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ABSTRACT
Although the vehicle dynamics effects of variable anti-roll moment
distribution actuated through active suspension systems are widely
discussed in the literature, their model-based control has only been
recently analysed, given the highly nonlinear nature of the involved
dynamics. Moreover, the available studies do not discuss the trade-
off between internal model complexity and controller performance,
nor analyse the opportunities offered by vehicle connectivity, which
enables the prediction of the steering angle and reference yaw
rate profiles ahead. To address the gap, this paper introduces
and assesses three optimal controllers for an electric vehicle with
active suspensions, multiple powertrains, and a brake-by-wire sys-
tem. The formulations are: (a) a gain scheduled output feedback
linear quadratic regulator (OFLQR); (b) a nonlinear model predictive
controller using a three-degree-of-freedom prediction model, with-
out and with preview of the steering angle and reference yaw rate
ahead, respectively referred to as NMPC-3 and NMPC-3-Pre; and (c)
a nonlinear model predictive controller based on an eight-degree-
of-freedom prediction model, referred to as NMPC-8 and NMPC-8-
Pre depending on the absence or presence of preview. The results
on an experimentally validated model show that: (i) NMPC-8 pro-
vides evident yaw rate tracking benefits with respect to (w.r.t) OFLQR
and NMPC-3; and (ii) NMPC-8-Pre can bring ∼ 20% yaw rate tracking
improvement w.r.t. an optimally tuned NMPC-8 configuration.
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1. Introduction

Electric vehicles (EVs) have been the subject of significant recent interest. Extensive litera-
ture investigates EVs with two powertrains per axle [1–4], enabling continuous control of
the left-to-right wheel torque difference, i.e, the so-called torque-vectoring (TV) [5]. TV
can shape the understeer characteristic in quasi-steady-state conditions, increase yaw and
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sideslip damping during transients [5–7], and reduce energy consumption [8, 9]. TV can
also be supported by the friction brakes, which aremore andmore frequently implemented
through electro-hydraulic or electro-mechanical arrangements [10].

Moreover, modern vehicles are often equipped with semi-active and/or active suspen-
sions, to reduce the body motions, in terms of pitch and roll angles as well as heave
displacement, together with the respective rates and accelerations, which are induced by:
(i) the traction, braking and cornering actions; and (ii) road irregularities. Controllable
suspensions are a key factor for exploiting the benefits of next generation automated vehi-
cles, to enable users to carry out activities during vehicle operation, which is not currently
possible [11].

Another potential functionality of active suspensions is vehicle dynamics control
through variable front-to-total anti-roll moment distribution [12]. Within an axle, the
increase of anti-roll moment, and thus lateral load transfer, reduces the lateral force. There-
fore, an increment of the front anti-roll moment increases understeer, while an increase
of the rear anti-roll moment reduces understeer. Traditionally, given their intrinsic non-
linearity, anti-roll moment distribution controllers are empirically designed, and operate
independently from direct yaw moment controllers, e.g. see [13] and [14]. A few papers
attempt the design of nonlinear anti-roll moment distribution algorithms through the
model in [12], including parabolic dependency of tyre cornering stiffness on vertical load,
and linear dependency of lateral tyre force on slip angle, see themodel predictive controller
(MPC) in [15]. However, recent studies [16, 17] have demonstrated the low fidelity of such
approximation. Therefore, Ricco et al. [16, 17] propose a linearised lateral axle force formu-
lation for the model-based design of anti-roll moment distribution controllers, and apply
it to proportional integral (PI) and H∞ controllers.

In the context of integrated chassis control (ICC), see the overview in [18] and typical
implementations in [19] and [20], several papers discuss algorithms for vehicles concur-
rently actuating direct yaw moment and anti-roll moment distribution. While most of the
studies propose separate controllers for the two actuations [21–23], a few use integrated
controllers. For example, in [24] Wang et al. present a nonlinear model predictive con-
troller (NMPC) for in-wheel motors, rear-wheel-steering, and active suspension actuators.
However, the active suspensions do not contribute to the cornering response enhancement.
Similarly, the testing conditions of the linear time-varying MPC in [25] only involve max-
imum lateral accelerations of ∼4m/s2, in which suspensions have very limited impact on
vehicle dynamics. In [26] Adireddy et al. present anMPC for ICC, with a predictionmodel
using the simplified tyre model in [27], corresponding to a linear relationship between ver-
tical tyre load and lateral tyre force variations, which could compromise its effectiveness
for roll stiffness distribution control. The results highlight the benefits of roll angle con-
trol, but it is unclear whether the suspension contribution is used for yaw rate tracking.
In [10] Dalboni et al. propose an NMPC considering the relevant power loss contribu-
tions; however, they do not analyse the effect of predictionmodel complexity on controller
performance.

For ICC, MPC is a very suitable technique, since it enables multi-variable control based
on multi-objective optimisation, including consideration of constraints. As ICCs typically
require low implementation time steps, implicit MPC, which solves the optimal control
problem on-line, has traditionally been affected by its computational demand. However,
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the improvement of automotive control hardware, and the development of computationally
efficient solvers [28, 29], have recently made NMPC a feasible option [30].

In conventional MPCs for vehicle dynamics, the human or automated steering input
and reference variables, e.g. the reference yaw rate, are kept constant along the predic-
tion horizon. Hence, the MPC prediction is realistic only for very short horizons, and
longer horizons do not automatically bring enhanced performance, as the controller can-
not account for the likely future vehicle trajectory. Such limitation is going to disappear
in the next generation of connected vehicles, in which accurate localisation, future road
curvature mapping and V2X (vehicle-to-X) can feed the controllers with realistic profiles
of the expected inputs ahead.

Very few vehicle dynamics control studies consider preview. For example, in [31] Yim
presents a linear quadratic regulator (LQR) for rollover prevention through direct yaw
moment and active suspension control. The steering input preview is obtained from the
expected path, and represents a disturbance. In [32], the preview function assumes that
the steering profile of the preceding vehicle is transmitted to the ego vehicle, which uses
it as a preview signal within an LQR, neglecting the interaction between longitudinal and
lateral tyre forces, and the effect of the anti-roll moment distribution. An NMPC for pre-
emptive stability control has been proposed in [33], which considers the current vehicle
position and road curvature information to predict the steering input and reference yaw
rate profiles. However, the performance evaluation along obstacle avoidance tests focuses
on the pre-emptive braking action.

In conclusion, the literature shows a gap on vehicle dynamics control with preview, as: (i)
none of the preview implementations considers the effect of suspension control on the yaw
rate response, or ICC for yaw rate tracking and sideslip angle limitation through multiple
actuators; and (ii) the preview algorithms use simplified models, which limit the effec-
tive adoption of the relatively long prediction horizons that could maximise road preview
effectiveness.

This study covers the gap with the following contributions:

• Novel computationally efficient output feedback LQR and NMPCs, referred to as
OFLQR and NMPC-3, for integrated direct yaw moment and anti-roll moment distri-
bution control, based on three-degree-of-freedom (3-DoF) vehicle models embedding
lateral axle force formulations considering the lateral load transfers.

• Comparison of OFLQR, NMPC-3, and an NMPC, referred to as NMPC-8, based on an
8-DoF prediction model.

• Simulation-based proof-of-concept implementation and assessment of NMPCs with
road preview, including sensitivity analysis on the effect of the prediction horizon
parameters.

2. Simulation framework and control system architecture

The considered EV is the prototype of the Horizon 2020 European project EVC1000 [34].
The vehicle has direct drive in-wheel motors, a brake-by-wire system including front
electro-hydraulic and rear electro-mechanical brakes, and an electro-hydraulic suspension
system prototype by Tenneco, specifically designed for roll angle compensation and front-
to-total anti-roll moment distribution control. The system generates the controllable active
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Table 1. Main parameters of the case study EV.

Description Symbol Value Unit

Total vehicle mass m 2843 kg
Vehicle centre of gravity height hCG 0.63 m
Roll axis height at the longitudinal coordinate of the centre of gravity hroll 0.09 m
Front and rear track widths bF , bR 1.66 m
Front semi-wheelbase aF 1.47 m
Rear semi-wheelbase aR 1.46 m
Wheel radius Rw 0.37 m
Yawmass moment of inertia Iz 5291 kgm2

Peak torque of individual in-wheel machine Tem,max,ij 1500 Nm
Peak power of individual in-wheel machine Pem,max,ij 141 kW

anti-roll moments through individual actuators at the corners, while appropriate valves
provide passive damping force contributions. The vehicle parameters are in Table 1.

Figures 1(a,b) show the notations and sign conventions of the main variables, while
Figure 1(c) reports the functional blocks of the simulation framework, implemented in
Matlab-Simulink, and including:

• The drivermodel, which generates the steering wheel angle, δsw, and the accelerator and
brake pedal positions, θacc and θbk (in percentage).

• The reference generator, which calculates the total torque demand, Tdem, and the ref-
erence yaw rate, rref , through nonlinear maps, depending on the driver inputs and
vehicle speed. To provide a sport-oriented response, the considered rref map induces
a significantly less understeering behaviour than the passive version of the vehi-
cle. At each time step, the reference variables are transmitted as scalars to OFLQR.
For NMPC-3 and NMPC-8, at each time step the reference generator outputs Sy =
[yref,0yref,1 . . . yref,Nh−1], i.e. the sequence of reference variable vectors, yref,kh , computed
at discrete times along the prediction horizon th, where the integer kh is the prediction
step.

• The online parameter generator, which at each step outputs the sequence Sp =
[p0p1 . . . pNh−1] of parameter vectors, pkh , for discrete points along th, as required by
NMPC-3 and NMPC-8, see Sections 4.2-4.4.

• The three integrated TV and anti-roll moment distribution controllers, i.e. OFLQR,
NMPC-3, and NMPC-8. For the active suspension contribution, all controllers output
the desired front-to-total anti-roll moment distribution ratio, froll. For the TV con-
tribution, OFLQR and NMPC-3 generate a reference direct yaw moment, Mz,ext , as
they embed single-track models, while NMPC-8, being based on a double-track model,
directly produces the reference torque on each wheel, Tij, where the subscript i = F,R
indicates the front or rear axle, and the subscript j = L,R indicates the left- or right-hand
side.

• The torque distribution block, which is used by OFLQR and NMPC-3 to generate Tij
from Tdem andMz,ext .

• The suspension force distribution block, which computes the reference active suspen-
sion forces at the corners, indicated as Fact,ij, starting from: (i) the total active anti-roll
moment contribution, MAR,act,tot , which is calculated internally as a linear function of
lateral acceleration ay; and (ii) the froll value output by the selected control option.
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• The brake blending function, which, for each corner, computes the reference in-wheel
motor torque,Tem,ij, and the reference friction braking torque,Tbk,ij, to achieveTij, while
prioritising regeneration over friction brake actuation.

• A high-fidelity vehicle simulation model, set up through the software package VSM by
AVL, and interfaced with the control architecture in Simulink. The model accounts
for the six DoFs (three translations and three rotations) of the sprung mass, the four
DoFs related to the unsprung mass displacements, and the four DoFs associated with
wheel rotations. Nonlinearities are included, e.g. in terms of coupling among the DoFs
of the sprungmass, as well as bump stop and shock absorber characteristics. Suspension
kinematics and compliances are considered, together with the nonlinear tyre behaviour,
modelled through the Pacejka magic formula, including relaxation [35]. The dynamics
of the electric powertrains and chassis actuators are simulated through pure time delays
and transfer functions, based on experimental data from the suppliers. The model of
the passive EV, i.e. without the controllers, has been experimentally validated in quasi-
steady-state and transient conditions, see the results in Figure 2, and therefore is a
reliable tool for control assessment. The validity of the following analyses is supported
by the fact that the VSM model formulation is completely independent from those of
the models for control design in Section 3.

3. Models for OFLQR design and NMPC prediction

3.1. Model for OFLQR design

The OFLQR formulation uses a linearised 3-DoF single-track vehicle model, see Figure 1,
described by the following lateral force, yawmoment and roll moment balances, under the
small angle approximation [36]:

β̇ = 1
mu

[Fy,F + Fy,R] − r

ṙ = 1
Iz
[Fy,FaF − Fy,RaR + Mz,ext]

ϕ̈ = 1
Ix

{msu[β̇ + r]d + msgdϕ − MAR,pass,F − MAR,pass,R − MAR,act,F − MAR,act,R} (1)

where β̇ , ṙ, and ϕ̈ are the time derivatives of vehicle sideslip angle (β) and yaw rate (r), and
the second time derivative of roll angle (ϕ);m andms are the total vehicle mass and sprung
mass, considered, in a first approximation, to be the same; Fy,i are the lateral axle forces,
i.e. the sum of the tyre cornering forces on the same axle; u is the longitudinal component
of vehicle velocity; the lateral acceleration ay is approximated as ay ≈ u[β̇ + r]; Iz and Ix
are the yaw and roll mass moments of inertia; Mz,ext is the direct yaw moment of the TV
system; d = hCGS − hroll is the distance between the centre of gravity ofms and the roll axis,
see Figure 1; g is the gravitational acceleration; MAR,pass,F and MAR,pass,R are the anti-roll
moments of the front and rear passive suspension components, i.e. springs, anti-roll bars,
and passive damping components; andMAR,act,F andMAR,act,R are the front and rear active
anti-roll moments. In (1) and the remainder, ‘[]’ and ‘{}’ indicate a factor in a product,
while ‘()’ indicates a function.
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Figure 1. Schematic of the vehicle model concepts for control design: (a) top view; (b) rear view. The
dashed lines refer to the wheels of the single-track models of OFLQR and NMPC-3, and the continuous
lines refer to thewheels of the double-trackmodel of NMPC-8. (c) Simplified schematic of the simulation
framework for the implementation and assessment of OFLQR, NMPC-3, and NMPC-8.

MAR,pass,i is approximated by the sumof linear stiffness and damping contributions [37]:

MAR,Pass,i = Ks,iϕ + Diϕ̇ (2)

where Ks,i is the roll stiffness of the passive components of the i axle suspension, and Di is
the roll damping coefficient. The roll moment balance allows considering the roll suspen-
sion dynamics in the lateral load transfer computation, while the suspension dynamics
related to the pitch and heave motions are neglected to simplify the prediction model
and enable real-time implementation. The total active anti-roll moment contribution,
MAR,act,tot = MAR,act,F + MAR,act,R, is the roll moment that is compensated by the active
suspensions, and is expressed as a function of ay, through MAR,act,tot = kmsayd, where k
is the roll motion compensation factor, i.e. k = 1 indicates full compensation, and k = 0
indicates absence of roll angle compensation.MAR,act,tot is distributed among the front and
rear suspensions via the factor froll [17]:

MAR,act,F = kmsaydfroll
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Figure 2. Examples of experimental validation of the considered models along: (a) a skidpad test, for
which the steeringwheel angle, δsw , sideslip angle,β , roll angle,ϕ, and front and rear axle slip angles,αF
and αR, are reported as functions of the lateral acceleration, ay ; and (b) a transient steering manoeuvre
at ∼ 100 km/h, along which the time profiles of δsw , yaw rate r, and β are reported. ‘Exp.’: experimental
data; ‘Sim.’: simulation results from the VSM model; ‘NMPC-3’: simulation results from the prediction
model of NMPC-3; and ‘NMPC-8’: simulation results from the prediction model of NMPC-8.

MAR,act,R = kmsayd[1 − froll] (3)

Given the relatively slow nature of the yaw and roll motions, to reduce the computational
load of the controllers, it was not deemed necessary to consider the suspension actuation
dynamics in the prediction model. The lateral axle forces, Fy,i, are modelled through the
formulation in [16] and [17], in which simplified relationships express the dependency
of Fy,i on the lateral load transfer, �Fz,i, and slip angle, αi, around a nominal operating
condition defined by Fy,i,0, �Fz,i,0, and αi,0, with the subscript ‘0’ indicating the value of
the variable at the considered nominal point:

Fy,i = Fy,i,0 + F′
y,i,0[�Fz,i − �Fz,i,0] + {Ci,0 + C′

i,0[�Fz,i − �Fz,i,0]} [αi − αi,0] (4)

where F′
y,i,0 = ∂Fy,i/∂�Fz,i|0 is the gradient of the lateral axle force w.r.t. the lateral load

transfer, which is always negative, as the magnitude of Fy,i decreases with �Fz,i; Ci,0 is the
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axle cornering stiffness at the nominal point, i.e. the slope of the lateral axle force character-
istic as a function of slip angle; andC′

i,0 = ∂Ci/∂�Fz,i|0 is the gradient of the axle cornering
stiffness w.r.t. the lateral load transfer, which, from [16] and [17], is usually negative for low
values of |αi,0|, and positive for medium-to-high |αi,0|.

αi is defined with the sign conventions in Figure 1 [37]:

αF = β + aF
u
r − S

αR = β − aR
u
r (5)

where S is the average front steering angle. The lateral load transfers are given by [37]:

�Fz,i = may[l − ai]hroll
lbi

+ MAR,pass,i + MAR,act,i

bi
(6)

where l is the wheelbase. By substituting (5) and (6) into (4), the lateral axle forces become:

Fy,F = Fy,F,0 + F′
y,F,0

{
u[β̇ + r][maRhroll/l + mskfrolld] + KFϕ + DFϕ̇

bF
− �Fz,F,0

}

+
{
CF,0 + C′

F,0

{
u[β̇ + r][maRhroll/l + mskfrolld] + KFϕ + DFϕ̇

bF
− �Fz,F,0

}}

×
[
β + aF

u
r − S − αF,0

]

Fy,R = Fy,R,0

+ F′
y,R,0

{
u[β̇ + r]{maFhroll/l + msk[1 − froll]d} + KRϕ + DRϕ̇

bR
− �Fz,R,0

}

+
{
CR,0 + C′

R,0

{
u[β̇ + r]{maFhroll/l + msk[1 − froll]d} + KRϕ + DRϕ̇

bR

− �Fz,R,0
}} [

β − aR
u
r − αR,0

]
(7)

Despite resulting from the linearisation in (4), the expressions in (7) are nonlinear, as
they include products of the system states, e.g. β and r, by their time derivatives and/or the
control inputs.

By combining (1)-(3) and (7), and making appropriate re-arrangements, the model
assumes the form:

β̇ = g1(β , r, ϕ, ϕ̇, froll,Mz,ext)

ṙ = g2(β , r, ϕ, ϕ̇, froll,Mz,ext)

ϕ̈ = g3(β , r, ϕ, ϕ̇, froll,Mz,ext) (8)

where g1, g2 and g3 are nonlinear functions, detailed in the Appendix, see A.1-A.3.
These are re-arranged to include the yaw rate error �r (�r = r − rref ) among the states,
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by replacing r with �r + rref . Therefore, the model is represented through a nonlinear
state-space formulation:

ẋ = g(x, u)

y = h(x,u) (9)

where x, u and y are the state, input, and output vectors:

x =

⎡
⎢⎢⎣

β

�r
ϕ

ϕ̇

⎤
⎥⎥⎦ ; u =

[
froll

Mz,ext

]
; y = [�r] (10)

For designing OFLQR, the model is further linearised about the considered nominal
operating point, defined by the values x0, u0, and y0, while the variations of the system
condition w.r.t. the linearisation point are indicated as δx, δu, and δy. Hence, the vectors
in (10) are expressed as x = x0 + δx, u = u0 + δu, and y = y0 + δy, while (9) becomes:

δẋ = Aδx + Bδu

δy = Cδx + Dδu (11)

where A, B, C, and D are the system state-space matrices, obtained through the symbolic
computation software Maple. As the only considered output is �r, it isD = 0.

In the implementation, as suggested in [17] and [38], the linearisation point corresponds
to steady-state cornering at ay = 9m/s2 (i.e. Fy,i, F′

y,i,0, Ci,0, and C′
i,0 are kept constant) for

different values of u, which is considered a gain scheduling parameter.

3.2. NMPC-3 predictionmodel

NMPC-3 uses the 3-DoF nonlinear vehicle model in (A1)–(A3) as internal model.
Although being nonlinear, the NMPC-3 model is based on the linearisation of the lat-
eral axle force characteristics as functions of the lateral load transfer and slip angle, see (4)
and (7), according to which the values of Fy,i,0, F′

y,i,0, �Fz,i,0, Ci,0, C′
i,0, and αi,0 are fed into

the controller as online data. Two methods were evaluated for obtaining the linearisation
parameters during NMPC-3 operation:

• Online method. This method assumes the presence of an accurate on-board estimator
of the states and variables for vehicle dynamics control, e.g. see [39] and [40], which
can determine Fy,i,0, �Fz,i,0, αi,0, as well as the tyre slip ratios σij,0 and friction factors
μij,0 (representative of the available tyre-road friction) at each time step. Given the focus
of this research on the controllers, Fy,i,0, �Fz,i,0, αi,0, σij,0, and μij,0 are assumed to be
known. F′

y,i,0, Ci,0, and C′
i,0 are computed online from their definitions:

F′
y,i,0 = Fy,i(αi,0,�Fz,i,0 + δ�Fz,i) − Fy,i,0(αi,0,�Fz,i,0)

δ�Fz,i

Ci,0(αi,0,�Fz,i,0) = Fy,i(αi,0 + δαi,�Fz,i,0) − Fy,i,0(αi,0,�Fz,i,0)
δαi
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Figure 3. Examples of look-up tables for the generation of the axle force parameters for NMPC-3, in high
tyre-road friction conditions.

C′
i,0 = Ci(αi,0,�Fz,i,0 + δ�Fz,i) − Ci,0(αi,0,�Fz,i,0)

δ�Fz,i
(12)

where δ�Fz,i and δαi indicate small increments, respectively set to 500 N and 0.1 deg,
of the lateral load transfer and slip angle w.r.t. their linearisation values. The lateral axle
forces in (12), Fy,i(αi,�Fz,i), are obtained online through version 5.2 of the magic for-
mula [35], as the sum of the lateral tyre forces (Fy,ij) within the axle, by neglecting the
steering angle difference among the two wheels:

Fy,i(αi,�Fz,i) ≈ Fy,iR(αiR, σiR,0, Fz,iR, Lμmax,ij,0) + Fy,iL(αiL, σiL,0, Fz,iL, Lμmax,ij,0)

(13)
where Lμmax,ij,0 is the scaling factor of the tyre-road friction level in the Pacejka model.

• Offline method. This method uses the high-fidelity simulation model in quasi-steady-
state conditions (ramp steer test), in conjunctionwith the offline implementation of (12)
and (13), to obtain maps of Fy,i,0, F′

y,i,0, Ci,0, C′
i,0, �Fz,i,0, and αi,0 as functions of |ay|,

see Figure 3 for high tyre-road friction conditions. The maps are then embedded in the
online algorithm. The benefit is a significant reduction of the computational load for
online estimation, at the price of neglecting the effects of driving transients, disturbances
and model mismatches, which can be considered by the online method, see the critical
analysis of this aspect for TV systems in [38].

3.3. Predictionmodel of NMPC-8

NMPC-8 uses a double-track 8-DoF prediction model, see Figure 1. The model includes
the longitudinal force, lateral force, yaw moment, roll moment, and individual wheel
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moment balance equations in [10]. The tyre model, based on a simplified version of the
magic formula, considers the interaction between longitudinal and lateral tyre forces, Fx,ij
and Fy,ij. The formulation makes the nonlinear lateral tyre force characteristic quadrati-
cally dependent on the load, to consider the effect of the lateral load transfer, and thus the
front-to-total anti-roll moment distribution, on the lateral axle forces. The individual tyre
load, Fz,ij, is obtained as the sum of the static load, and the longitudinal and lateral load
transfers.

4. Controller configurations

4.1. OFLQR formulation

The linear quadratic formulation uses output feedback, which enables a simple control
law, exclusively focused on the yaw rate error �r, and does not rely on the continuous
and accurate estimation of other states. Moreover, an integral yaw rate error contribution
enables steady-state error compensation. The proportional integral (PI) OFLQR design
proposed in [41] was selected, with a control law of the form:

u(t) = −Kpy(t) − Ki

∫ t

0
y(t)dt (14)

where t is time, andKp and Ki are the gain matrices. For ease of notation, the symbol ‘δ’ is
omitted from the variables in (14) and the remainder. For the system in (11), the objective
of the OFLQR control law is to minimise the cost function JOFLQR:

JOFLQR =
∫ ∞

0
[x(t)TQx(t) + u(t)TRu(t)]dt (15)

where Q and R are diagonal weight matrices. To enable meaningful weight selection, the
matrices A, B and C in (11) were scaled through diagonal matrices including the maxi-
mum expectedmagnitudes of the states, control inputs, and outputs, whichwere quantified
throughVSM simulations.Q andRwere selected to prioritise yaw rate tracking, with equal
penalty on the TV and anti-roll moment distribution control effort.

Kp and Ki are obtained by solving the optimisation in [41], including linear matrix
inequalities, for the model linearisation conditions in Section 3.1, i.e. for several vehicle
speeds, covering the whole relevant range, at a lateral acceleration of 9m/s2. Differently
from the NMPCs, OFLQR does not consider system constraints, while the control inputs
are saturated according to the actuation capabilities. The gain maps as functions of speed
are stored in the online algorithm of the controller, and the gain values are interpolated
w.r.t. the current vehicle speed. Although formal stability proof of the weight scheduling
algorithm is not provided, extensive simulations – see Section 5 – verified robustness and
stability. As discussed in [16], in the online implementation,�r is the error variable for the
computation ofMz,ext , while�r sign (rref ) is the error variable for the computation of froll.
Appropriate reset conditions, based on the reference yaw rate, reference yaw acceleration,
and measured lateral acceleration, are used for the integral term.
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4.2. NMPC-3 formulation

The nonlinear optimal control problem (NOCP) of NMPC-3 minimises the cost function
JNMPC−3, subject to the set of equality and inequality constraints (i)-(x):

JNMPC−3(x0,u(t), p)

=
∫ th

0
‖y(t) − yref‖2wdt + ‖y(th) − yref‖2wf

=
∫ th

0
‖[�r(t) αR(t) �froll(t) Mz,ext(t) zαF (t) zαR(t)]

T‖2wdt + wf�r(th)2

s.t.

(i)ẋ = g(x, u, p)

(ii)y = h(x,u, p)

(iii)Mz,ext,min ≤ Mz,ext ≤ Mz,ext,max

(iv)froll,min ≤ froll ≤ froll,max

(v)|MAR,act,F| ≤ MAR,act,F,max

(vi)|MAR,act,R| ≤ MAR,act,R,max

(vii)αF,min − zαF ≤ αF ≤ αF,max + zαF
(viii)αR,min − zαR ≤ αR ≤ αR,max + zαR
(ix)zαF ≥ 0

(x)zαR ≥ 0 (16)

The NOCP uses the nonlinear state-space form of the prediction model in (A.1)-(A.3)
and Sections 3.1 and 3.2, see equality constraints (i) and (ii) in (16). The prediction is based
on the initial values of the system state vector x0, the sequence of control inputs u(t), and
the external parameter vector p(t), where t indicates the time along the prediction horizon
th. The state vector is x(t) = [β r ϕ ϕ̇]T , while the control input vector u(t), in addition
to the active suspension and TV control actions, includes the slack variables, zαF and zαR ,
associated with the soft constraints, i.e. u(t) = [froll Mz,ext zαF zαR]T .

JNMPC−3 is quadratic, and is the sum of:

• A first term,
∫ th
0 ‖y(t) − yref‖2wdt, resulting from the integration of the weighted and

squared 2-norm of the error (the so-called stage cost) between the output vector, y,
generated by the prediction model, and the reference output vector, yref, along th. The
priority level of each term of y(t) − yref is governed by a diagonal weight matrix, w.
As y and yref are vectors consisting of several components, the norm of y(t) − yref can
also be expressed as the one of its individual components, i.e. the error values of the
system outputs. Whilst for the yaw rate and anti-roll moment distribution factor the
reference value is non-zero, which corresponds to the error variables�r(t) and�froll(t),
the reference values of the rear axle slip angle, direct yawmoment, and slack variables are
zero, and thus the respective error terms simplify intoαR(t),Mz,ext(t), zαF (t), and zαR(t).
As a summary, the first term of JNMPC−3 consists of contributions penalising: (a) �r,
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which is the main focus; (b) αR, to facilitate vehicle stabilisation; (c) the front-to-total
anti-roll moment distribution control effort, expressed through the deviation, �froll,
of froll from its nominal value froll,nom, i.e. �froll = froll − froll,nom, where froll,nom = 0.67
is the front-to-total anti-roll moment distribution factor of the corresponding vehicle
without active suspension; (d) the TV control effort, Mz,ext ; (e) the slack variable zαF ,
which sets a soft constraint on αF , preventing excessive understeer, see also (vii) and
(ix) in (16), where αF,min and αF,max are the lower and upper activation thresholds of
the constraint; and (f) the slack variable, zαR , that sets a soft constraint on αR, to prevent
oversteer, see also (viii) and (x) in (16), defining the lower and upper limits αR,min and
αR,max. The minimisation of the positive slack variables zαF and zαR in the NMPC-3
cost function tends to push back αF and αR towards αF,max and αR,max as soon as the
predicted slip angle values exceed their respective thresholds, and, similarly, to push
back αF and αR toward αF,min and αR,min if the angle predictions go below their negative
thresholds. This creates a constraint effect, referred to as soft, as the involved variable
can cross their thresholds. The benefit of soft constraints instead of hard constraints is an
easier convergence of the algorithm (infeasibility prevention), together with a reduction
of the computational load.

• A second term, ‖y(th) − yref‖2wf
, the so-called terminal cost, accounting for the norm

of y − yref at the end of the prediction horizon, to facilitate controller stability through
convergence of the outputs towards the respective reference. In the specific formulation,
the terminal cost only considers the final magnitude of �r, and the weight matrix wf
simplifies into a scalar, wf .

In addition to the constraints in (i)–(ii) and (vii)–(x), (16) also includes: constraint (iii),
which sets hard bounds, Mz,ext,min and Mz,ext,max, for the direct yaw moment; constraint
(iv), which sets the lower and upper bounds, froll,min and froll,max, respectively 0.2 and 0.8,
for froll, according to the available active suspension system, and to prevent extreme anti-
rollmoment distributions; and constraints (v) and (vi), limiting themagnitudes of the front
and rear anti-roll moments to be less thanMAR,act,F,max andMAR,act,R,max.

In (16), the NOCP is in its continuous form, as this is the one for coding the controllers
in the selected implementation tool, which carries out the discretisation along th, accord-
ing toNh steps, such that th = NhTs, where Ts is the prediction step. As shown in Figure 1,
the NOCP requires the computation or estimation, outside the NMPC, of: (a) the vector
with the initial values of the states, x0; (b) the vector Sy with the sequence of reference
vectors, yref,kh , along th; and (c) the vector Sp with the sequence of parameter vectors,
pkh . For the NMPC-3 and NMPC-8 versions without preview, the reference and param-
eter vectors within the sequence are identical, i.e. yref,0 = yref,1 = . . . = yref,Nh−1 = yref
andp0 = p1 = . . . = pNh−1 = p, consistently with the current practice ofMPC for vehicle
chassis control. For NMPC-3, yref and p are:

yref = [rref 0 froll,nom 0 0 0]T

p = [S V ay k MAR,act,F,max MAR,act,R,max froll,min froll,max Mz,min Mz,max

αF,min αR,min αF,max αR,max �Fz,F,0 �Fz,R,0 αF,0 αR,0 Fy,F,0 Fy,R,0 F′
y,F,0

F′
y,R,0 CF,0 CR,0 C′

F,0 C
′
R,0]

T (17)
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InNMPC-3, and the followingNMPC-8, the ay value in p, e.g. used for the computation
of the total active anti-roll moment and lateral load transfers, is the one measured by the
sensor installed on the vehicle, i.e. ay = ay,meas.

4.3. NMPC-8 formulation

The NMPC-8 formulation is similar to the one in [10], with an NOCP having the same
structure as for NMPC-3:

JNMPC−8(x0,u(t), p) =
∫ th

0
‖[�Ttot(t) er(t) Pbrakes(t) �Tf ,L(t) �Tf ,R(t) �froll(t)

zσ (t) zαF (t) zαR(t)]
T‖2wdt + wf er(th)2

s.t.

(i) ẋ = g(x,u, p)

(ii) y = h(x, u, p)

(iii)Tem,min,ij + Tbk,min,ij ≤ Tij ≤ Tem,max,ij

(iv)TFL + TFR ≤ kEBD
∑

Tij

(v)
∑

Tem,ij ≤ Ttot,max

(vi)
∑

Tij ≥ Ttot,min

(vii)froll,min ≤ froll ≤ froll,max

(viii)|MAR,act,F| ≤ MAR,act,F,max

(ix)|MAR,act,R| ≤ MAR,act,R,max

(x)σmin − zσ ≤ σij ≤ σmax + zσ
(xi)αF,min − zαF ≤ αFj ≤ αF,max + zαF
(xii)αR,min − zαR ≤ αRj ≤ αR,max + zαR
(xiii)zσ ≥ 0

(xiv)zαF ≥ 0

(xv)zαR ≥ 0 (18)

Constraints (i) and (ii) correspond to the 8-DoF model in Section 3.3, used for the
prediction. x(t) and u(t) are:

x(t) = [V β r ϕ̇ ϕ 
FL 
FR 
RL 
RR eint,r]T (19)

u(t) = [TFL TFR TRL TRR froll zσ zαF zαR]
T (20)

where eint,r is the time integral of the yaw rate error, i.e. eint,r = ∫ �r(t)dt.
The first term of JNMPC−8, whose magnitude has to be minimised, consists of weighted

quadratic contributions, corresponding to the following variables:
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• �Ttot , which governs the tracking of total torque demand, Tdem, at the vehicle level:

�Ttot =
∑
i=F,R

∑
j=L,R

[Tij − Tdem] (21)

• er, which governs the tracking of rref , and is the linear combination of�r and eint,r, with
weighting coefficient kint :

er = �r + kinteint,r (22)

• Pbrakes, i.e. the power dissipatedwithin the friction brakes, which is considered to reduce
their intervention:

Pbrakes =
∑
i=F,R

∑
j=L,R

[−Tbk,ij
ij] (23)

• �Tf ,L and �Tf ,R, auxiliary wheel torque values expressing the deviation of the front-
to-total electric motor torque distributions on the left and right vehicle sides from their
reference values, defined by the optimal reference of front-to-total torque distribution
ratios, fT,L,opt and fT,R,opt :

�Tf ,L = |Tem,FL[fT,L,opt − 1] + Tem,RLfT,L,opt| (24)

�Tf ,R = |Tem,FR[fT,R,opt − 1] + Tem,RRfT,L,opt| (25)

The fT,j,opt values are computed offline to minimise the powertrain power losses on the
j side, for each combination of motor speed and total electric motor torque demand on
the side, Tem,tot,side,j, see [10] and [30].

• �froll, see NMPC-3.
• zσ , zαF , and zαR , which are the slack variables defining the soft constraints on the slip

ratios and slip angles, i.e. σij, αFj, and αRj.

With respect to the constraints in (18), (iii) sets the upper and lower bounds for each
wheel torque, based on the actuation limits of the in-wheel motors and friction brakes; (iv)
imposes a front-to-total braking torque distribution limitation, according to the coefficient
kEBD, computed by an external electronic brake distribution algorithm, and provided to
NMPC-8 as an external parameter; (v) and (vi) set lower and upper bounds, Ttot,min and
Ttot,max, on the total torque; (vii)–(ix) deal with the active suspension actuation, similarly
to the corresponding constraints of NMPC-3; (x)–(xii) define soft constraints for the lon-
gitudinal slip ratio of each tyre, and the front and rear slip angles; finally, (xiii)–(xv) ensure
positive values of the slack variables.

yref and p are:

yref = [Tdem 0 0 0 0 froll,nom 0 0 0]

p = [SFL SFR SRL SRR rref ax ay k kint kEBD σmax αF,max αR,max σmin

αF,min αR,min Tem,min,FL Tem,min,FR Tem,min,RL Tem,min,RR

Tem,max,FL Tem,max,FR Tem,max,RL

Tem,max,RR fT,L,opt fT,R,opt MAR,Act,F,max MAR,Act,R,max froll,min froll,max
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Ttot,max Ttot,min Lμmax]T (26)

Similarly to ay, in (26) also ax is constant along th, and equal to the vehicle accelerometer
output, i.e. ax = ax,meas. In the NMPC-8 coding, rref is in p instead of yref, since it is needed
in the computation of the integral term of er.

4.4. NMPC formulations with preview

For the NMPCs in Sections 4.2 and 4.3, this study evaluates the benefits of preview con-
trol. In fact, thanks to V2X, it will be possible to know the steering angle profile in advance,
either through information from preceding vehicles, or the knowledge of the expected tra-
jectory curvature, based on reasonable assumptions. Thus, the expected future steering
input can be provided along th as a preview, and used in the internal model for predicting
vehicle response. Moreover, as the reference yaw rate depends on the steering input, also
its profile, under reasonable assumptions, i.e. constant vehicle speed or acceleration along
the prediction, can be obtained, thus achieving a second source of preview. Hence, in the
preview-based NMPCs, SFj and rref vary along the prediction, i.e. SFj(kh) and rref (kh).

In the preview formulations, two options were considered for the lateral acceleration for
the computation ofMAR,act,tot and �Fz,i:

• Using the constant ay,meas value, as for the formulationswithout preview,which is simple
and computationally efficient.

• Considering a variable ay(kh) profile, according to the following empirical formulation:

ay,var(kh) = way(kh)ay,meas + [1 − way(kh)]rref (kh)Vest (27)

whereVest is the currently estimated vehicle speed; and theweightway linearly decreases
from 1 to 0 with increasing kh:

way(kh) = 1 − kh
Nh

(28)

Through (27), at the beginning of the prediction only the measurement is consid-
ered, while progressively increasing significance is given to the preview-based lateral
acceleration, ay,prev = rref (kh)Vest , along the prediction.

4.5. Auxiliary control blocks

The VSM vehicle model for control system assessment as well as the prediction model
of NMPC-8 include the longitudinal vehicle dynamics, which are – instead – neglected
by the OFLQR model for control design and the NMPC-3 prediction model. Therefore,
a dedicated torque distribution block, used only by OFLQR and NMPC-3, see Figure 1,
computes the individual wheel torque levels as:

Tij = Tdem

4
+ Mz,extRw,l

2bi
[−1]η (29)

where the index η, with η = 1, 2, indicates the left or right vehicle sides. The wheel slip
control function for traction and braking is embedded inNMPC-8 through (x) and (xiii) in
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(18), while is omitted in OFLQR andNMPC-3, where it should be implemented at the cor-
ner level with possible feedback towards the direct yawmoment computation layer, see the
recent analysis on centralised and multi-layer TV architectures including wheel slip con-
trol in [42]. Given the focus on manoeuvres without significant longitudinal accelerations,
the simplification does not have any impact on the results of this study.

The suspension force distribution function calculates the reference active contributions
of the actuator forces, according to:

Fact,Fj = kmsaydfroll
bFIRF

[−1]η (30)

Fact,Rj = kmsayd[1 − froll]
bRIRR

[−1]η (31)

where IRi is the installation ratio of the suspension actuators of the respective axle.
The brake blending block outputs the motor torque values during regeneration through

Tem,ij = max(Tij,Tem,min,ij).
The controller operation requires themeasurements from an inertialmeasurement unit,

and, for NMPC-8, from wheel speed sensors. For simplicity, the simulation architecture
does not include any estimation system, as this topic is not the focus of the analysis. Nev-
ertheless, the estimation requirements for NMPC-3 and NMPC-8 are aligned with those
of conventional vehicle stability controllers, requiring the slip ratio, slip angle, and approx-
imate tyre-road friction level at each corner, and do not imply any specific criticality. The
roll angle and roll rate, which must be provided to NMPC-3 and NMPC-8 as initial con-
ditions for the prediction, can be obtained from the vehicle system kinematics and the
measurements of suspension actuator displacements and body roll rate, carried out by the
dedicated actuator sensors and the inertialmeasurement unit, according to a set-up already
validated by Tenneco.

4.6. Controller implementation

All controllers were set up in the framework in Figure 1(c). OFLQR was run at a time
step of 20ms. NMPC-3 and NMPC-8 were implemented through the ACADO toolkit [28,
29], with the following settings: Gauss Newton Hessian approximation, multiple shooting
discretisation, fourth order implicit Runge Kutta integrator, and qpOASES solver. Unless
otherwise specified, in the remainder the NMPCs have Nh = 2 and Ts = 35ms, corre-
sponding to a 70ms prediction horizon. The discretisation time of the internal model is
1ms, ensuring numerical stability without significantly affecting computational time.With
such settings, both NMPC-3 and NMPC-8 are real-time capable on a dSPACE MicroAu-
toBox II system (900MHz, 16 Mb flash memory). Nevertheless, more computationally
demanding settings can be explored, as more powerful hardware is currently available, and
further progress is expected in the near future.
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5. Simulation results

5.1. Test scenarios and performance indicators

The simulation results focus on limit handling conditions, represented by the following
manoeuvres:

• Multiple step steer, consisting of a first step steering input on the left, with a 110 deg
magnitude and a rate of 500 deg/s, followed, after ∼2 s, by a step steering input to the
right, with the same rate, to reach −110 deg, and finally, after further ∼2 s, by a step
steering input to the final condition δsw = 0 deg. The manoeuvre is carried out from an
initial speed of 120 km/h, with θacc = 20%.

• Sinusoidal steering, based on experimental inputs applied by a professional test driver,
with an approximately sinusoidal δsw profilewith an amplitude of ∼160 deg at ∼0.8Hz,
which tends to excite the yaw rate resonance, from an initial speed of 100 km/h, with
θacc = 20%.

Unless otherwise specified, the manoeuvres are performed in high tyre-road friction
conditions. Given the focus on limit handling, the considered key performance indicators
(KPIs) are based on the yaw rate and sideslip angle response:

• The root mean square (RMS) value of the error between the reference and actual yaw
rates, �rRMS, which evaluates the yaw rate tracking performance.

• The RMS value of sideslip angle, βRMS, which evaluates the overall sideslip level.
• The maximum sideslip angle magnitude, |β|max, which assesses the level of vehicle

stability criticality.

The analyses with the VSM model from Section 2 cover the following EV configura-
tions: (a) Passive, i.e. the EV without TV nor active suspension; (b) OFLQR; (c) NMPC-3
(Offline), i.e. NMPC-3 with the offline method for computing the lateral axle force for-
mulation parameters, see Section 3.2; (d) NMPC-3 (Online), i.e. NMPC-3 coupled with
the online method for obtaining the force parameters; (e) NMPC-8; (f) NMPC-3-Pre, i.e.
the preview version of NMPC-3; and (g) NMPC-8-Pre, i.e. NMPC-8 with preview. Since
a similar version of NMPC-8 without preview has been contrasted in [10] with a PI-based
algorithm for anti-roll moment distribution and TV, the reader can refer to that study for
a comparison with a baseline controller, and NMPC-8 can be considered the benchmark
here.

Unless otherwise specified, the cost function weights were tuned to minimise �rRMS
without provoking undesired control action oscillations during the multiple step steer,
through a brute force algorithm assessing performance for a grid of weights.

5.2. Effect the NMPC-3 parametrisation

The yaw rate response along the manoeuvres is reported in Figure 4 for NMPC-3 (Online)
and NMPC-3 (Offline), while the KPIs are in Table 2. The online method brings an
improvement, visible in the majority of the sections of the manoeuvres, with reduced
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Figure 4. Yaw rate tracking performance of NMPC-3 (Online) and NMPC-3 (Offline) during: (a) the
sequence of step steers; and (b) the sinusoidal steering test (only one reference is reported as it is the
same for the two controllers).

Table 2. Performance indicators for the considered controllers during the two manoeuvres in nominal
conditions.

Multiple step steer test Sinusoidal steering test

Controller �rRMS [deg/s] βRMS [deg] |β|max [deg] �rRMS [deg/s] βRMS [deg] |β|max [deg]
Passive 7.63 9.39 27.49 7.33 3.37 18.32
OFLQR 2.54 1.93 4.88 5.53 1.57 8.32
NMPC-3 (Offline) 2.50 1.25 3.24 6.28 1.77 8.68
NMPC-3 (Online) 2.39 1.64 4.04 5.22 1.48 7.89
NMPC-8 2.11 1.35 3.14 2.33 0.47 2.17

yaw rate peaks, and a decrease of �rRMS, amounting to 2.39 and 5.22 deg/s for NMPC-
3 (Online) along the multiple step steer and sinusoidal steering test, and to 2.50 and 6.28
deg/s for the offline method.

In the first test, in which, after the first steering input, |rref | is higher than the yaw
rate magnitude of the passive vehicle, the online parametrisation allows reaching the cor-
rect steady-state yaw rate between 0.5 and 2.3 s, which, given the sport-oriented nature of
the reference, implies increased |β| for NMPC-3 (Online). In fact, βRMS is 1.64 and 1.25
deg, while |β|max is 4.04 and 3.24 deg, for NMPC-3 (Online) and NMPC-3 (Offline). On
the contrary, in the second test, in which the dynamics and overshoots are more critical,
NMPC-3 (Online) reduces both βRMS (from 1.77 deg to 1.48 deg) and |β|max (from 8.68
deg to 7.89 deg, such large values are caused by the selected sport-oriented tuning of rref ).

The conclusion is that the better yaw rate tracking of the online parameter estimation
set-up makes the vehicle more agile in proximity of the cornering limit, and more stable
when it operates beyond the limit of handling, which is very desirable. For these reasons,
NMPC-3 (Online) is selected for the following analyses, and will be simply referred to as
NMPC-3.
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5.3. Comparison of OFLQR, NMPC-3, and NMPC-8

The profiles of the main variables for all cases along the two manoeuvres are in Figures 5
and 6. The KPIs are in Table 2, while Figure 7 reports the KPI percentage reduction, i.e. the
improvement of the controlled cases w.r.t. the passive configuration.

The passive vehicle struggles coping with the extreme conditions of both tests, which
results in |β|max exceeding 25 and 15 deg.While in the first test the passive case still follows
the steering profile with a corresponding shape of the yaw rate response, although charac-
terised by significant delays and overshoots, in the second half of the sinusoidal steering
manoeuvre the profiles of ay, r and ϕ do not follow the driver input any longer, i.e. the
cornering direction reversal does not occur.

On the contrary, all controllers generate profiles of the variables that are consistent with
the steering inputs. NMPC-8 achieves the highest improvement for all indicators, with 72%
and 68% �rRMS reductions compared to the passive case for the two tests, which is fol-
lowed by NMPC-3 with 68% and 29%, and OFLQR with 67% and 25%. More importantly,
NMPC-8 excels in reducing the yaw rate overshoots w.r.t. the reference; for example, after
the steering angle reversal in the sinusoidal steering test, the peak of rref is−19 deg/s, while
r reaches −26 deg/s for NMPC-8, −32 deg/s for NMPC-3, −34 deg/s for OFLQR, and
−64 deg/s for the passive configuration. NMPC-8 alsomanages to compensate any sideslip
angle overshoot following the fast steering inputs, see themajor reduction of |β|max, which
is less than one third than for the other controller configurations in the sinusoidal steering
test. The difference is amplified by the sport-oriented tuning of rref , i.e. a more understeer-
ing reference behaviour would have limited the overshoots also for NMPC-3 and OFLQR.
Nevertheless, Figures 5–7 show that NMPC-8 can generate handling behaviour that is
simultaneously very responsive and safe.

The control inputs highlight amore aggressive behaviour of NMPC-8, e.g. see the wheel
torque profiles in Figure 6, which increases effectiveness. It was verified that a similar
behaviour would not have been achievable with a different tuning of NMPC-3, for which
an increase of the yaw rate tracking weight would have provoked undesired oscillations of
the cornering response.

In conclusion, the consideration of the nonlinear tyre behaviour of NMPC-8, and the
complexity and accuracy of its internal model bring performance benefits. However, these
are associatedwith a computational effort penalty. In fact, although all configurations oper-
ate in real time on the same rapid control prototyping unit, in the considered conditions the
maximum turnaround time is ∼2·10−5 s for OFLQR, ∼2ms for NMPC-3, and ∼33ms
for NMPC-8.

Despite not being considered explicitly in the proposed NMPC formulations, the inher-
ent robustness and stability of model predictive control have been widely discussed [43].

To assess robustness, the multiple step steer is repeated in Figure 8(a) for a tyre-road
friction factor μij,0 =0.6, which is imposed in the VSM model, but is not provided to the
controllers, i.e. the reference yaw rate and tyre forces in the prediction models assume
μij,0 =1.0. This condition is far more critical than what could be expected from a current-
generation estimator for vehicle dynamics applications. All controlled configurations tend
to better track rref than the passive vehicle. However, in these extreme conditions, the
soft constraint on |αR| of NMPC-3 and NMPC-8 is vital to limit the |αR| peaks to val-
ues marginally above 5 deg, which is not the case for OFLQR, having the only target of
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Figure 5. Comparison of vehicle states and control inputs for the considered vehicle configurations
along the multiple step steer.
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Figure 6. Comparison of vehicle states and control inputs for the considered vehicle configurations
along the sinusoidal steering manoeuvre.



VEHICLE SYSTEM DYNAMICS 2555

Figure 7. KPI reduction for the three controllers w.r.t. the passive vehicle.

tracking rref . The rear slip angle constraint of the NMPCs brings a corresponding reduc-
tion of |r|, especially after the second steering input, which is the most critical one, as it
is associated with a change of sign of the lateral load transfers. In the same section of the
manoeuvre, differently from NMPC-3, NMPC-8 also compensates the yaw rate overshoot
resulting from the steering transient, and confirms itself as the best controller.

The robustness assessment also includes the sensitivity to the independent variation of
vehicle mass, m, and yaw mass moment of inertia, Iz, in the VSM model, in the [−20%,
20%] range during the multiple step steer test in high tyre-road friction, while the predic-
tionmodels and controller calibrations are not varied. The top plots in Figure 8(b) show the
resulting percentage reduction, �rRMS,red, of �rRMS w.r.t. the passive case, while the bot-
tomplots report�rRMS. Across the considered realistic parameter space,�rRMS,red exceeds
45% for NMPC-8, 36% for NMPC-3, and 27% for OFLQR, and the respective maximum
�rRMS values are 3.54, 4.27, and 4.83 deg/s.

For completeness, a Monte Carlo stability analysis is carried out along the multiple step
steer. The simulations cover test scenarios for a combination of parameter values randomly
drawn from the respective normal probability distribution, see Figure 9. The considered
parameters are: (i) �m; (ii) �Iz; (iii)WCy , i.e. the scaling factor on the cornering stiffness
in the Pacejka model; (iv)WKy , the scaling factor on lateral stiffness of the tyre sidewalls,
which is inversely proportional to the relaxation length; (v)μij,0; and (vi)Vinitial, i.e. the ini-
tial vehicle speed of themanoeuvre. (i)–(v) are varied only in the high-fidelity VSMmodel,
while they are not changed in the prediction models, and do not have any impact on the
OFLQR. On the contrary, (vi) is provided also to the controllers, as it would be output by
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Figure 8. Robustness analyses: (a) Comparison of the main vehicle variables for the considered vehicle
configurations along themultiple step steermanoeuvre,withμij,0 =0.6 imposed only in the VSMmodel;
and (b) Carpet plots of�rRMS,red and�rRMS for the considered vehicle configurations along themultiple
step steer manoeuvre, as a function of percentage variations of vehicle mass and yaw mass moment of
inertia,�m and�Iz .

the on-board state estimator. The results reported in Table 3 show that ∼2% of the simula-
tions of the passive vehicle imply unstable behaviour, i.e. the vehicle spins after the second
steering input, while in 46% of the runs, although being stable, the passive response is char-
acterised by |αR| peaks (i.e. |αR|max) exceeding 20 deg. OFLQR, NMPC-3, and NMPC-8
prevent spinning and reduce |αR|max in all cases, which confirms the robustness of the



VEHICLE SYSTEM DYNAMICS 2557

Figure 9. Robustness analyses: parameter values distribution for the Monte Carlo simulations during
the multiple step steer.

Table 3. Results of the Monte Carlo analysis for the passive, OFLQR, NMPC-3, and
NMPC-8 configurations.

Controller
Simulation runs [%] with

unstable behaviour
Simulation runs [%] with

|αR|max > 20 deg
Average value of
|αR|max [deg]

Passive ∼ 2% ∼ 46% 17.9
OFLQR 0% ∼ 14% 13.4
NMPC-3 0% ∼ 14% 11.6
NMPC-8 0% ∼ 2% 6.0

implementations. More specifically, |αR|max exceeds 20 deg in 14% of the simulations for
OFLQR andNMPC-3, and in only 2% of the runs for NMPC-8, whichmanages to keep the
rear slip angle peak within ∼5 deg in 80% of the tests. For the parametrisations in which
the passive vehicle does not spin, the average value of |αR|max amounts to 17.9, 13.4, 11.6,
and 6.0 deg, respectively for the passive, OFLQR, NMPC-3, and NMPC-8 configurations.

5.4. Effect of preview

5.4.1. Effect of preview on NMPC-3
For the sinusoidal steering test, Figure 10 reports rref and r for NMPC-3 and NMPC-3-Pre
for: (i) Nh = 2 and Ts = 35ms, corresponding to th = 70ms; and (ii) Nh = 10 and Ts =
50ms, corresponding to th = 500ms. All configurations use the same cost function weight
calibrations as in Section 5.3.While in (i) the preview bringsmarginally improved yaw rate
tracking, in (ii) it corresponds to significantly higher yaw rate oscillations. In fact, while
the preview is expected to increase performance with increasing th when associated with
NMPCs embedding realistic prediction models, the linearisation of the lateral axle force
of the NMPC-3 prediction model can cause significant inaccuracies, and thus a controller
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Figure 10. Yaw rate tracking performance of NMPC-3 and NMPC-3-Pre with th = 70ms (Nh = 2 and
Ts = 35ms) and th = 500ms (Nh = 10 and Ts = 50ms), along the sinusoidal steering test.

performance decay, for longer th. As extensive simulations confirmed that this is a general
trend for NMPC-3, the following analyses are limited to NMPC-8.

5.4.2. NMPC-8-Pre performance with different prediction settings
Since the preliminary assessment of the preview strategy showed substantially aligned
performance for NMPC-8-Pre using constant lateral acceleration along th, or variable ay
according to (27) and (28), the following results refer to the first option.

Figure 11 compares the yaw rate profiles for NMPC-8 and NMPC-8-Pre for combina-
tions ofNh andTs along the sinusoidal steering test, while keeping the cost functionweights
equal to their original optimal (baseline, BL) calibration for Nh = 2 and Ts = 35ms. Sub-
plots (a) and (b) of Figure 12 highlight the KPI percentage reduction of NMPC-8 and
NMPC-8-Pre w.r.t. the passive configuration, while subplot (c) reports the KPI percentage
reduction of NMPC-8-Pre w.r.t. to the corresponding NMPC-8 with the same prediction
settings.

The NMPC-8 performance does not improve with longer th, and its best �rRMS results
are for Nh = 2 and Ts = 50ms (73% �rRMS reduction w.r.t. the passive case) and Nh =
2 and Ts = 20ms, indicated as ‘1’ and ‘2’ in Figure 12(a). On the contrary, NMPC-8-Pre
achieves its best performance for longer th, corresponding toNh = 10 andTs = 50ms (79%
�rRMS reduction) and Nh = 15 and Ts = 50ms, see ‘1’ and ‘2’ in Figure 12(b). NMPC-8-
Pre is consistently effective across the settings, and always brings KPI reductions exceeding
60% w.r.t. the passive configuration, as opposed to NMPC-8, whose performance signif-
icantly varies with the prediction parameters, with a deterioration for Nh ≥ 10 and Ts =
50ms, which indicates the need for weight recalibration. For all settings, NMPC-8-Pre
outperforms NMPC-8 in terms of �rRMS, with reductions ranging from ∼5% for short
horizons, to ∼71% for the longest th.

For completeness, the NMPC-8 cost function weights were re-calibrated through the
brute force�rRMS-based method, for each of the prediction settings indicated with ‘1’ and
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Figure 11. Comparison of the yaw rate tracking performance of NMPC-8 and NMPC-8-Pre along the
sinusoidal steering test.

‘2’ in Figure 12(a,b), for a total of four optimised configurations. The same weights were
also applied to the NMPC-8-Pre version operating with the corresponding setting, to guar-
antee conservativeness in the assessment, i.e. the comparison was carried out for weights
that were optimised for NMPC-8. The resulting KPI variations of each controller in its
initial baseline calibration (indicated as ‘BL tuning’) and re-tuned configuration, w.r.t the
passive configuration, are in Figure 13(a,b). The sensitivity to weight calibration is more
evident for NMPC-8, which, after re-tuning, manages to achieve good performance for all
prediction settings, including those with long th, although the results are always inferior
to those of the corresponding preview configurations. After calibration, the relative rank-
ing of the controllers in terms of �rRMS does not change, i.e. settings 1 of NMPC-8 and
NMPC-8-Pre still achieve better yaw rate tracking than the respective settings 2.

As a summary, Figure 13(c) plots the KPI improvement of the baseline and re-tuned
configurations of setting 1 of NMPC-8-Pre, w.r.t. the corresponding setting 1 of the base-
line and re-tuned NMPC-8. The preview benefit is evident, with reductions of �rRMS by
23% and 19%, βRMS by 28% and 24%, and |β|max by 10% and 37%, respectively with the
baseline tuning and after the NMPC-8-oriented recalibration. These results, together with
the significantly higher robustness of NMPC-8-Pre w.r.t. the variation of the cost func-
tion weights, make preview-based control a relevant and competitive option to be further
explored for next generation ICCs.
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Figure 12. Sinusoidal steering test: (a) KPI reductionofNMPC-8w.r.t. passive; (b) KPI reductionofNMPC-
8-Pre w.r.t. passive; and (c) KPI reduction of NMPC-8-Pre w.r.t. NMPC-8, for different prediction horizon
settings, indicated by the values of Nh and Ts (in ms) at the bottom of each histogram. The notations ‘1’
and ‘2’ refer to the two settings providing the lowest �rRMS for NMPC-8 (subplot (a)) and NMPC-8-Pre
(subplot (b)).

5.4.3. Effect of steering angle prediction error on NMPC-8-Pre
A sensitivity analysis was conducted to investigate the effect of the steering angle predic-
tion error. Instead of feeding NMPC-8-Pre with the correct discretised δsw(kh) profile, a
modified steering profile prediction, δsw,mod(kh), is used, according to:

δsw,mod(kh) = [1 + Cf (kh)]δsw(kh) (32)

where Cf (kh) is the non-dimensional prediction error. In the initial part the prediction
horizon, the error is likely to be small, as the prediction is going to be based on aminor devi-
ation w.r.t. the measured δsw value, while the deviation is likely to increase with increasing
kh. Therefore, Cf (kh) is linearly varied from 0 at the beginning of the prediction, to Cf ,max
at th, according to Cf (kh) = Cf ,maxkh/Nh. The reference yaw rate prediction is computed
by feeding δsw,mod(kh) into the rref map.
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Figure 13. Sinusoidal steering test: comparisons of the baseline (BL) tuning and re-tuned calibrations of
NMPC-8 and NMPC-8-Pre, for settings 1 and 2 in Figure 12. (a) KPI reduction of NMPC-8 w.r.t. passive; (b)
KPI reduction of NMPC-8-Pre w.r.t. passive; and (c) KPI reduction of NMPC-8-Pre (setting 1) w.r.t. NMPC-8
(setting 1).

The yaw rate tracking results are in Figure 14, which compares NMPC-8 (receiving the
correct steering input at the current time) with NMPC-8-Pre for Cf ,max =0, 0.5 and 1,
where Cf ,max = 0 denotes the preview controller with ideal steering predictions. Inter-
estingly, in the specific test, NMPC-8-Pre is able to tolerate up to 100% error in terms
of steering input amplitude, and the corresponding reference yaw rate error, and to still
improve yaw rate tracking, which confirms the real-world potential of the proof-of-concept
implementations. For the simulations in Figure 14(a), �rRMS is 2.43 deg/s for NMPC-8,
and 2.24, 2.34 and 2.39 deg/s forNMPC-8-Pre respectively withCf ,max =0, 0.5 and 1, while
in Figure 14(b)�rRMS is 1.82 deg/s for NMPC-8, and <1.50 deg/s for all the NMPC-8-Pre
cases.
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Figure 14. Yaw rate tracking performance along the sinusoidal steering test for: (a) the BL tunings of
NMPC-8 andNMPC-8-Pre, forNh =2 and Ts =35ms; and (b) the re-tuned versions of settings 1ofNMPC-
8 (Nh = 2 and Ts = 50ms) and NMPC-8-Pre (Nh = 10 and Ts = 50ms). For NMPC-8-Pre the cases with
Cf ,max =0, 0.5 and 1 are considered.

6. Conclusions

This study analysed three formulations for integrated direct yaw moment and anti-roll
moment distribution control, for an electric vehicle with in-wheel motors, brake-by-wire,
and active suspensions. The controllers are an output feedback linear quadratic regulator
(OFLQR), and two nonlinear model predictive formulations, using 3- and 8-DoF predic-
tion models, and neglecting (this is the case of NMPC-3 and NMPC-8) or considering
(NMPC-3-Pre and NMPC-8-Pre) the future profiles of steering angle and reference yaw
rate, in the context of preview-based control of connected vehicles.

The simulations of transient manoeuvres in limit handling conditions with an experi-
mentally validated model bring the following conclusions:

• NMPC-8 outperforms NMPC-3 and OFLQR in terms of yaw rate tracking, see the
reductions of the root mean square values of the yaw rate error, �rRMS, and also com-
pensates the sideslip angle overshoots following fast steering inputs, see the maximum
sideslip anglemagnitude, |β|max, which is reduced by a factor 3 in the sinusoidal steering
test. The superior performance of NMPC-8 is also confirmed by the robustness anal-
ysis with respect to independent variations of vehicles mass and yaw mass moment of
inertia. Such benefits justify the computational load of NMPC-8.

• For low tyre-road friction manoeuvres, the soft constraint on |αR| of NMPC-3 and
NMPC-8 is vital to limit the |αR| peaks to values marginally above 5 deg, which is not
the case for OFLQR, having the only target of tracking rref .

• All formulationswithout preview run in real-time on the same rapid control prototyping
unit, with maximum turnaround times of ∼2·10−5 s for OFLQR, ∼2ms for NMPC-3,
and ∼33ms for NMPC-8, along the considered manoeuvres.
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• As NMPC-3-Pre, although being nonlinear, uses a linearised lateral axle force formu-
lation, the effect of preview, which should favour relatively long prediction horizons,
becomes counterproductive if the internal model covers predictions that extend to
conditions that are far from the original linearisation point.

• The performance of NMPC-8-Pre systematically exceeds the one of the correspond-
ing NMPC-8. For example, when comparing the best performing configurations of the
two cases, the preview implementation brings reductions of �rRMS by 19%, βRMS (root
mean square value of the sideslip angle) by 24%, and |β|max by 37%, during the sinu-
soidal steering test. Moreover, NMPC-8-Pre, differently from NMPC-8, is robust w.r.t.
the calibration of the cost function weights.

• In the selectedmanoeuvres, theNMPC-8-Pre benefit overNMPC-8 persists also for sig-
nificant errors on the steering angle and reference yaw rate profiles along the prediction
horizon.
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Appendix – Model for OFLQR design and NMPC-3 prediction

β̇ = −r + 1
mu

{
Fy,F,0 + F′

y,F,0

{
u[β̇ + r][maRhroll/l + mskfrolld] + KFϕ + DFϕ̇

bF
− �Fz,F,0

}

+
{
CF,0 + C′

F,0

{
u[β̇ + r][maRhroll/l + mskfrolld] + KFϕ + DFϕ̇

bF
− �Fz,F,0

}}

×
[
β + aF

u
r − S − αF,0

]

+ Fy,R,0 + F′
y,R,0

{
u[β̇ + r][maFhroll/l + msk[1 − froll]d] + KRϕ + DRϕ̇

bR
− �Fz,R,0

}

+
{
CR,0 + C′

R,0

{
u[β̇ + r][maFhroll/l + msk[1 − froll]d] + KRϕ + DRϕ̇

bR
− �Fz,R,0

}}
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×
[
β − aR

u
r − αR,0

] }
(A1)

ṙ = 1
Iz

{
Mz,ext + aF

{
Fy,F,0 + F′

y,F,0

{
u[β̇ + r][maRhroll/l + mskfrolld] + KFϕ + DFϕ̇

bF

− �Fz,F,0
}

+
{
CF,0 + C′

F,0

{
u[β̇ + r][maRhroll/l + mskfrolld] + KFϕ + DFϕ̇

bF
− �Fz,F,0

}}

×
[
β + aF

u
r − S − αF,0

] }

− aR
{
Fy,R,0 + F′

y,R,0

{
u[β̇ + r][maFhroll/l + msk[1 − froll]d] + KRϕ + DRϕ̇

bR
− �Fz,R,0

}

+
{
CR,0 + C′

R,0

{
u[β̇ + r][maFhroll/l + msk[1 − froll]d] + KRϕ + DRϕ̇

bR
− �Fz,R,0

}}

×
[
β − aR

u
r − αR,0

] }}
(A2)

ϕ̈ = 1
Ix

{msu[β̇ + r]d[1 − k] + msgdϕ − [KF + KR]ϕ − [DF + DR]ϕ̇} (A3)
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