a layer, the processor receives an interrupt from the
accelerator and configures the DMA for the acceleration of
the next layer. Additionally, at the start of a layer execution,
the processor configures the accelerator to the required
precision via the CONFIG signal (see Lsts. 2–4). We decide
to let the processor compute the pooling layers, which,
in the case of MLPerf Tiny networks, exclusively consist
of average pooling. In general, other pooling methods, such
as those developed by [55], could be used and potentially
implemented in hardware to further enhance performance.
To ensure a fair comparison, an equivalent SoC is created
with three standard accelerators. These are synthesized using
the same configuration knobs of the three selected ST-based
accelerators (refer to Table 3), except that the ST-multipliers
are replaced by standard ones, so that the accelerators have
the same latency in terms of number of clock cycles of
the ST-based accelerators when these are configured at the
highest precision (16 × 16).
The execution latency of an MP-quantized MLPerf Tiny

model is calculated as the sum the execution latency of
the accelerated layers (2D-Conv, DW-Conv and FC layers),
neglecting the execution time of the remaining layers, which
are executed in software.

The execution latency of a layer is calculated by
multiplying the number of tiles, into which a layer is
decomposed, by the execution latency required by the
corresponding accelerator to process one tile. Therefore, the
actual latency speedup is the ratio of the execution latency
of an MP-quantized MLPerf Tiny model accelerated using
standard accelerators and the execution latency of the same
model accelerated using our ST-based accelerators.

We are also interested in the theoretical latency speedup,
calculated as the ratio of the execution latency of an
MP-quantized MLPerf Tiny model accelerated using stan-
dard accelerators and the execution latency of the model
accelerated using ideal ST-based accelerators, i.e., accel-
erators whose entire execution latency is accelerated by
a factor N . In fact, in our ST-based accelerators only
some for loops are accelerated by a factor N , as seen in
Lsts. 2–4: the loop on the input channels for 2D-Conv, the
loop on the kernels for DW-Conv and the loop on the input
activations for FC. All the other for loops represent an
overhead for the actual execution of the accelerator when
compared with the ideal accelerator (as we discussed in
Sec. VII-B). Thus, the theoretical speedup, comparedwith the
actual one, allows us to seize the impact of this computational
overhead. Moreover, the theoretical speedup of a DNNmodel
depends on the model architecture and on how deeply its
layers are quantized.

Regarding the energy consumption of an MLPerf Tiny
model, we estimate it as the sum of the products between the
execution latencies of each accelerated layer and the average
power consumption of the corresponding accelerator.

TABLE 7. Latency speedup and energy reduction of the four
MP-quantized MLPerf Tiny models executed using accelerators that
satisfy different PPA constraints in low-area, low-power, or low-latency.
We use the harmonic mean for the mean of the speedups and the
arithmetic mean for the mean of the energies.

In Table 7 we report latency speedup (theoretical and
actual) and energy reduction for the MP-quantized MLPerf
Tiny models executed by accelerators satisfying these PPA
constraints: low-area (< 0.03mm2), low-power (< 3mW),
and low-latency (< 0.12mm2).Wemark the selected acceler-
ators with letters A, P, L for the three scenarios, respectively,
in both Table 7 and Figs. 7–8. For each scenario, we select
three accelerators operating at the same clock frequency (but
the frequency can vary across different scenarios).

The results of Table 7 show that our ST-based accelerators
speed up inference on the four MLPerf Tiny models in
all scenarios, with an actual latency speedup of 1.46x for
low-area, 1.33x for low-power, and 1.29x for low-latency,
calculated as the harmonic mean of the speedup of the four
networks in each scenario.

As for the gap between theoretical and actual speedups,
we notice that in every scenario this is more evident for
MobileNetV1Tiny and DS-CNN. In fact, these are the only
networks using the DW-Conv accelerator, whose speedup
improves as the kernel size increases, as seen in Sec. V-A2.
Since the kernel in these models is always 3 × 3, the
contribution of the accelerated DW-Conv layers to the
speedup is limited.

The average energy reduction across the four models in
the low-area and low-power scenarios is −23% and −16%,

44184 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

respectively. In the low-latency scenario the benefit in energy
is less evident and sometimes even unfavourable for ST-
based accelerators. This is because the selected ST-based
accelerators for this scenario (marked with L in Fig. 7)
process many output channels in parallel thanks to the
unrolling directive. This implies that part of the reconfigu-
ration logic of ST-based accelerators is replicated, increasing
the area and power overhead of ST-based accelerators against
standard ones, which do not have the reconfiguration logic.
In particular, ST-based DW-Conv accelerator is the one with
the most complex reconfiguration logic of the three ST-based
accelerators. Not surprisingly, the two models for which the
energy of ST-based accelerators actually increases compared
to standard ones are MobileNetV1Tiny and DS-CNN.

These results suggest that ST multipliers are well-suited
for 2D-Conv and FC, but not for DW-Conv. However,
we are already tackling these inefficiencies by developing
a new PS DW-Conv accelerator based on another kind of
subword-parallel multiplier which works in a Sum-Apart
(SA) mode [6]. This has the same configurations of the ST
multiplier, but does not return the sum of the low-precision
multiplications; instead, it keeps them separate, side-by-side,
in the multiplier’s output. The new working principle of the
SA-based DW-Conv accelerator would allow to multiply one
high-precision, or two/four low-precision elements from the
input and weights channels in parallel, without summing
them together, but maintaining the multiplication results
separate to adhere to the DW-Conv algorithm.

Finally, we estimate the area overhead of SoCs equipped
with ST-based accelerators against SoCs using standard
accelerators, for the three scenarios. Other than the three
accelerators (internal buffers included), we include a small
processor (i.e., Zero-Riscy [56], cache included) and the
global SRAM-based buffer. The results show that SoCs with
ST-based accelerators exhibit a limited area overhead of
0.9% in the low-area scenario, 2.5% in the low-power one,
and 8.0% in the low-latency one, compared to the standard
counterparts.

VIII. CONCLUSION
In this paper, we presented our contribution in the area
of DNN accelerators using precision-scalable Sum-Together
(ST) multipliers. We started by introducing two new ST
multipliers (a Baugh-Wooley with modified final adder
and one derived from High-Level Synthesis (HLS)), and
we made an exhaustive comparison of all the state-of-
the-art ST multipliers in terms of power, performance
and area (PPA). We then provided detailed insights into
the working principles, hardware architectures and design
flow of three layer-specific ST-based DNN accelerators
for 2D-Convolution, Depth-wise Convolution and Fully-
Connected layers, supporting uniform integer quantization.
We showcased the Pareto-optimal accelerators resulting from
the HLS-driven design space exploration (DSE) in Latency
vs Area and Latency vs Power spaces. The results of
this DSE allow designers to select the best type of ST

TABLE 8. MP-quantized model of MobileNetV1Tiny (using QKeras’ syntax
and with the new QActivation layer implementing affine uniform
quantization).

multiplier in conjunction with the best configuration of
hardware parameters for a given target in the PPA space.
Lastly, we demonstrated pros and cons of our ST-based
accelerators integrated into a System-on-Chip (SoC) with
different design requirements: low-area, low-power, and
low-latency. We reported the achieved latency speedup

VOLUME 12, 2024 44185

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

TABLE 9. MP-quantized model of ResNetV1Tiny (using QKeras’ syntax
and with the new QActivation layer implementing affine uniform
quantization). L marks the left branches, R the right ones.

and energy reduction on the inference of MP-quantized
MLPerf Tiny models, as a case study, and also the area
overheads of ST-based accelerators, when comparing against
SoCs with equivalent accelerators based on non-ST fixed-
precision 16-bit multipliers. In the future, we plan to solve
the inefficiencies of the ST-based Depth-wise Convolution
accelerator discussed in this paper, by implementing a novel
accelerator based on Sum-Apart (SA) multipliers.

APPENDIX A
INTEGER-ONLY DNN KERNELS FOR 2D- AND DW-CONV
In this appendix we use the notation of Table 2. As mentioned
in Sec. III-A2, the quantized kernels of 2D- and DW-Conv
are derived similarly to FC. Let us start from non-quantized
2D-Conv:

Yoh, ow, oc = boc

+

(IC∑
ic= 1

KH∑
kh= 1

KW∑
kw= 1

Xoh+i, ow+j, ic ·Wkh, kw, ic, oc

)
∀ oh ∈ [1,OH], ow ∈ [1,OW], oc ∈ [1,OC]

(13)

TABLE 10. MP-quantized model of DS-CNN (using QKeras’ syntax and
with the new QActivation layer implementing affine uniform
quantization).

TABLE 11. MP-quantized model of FC-AutoEncoder (using QKeras’ syntax
and with the new QActivation layer implementing affine uniform
quantization).

X ∈ RIH×IW×IC is the tensor of input activations, W ∈

RKH×KW×IC is the weight one, b ∈ ROC is the bias array,
Y ∈ ROH×OW×OC is the output tensor; (IH , IW) and (OH ,
OW) are the dimensions of the input and output tensors, IC

44186 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

Yq, oh, ow, oc = zY︸︷︷︸
(a)

+
sb
sY

(bq, oc − zb)︸ ︷︷ ︸
(b)

+
sX sW
sY

[(IC∑
ic=1

KH∑
kh=1

KW∑
kw=1

Xq, oh+kh, ow+kw, ic ·Wq, kh, kw, ic, oc

)
︸ ︷︷ ︸

(c)

−

(
zW

IC∑
ic= 1

KH∑
kh= 1

KW∑
kw= 1

Xq, oh+kh, ow+kw, ic

)
︸ ︷︷ ︸

(d)

−

(
zX

IC∑
ic= 1

KH∑
kh= 1

KW∑
kw= 1

Wq, kh, kw, ic, oc

)
︸ ︷︷ ︸

(e)

+ (IC · KH · KW) · zX zW︸ ︷︷ ︸
(f)

]

∀ oh ∈ [1,OH], ow ∈ [1,OW], oc ∈ [1,OC]

(14)

Yh,w, oc = boc +

(KH∑
kh= 1

KW∑
kw= 1

Xoh+kh, ow+kw, oc ·Wkh, kw, oc

)
∀ oh ∈ [1,OH], ow ∈ [1,OW], oc ∈ [1,OC] (15)

Yq, oh, ow, oc = zY︸︷︷︸
(a)

+
sb
sY

(bq, oc − zb)︸ ︷︷ ︸
(b)

+
sX sW
sY

[(KH∑
kh=1

KW∑
kw=1

Xq, oh+kh, ow+kw, oc ·Wq, kh, kw, oc

)
︸ ︷︷ ︸

(c)

−

(
zW

KH∑
kh= 1

KW∑
kw= 1

Xq, oh+kh, ow+kw, oc

)
︸ ︷︷ ︸

(d)

−

(
zX

KH∑
kh= 1

KW∑
kw= 1

Wq, kh, kw, oc

)
︸ ︷︷ ︸

(e)

+ KH · KW · zX zW︸ ︷︷ ︸
(f)

]

∀ oh ∈ [1,OH], ow ∈ [1,OW], oc ∈ [1,OC] (16)

VOLUME 12, 2024 44187

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

andOC the number of input and output channels, andKH and
KW the kernel dimensions. To quantize it, we first apply (4)
to each real variable in (13). Next, setting their own quantized
ranges andmoving the quantized output array Yoh, ow, oc to the
left hand side, we obtain the quantized 2D-Conv expression
in (14), as shown at the top of the previous page, valid for the
(oh, ow, oc)-th output element:
Xq, Wq, bq, Yq are the integer values; sX , sW , sb, sY are

the scaling factors; and zX , zW , zb, zY are the zero-points,
associated with X , W , b, Y , respectively. The right-hand
side of (14) is rounded and clipped to fit the desired output
quantized range of Yq before being assigned to Yq (not shown
in the formula for higher readability). The meaning of terms
(a)–(f) is the same as those in the UIQ formula for FC,
as discussed in Sec. III-A2. Compared to (6), to compute an
output element, the single summation within terms (c), (d)
and (e) is replaced with three summations: the indexes of two
of them span from 1 to the kernel dimensions KH and KW ,
whereas the index of the third spans from 1 to IC . Moreover,
the constant C in term (f) is replaced with the product of the
three upper bounds of the summations.

The expressions of a non-quantized DW-Conv layer and
its integer-quantized version are in (15) and (16), as shown
at the top of the previous page, respectively. For (15), X , Y ,
and b are the same tensors of 2D-Conv, except that IC =OC ;
W , instead, is a weight tensor with shape KH × KW × OC .
Eq. (16) is derived from (15) with the same steps used for
FC and 2D-Conv. It differs from (14) in the number of
summations (two instead of three) and in the absence of the
IC constant in term (f).
As discussed in Sec. III-A2 for (6), in this paper we assume

that zW = 0 and zb = 0 for (14) and (16) as well.

APPENDIX B
MIXED-PRECISION RESULTS OF MLPERF TINY MODELS
Tables 8–11 report the architecture of the MP-quantized
MLPerf Tiny models obtained in the first step of our
accelerators design-flow of Sec. VI-A. The last two columns
show the number of bits for activation/weight and bias,
respectively.

ACKNOWLEDGMENT
Computational resources were provided by HPC@POLITO,
a project of Academic Computing within the Department of
Control and Computer Engineering, Politecnico di Torino
(http://hpc.polito.it). The authors thank their former master’s
thesis student Marco Alessio Terlizzi for the MP training of
MLPerf Tiny models.

REFERENCES
[1] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,

‘‘A survey of quantization methods for efficient neural network inference,’’
in Low-Power Computer Vision: Improve the Efficiency of Artificial
Intelligence. New York, NY, USA: Chapman & Hall, 2022, ch. 1.2.12,
pp. 14–17.

[2] M. Rakka,M. E. Fouda, P. Khargonekar, and F. Kurdahi, ‘‘Mixed-precision
neural networks: A survey,’’ 2022, arXiv:2208.06064.

[3] S. Anwar, K. Hwang, and W. Sung, ‘‘Fixed point optimization of deep
convolutional neural networks for object recognition,’’ in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process. (ICASSP), South Brisbane, QLD,
Australia, Apr. 2015, pp. 1131–1135.

[4] B. Moons, B. De Brabandere, L. Van Gool, and M. Verhelst, ‘‘Energy-
efficient ConvNets through approximate computing,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Lake Placid, NY, USA,
Mar. 2016, pp. 1–8.

[5] T. Hotfilter, J. Hoefer, P. Merz, F. Kreß, F. Kempf, T. Harbaum, and
J. Becker, ‘‘Leveraging mixed-precision CNN inference for increased
robustness and energy efficiency,’’ in Proc. IEEE 36th Int. System-on-Chip
Conf. (SOCC), Santa Clara, CA, USA, Sep. 2023, pp. 1–6.

[6] L. Mei, M. Dandekar, D. Rodopoulos, J. Constantin, P. Debacker,
R. Lauwereins, and M. Verhelst, ‘‘Sub-word parallel precision-scalable
MAC engines for efficient embedded DNN inference,’’ in Proc. IEEE Int.
Conf. Artif. Intell. Circuits Syst. (AICAS), Hsinchu, Taiwan, Mar. 2019,
pp. 6–10.

[7] L. Urbinati and M. R. Casu, ‘‘A reconfigurable multiplier/dot-product unit
for precision-scalable deep learning applications,’’ in Proc. SIE, Pizzo,
Italy, 2022, pp. 9–14.

[8] L. Urbinati andM. R. Casu, ‘‘Design-space exploration of mixed-precision
DNN accelerators based on sum-together multipliers,’’ in Proc. 18th Conf.
Ph.D Res. Microelectron. Electron. (PRIME), Valencia, Spain, Jun. 2023,
pp. 377–380.

[9] V. Camus, L. Mei, C. Enz, and M. Verhelst, ‘‘Review and benchmarking
of precision-scalable multiply-accumulate unit architectures for embedded
neural-network processing,’’ IEEE J. Emerg. Sel. Topics Circuits Syst.,
vol. 9, no. 4, pp. 697–711, Dec. 2019.

[10] L. Urbinati and M. R. Casu, ‘‘A reconfigurable depth-wise convolution
module for heterogeneously quantized DNNs,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Austin, TX, USA, May 2022, pp. 128–132.

[11] L. Urbinati andM. R. Casu, ‘‘A reconfigurable 2D-convolution accelerator
for DNNs quantized with mixed-precision,’’ in Proc. Appl. Electron. Per-
vading Ind., Environ. Soc. (ApplePies), Genoa, Italy, 2023, pp. 210–215.

[12] W. Liu, J. Lin, and Z. Wang, ‘‘A precision-scalable energy-efficient
convolutional neural network accelerator,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 67, no. 10, pp. 3484–3497, Oct. 2020.

[13] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient integer-arithmetic-only inference,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, Jun. 2018,
pp. 2704–2713.

[14] H. Wu, P. Judd, X. Zhang, M. Isaev, and P. Micikevicius, ‘‘Integer quan-
tization for deep learning inference: Principles and empirical evaluation,’’
2020, arXiv:2004.09602.

[15] C. Banbury et al., ‘‘MLPerf tiny benchmark,’’ 2021, arXiv:2106.07597.
[16] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadiuba, T. K. Aarrestad,

V. Loncar, M. Pierini, A. A. Pol, and S. Summers, ‘‘Automatic heteroge-
neous quantization of deep neural networks for low-latency inference
on the edge for particle detectors,’’ Nature Mach. Intell., vol. 3, no. 8,
pp. 675–686, Jun. 2021.

[17] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, ‘‘Near-threshold RISC-V
core with DSP extensions for scalable IoT endpoint devices,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 10, pp. 2700–2713,
Oct. 2017.

[18] A. Garofalo, G. Tagliavini, F. Conti, L. Benini, and D. Rossi, ‘‘XpulpNN:
Enabling energy efficient and flexible inference of quantized neural
networks on RISC-V based IoT end nodes,’’ IEEE Trans. Emerg. Topics
Comput., vol. 9, no. 3, pp. 1489–1505, Jul. 2021.

[19] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, H. Esmaeilzadeh,
and J. K. Kim, ‘‘Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network,’’ in Proc. ACM/IEEE 45th Annu.
Int. Symp. Comput. Archit. (ISCA), Los Angeles, CA, USA, Jun. 2018,
pp. 764–775.

[20] W. Li, A. Hu, G. Wang, N. Xu, and G. He, ‘‘Low-complexity precision-
scalable multiply-accumulate unit architectures for deep neural network
accelerators,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 4,
pp. 1610–1614, Apr. 2023.

[21] R. Lin, ‘‘Reconfigurable parallel inner product processor architectures,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, no. 2,
pp. 261–272, Apr. 2001.

44188 VOLUME 12, 2024

L. Urbinati, M. R. Casu: High-Level Design of Precision-Scalable DNN Accelerators

[22] X. Zhang, Z. Li, and Q. Zheng, ‘‘Design of a configurable fixed-
point multiplier for digital signal processor,’’ in Proc. Asia–Pacific Conf.
Postgraduate Res. Microelectron. Electron. (PrimeAsia), Shanghai, China,
Jan. 2009, pp. 217–220.

[23] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, ‘‘14.5
envision: A 0.26-to-10 TOPS/W subword-parallel dynamic-voltage-
accuracy-frequency-scalable convolutional neural network processor in
28 nm FDSOI,’’ in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
San Francisco, CA, USA, Feb. 2017, pp. 246–247.

[24] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, ‘‘14.2 DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,’’ in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), San
Francisco, CA, USA, Feb. 2017, pp. 240–241.

[25] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, ‘‘UNPU:
An energy-efficient deep neural network accelerator with fully variable
weight bit precision,’’ IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 173–185, Jan. 2019.

[26] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, ‘‘Loom:
Exploiting weight and activation precisions to accelerate convolutional
neural networks,’’ in Proc. 55th ACM/ESDA/IEEE Design Autom. Conf.
(DAC), San Francisco, CA, USA, Jun. 2018, pp. 1–6.

[27] R. Krishnamoorthi, ‘‘Quantizing deep convolutional networks for efficient
inference: A whitepaper,’’ 2018, arXiv:1806.08342.

[28] M. Horowitz, ‘‘1.1 computing’s energy problem (and what we can do about
it),’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
San Francisco, CA, USA, Feb. 2014, pp. 10–14.

[29] A. Pappalardo, Y. Umuroglu, M. Blott, J. Mitrevski, B. Hawks, N. Tran,
V. Loncar, S. Summers, H. Borras, J. Muhizi, M. Trahms, S.-C. Hsu,
S. Hauck, and J. Duarte, ‘‘QONNX: Representing arbitrary-precision
quantized neural networks,’’ 2022, arXiv:2206.07527.

[30] P. P. Ray, ‘‘A review on TinyML: State-of-the-art and prospects,’’ J. King
Saud Univ. Comput. Inf. Sci., vol. 34, no. 4, pp. 1595–1623, Apr. 2022.

[31] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes, ‘‘Visual
wake words dataset,’’ 2019, arXiv:1906.05721.

[32] T.-Y. Lin,M.Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, ‘‘Microsoft COCO: Common objects in context,’’ in
Proc. 13th Eur. Conf. Comput. Vis. (ECCV), Zurich, Switzerland, 2014,
pp. 740–755.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[34] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada,
Apr. 2009. [Online]. Available: https://www.cs.toronto.edu/

[35] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770–778.

[36] P. Warden, ‘‘Speech commands: A dataset for limited-vocabulary speech
recognition,’’ 2018, arXiv:1804.03209.

[37] Y. Zhang, N. Suda, L. Lai, and V. Chandra, ‘‘Hello edge: Keyword spotting
on microcontrollers,’’ 2017, arXiv:1711.07128.

[38] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido, R. Tanabe,
H. Purohit, K. Suefusa, T. Endo, M. Yasuda, and N. Harada, ‘‘Descrip-
tion and discussion on DCASE2020 Challenge Task2: Unsupervised
anomalous sound detection for machine condition monitoring,’’ 2020,
arXiv:2006.05822.

[39] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, andK. Imoto, ‘‘ToyADMOS:
A dataset of miniature-machine operating sounds for anomalous sound
detection,’’ in Proc. IEEE Workshop Appl. Signal Process. Audio Acoust.
(WASPAA), New Paltz, NY, USA, Oct. 2019, pp. 313–317.

[40] X. Sun, N.Wang, C.-Y. Chen, J. Ni, A. Agrawal, X. Cui, S. Venkataramani,
K. El Maghraoui, V. V. Srinivasan, and K. Gopalakrishnan, ‘‘Ultra-low
precision 4-bit training of deep neural networks,’’ in Advances in Neural
Information Processing Systems, vol. 33, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red Hook, NY, USA: Curran
Associates, 2020, pp. 1796–1807.

[41] N. H. E. Weste and D. M. Harris, CMOS VLSI Design, 4th ed. Reading,
MA, USA: Addison-Wesley, 2011, ch. 11.

[42] Y.-H. Chen, J. Emer, and V. Sze, ‘‘Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 367–379.

[43] L. Zhang, Q. Lv, D. Gao, X. Zhou, W. Meng, Q. Yang, and C. Zhuo,
‘‘A fine-grained mixed precision DNN accelerator using a two-stage big–
little core RISC-V MCU,’’ Integration, vol. 88, pp. 241–248, Jan. 2023.

[44] G. Ottavi, A. Garofalo, G. Tagliavini, F. Conti, A. D. Mauro, L. Benini,
and D. Rossi, ‘‘Dustin: A 16-cores parallel ultra-low-power cluster with 2
b-to-32 b fully flexible bit-precision and vector lockstep execution mode,’’
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 70, no. 6, pp. 2450–2463,
Mar. 2023.

[45] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi, and F. Conti,
‘‘DORY: Automatic end-to-end deployment of real-world DNNs on low-
cost IoT MCUs,’’ IEEE Trans. Comput., vol. 70, no. 8, pp. 1253–1268,
Aug. 2021.

[46] TensorFlow. TensorFlow Hub. Accessed: Jan. 19, 2024. [Online]. Avail-
able: https://tfhub.dev

[47] TensorFlow. TensorFlow Lite Example Apps. Accessed: Jan. 19, 2024.
[Online]. Available: https://www.tensorflow.org/lite/examples

[48] Intel.Neural Compute Application Zoo. Accessed: Jan. 19, 2024. [Online].
Available: https://movidius.github.io/ncappzoo/

[49] Intel. (2023). OpenVINO Model Zoo. Accessed: Jan. 19, 2024. [Online].
Available: https://docs.openvino.ai/2023.2/modelzoo.html

[50] AMD Xilinx. Vitis AI Model Zoo. Accessed: Jan. 19, 2024. [Online].
Available: https://docs.xilinx.com/r/en-U.S./ug1414-vitis-ai/Vitis-AI-Mo
del-Zoo

[51] NVIDIA. NVIDIA NGC Catalog. Accessed: Jan. 19, 2024. [Online].
Available: https://catalog.ngc.nvidia.com/models

[52] NVIDIA. Jetson Model Zoo. Accessed: Jan. 19, 2024. [Online]. Available:
https://elinux.org/JetsonZoo

[53] M. A. Mansoori and M. R. Casu, ‘‘Multi-objective framework for
training and hardware co-optimization in FPGAs,’’ in Proc. Applications
Electron. Pervading Ind., Environ. Soc. (ApplePies), Genoa, Italy, 2023,
pp. 273–278.

[54] Catapult Synthesis User and Reference Manual, Mentor Graph. Corp.,
Wilsonville, OR, USA, 2018.

[55] K. Khalil, O. Eldash, A. Kumar, and M. Bayoumi, ‘‘Designing novel AAD
pooling in hardware for a convolutional neural network accelerator,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 3, pp. 303–314,
Mar. 2022.

[56] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini,
E. Flamand, and L. Benini, ‘‘Slow and steady wins the race? A comparison
of ultra-low-power RISC-V cores for Internet-of-Things applications,’’ in
Proc. 27th Int. Symp. Power Timing Model., Optim. Simul. (PATMOS),
Thessaloniki, Greece, Sep. 2017, pp. 1–8.

LUCA URBINATI (Graduate Student Member,
IEEE) received the B.Sc. degree in electronics and
telecommunications from Università di Bologna,
Bologna, Italy, in 2017, and the M.S. degree in
electronic engineering from Politecnico di Torino,
Italy, in 2019, where he is currently pursuing the
Ph.D. degree.

He has also collaborated with researchers in
other disciplines, such as food safety, embedded
systems, and high-level synthesis. His research

interests include integrated architectures for artificial intelligence (AI)
and machine learning, focusing particularly on the implementation of
AI algorithms in embedded edge devices through a HW–SW co-design
approach.

MARIO R. CASU (Senior Member, IEEE)
received the Ph.D. degree in electronics and
communications engineering from Politecnico di
Torino, Turin, Italy, in 2001.

He is currently an Associate Professor with
Politecnico di Torino. His research interests
include systems-on-chip (SoC) with specialized
accelerators, system-level design and design
methodology for FPGAs and ASICs, and embed-
ded machine learning. He is also interested in the

design of circuits, systems, and platforms for industrial applications, such
as biomedical, automotive, and food. His past work focused mostly on
latency-insensitive design of SoC and networks-on-chip. He regularly serves
in the Technical Program Committee for international conferences, such as
DAC, ICCAD, and DATE.

Open Access funding provided by ‘Politecnico di Torino’ within the CRUI CARE Agreement
VOLUME 12, 2024 44189

