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A Combination Technique for Optimal Control Problems
Constrained by Random PDEs\ast 

Fabio Nobile\dagger and Tommaso Vanzan\ddagger 

Abstract. We present a combination technique based on mixed differences of both spatial approximations
and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control
problems (OCPs) constrained by random partial differential equations. The method requires to solve
the OCP for several low-fidelity spatial grids and quadrature formulae for the objective functional.
All the computed solutions are then linearly combined to get a final approximation which, under
suitable regularity assumptions, preserves the same accuracy of fine tensor product approximations,
while drastically reducing the computational cost. The combination technique involves only tensor
product quadrature formulae, and thus the discretized OCPs preserve the (possible) convexity of the
continuous OCP. Hence, the combination technique avoids the inconveniences of multilevel Monte
Carlo and/or sparse grids approaches but remains suitable for high-dimensional problems. The
manuscript presents an a priori procedure to choose the most important mixed differences and an
analysis stating that the asymptotic complexity is exclusively determined by the spatial solver.
Numerical experiments validate the results.
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1. Introduction. In this work, we propose a new framework to discretize and solve optimal
control problems (OCPs) constrained by random partial differential equations (PDEs). This
class of problems is increasingly more popular in the design of complex engineering systems,
since a full knowledge of the physical PDE model is often not available, and the associated
uncertainty is frequently modeled through random parameters. Consequently, the topic has
drawn much attention in the last decade; see, e.g, the monographs [26, 34] and references
therein.

We consider the following optimization problem with a random PDE constraint depending
on a random vector \bfitzeta = (\zeta 1, \zeta 2, . . . , \zeta N ) taking values in a compact set \Gamma \subset \BbbR N and with
density \rho , \left\{     

minu\in U \BbbE [F (y(\bfitzeta ))] + \nu 
2\| u\| 

2
U ,

where y(\bfitzeta )\in V solves

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle = \langle Bu,v\rangle \forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,

(1.1)
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694 FABIO NOBILE AND TOMMASO VANZAN

where U and V are Hilbert spaces. The random vector accounts for the uncertainties in the
PDE model, since coefficients, forcing terms, boundary/initial conditions, or shape of the do-
main may not be completely known either due to a lack of knowledge, measurement errors, or
intrinsic randomness in the system. F is the convex quantity of interest to minimize. Exam-
ples are a tracking term which measures the distance of the state y(\bfitzeta ) from a desirable state
yd, the flux across a part of the boundary, the maximal deflection of a structure under exter-
nal loads, or the aerodynamic forces over an airfoil. The random PDE (possibly nonlinear) is
represented by e(\cdot , \cdot ) : V \times \Gamma \rightarrow V \prime , and B :U \rightarrow V \prime is a linear bounded operator that describes
how the control acts on the state (e.g., distributed or boundary control).

A standard approach to solve (1.1) is based on a sample average approximation (SAA)
[42], which consists in replacing the (exact) expectation with an empirical approximation

\BbbE [F (y(\bfitzeta ))]\approx 
M\sum 
n=1

wnF (y(\=\bfitzeta n))

and consequently to collocate the \rho -a.e. PDE constraint onto the set of points
\bigl\{ 
\=\bfitzeta n
\bigr\} M
n=1

.
The points are randomly generated in a Monte Carlo approach or chosen deterministically
according to low discrepancy sets in a quasi--Monte Carlo quadrature [28]. The drawback of
both approaches is that their discretization error slowly decays to zero with respect to the
number of quadrature points M ; see [17, 33],

If the solution map \bfitzeta \in \Gamma \rightarrow p(\bfitzeta ) \in V , with p being the adjoint variable, is sufficiently
smooth, the stochastic collocation method (SCM) [1] is a valid alternative to Monte Carlo--
based approximations. The SCM approximates the exact expectation in (1.1) with a quadra-
ture formula obtained as the tensor product of one-dimensional (possibly Gaussian) quadrature
operators, which may lead to the exponential convergence

\| u - u\mathrm{S}\mathrm{C},\bfitbeta \| L2(D) \leq CSC

N\sum 
n=1

e - \widetilde gn\beta n ,

where \beta n is the number of quadrature points used for the nth parameter \zeta n, and \widetilde \bfitg = \{ \widetilde gn\} Nn=1

are a set of coefficients depending on the region of holomorphy of the map \bfitzeta \in \Gamma \rightarrow p(\bfitzeta ) \in V
in the complex plane [1, 33]. See also [29, 30] for parametric regularity analyses of OCPs
with parameter-dependent (stochastic) control u= u(\bfitzeta ). Despite the exponential convergence
with respect to \beta n, the SCM suffers the curse of dimensionality if tensor product grids are
used, since the number of collocation points grows exponentially with the dimension N of \bfitzeta 
being M =

\prod N
i=1 \beta j . Sparse approximations have been extensively studied to approximate

the state solution map \bfitzeta \mapsto \rightarrow y(\bfitzeta ) (see, e.g., [7--9, 41]) and may lead to dimension-independent
convergence rates in favorable cases. In the context of OCPs, sparse grids have been used
in [23, 24] to reduce the number of samples for large values of N . On the other hand, [45]
approximates the expectation in (1.1) using the multilevel Monte Carlo method (MLMC),
which does not necessarily involve fewer samples but does reduce the computational cost by
exploiting coarser discretization of the random PDE constraint. However, either approach
is not always fully justified, since they both involve negative quadrature weights, which may
destroy the convexity of the original OCP (1.1). Furthermore, even in the simple linear-
quadratic case, negative weights introduce difficulties in developing efficient iterative solvers,
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 695

since the positive definiteness of the reduced optimality system cannot be guaranteed (thus
preventing the use of conjugate gradient), while the preconditioners studied in [25, 36] for the
full-space optimality system do require positive weights.

In this manuscript, we propose a combination technique (CT) to solve efficiently (1.1),
inspired by the multi-index stochastic collocation method (MISC) for elliptic random PDEs
in the context of forward uncertainty quantification (UQ) [18, 19] and by the seminal works
concerning the solution of parametric high-dimensional PDEs [13, 14, 38]. The CT relies on
a hierarchical representation of the optimal control specified by a set of multi-indices. Each
multi-index corresponds to a level of discretization in the parameters \{ \zeta n\} Nn=1 and in the spatial
approximation of the PDE constraint. The CT requires one to solve the OCP (1.1) several
times, but each instance never uses a tensor product grid with many quadrature points and a
fine PDE discretization at the same time. All the optimal controls computed on these coarser
tensor product grids and meshes are then recombined to get a final approximation. Under
suitable regularity assumptions, the CT can attain the same accuracy of the (full tensor) SCM
solution, yet with a highly reduced computational cost. Thus, the CT is a valid alternative
to both sparse grids and MLMC approximations, since it effectively reduces the number of
quadrature points for high-dimensional stochastic input vectors (as sparse grid approximations
do) and further reduces the computational cost by moving most of the computational work on
coarser spatial grids (as MLMC does). Moreover, the CT solves exclusively OCPs discretized
on tensor product grids, and thus the quadrature weights are positive and all the discretized
OCPs are convex.

Key to the performance of the CT method is the choice of the set of multi-indices to be
retained in the CT approximation. We here propose an a priori construction of such an index
set based on a scalar quantity, called profit, assigned to each multi-index, as in [12, 19, 35].
The profit of a multi-index measures how advantageous it is to include it into the set, by
taking into account both its error and its work contributions. Inherently in its construction,
the CT approximation balances the spatial and stochastic error discretization according to this
profit metric. We further present an analysis which characterizes the asymptotic complexity
of the CT, under the assumption of exponential convergence of the tensor grid SCM, algebraic
convergence of the PDE spatial discretization, and finite dimension of the random vector \bfitzeta . We
show that the asymptotic complexity of the method depends exclusively on the deterministic
solver used for the random PDE, as for the MISC method [19] for forward UQ. Note that,
while the complexity analysis is restricted to the finite-dimensional case, the computational
framework presented here can be extended to the infinite-dimensional setting following, e.g.,
[6, 11] (see Remark 3).

Finally, although this work focuses on the SCM with Gaussian quadrature, we remark
that the CT can be easily modified to accommodate other multilevel/multi-index quadrature
formulas [21], such as multilevel/multi-index (quasi-)Monte Carlo methods (see Remark 2).

The rest of the manuscript is organized as follows. Section 2 introduces the class of
problems considered. Section 3 introduces the CT approximation. Section 4 discusses the
construction of the multi-index set which enters into the definition of the CT approximation.
Two possible constructions are detailed: an adaptive procedure based on the dimension adap-
tive algorithm of [12], and an a priori construction based on some theoretical assumptions.
A theoretical complexity analysis is further presented for the a priori construction (details of
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696 FABIO NOBILE AND TOMMASO VANZAN

the proofs are reported in the appendix). Section 5 discusses the validity of the assumptions
for a model problem and presents numerical results that show the effectiveness of the CT.

2. Problem setting. Let \scrD be a Lipschitz bounded domain in \BbbR d and \bfitzeta = (\zeta 1, \zeta 2, . . . , \zeta N )
be an N -dimensional random vector whose components are mutually independent, and uni-
formly distributed on \Gamma :=\times N

n=1\Gamma n, with probability density \rho (\bfitzeta ) =
\prod N
n=1 \rho n(\zeta n)d\zeta n, \rho n(\zeta n) =

1
| \Gamma n| . Let \sigma B(\Gamma ) be the Borel \sigma -algebra over \Gamma , and let (\Gamma , \sigma B(\Gamma ), \rho (\bfitzeta )d\bfitzeta ) be the complete
probability space with uniform measure. In this manuscript, we consider the random PDE in
weak form

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle = \langle \phi +Bu,v\rangle \forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,(2.1)

where u\in U , and V and U are appropriate separable Hilbert spaces.

Assumption 1. Problem (2.1) is well-posed for \rho -a.e. \bfitzeta \in \Gamma , and its solution, interpreted
as a Hilbert space--valued function \bfitzeta \in \Gamma \mapsto \rightarrow y(\bfitzeta )\in V , belongs to the Bochner space

Lp\rho (\Gamma ;V ) :=

\biggl\{ 
u : \Gamma \rightarrow V, strongly measurable s.t.

\int 
\Gamma 
\| u(\bfitzeta )\| pV d\rho (\bfitzeta )<\infty 

\biggr\} 
for some p\geq 1. Further, (2.1) defines a G\^ateaux differentiable operator S\bfitzeta :U \rightarrow V such that
y(\bfitzeta ) = S\bfitzeta (u) for \rho -a.e. \bfitzeta .

In several applications, the interest lies in computing some convex and Fr\'echet differen-
tiable quantity of interest of the random solution y(\bfitzeta ), which we denote by F : Lp\rho (\Gamma ;V ) \rightarrow 
Lq\rho (\Gamma ;\BbbR ) for some q \geq 1. The goal is to optimally control the system, by minimizing the
expected value of the quantity of interest, through an external control u \in U . An addi-
tional penalization on the energy of the control u can be added. In mathematical terms, this
translates into the optimal control problem constrained by the random PDE\left\{     

minu\in U \BbbE [F (y(\bfitzeta ))] + \nu 
2\| u\| 

2
U ,

where y(\bfitzeta )\in V solves

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle = \langle \phi +Bu,v\rangle \forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,

(2.2)

with \nu \in \BbbR +. We denote the reduced objective functional by J : U \rightarrow \BbbR , with J(u) :=
\BbbE [F (S\bfitzeta (u))] +

\nu 
2\| u\| 

2
U . We make the following working assumption.

Assumption 2. Problem (2.2) admits a solution u \in U which satisfies the optimality
condition

\langle J \prime (u), v\rangle = \langle \nu u - B \star \BbbE [p] , v\rangle = 0 \forall v \in U,(2.3)

where B \star is the adjoint operator of B, and the state and adjoint variables (y, p) satisfy the
optimality system

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle =
\biggl\langle 
\phi +BB \star \BbbE [p]

\nu 
, v

\biggr\rangle 
\forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,

\langle e \star (p(\bfitzeta ),\bfitzeta ), v\rangle = \langle F \prime (y(\bfitzeta )), v\rangle \forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
24

 to
 7

9.
54

.6
6.

12
5 

by
 T

om
m

as
o 

V
an

za
n 

(t
om

m
as

o.
va

nz
an

@
ep

fl
.c

h)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 697

F \prime being the Fr\'echet derivative of F and e \star being the adjoint operator of e. Further, J is
twice Fr\'echet differentiable, and its Hessian evaluated in u is positive definite, with bounded
inverse, and locally Lipschitz in a neighborhood of u.

Sufficient conditions for the validity of Assumption 2 can be found in, e.g., [26, 27, 34].

Example 1. To fix ideas, the reader may consider the elliptic random PDE that has been
extensively studied in the context of UQ [1, 8, 31], namely

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle =
\int 
\scrD 
\kappa (x,\bfitzeta )\nabla y(x,\bfitzeta ) \cdot \nabla v(x)dx=

\int 
\scrD 
\phi (x)v(x)dx \forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,(2.4)

where V = H1
0 (\scrD ). If the random diffusion field \kappa is strictly positive and bounded with

probability 1, i.e., there exist \kappa \mathrm{m}\mathrm{i}\mathrm{n} > 0 and \kappa \mathrm{m}\mathrm{a}\mathrm{x} <\infty such that

P (\kappa \mathrm{m}\mathrm{i}\mathrm{n} \leq \kappa (x,\bfitzeta )\leq \kappa \mathrm{m}\mathrm{a}\mathrm{x} \forall x\in \scrD ) = 1,(2.5)

then (2.1) is well-posed and y \in L\infty (\Gamma ;V ). As an instance of (2.2), we may consider the
tracking-type problem\left\{       

minu\in L2(\scrD ) J(u) =
1
2\BbbE 
\Bigl[ 
\| y(\bfitzeta ) - yd\| 2L2(\scrD )

\Bigr] 
+ \nu 

2\| u\| 
2
L2(\scrD ),

where y(\bfitzeta )\in V solves\int 
\scrD \kappa (x,\bfitzeta )\nabla y(x,\bfitzeta ) \cdot \nabla v(x)dx=

\int 
\scrD (\phi (x) + u(x))v(x)dx \forall v \in V, \rho -a.e. \bfitzeta \in \Gamma ,

(2.6)

for which Assumption 2 is verified; see [26, section 6].

3. Combination technique. In this section, we present the CT to approximate the solu-
tion of (2.2). To do so, we introduce two multi-indices \bfitbeta and \bfitalpha . The first one is associated
to the quadrature formula used in the stochastic space, while the second one defines the level
of approximation with respect to the physical variables.

Let \bfitbeta = (\beta 1, \beta 2, . . . , \beta N ) \in \BbbN N+ , \BbbN + := \{ 1,2, . . .\} be a multi-index, m : \BbbR + \rightarrow \BbbR + a strictly

increasing function, and \{ \scrQ \beta j

j \} Nj=1 a set of one-dimensional quadrature operators defined as

\scrQ \beta j

j [F (y(\bfitzeta ))] =

m(\beta j)\sum 
nj=1

w\beta j
nj
F (y(\zeta 1, . . . , \zeta j - 1, \=\zeta 

\beta j
nj
, \zeta j+1, . . . , \zeta N ))\approx 

\int 
\Gamma j

F (y(\zeta 1, . . . , \zeta N ))\rho j(\zeta j)d\zeta j ,

(3.1)

where (\=\zeta 
\beta j
nj ,w

\beta j
nj )

m(\beta j)
nj=1 are the nodes and weights of the \beta jth quadrature formula. To ensure

good approximation properties, the nodes are usually chosen according to the underlying
probability measure \rho n(\zeta n)d\zeta n. Standard choices for uniform random variables are Gauss--
Legendre, Clenshaw--Curtis, or Leja points [39, 44]. The map m(\cdot ) specifies how the number
of quadrature nodes depends on \beta j . Common choices are the linear map m(\beta j) = \beta j or the
doubling map m(\beta j) = 2\beta j  - 1; see [35]. The multidimensional quadrature operator is directly
obtained as the tensorization of the one-dimensional ones,

\BbbE \bfitbeta [F (y(\bfitzeta ))] := (\scrQ \beta 1

1 \otimes \cdot \cdot \cdot \otimes \scrQ \beta N

N )[F (y(\bfitzeta ))] =

m(\beta 1)\sum 
n1=1

\cdot \cdot \cdot 
m(\beta N )\sum 
nN=1

F (y(\=\zeta \beta 1
n1
, . . . , \=\zeta \beta N

nN
))w\beta 1

n1
\cdot \cdot \cdot w\beta N

nN
.

(3.2)
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698 FABIO NOBILE AND TOMMASO VANZAN

Denoting with \Lambda \bfitbeta \subset \Gamma the set of all quadrature nodes in (3.2) associated to the multi-index
\bfitbeta , the semidiscretization of (2.2) is\left\{     

minu\in U
1
2\BbbE 

\bfitbeta [F (y(\bfitzeta ))] + \nu 
2\| u\| 

2
U ,

where y(\bfitzeta )\in V solves

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle = \langle \phi +Bu,v\rangle , \forall v \in V, \forall \bfitzeta \in \Lambda \bfitbeta .

(3.3)

Next, let \bfitalpha = (\alpha 1, \alpha 2, . . . , \alpha D) \in \BbbN D be a second multi-index. In general, D does not
necessarily coincide with the number of physical dimensions. The multi-index \bfitalpha can tune the
level of discretization along each physical dimension for meshes whose level of refinement can
be set independently for each dimension (e.g., meshes obtained as the tensor product of one-
dimensional meshes, structured meshes with a regular connectivity, or more general domains
discretized using isogeometric analysis; see [3]). Otherwise, \bfitalpha can be a simple scalar which
tunes the reference mesh size across the whole domain \scrD , as in classical multilevel methods
[21, 43, 45]. In a broader picture, \bfitalpha could even represent time steps or describe a general
set of multifidelity models [18, 37]. Nevertheless, for the sake of this manuscript, we suppose
that the jth component of \bfitalpha determines the mesh size hj,\alpha j

along the jth physical dimension,
and we denote with U\bfitalpha and V \bfitalpha the finite-dimensional approximations (e.g., finite element
approximations on a mesh specified by \bfitalpha ) of U and V .

Now, let u\bfitalpha ,\bfitbeta be a solution of the fully discrete OCP\left\{     
minu\in U\bfitalpha 

1
2\BbbE 

\bfitbeta [F (y(\bfitzeta ))] + \nu 
2\| u\| 

2
U ,

where y(\bfitzeta )\in V \bfitalpha solves

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle = \langle \phi +Bu,v\rangle \forall v \in V \bfitalpha , \forall \bfitzeta \in \Lambda \bfitbeta ,

(3.4)

which can be computed with any suitable optimization algorithm (see, e.g, [22]), with (3.4) be-

ing a finite-dimensional optimization problem. We assume that u\bfitalpha ,\bfitbeta 
U - \rightarrow u as (\bfitalpha ,\bfitbeta )\rightarrow \infty (com-

ponentwise). Using, e.g., consistent finite element and stochastic collocation discretizations on
tensor product grids, this is verified in the linear-quadratic case due the global convexity of the
discretized objective functional; see, e.g., [17]. For a general formulation such as (2.2), which
may involve local minima, sufficient conditions are provided by the Brezzi--Rappaz--Raviart
theory [4] applied to the first-order optimality conditions; namely, the discretized gradient
evaluated in u converges in norm to zero, the discretized objective functional is twice differ-
entiable, whose Hessian evaluated in u is positive definite, with a uniformly (with respect to
(\bfitalpha ,\bfitbeta )) bounded inverse, and locally Lipschitz continuous in a neighborhood of u.

Next, we introduce the first-order difference operators for the deterministic and stochastic
discretization parameters

\Delta \mathrm{d}\mathrm{e}\mathrm{t}
i [u\bfitalpha ,\bfitbeta ] =

\Biggl\{ 
u\bfitalpha ,\bfitbeta  - u\bfitalpha  - \bfe i,\bfitbeta if \alpha i > 1,

u\bfitalpha ,\bfitbeta if \alpha i = 1,
(3.5)

\Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
i [u\bfitalpha ,\bfitbeta ] =

\Biggl\{ 
u\bfitalpha ,\bfitbeta  - u\bfitalpha ,\bfitbeta  - \bfe i if \beta i > 1,

u\bfitalpha ,\bfitbeta if \beta i = 1,
(3.6)
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 699

where \bfe i is the ith canonical vector. The deterministic and stochastic hierarchical surpluses
are defined as the tensorized product of their respective first-order differences,

\Delta \mathrm{d}\mathrm{e}\mathrm{t}[u\bfitalpha ,\bfitbeta ] =\otimes D
i=1\Delta 

\mathrm{d}\mathrm{e}\mathrm{t}
i [u\bfitalpha ,\bfitbeta ] =\Delta \mathrm{d}\mathrm{e}\mathrm{t}

1

\biggl[ 
\Delta \mathrm{d}\mathrm{e}\mathrm{t}

2

\biggl[ 
. . .\Delta \mathrm{d}\mathrm{e}\mathrm{t}

D [u\bfitalpha ,\bfitbeta ]

\biggr] \biggr] 
=

\sum 
\bfitj \in \{ 0,1\} D

( - 1)| \bfitj | u\bfitalpha  - \bfitj ,\bfitbeta ,(3.7)

\Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}[u\bfitalpha ,\bfitbeta ] =\otimes N
i=1\Delta 

\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
i [u\bfitalpha ,\bfitbeta ] =\Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}

1

\biggl[ 
\Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}

2

\biggl[ 
. . .\Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}

N [u\bfitalpha ,\bfitbeta ]

\biggr] \biggr] 
=

\sum 
\bfitj \in \{ 0,1\} N

( - 1)| \bfitj | u\bfitalpha ,\bfitbeta  - \bfitj ,(3.8)

where we used the standard notation u\bfitalpha ,\bfitbeta = 0 if any of the \alpha j or \beta j is zero. Moreover, | \cdot | 
denotes the l1 norm of the vector (in this case the number of nonzero components).

Given a multi-index set \scrI \subset \BbbN D+N
+ , the CT approximation \scrM \scrI (u) for the optimal control

u, solution of (2.2), is defined as the truncated telescopic sum,

u=
\sum 

(\bfitalpha ,\bfitbeta )\in \BbbN N+D
+

\bfDelta [u\bfitalpha ,\bfitbeta ]\approx 
\sum 

(\bfitalpha ,\bfitbeta )\in \scrI 

\bfDelta [u\bfitalpha ,\bfitbeta ] =:\scrM \scrI (u),(3.9)

where \bfDelta [u\bfitalpha ,\bfitbeta ] := \Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}[\Delta \mathrm{d}\mathrm{e}\mathrm{t}[u\bfitalpha ,\bfitbeta ]]. In this work, we assume that the infinite series con-

verges absolutely in U , namely that u\bfitalpha ,\bfitbeta 
U - \rightarrow u as (\bfitalpha ,\bfitbeta ) \rightarrow \infty (componentwise) and that\bigl\{ 

\| \Delta u\bfitalpha ,\bfitbeta \| U
\bigr\} 
(\bfitalpha ,\bfitbeta )\in \BbbN N+D

+

\in \ell 1(\BbbN N+D
+ ). In the rest of the manuscript, we assume the existence

of specific bounds in Assumption 5 and carry out a complexity analysis under these hypotheses
in section 4.2. Their validity is checked numerically on an example in section 5.

Remark 1 (on the convergence of the infinite series). Sufficient conditions for the conver-
gence of the minimizers of the discretized OCPs to u have been previously recalled. On the
other hand, the summability of the norms of the hierarchical surpluses may require additional
hypotheses, and its analysis involves the cumbersome analytical derivation of suitable bounds.
This is the subject of current endeavors in the linear-quadratic case. We remark that the va-
lidity of similar hierarchical expansions has been demonstrated in several contexts and it relies
on the mix regularity with respect to the spatial and stochastic variables [13, 14, 18, 20, 35].

As in sparse grids [5], the rationale behind the truncation is that not all hierarchical
surpluses \bfDelta [u\bfitalpha ,\bfitbeta ] have the same relevance. Therefore, under suitable assumptions (discussed
in section 4.1), it is possible to retain only a few hierarchical surpluses while preserving
accuracy at a reduced computational cost. The CT approximation (3.9) admits the following
equivalent formulation [5]:

\scrM \scrI (u) =
\sum 

(\bfitalpha ,\bfitbeta )\in \scrI 

c\bfitalpha ,\bfitbeta u
\bfitalpha ,\bfitbeta , c\bfitalpha ,\bfitbeta =

\sum 
\bfitj \in \{ 0,1\} N+D:(\bfitalpha ,\bfitbeta )+\bfitj \in \scrI 

( - 1)| \bfitj | ,(3.10)

which motivates the name ``combination technique,"" since\scrM \scrI (u) is obtained as a combination
of the solution of (3.4) for different multi-indices (\bfitalpha ,\bfitbeta ). Further, the coefficients c\bfitalpha ,\bfitbeta are zero

whenever (\bfitalpha ,\bfitbeta ) + \bfitj \in \scrI \forall \bfitj \in \{ 0,1\} N+D. Hence, only a few multi-indices (\bfitalpha ,\bfitbeta ) \in \scrI actually
contribute to the CT approximation.

Remark 2 (sparse grids vs. combination technique). Sparse grid approximations of OCPs
under uncertainty [23, 24] rely on first-order differences of the one-dimensional quadrature
operators
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700 FABIO NOBILE AND TOMMASO VANZAN

\widetilde \Delta n

\Bigl[ 
\scrQ \beta n
n

\Bigr] 
:=\scrQ \beta n

n  - \scrQ \beta n - 1
n , n= 1, . . . ,N,

and on the related hierarchical surpluses \widetilde \Delta \bigl[ \scrQ \bfitbeta 
\bigr] 
:= (\widetilde \Delta 1 \otimes \cdot \cdot \cdot \otimes \widetilde \Delta N )

\bigl[ 
\scrQ \bfitbeta 
\bigr] 
. The sparse grid

quadrature is then \widetilde \BbbE \scrI =
\sum 

\bfitbeta \in \scrI 
\widetilde \Delta \bigl[ \scrQ \bfitbeta 

\bigr] 
, and the sparse grid semidiscrete OCP reads as\left\{     

minu\in U
1
2
\widetilde \BbbE \scrI [F (y(\bfitzeta ))] +

\nu 
2\| u\| 

2
U ,

where y(\bfitzeta )\in V solves

\langle e(y(\bfitzeta ),\bfitzeta ), v\rangle = \langle \phi + u, v\rangle \forall v \in V, \forall \bfitzeta \in \widetilde \Lambda \bfitbeta ,

(3.11)

where \widetilde \Lambda \bfitbeta collects all the quadrature points involved by the sparse grid quadrature. It is
well known that the weights of sparse grid quadrature formulae can be negative. This may
break the convexity of the OCP. In contrast, if we fix a mesh discretization, the CT replaces
the sparse approximation of the expectation operator with a hierarchical representation of u,
using first-order differences of the solution u\bfitbeta of the OCP computed with the tensor prod-
uct quadrature determined by \bfitbeta . Hence, each OCP involves only quadratures with positive
weights and the (reduced on u) discrete OCPs remain convex.

Remark 3 (multilevel/multi-index (quasi-)Monte Carlo methods). The CT framework
covers as particular instances other multilevel quadrature rules [21]. For instance, let \alpha be a
scalar (D = 1) setting the overall mesh size. Then, given a finest approximation level L, we
may consider the telescopic sum

u\approx uL =

L\sum 
\alpha =1

\Delta \mathrm{d}\mathrm{e}\mathrm{t}
1 [u\alpha ] =

1

\nu 
B \star 

L\sum 
\alpha =1

\BbbE 
\bigl[ 
p\alpha  - p\alpha  - 1

\bigr] 
.

The expectation of the difference p\alpha  - p\alpha  - 1 is now prone to be approximated with a level-
dependent (quasi-)Monte Carlo quadrature formula obtaining a multilevel (quasi-)Monte Carlo
method to solve (2.2), which again preserves the (possible) convexity by avoiding negative
quadrature weights, since p\alpha and p\alpha  - 1 are the adjoint variables of two distinct OCPs dis-
cretized with the same (quasi-)Monte Carlo samples but on different spatial meshes. Notice
that if \bfitalpha \in \BbbN D, D> 1, the CT can accommodate the multi-index (quasi-)Monte Carlo method
[20, 40].

4. Construction of the multi-index set \bfscrI . It is clear that the multi-index set \scrI determines
the computational efficiency of the CT approximation. Heuristically, \scrI should contain very
few multi-indices that simultaneously lead to fine physical discretizations and to quadrature
formulae with a large number of quadrature nodes, since they would require the solution of
very expensive OCPs. In contrast, \scrI should contain ``sparse"" multi-indices which lead to fine
discretizations/high level quadrature only across very few spatial and stochastic dimensions,
while having coarse spatial/stochastic discretizations for most of the variables.

A well-known strategy to find a (quasi-)optimal multi-index set \scrI is to recast its construc-
tion as a knapsack optimization problem; see, e.g., [12, 19, 35]. To do so, we introduce the
concepts of work contribution and error contribution associated to the hierarchical surplus
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 701

\bfDelta [u\bfitalpha ,\bfitbeta ]. The work contribution \bfDelta W\bfitalpha ,\bfitbeta measures the computational cost required to add
\bfDelta [u\bfitalpha ,\bfitbeta ] to \scrM \scrI (u). In formulae, we set

\bfDelta W\bfitalpha ,\bfitbeta =Work [\scrM \scrI \cup (\bfitalpha ,\bfitbeta )(u)] - Work [\scrM \scrI (u)] =Work [\bfDelta [u\bfitalpha ,\bfitbeta ]],

which implies

Work [\scrM \scrI (u)] =
\sum 

(\bfitalpha ,\bfitbeta )\in \scrI 

\bfDelta W\bfitalpha ,\bfitbeta .

The error contribution \Delta E\bfitalpha ,\bfitbeta measures instead how much the error u  - \scrM \scrI (u) varies if
\bfDelta [u\bfitalpha ,\bfitbeta ] is added to the estimator \scrM \scrI ,

\bfDelta E\bfitalpha ,\bfitbeta = \| u - \scrM \scrI \cup (\bfitalpha ,\bfitbeta )  - u+\scrM \scrI \| U = \| \scrM \scrI \cup (\bfitalpha ,\bfitbeta )(u) - \scrM \scrI (u)\| U = \| \bfDelta [u\bfitalpha ,\bfitbeta ]\| U .

It follows that the error of the CT approximation is bounded by the sum of error contributions
not included in the set \scrI , that is,

Error [\scrM \scrI (u)] = \| u - \scrM \scrI (u)\| U =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

(\bfitalpha ,\bfitbeta )/\in \scrI 

\bfDelta [u\bfitalpha ,\bfitbeta ]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
U

\leq 
\sum 

(\bfitalpha ,\bfitbeta )/\in \scrI 

\bfDelta E\bfitalpha ,\bfitbeta ,(4.1)

provided that the series converges. To construct \scrI , we wish to solve a binary knapsack
problem, i.e., to maximize the sum of error contributions included in \scrI subject to a maximum
work W\mathrm{m}\mathrm{a}\mathrm{x} available,

max
\chi \bfitalpha ,\bfitbeta \in \{ 0,1\} 

\sum 
(\bfitalpha ,\bfitbeta )\in \BbbN D+N

+

\Delta E\bfitalpha ,\bfitbeta \chi \bfitalpha ,\bfitbeta 

s.t.
\sum 

(\bfitalpha ,\bfitbeta )\in \BbbN D+N
+

\Delta W\bfitalpha ,\bfitbeta \chi \bfitalpha ,\bfitbeta \leq W\mathrm{m}\mathrm{a}\mathrm{x}.
(4.2)

Problem (4.2) leads to a quasi-optimal multi-index set \scrI , as the sum of the error contributions
is only an upper bound of the actual error of the CT approximation. Moreover, the solution
of (4.2) is computationally unfeasible. A valid alternative is to relax the integer constraint on
\chi \bfitalpha ,\bfitbeta and solve the relaxed problem using the Dantzig algorithm [32], which consists in:

1 For each hierarchical surplus, compute the profit P\bfitalpha ,\bfitbeta = \Delta E\bfitalpha ,\bfitbeta 

\Delta W\bfitalpha ,\bfitbeta 
.

2 Sort the hierarchical surpluses by decreasing profit.
3 Add the hierarchical surpluses to the multi-index set \scrI in such an order until the work
constraint is satisfied.

Given a tolerance \varepsilon , the quasi-optimal multi-index set is thus given by

\scrI (\varepsilon ) =
\Bigl\{ 
(\bfitalpha ,\bfitbeta )\in \BbbN N+D

+ : P\bfitalpha ,\bfitbeta \geq \varepsilon 
\Bigr\} 
.(4.3)

Notice that the above discussion assumes that the error and work contributions are known,
but this is not generally the case. To build \scrI in practice, a possible solution is an adaptive pro-
cedure, such as the one proposed in [12]. The general algorithm is described in Algorithm 4.1.
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702 FABIO NOBILE AND TOMMASO VANZAN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone . Adaptive incremental construction of \scrI .
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : Tolerance \varepsilon > 0.

1: \bfv = (1, . . . ,1)\in \BbbN D+N
+ .

2: \scrE = \{ \bfv \} , \scrI = \emptyset , \scrM \scrI [u] = 0, Err = 0.
3: Compute u\bfv .
4: Compute \Delta [u\bfv ], \Delta E\bfv , \Delta W\bfv , and P\bfv numerically.
5: Set Err = Err +\Delta E\bfv .
6: \bfw \bfh \bfi \bfl \bfe Err> \varepsilon \bfd \bfo 
7: Select multi-index \bfv = argmax\ell \in \scrE P\ell .
8: Set \scrM \scrI [u] =\scrM \scrI [u] +\Delta [u\bfv ].
9: Set \scrI = \scrI \cup \bfv , \scrE = \scrE \setminus \bfv , and Err = Err - \Delta E\bfv .

10: \bff \bfo \bfr k= 1, . . . ,D+N \bfd \bfo 
11: \bfl = \bfv + \bfe k.
12: \bfi \bff \bfl  - \bfe i \in \scrI for every i= 1, . . .D+N \bft \bfh \bfe \bfn 
13: \scrE = \scrE \cup \bfl .
14: Compute u\bfl .
15: Compute \Delta 

\bigl[ 
u\bfl 
\bigr] 
, \Delta E\bfl , \Delta W\bfl , and P\bfl numerically.

16: Set Err = Err +\Delta E\bfl .
17: \bfe \bfn \bfd \bfi \bff 
18: \bfe \bfn \bfd \bff \bfo \bfr 
19: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
20: Output: \scrI , \scrM \scrI [u], and Err.

This iterative algorithm computes numerically the error contributions \Delta E\bfitalpha ,\bfitbeta = \| \Delta u\bfitalpha ,\bfitbeta \| U
for every multi-index (\bfitalpha ,\bfitbeta ) in the reduced margin of a current index set, where the reduced
margin of a set \scrI of multi-indices in \BbbN n+ is

\scrR \scrI :=
\bigl\{ 
\bfv \in \BbbN n+ : \bfv  - \bfe k \in \scrI for all k \in \{ 1, . . . , n\} , with vk > 1

\bigr\} 
.

The algorithm then updates \scrI = \scrI \cup (\=\bfitalpha , \=\bfitbeta ), where (\=\bfitalpha , \=\bfitbeta ) is the multi-index in \scrR \scrI associated
to the largest profit. The adaptive construction ends when the sum of the error contributions
in the reduced margin is below a desired tolerance, mimicking the error upper bound (4.1).

Despite its simplicity, this adaptive algorithm may not be efficient. The cost of com-
puting the CT approximation may be dominated by the cost of constructing the index set
\scrI , since evaluating numerically an error contribution (line 15 of Algorithm 4.1) for a given
multi-index in the reduced margin requires one to solve an OCP (line 14). Notice that once u\bfv 

has been computed, \Delta u\bfv requires only a linear combination of previously computed solutions.
A possible alternative is to use an a priori ansatz for \Delta E\bfitalpha ,\bfitbeta and \Delta W\bfitalpha ,\bfitbeta , so that the compu-
tation of the profits in the margin is reduced to the evaluation of a simple algebraic formula
and an OCP is solved exclusively when a selected multi-index is added to \scrI . This variant is
described by Algorithm 4.2. We will denote the construction of \scrI based on these adaptive/a
priori frameworks as ``incremental CT.""
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 703

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bftwo . A priori incremental construction of \scrI .
\bfR \bfe \bfq \bfu \bfi \bfr \bfe : Tolerance \varepsilon > 0.

1: \bfv = (1, . . . ,1)\in \BbbN D+N
+ .

2: \scrE = \{ \bfv \} , \scrI = \emptyset , \scrM \scrI [u] = 0, Err = 0.
3: Compute \Delta E\bfv , \Delta W\bfv , and P\bfv using ansatzes.
4: Set Err = Err +\Delta E\bfv .
5: \bfw \bfh \bfi \bfl \bfe Err> \varepsilon \bfd \bfo 
6: Select multi-index \bfv = argmax\ell \in \scrE P\ell .
7: Compute \bfu \bfv and \Delta [u\bfv ].
8: Set \scrM \scrI [u] =\scrM \scrI [u] +\Delta [u\bfv ].
9: \scrI = \scrI \cup \bfv and \scrE = \scrE \setminus \bfv and Err = Err - \Delta E\bfv .

10: \bff \bfo \bfr k= 1, . . . ,D+N \bfd \bfo 
11: \bfl = \bfv + \bfe k.
12: \bfi \bff \bfl  - \bfe i \in \scrI for every i= 1, . . .D+N \bft \bfh \bfe \bfn 
13: \scrE = \scrE \cup \bfl .
14: Compute \Delta E\bfl , \Delta W\bfl , and P\bfl using ansatzes.
15: Set Err = Err +\Delta E\bfl .
16: \bfe \bfn \bfd \bfi \bff 
17: \bfe \bfn \bfd \bff \bfo \bfr 
18: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
19: Output: \scrI and \scrM \scrI [u].

We remark that a priori ansatzes on \Delta E\bfitalpha ,\bfitbeta and \Delta W\bfitalpha ,\bfitbeta permit us to build the multi-
index \scrI set beforehand using formula (4.3). In this way, one could use the CT formula
(3.10), and reduce the number of OCPs that have to be solved, by considering only the
multi-indices such that c\bfitalpha ,\bfitbeta \not = 0. This approach is more efficient but less flexible, since
it is inherently nonadaptive. If \scrM \scrI (\varepsilon )[u] has been computed, it may not be possible to
evaluate \scrM \scrI (\varepsilon \prime )[u], with \varepsilon 

\prime > \varepsilon , as \scrM \scrI (\varepsilon \prime )[u] may involve multi-indices that were inactive (i.e.,
c\bfitalpha ,\bfitbeta = 0) for \scrM \scrI (\varepsilon )[u]. Further, it does not have an intrinsic stopping criterion, contrary to
the adaptive/incremental CT procedure. One could also use a posteriori error estimators for
\Delta E\bfitalpha ,\bfitbeta , generalizing the work of [16] for random PDEs. However, the derivation of suitable
a posteriori error estimators for OCP constrained by random PDEs combined with the CT is
still an open problem.

In the next subsection, we assume explicit analytic expressions for the error and work
contributions and discuss an a priori construction of the quasi-optimal set \scrI . These ansatzes
contain few parameters that are problem-dependent and have to be estimated case by case.
A complexity analysis of the CT approximation based on this proposed a priori construction is
presented in subsection 4.2. The soundness of these expressions has been verified theoretically
in the context of random PDEs under suitable regularity assumptions; see [18]. We will verify
numerically their validity on a model problem in section 5.1.

4.1. An a priori construction. To build the set \scrI in a priori fashion, we need some hy-
pothesis on the decay of the error and work contributions. Following the framework proposed
in [19] for the MISC method, we make the following assumptions.
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704 FABIO NOBILE AND TOMMASO VANZAN

Assumption 3. The discretization parameters hn,\alpha n
depend exponentially on the dis-

cretization level \alpha n, while the number of collocation points grows linearly with the stochastic
level \beta n,

hn,\alpha n
= h02

 - \alpha n and m(\beta n) = \beta n.(4.4)

Notice that we assume that the level-to-nodes relationm(\beta n) is linear, in contrast to several
works concerning random PDEs; see, e.g., [19, 35], where the doubling map m(\beta n) = 2\beta n  - 1 is
considered. The doubling map is often used together with Clenshaw--Curtis nodes, since the
quadrature/interpolation nodes are then nested, which permits one to recycle several precal-
culated solutions when computing the quadrature/interpolation for a higher level \bfitbeta . In our
setting, each multi-index \bfitbeta requires the solution of a robust OCP, and none of the previously
computed optimal controls (neither state or adjoint variables) can be recycled. Numerically,
we have observed that the linear and doubling mappings lead to the same convergence rate,
but the former has a better constant.

In addition to \Delta W\bfitalpha ,\bfitbeta and \Delta E\bfitalpha ,\bfitbeta associated to the mixed hierarchical surpluses, for a
fixed \=\bfitbeta \in \BbbN N+ , we denote with \Delta W \mathrm{d}\mathrm{e}\mathrm{t}

\bfitalpha ,\=\bfitbeta 
and \Delta E\mathrm{d}\mathrm{e}\mathrm{t}

\bfitalpha ,\=\bfitbeta 
the work and error contributions associated

to the deterministic hierarchical surplus (3.7). Similarly, for a fixed \=\bfitalpha \in \BbbN D+ , we denote
with \Delta W \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}

\=\bfitalpha ,\bfitbeta and \Delta E\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta the work and error contributions associated to the deterministic

hierarchical surplus (3.8).

Assumption 4 (assumption on the work contributions). The work contributions associated
to the deterministic, stochastic, and mixed hierarchical surpluses satisfy1

\Delta W \mathrm{d}\mathrm{e}\mathrm{t}
\bfitalpha ,\=\bfitbeta \leq C\mathrm{d}\mathrm{e}\mathrm{t},\=\bfitbeta 

\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

D\prod 
n=1

2\alpha n\widetilde \gamma n ,(4.5)

\Delta W \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta \leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 

\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

N\prod 
n=1

(\beta n + 1),(4.6)

\bfDelta W\bfitalpha ,\bfitbeta \leq C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\Biggl( 
D\prod 
n=1

2\alpha n\widetilde \gamma n
\Biggr) \Biggl( 

N\prod 
n=1

(\beta n + 1)

\Biggr) 
(4.7)

for some rates \widetilde \gamma n.
Assumption 5 (assumption on the error contributions). The error contributions associated

to the deterministic, stochastic, and mixed hierarchical surpluses satisfy

\Delta E\mathrm{d}\mathrm{e}\mathrm{t}
\bfitalpha ,\=\bfitbeta \leq C\mathrm{d}\mathrm{e}\mathrm{t},\=\bfitbeta 

\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

D\prod 
n=1

2 - \alpha n\widetilde rn ,(4.8)

\Delta E\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta \leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 

\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

N\prod 
n=1

e - \widetilde gn(\beta n+1),(4.9)

\bfDelta E\bfitalpha ,\bfitbeta \leq C\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\Biggl( 
D\prod 
n=1

2 - \alpha n\widetilde rn
\Biggr) \Biggl( 

N\prod 
n=1

e - \widetilde gn(\beta n+1)

\Biggr) 
(4.10)

for some rates \widetilde ri and \widetilde gi.
1The work bound involves

\prod N
n=1(\beta n + 1) instead of the more natural

\prod N
n=1 \beta n to simplify the proofs

of Theorems 4.1 and 4.2. Nevertheless, this does not influence the asymptotic analysis, since
\prod N

n=1 \beta n \leq \prod N
n=1(\beta n + 1)\leq 2N

\prod N
n=1 \beta n.
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 705

Assumptions 4 and 5 specify how the work and error contributions of the deterministic
and stochastic hierarchical surpluses depend on the multi-indices \bfitalpha and \bfitbeta . They assume a
multiplicative structure of the work and error contributions of the mixed hierarchical surplus.
Notice that Assumption 5 guarantees that \{ \Delta E\bfitalpha ,\bfitbeta \} (\bfitalpha ,\bfitbeta )\in \BbbN N+D

+
\in l1(\BbbN N+D

+ ), so that, together

with the convergence of the minimizers of the discrete OCPs to u, it validates the hierarchical
representation (3.9). The discussion of the rationale behind these assumptions is postponed to
section 5.1, where numerical evidence of their validity together with a procedure to estimate
the rates \widetilde ri and \widetilde gi are presented.

4.2. Complexity analysis. In this subsection, we present a complexity analysis of the CT
in two different settings. We first consider the simpler case in which the spatial discretization
is fixed, i.e., the multi-index \bfitalpha is an assigned, constant, multi-index \bfitalpha = \=\bfitalpha . In other words,
the CT combines the solutions of (3.3) for different quadrature formulae, but all solutions
are computed on the same spatial mesh. Hence, the CT involves exclusively the stochastic
hierarchical surpluses,

\scrM \scrI (u) =
\sum 
\bfitbeta \in \scrI 

\Delta \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}[u\=\bfitalpha ,\bfitbeta ].(4.11)

In the second setting, we consider the more general case where both \bfitalpha and \bfitbeta are variables
in the CT expansion as in (3.9). In both cases, the complexity analysis is based on a ``direct
counting"" argument that consists in summing the error contributions outside the index set \scrI 
and the work contributions inside \scrI ; see [19, 35].

Let us start with the first setting. As \=\bfitalpha is fixed, to each multi-index \bfitbeta we associate the
profit

P\bfitbeta =
\Delta E\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}

\=\bfitalpha ,\bfitbeta 

\Delta W \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta 

,

and given a tolerance \varepsilon > 0, the index set \scrI simplifies to

\scrI (\varepsilon ) :=

\Biggl\{ 
\bfitbeta \in \BbbN N+ :

\Delta E\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha \bfitbeta 

\Delta W \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta 

\geq \varepsilon 

\Biggr\} 
.

Due to Assumptions 4 and 5, \scrI (\varepsilon ) coincides with

\scrI (L) :=
\bigl\{ 
\bfitbeta \in \BbbN N+ : \widetilde \bfitg \cdot (\bfitbeta + \bfone ) + | log(\bfitbeta + \bfone )| 1 \leq L

\bigr\} 
,

where | log(\bfitbeta + \bfone )| 1 =
\sum N

i=1 log(\bfitbeta i + 1), and L :=L(\varepsilon ) = - log(\varepsilon 
C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}

\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k},\=\bfitalpha 

C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r},\=\bfitalpha 

).

The next theorem provides a complexity result for the CT applied only on the stochastic
discretization multi-index \bfitbeta . The proof is detailed in Appendix 7.1.

Theorem 4.1. There exist constants C1 and C2 such that for any W\mathrm{m}\mathrm{a}\mathrm{x} satisfying W\mathrm{m}\mathrm{a}\mathrm{x} \geq 
| \widetilde \bfitg | 2NC1

(2N)! , and choosing \widehat L= 2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1
 - | \widetilde \bfitg | ,

Work [\scrM \scrI (\widehat L)(u)]\leq W\mathrm{m}\mathrm{a}\mathrm{x},

Error [\scrM \scrI (\widehat L)(u)]\leq C2e
 - 2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1

\left(  2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1
+ 1

\right)  2N - 1

.
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706 FABIO NOBILE AND TOMMASO VANZAN

Numerically, we observed that the simplified estimate, based on Stirling approximation,

Error [\scrM \scrI (\widehat L)(u)]\leq Ce - \gamma N
2N
\surd 
W\mathrm{m}\mathrm{a}\mathrm{x} ,(4.12)

for C,\gamma \in \BbbR + captures well the convergence (see Figure 3). Notice that the complexity result
expressed in (4.12) is the same one found in [35] for the complexity of sparse grid interpolants
(on non-nested grids) for elliptic random PDEs.

We next consider the general case in which the combination technique is applied to both
the spatial and the stochastic discretization parameters. Under Assumptions 4, 5 and defining
\bfitr = log(2)\widetilde \bfitr , \bfitgamma = log(2)\widetilde \bfitgamma , for a given tolerance \varepsilon , the quasi-optimal set (4.3) becomes

\scrI (L) :=
\Bigl\{ 
(\bfitalpha ,\bfitbeta )\in \BbbN D+N

+ : (\bfitr + \bfitgamma ) \cdot \bfitalpha + \widetilde \bfitg \cdot (\bfitbeta + \bfone ) + | log(\bfitbeta + \bfone )| 1 \leq L
\Bigr\} 
,

with L= - log(\varepsilon C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

C\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}
). The next theorem provides an asymptotic convergence result for the

CT applied to the OCP (3.4). The proof is detailed in Appendix 7.2.

Theorem 4.2. Let rj = log(2)\widetilde rj, \gamma j = log(2)\widetilde \gamma j, j = 1, . . . ,N , \bfTheta = ( \gamma 1
r1+\gamma 1

, . . . , \gamma D
rD+\gamma D

),
\mu =minn

rn
\gamma n
, \chi =maxn\bfTheta n, and n(\bfTheta , \chi ) :=\#\{ n :\bfTheta n = \chi \} . There exists a constant CW such

that for any W\mathrm{m}\mathrm{a}\mathrm{x} satisfying W\mathrm{m}\mathrm{a}\mathrm{x} \geq CW e
\chi , and setting

L=L(W\mathrm{m}\mathrm{a}\mathrm{x}) =
1

\chi 

\biggl( 
log

\biggl( 
W\mathrm{m}\mathrm{a}\mathrm{x}

CW

\biggr) 
 - (n(\bfTheta , \chi ) - 1) log

\biggl( 
1

\chi 
log

\biggl( 
W\mathrm{m}\mathrm{a}\mathrm{x}

CW

\biggr) \biggr) \biggr) 
,(4.13)

the combination technique solution satisfies

Work [\scrM \scrI (L(W\mathrm{m}\mathrm{a}\mathrm{x}))]\leq W\mathrm{m}\mathrm{a}\mathrm{x},(4.14)

limsup
W\mathrm{m}\mathrm{a}\mathrm{x}\rightarrow \infty 

Error [\scrM \scrI (L(W\mathrm{m}\mathrm{a}\mathrm{x}))]

W - \mu 
\mathrm{m}\mathrm{a}\mathrm{x}(log(W\mathrm{m}\mathrm{a}\mathrm{x})(\mu +1)(n(\bfTheta ,\chi ) - 1)

=C <\infty .(4.15)

Notice that Theorem 4.2 provides a characterization of the asymptotic complexity. As
we discuss in section 5, the pre-asymptotic behavior can be slightly different. Second, the
asymptotic complexity depends exclusively on the rates associated to the spatial work and
error contribution. The asymptotic complexity is not affected by the rates of the stochastic
variables. This can be understood noticing that, while both the spatial and the stochastic
errors decay exponentially with respect to \alpha i and \beta i, the spatial work grows exponentially
with respect to \alpha i, whereas the stochastic work grows only linearly with respect to \beta i. Third,
the asymptotic complexity of the CT provided by Theorem 4.2 is identical to the MISC com-
plexity result presented in [19], and thus the CT applied to OCPs have the same asymptotic
convergence of the MISC method for the solution of PDEs in the context of forward UQ.

Remark 4 (infinite-dimensional setting). The complexity analysis presented here cannot be
readily generalized to the infinite-dimensional setting (N =\infty ), since both theorems involve
constants that explode asN \rightarrow \infty . To handle the infinite-dimensional case, a refined analysis is
required based on the summability of the sequence \{ \widetilde gn\} \infty n=1 in appropriate lp spaces, following,
e.g., [18]. Nevertheless, from the implementation point of view, the CT can be extended
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 707

to the infinite-dimensional setting by modifying Algorithm 4.2 in the loop 10--17, so that
only a subset of the reduced margin involving a finite number of dimensions is explored at
each iteration. This improved algorithm would automatically balance the quadrature error,
the spatial discretization error, and the truncation error that is commonly committed by
considering only a finite number of random parameters (as in truncated Karhunen--Lo\`eve
expansions of random fields). For more details, we refer the reader to [17] for an analysis
concerning truncation error and to [6, 11, 15] for algorithmic aspects.

5. Numerical section. In this section, we test the effectiveness of the CT on a model
problem. In all experiments, we consider the OCP (2.6) with force term \phi = 1 and with the
diffusion coefficient

\kappa (x,\bfitzeta ) = e
\sum N

i=1 \zeta n\lambda n\psi n(\bfx ),(5.1)

where \zeta n \sim \scrU ( - 1,1) and \lambda n =
\surd 
3e - 0.6n. The spatial domain is \scrD = (0,1)d, with d = 1,2.

In the one-dimensional case, \psi n(x) = \phi i1(n)(x), while in the two-dimensional case, \psi n(\bfx ) =
\phi i1(n)(x1)\phi i2(n)(x2), where

\phi n(x) =

\Biggl\{ 
sin(n2\pi x) if n is even,

cos(n - 1
2 \pi x) if n is odd.

(5.2)

The maps ij :\BbbN + \rightarrow \BbbN +, j = 1,2, are detailed in Table 1. Notice that (5.1) leads to a well-posed
state equation, as

k\mathrm{m}\mathrm{i}\mathrm{n} := e - 
\sum N

n=1 \lambda n \leq \kappa (x,\bfitzeta )\leq e
\sum N

n=1 \lambda n =: k\mathrm{m}\mathrm{a}\mathrm{x},

so that Assumptions 1 and 2 are satisfied, even in the limit N \rightarrow \infty . As a quantity of
interest, we consider F (y(\bfitzeta )) = 1

2\| y(\bfitzeta )  - yd\| 2L2(D), with yd :=
\prod d
i=1 sin(\pi xi). Note that the

precise expression of yd does not influence the stochastic regularity of the problem, since it is
deterministic. However, a less regular target state may influence the spatial regularity. For
reproducibility, data and codes are available in [46].

5.1. Discussion on the validity of the assumptions. In this subsection, we discuss the
rationale behind the assumptions made in section 4.1 and verify them on the model problem
described in Example 1.

To satisfy Assumption 3, we consider a spatial mesh obtained as the tensor product of
one-dimensional meshes, each characterized by a uniform mesh size hi,\alpha i

= 2 - \alpha i - 1, and hence
h0 = 2 - 1. In one dimension, we employ the Lagrange \BbbP 1 finite element space, while in two
dimensions, we use the \scrQ 1 bilinear finite element space; see [10]. The total number of degrees
of freedom on the mesh associated to \bfitalpha is N\bfitalpha =

\prod D
n=1(2

\alpha n+1 - 1)\leq CD
\prod D
n=1 2

\alpha n . Further, we

Table 1
Definition of the maps i1 and i2.

n 1 2 3 4 5 6 7 8 9 10 . . .

i1(n) 1 2 1 3 2 1 4 3 2 1 . . .
i2(n) 1 1 2 1 2 3 1 2 3 4 . . .
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708 FABIO NOBILE AND TOMMASO VANZAN

consider a linear level-to-nodes map to define the tensor product quadrature rule. The total
number of Gauss--Legendre quadrature points is M\bfitbeta =

\prod N
n=1 \beta n.

Next, we analyze Assumption 4 on the work contributions. To compute the optimal control
u\bfitalpha ,\bfitbeta , we solve the full-space discrete optimality system (see [33, 36] for a derivation),\left(  \scrM 0 \scrA 

0 \nu Ms  - MsE
\top 

\scrA  - EMs 0

\right)  \left(  \bfy 
\bfu 
\bfp 

\right)  =

\left(  \bff p
0
\bff y

\right)  ,(5.3)

where \scrA = diag(w1A(\=\bfitzeta 1), . . . ,wM\bfitbeta 
A(\=\bfitzeta M\bfitbeta 

)) and A(\=\bfitzeta n) \in \BbbR N\bfitalpha \times N\bfitalpha is the stiffness matrix asso-

ciated to the quadrature node \=\bfitzeta n and wn is its quadrature weight, Ms \in \BbbR N\bfitalpha \times N\bfitalpha is the mass

matrix, \scrM = diag
\bigl( 
w1Ms, . . . ,wM\bfitbeta 

Ms

\bigr) 
, and E =

\bigl( 
w1Is, . . . ,wM\bfitbeta 

Is
\bigr) \top 

, where Is \in \BbbR N\bfitalpha \times N\bfitalpha is
the identity matrix. Note that the dimensions of \scrA , \scrM , and E depend on the multi-index
(\bfitalpha ,\bfitbeta ). We solve this large (symmetric) saddle-point system using MINRES preconditioned
by the block diagonal preconditioner analyzed in [36]. For a fixed value of the regularization
parameter \nu , this preconditioner leads to a robust convergence with respect to the mesh size
and the number of collocation points, so that the number of Krylov iterations can be consid-
ered constant. The major cost of each iteration is the preconditioning of the 2M\bfitbeta stiffness
matrices. Alternatively to (5.3), we may perform a Schur complement on u and solve the
reduced optimality system\left(  \nu Ms +

M\bfitbeta \sum 
n=1

wn(MsA
 - 1(\=\bfitzeta n)MsA

 - 1(\=\bfitzeta n)Ms)

\right)  \bfu = \bfg .(5.4)

Each conjugate gradient iteration then requires one to invert 2M\bfitbeta stiffness matrices. In spite
of the full-space/reduced approach used, the overall cost for solving the OCP then depends
linearly on the number of collocation points M\bfitbeta , and possibly nonlinearly (depending on the
preconditioner used) on the size of the finite element space, that is,

Work [u\bfitalpha ,\bfitbeta ]\leq \widehat C\Biggl( N\prod 
n=1

\beta n

\Biggr) \Biggl( 
D\prod 
n=1

2\alpha n

\Biggr) \theta 
(5.5)

for a real parameter \theta and constant \widehat C. The deterministic and stochastic work contributions
thus satisfy

\Delta W \mathrm{d}\mathrm{e}\mathrm{t}
\bfitalpha ,\=\bfitbeta =

\sum 
\bfitj \in \{ 0,1\} D

Work [u\bfitalpha  - \bfitj ,\=\bfitbeta ]\leq \widehat C \sum 
\bfitj \in \{ 0,1\} D

\Biggl( 
N\prod 
n=1

\=\beta n

\Biggr) \Biggl( 
D\prod 
n=1

2\alpha n - jn

\Biggr) \theta 
\leq C\mathrm{d}\mathrm{e}\mathrm{t},\=\bfitbeta 

\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\Biggl( 
D\prod 
n=1

2\alpha n

\Biggr) \theta 
,

with C\mathrm{d}\mathrm{e}\mathrm{t},\=\bfitbeta 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} = \widehat C(1 + 2 - \theta )D(

\prod N
n=1

\=\beta n) for a fixed \=\bfitbeta , and

\Delta W \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta =

\sum 
\bfitj \in \{ 0,1\} N

Work [u\=\bfitalpha ,\bfitbeta  - \bfitj ]\leq \widehat C \sum 
\bfitj \in \{ 0,1\} N

\Biggl( 
N\prod 
n=1

(\beta n  - jn)

\Biggr) \Biggl( 
D\prod 
n=1

2\=\alpha n

\Biggr) \theta 

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\Biggl( 
N\prod 
n=1

(\beta n + 1)

\Biggr) 
,
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 709

where C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} = \widehat C2N (\prod d

n=1 2
\=\alpha n)\theta for a given \=\bfitalpha . We are left to check (4.7), but indeed

\Delta W\bfitalpha ,\bfitbeta =
\sum 

\bfi \in \{ 0,1\} D+N

Work [u(\bfitalpha ,\bfitbeta ) - \bfi ]\leq 
\sum 

\bfitk \in \{ 0,1\} D

\sum 
\bfitj \in \{ 0,1\} N

\widehat C\Biggl( D\prod 
n=1

2\alpha n - jn

\Biggr) \theta \Biggl( N\prod 
n=1

(\beta n  - jn)

\Biggr) 

\leq \widehat C2N \Biggl( N\prod 
n=1

(\beta n + 1)

\Biggr) \sum 
\bfitk \in \{ 0,1\} D

\Biggl( 
D\prod 
n=1

2\alpha n - jn

\Biggr) \theta 

\leq C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\Biggl( 
N\prod 
n=1

(\beta n + 1)

\Biggr) \Biggl( 
D\prod 
n=1

2\alpha n

\Biggr) \theta 
,

with C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} = 2N (1 + 2\theta )D \widehat C.
Notice that (4.5) and (4.7) are trivially satisfied setting \widetilde \gamma i = \theta for every i. In our numerical

experiments, we used the full-space approach and inverted directly the 2M\bfitbeta matrices using the
built-in MATLAB sparse banded matrice solver and found that \theta = 1 gives a good description
of the increase of the computational time with respect to the size of the finite element space.

Next, we focus on Assumption 5. On the one hand, (4.8) is a direct consequence of classical
finite element error analysis combined with the spatial combination technique convergence
theory, provided that u admits sufficient Sobolev mixed-order regularity [13, 14]. However,
for general domains and/or with control constraints, the control might not enjoy such high
regularity. In these cases, the CT could still be applied either on a fixed spatial mesh, or
by letting \alpha be a scalar setting the overall mesh size, as in standard multilevel approaches
[21, 45].

Concerning (4.9), it is well known that hierarchical surpluses satisfy such a hypothesis in
the context of sparse grid interpolants for forward UQ problems, provided that the solution
map of the random PDE is holomorphic in a Bernstein ellipse in the complex plane [8, 19, 35].
In our setting, we intuitively remark that (4.9) requires the map \bfitzeta \in \Gamma \rightarrow p(\bfitzeta ) \in V to be
holomorphic in a region of the complex plane, which in turn requires holomorphic regularity
of the quantity of interest F and of the inverse of the operator e with respect to \bfitzeta .

Finally, (4.10) assumes a product structure of the decay of the mixed spatial and stochastic
surpluses. For forward UQ problems, this property has been extensively studied and exploited
in several works; see, e.g., [3, 18--21, 43]. The rigorous extension of these results to the present
context requires a highly technical theoretical analysis that is beyond the scope of this work,
and it is the subject of a forthcoming manuscript.

Here we limit ourselves to verify (4.8), (4.9), and (4.10) numerically, and we estimate the
rates \widetilde ri and \widetilde gi. To do so, we fix a multi-index \bfitbeta = \=\bfitbeta , set \bfitalpha = \bfone +j \=\bfitalpha , and fit the decay of \Delta E\bfitalpha ,\=\bfitbeta 

for some different values of j. Similarly, we fix a \bfitalpha = \=\bfitalpha and set \bfitbeta = \bfone + j \=\bfitbeta and fit the decay
of \Delta E\=\bfitalpha ,\bfitbeta . The mixed decays are fitted with the same procedure. The results are reported
in Figure 1, which clearly shows that the assumptions are verified for the model problem. In
our setting, we found \widetilde ri = 2, for all i, while the rates \widetilde gi are reported in Table 2. Notice that
the estimated rates \widetilde gi may depend on the geometrical mesh used, but the dependence is quite
mild (see [3] for a procedure to update the estimate of \widetilde gi on the fly).
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710 FABIO NOBILE AND TOMMASO VANZAN
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Figure 1. Numerical validation of assumption (4.8), (4.9), and (4.10) on the decay of the error contributions.
Spatial error contributions with \=\bfitbeta = \bfone (left), stochastic error contributions with \=\bfitalpha = (3,3) (center) for the first
four random variables, and mixed spatial and stochastic error contributions (right). The solid lines are based
on computed values, and the dashed lines are the fitted ansatzes.

Table 2
Fitted rates \widetilde gi for the first 10 random variables in the expansion of (5.1).

\widetilde g1 \widetilde g2 \widetilde g3 \widetilde g4 \widetilde g5 \widetilde g6 \widetilde g7 \widetilde g8 \widetilde g9 \widetilde g10 . . .

2.78 4.59 5.79 7.45 8.18 9.85 10.97 12.98 14.18 14.57 . . .

5.2. Numerical tests. We now show the performance of the CT to solve (2.6). To con-
struct the multi-index sets, we rely on the sparse-grid MATLAB Kit [2]. We first consider
the CT approximation (4.11) applied exclusively on the quadrature formula of the objective
functional. For every multi-index \bfitbeta , we use the same physical discretization determined by a
fixed \=\bfitalpha . More specifically, we compare five methods:
Meth. 1 An ``a priori incremental"" algorithm in which \scrI is built adaptively by using the

ansatzes (4.6) and (4.9) to compute the profits for all multi-indices in the reduced
margin. The parameters \{ \widetilde gn\} n are estimated beforehand, and this cost is not con-
sidered. This algorithm corresponds to Algorithm 4.2.

Meth. 2 The well-known adaptive algorithm [12] in which \scrI is built adaptively computing
numerically \Delta E\=\bfitalpha ,\bfitbeta (and thus also the profits P\=\bfitalpha ,\bfitbeta ) for all multi-indices in the reduced
margin. We keep track only of the work done to solve the OCPs that actually
contribute to the CT solution (3.9), thus neglecting the cost of exploring the reduced
margin (which might dominate the overall cost). In this way, the adaptive algorithm
can be considered as a benchmark for the a priori CT. This algorithm corresponds
to Algorithm 4.1.

Meth. 3 An a priori algorithm based on the CT formulation (3.10). In particular, given the
multi-index set \scrI k built at the kth step of the a priori incremental algorithm (Meth.
1), we check for which \bfitbeta , c\bfitbeta \not = 0, and consequently compute the approximation using
(3.10). The approximation will be identical to the solution of Meth. 1. However,
the work performed will be less, as several multi-indices \bfitbeta do not contribute to the
approximation.

Meth. 4 An anisotropic tensor product approximation: given a sequence of levels L, we set
\beta n = 1+\lfloor L\widetilde gn \rfloor . Notice that the anisotropic tensor product approximation can be recast

in the CT framework, using the multi-index set \scrI (L) = \{ \bfitbeta \in \BbbN N : maxn \widetilde gn(\beta n  - 1)\leq 
L\} ; see [2].

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
24

 to
 7

9.
54

.6
6.

12
5 

by
 T

om
m

as
o 

V
an

za
n 

(t
om

m
as

o.
va

nz
an

@
ep

fl
.c

h)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 711

Meth. 5 A standard sparse grid method (see Remark 2) based on the multi-index set \scrI (L) =
\{ \bfitbeta \in \BbbN N :

\sum N
i=1 \widetilde gn(\beta n - 1)\leq L\} with Gauss--Legendre nodes and a linear level-to-node

map.
Figure 2 shows the complexity (error vs. work) of the different methods for N = 2,6,10

random variables and d= 2. The work reported in the x-axis corresponds to W =
\sum 

\bfitbeta \in \scrI M\bfitbeta 

for Meth. 1 and Meth. 2, W =
\sum 

\bfitbeta \in \scrI :c\bfitbeta \not =0M\bfitbeta for Meth. 3, W = M\bfitbeta for Meth. 4, and

W = | \widetilde \Lambda \bfitbeta | , i.e., the number of nodes involved in the sparse grid quadrature, for Meth. 5.
The error corresponds to the L2 norm between the current approximation and a reference
overkilled solution computed with Algorithm 4.2.

Notice that the a priori algorithms converge very similarly to the adaptive algorithm, thus
confirming the effectiveness of the a priori construction based on the model-fitted ansatzes.
Generally, the CT needs a few random variables in order to be more effective than anisotropic
full tensor approximations, as sparse approximations are more efficient for sufficiently high
dimensional problems [5].

The convergence of the CT is essentially unchanged moving from N = 6 to N = 10 random
variables. Indeed, the random variables are increasingly less important, being weighted in
(5.1) by \lambda n, which tends to zero exponentially, and their rates \widetilde gi are increasingly larger (see
Table 2). Hence, the addition of a new random variable requires only computing quite cheap
hierarchical surplus \Delta \bfitbeta u. This can be observed in the left and center panels of Figure 3, which
show three components of the multi-indices \bfitbeta included by Meth. 2 for d= 2 and N = 10. We
clearly observe that whenever \beta 9 or \beta 10 are greater than 1, all the remaining components of
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Figure 2. Convergence behavior of the different methods for N = 2,6,10 random variables.
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Figure 3. The left and center panels show the sparsity pattern of (\beta 1, \beta 2, \beta 3) and (\beta 1, \beta 9, \beta 10) of Algo-
rithm 4.2 for d = 2 and N = 10. The right panel verifies numerically the simplified convergence estimate
(4.12).
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Figure 4. Convergence of the combined (\bfitalpha ,\bfitbeta ) CT for a one-dimensional physical problem (top row) and a
two-dimensional one (bottom row).

\bfitbeta are very small, which implies that the corresponding OCP will involve very few quadrature
nodes. In contrast, the addition of a new random variable, let's say the N + 1th, implies
that the number of collocation points M\beta for the anisotropic tensor product approximation
is multiplied by \beta N+1 = 1 + \lfloor L\widetilde gN+1

\rfloor , and thus the single OCP that has to be solved becomes
steadily larger. The classical sparse grid approach shows a computational complexity similar
to that of the CT in all cases. However, due to the presence of negative weights, the full-space
optimality system had to be solved with GMRES. The additional cost and memory usage due
to the larger Krylov subspace have not been taken into account in the figure. Finally, the
right panel of Figure 2 verifies instead the simplified complexity estimate (4.12), as the error
decreases linearly in the log-log plot.

Next, we study the complexity of the CT applied to both spatial and stochastic variables.
Figure 4 shows the convergence for the model problem set in a one-dimensional domain (top
row) and a two-dimensional domain (bottom row). For Meth. 4 and Meth. 5, we consider a
sequence of spatial meshes obtained by halving simultaneously the mesh size in each spatial
direction and an increasing sequence of levels L for the stochastic quadrature. The work
reported in the x-axis corresponds toW =

\sum 
(\bfitalpha ,\bfitbeta )\in \scrI (

\prod D
n=1 2

\alpha n+1)M\bfitbeta for Meth. 1 and Meth. 2,

W =
\sum 

\bfitbeta \in \scrI :c\bfitbeta \not =0(
\prod D
n=1 2

\alpha n+1)M\bfitbeta for Meth. 3, W = (
\prod D
n=1 2

\alpha n+1)M\bfitbeta for Meth. 4, and

W = (
\prod D
n=1 2

\alpha n+1)| \widetilde \Lambda \bfitbeta | for Meth. 5. We calculate a reference solution by running Meth. 2
with a very small tolerance, and we linearly interpolate all the solutions computed (which live
on different meshes) on a very fine mesh obtained by taking, for each physical dimension, the
smallest mesh size used by Meth. 2. In two dimensions, the reference solution has more than
2 \cdot 108 degrees of freedom. To compute the error, we interpolate the current approximations
on the reference mesh and calculate there the L2 norm of the difference with the reference
solution using a mass lumped matrix. Notice that the interpolation step does not introduce
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 713

errors, as the finite element basis functions are linear in one dimension and bilinear in two
dimensions, and the meshes are nested.

As \widetilde \gamma j = 1 and \widetilde rj = 2 for j = 1,2, Theorem 4.2 predicts an asymptotic complexity of
Work - 2 for the one-dimensional setting and Work - 2 log(Work)3 for the two-dimensional set-
ting. For few random variables (e.g., N = 2), the asymptotic complexity is rapidly attained
in both settings, while for larger numbers of random variables pre-asymptotic effects are non-
negligible, and the asymptotic regime is achieved for larger values of W . Meth. 5 shows a
worse complexity behavior than that of the CT, especially for d = 2, where we clearly see
the benefits of the mixed spatial regularity. Finally, we emphasize that both the anisotropic
tensor product and the sparse grid approximations are not able to achieve smaller errors on
our workstation, since the size of their optimality system quickly saturates the memory stor-
age. By solving several OCPs characterized by smaller optimality systems, the CT is able to
overcome the limitations set by the workstation and achieve much smaller tolerances.

6. Conclusions. In this work, we proposed two variants of the combination technique
to solve efficiently optimal control problems under uncertainty. The first one is based on the
combination of solutions of several OCPs discretized using different tensor product quadrature
formulae but on the same spatial mesh. The approach allows us to reduce the computational
effort for high- dimensional problems, while avoiding the inconveniences of a direct sparse
grid approximation of the objective functional. Then we applied the combination technique
to both the spatial and the stochastic variables. Such a procedure allows us to automatically
balance the error due to the spatial and stochastic discretization according to a profit rule,
and it permits us to further reduce the computational cost by moving most computations on
coarser grids. The generalization of this work to an infinite sequence of random variables,
including a theoretical analysis for the decay of the error contributions, is currently ongoing
and will be the subject of a forthcoming manuscript. Further efforts will be devoted to test the
combination technique for OCPs involving control constraints and more general risk measures.
The problem formulation (2.2) considered here is already sufficiently general to cover some
common risk measures such as the mean-variance model. Of particular interest in risk-adverse
contexts is the CVaR (Conditional Value at Risk). Although the minimization of the CVaR
can be formulated as a double minimization problem leading to an optimality condition of the
form of (2.3), it also involves a discontinuous function of the random vector \bfitzeta acting on the
right-hand side of the adjoint equation, which might reduce the stochastic regularity. Thus, a
CT based on a multilevel (quasi)-Monte Carlo quadrature seems promising, as it requires less
smoothness than the stochastic collocation method.

7. Appendix. In this appendix, we detail the proofs of Theorems 4.1 and 4.2. Both proofs
are based on a direct counting argument, and in particular the proof of Theorem 4.2 is an
adaptation of the proof of Theorem 1 in [19] to a different multi-index set.

For a \bfx = (x1, . . . , xN ) \in \BbbR N , let | \bfx | :=
\sum N

n=1 | xi| and log(\bfx ) = (log(x1), . . . , log(xN )). The
following technical lemmas are needed.

Lemma 7.1 (Lemma 4 in [19]). Let f : (1,\infty )N \rightarrow \BbbR and g : (1,\infty )N \rightarrow \BbbR +. If f and g are
increasing, then
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714 FABIO NOBILE AND TOMMASO VANZAN

\sum 
\bfitalpha \in \BbbN N

+ :f(\bfitalpha )\leq 0

g(\bfitalpha )\leq 
\int 
\bfx \in (1,\infty )N :f(\bfx  - \bfone )\leq 0

g(\bfx )d\bfx .

If f and g are decreasing, then

\sum 
\bfitalpha \in \BbbN N

+ :f(\bfitalpha )\leq 0

g(\bfitalpha )\leq 
\int 
\bfx \in (1,\infty )N :f(\bfx )\leq 0

g(\bfx  - \bfone )d\bfx .

Lemma 7.2. The following bound holds true:\int 
\bfx \in (0,\infty )N :| \bfx | \leq H

\bfx d\bfx =
H2N

(2N)!
.

Proof. Perform the change of variables \bft = \bfx 
H , and use an induction argument over N .

Lemma 7.3. The following bound holds true:\int 
\bfx \in (0,\infty )N :| \bfx | \geq L

e - | \bfx | +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfx )| d\bfx \leq e - L(L+ 1)2N - 1.

Proof. The proof based on induction is part of the proof of Lemma 5 in [19].

Lemma 7.4 (Lemma 7 in [19]). Let k \in \BbbN , \bfa = (a1, . . . , aD)\in \BbbR D+ , and L> | \bfa | . Then\int 
\{ \bfx \in \BbbR D

+ :| \bfx | \leq L\} 
e\bfa \cdot \bfx (L - | \bfx | )kd\bfx \leq \scrU D(\bfa , k)e\mathrm{m}\mathrm{a}\mathrm{x}(\bfa )LL\eta (\bfa ,\mathrm{m}\mathrm{a}\mathrm{x}(\bfa )) - 1,

where \eta (\bfa ,max(\bfa )) :=\#\{ i : ai =max(\bfa )\} and \scrU D(\bfa , k) is a constant independent of L.

Lemma 7.5 (Lemma B.3 in [20]). Let k \in \BbbN , \bfa = (a1, . . . , aN )\in \BbbR D+ , and L> | \bfa | . Then\int 
\{ \bfx \in \BbbR D

+ :| \bfx | >L\} 
e - \bfa \cdot \bfx \leq \scrB D(\bfa )e - \mathrm{m}\mathrm{i}\mathrm{n}(\bfa )LL\eta (\bfa ,\mathrm{m}\mathrm{i}\mathrm{n}(\bfa )) - 1,

where \scrB D(\bfa ) is a constant independent on L.

7.1. Proof of Theorem 4.1.
Theorem 7.6. There exist constants C1 and C2 such that for any W\mathrm{m}\mathrm{a}\mathrm{x} satisfying W\mathrm{m}\mathrm{a}\mathrm{x} \geq 

| \widetilde \bfitg | 2NC1

(2N)! , and choosing \widehat L= 2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1
 - | \widetilde \bfitg | ,

Work [\scrM \scrI (\widehat L)(u)]\leq W\mathrm{m}\mathrm{a}\mathrm{x},

Error [\scrM \scrI (\widehat L)(u)]\leq C2e
 - 2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1

\left(  2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1
+ 1

\right)  2N - 1

.
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 715

Proof. We start with the work estimate. The total work satisfies

Work [\scrM \scrI (L)(u)] =
\sum 

\bfitbeta \in \scrI (L)

\Delta W \mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta \leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 

\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\sum 
\{ \bfitbeta \in \BbbN N

+ : \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| \leq L\} 
e| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| 

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\int 
\{ \bfitbeta \in \otimes N

i=1(1,\infty ): \widetilde \bfitg \cdot \bfitbeta +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta )| \leq L\} 
e| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| d\bfitbeta ,

where the last inequality follows from Lemma 7.1.
Next, we perform the change of variables tj = \widetilde gj\beta j + log(\beta j), setting \beta j = qj(t), with

qj(t)\leq tj\widetilde gj , where

Work [\scrM \scrI (L)(u)]\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\int 
\{ \bft \in \otimes N

i=1(\widetilde gj ,\infty )N : | \bft | \leq L\} 

N\prod 
i=1

qj(t) + 1\widetilde gjqj(t) + 1
qj(t)d\bft 

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\int 
\{ \bft \in \otimes N

i=1(\widetilde gj ,\infty )N : | \bft | \leq L\} 

N\prod 
i=1

tj\widetilde gj + 1

tj + 1

tj\widetilde gj d\bft 
\leq C1

\int 
\{ \bft \in \otimes N

i=1(\widetilde gj ,\infty )N : | \bft | \leq L\} 

N\prod 
i=1

(tj + \widetilde gj)d\bft 
\leq C1

\int 
\{ \widetilde \bft \in \otimes N

i=1(0,\infty )N : | \widetilde \bft | \leq L+| \widetilde \bfitg | \} \widetilde \bft d\widetilde \bft 
\leq C1

(L+ | \widetilde \bfitg | )2N
(2N)!

,

where C1 =C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\prod N
i=1(

1\widetilde g2j ) and in the last step we used Lemma 7.2.

We next consider the error term,

Error [\scrM \scrI (L)(u)] =
\sum 

\bfitbeta /\in I(L)

\Delta E\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c}
\=\bfitalpha ,\bfitbeta 

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\sum 
\{ \bfitbeta \in \BbbN N

+ : \widetilde \bfitg \cdot (\bfitbeta +\bfone )+\mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +1)>L\} 
e - \widetilde \bfitg \cdot (\bfitbeta +\bfone )

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\int 
\{ \bfitbeta \in \otimes N

i=1(1,\infty )N : \widetilde \bfitg \cdot (\bfitbeta +\bfone )+\mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )>L\} 
e - \widetilde \bfitg \cdot \bfitbeta d\bfitbeta 

=C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} e| \widetilde \bfitg | 

\int 
\{ \bfitbeta \in \otimes N

i=1(1,\infty )N :\widetilde \bfitg \cdot (\bfitbeta +\bfone )+\mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )>L\} 
e - \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )|  - | \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| d\bfitbeta .

The change of variables \widetilde gi(\beta i + 1) + log(\beta i + 1) = tj , q(tj) = \beta i, with q(tj)\leq tj\widetilde gj , leads to

Error [\scrM \scrI (L)(u)]\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} e| \widetilde \bfitg | 

\int 
\{ \bft \in \otimes N

i=1(2\widetilde gj+\mathrm{l}\mathrm{o}\mathrm{g}(2),\infty )N : | \bft | >L\} 
e - | \bft | 

\Biggl( 
N\prod 
i=1

(q(ti) + 1)2\widetilde gi(q(ti) + 1) + 1

\Biggr) 
d\bft 

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} e| \widetilde \bfitg | 

\int 
\{ \bft \in \otimes N

i=1(2\widetilde gj+\mathrm{l}\mathrm{o}\mathrm{g}(2),\infty )N : | \bft | >L\} 
e - | \bft | 

\Biggl( 
N\prod 
i=1

tj + \widetilde gj\widetilde g2j
\Biggr) 
d\bft 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/2

6/
24

 to
 7

9.
54

.6
6.

12
5 

by
 T

om
m

as
o 

V
an

za
n 

(t
om

m
as

o.
va

nz
an

@
ep

fl
.c

h)
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



716 FABIO NOBILE AND TOMMASO VANZAN

\leq C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\Biggl( 
N\prod 
i=1

e\widetilde gi\widetilde g2j
\Biggr) \int 

\{ \bft \in \otimes N
i=1(2\widetilde gj+\mathrm{l}\mathrm{o}\mathrm{g}(2),\infty )N : | \bft | >L\} 

e - | \bft | +| \mathrm{l}\mathrm{o}\mathrm{g}(\bft +\widetilde \bfg )| d\bft 
\leq C2

\int 
\{ \bfx \in \otimes N

i=1(3\widetilde gj+\mathrm{l}\mathrm{o}\mathrm{g}(2),\infty )N : | \bfx | >L+| \widetilde \bfitg | \} e
 - | \bfx | +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfx )| d\bfx 

\leq C2

\int 
\{ \bfx \in \otimes N

i=1(0,\infty )N : | \bft | >L+| \widetilde \bfitg | \} e
 - | \bfx | +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfx )| d\bfx 

\leq C2e
 - L - | \widetilde g| (L+ 1+ | \widetilde g| )2N - 1,

where we used Lemma 7.3 and C2 =C\mathrm{s}\mathrm{t}\mathrm{o}\mathrm{c},\=\bfitalpha 
\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} (

\prod N
i=1

e2\widetilde gi\widetilde g2j ).

Inserting the expression of \widehat L into the bounds for the error and work contributions, it is
immediate to verify that Work [\scrM \scrI (\widehat L)(u)]\leq W\mathrm{m}\mathrm{a}\mathrm{x} and

Error [\scrM \scrI (\widehat L)(u)]\leq C2e
 - 2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1

\left(  2N

\sqrt{} 
W\mathrm{m}\mathrm{a}\mathrm{x}(2N)!

C1
+ 1

\right)  2N - 1

.

7.2. Proof of Theorem 4.2.
Theorem 7.7. Let rj = log(2)\widetilde rj, \gamma j = log(2)\widetilde \gamma j, j = 1, . . . ,N , \bfTheta = ( \gamma 1

r1+\gamma 1
, . . . , \gamma D

rD+\gamma D
),

\mu =minn
rn
\gamma n
, \chi =maxn\bfTheta n, and n(\bfTheta , \chi ) :=\#\{ n :\bfTheta n = \chi \} . There exists a constant CW such

that for any W\mathrm{m}\mathrm{a}\mathrm{x} satisfying W\mathrm{m}\mathrm{a}\mathrm{x} \geq CW e
\chi , and setting

L=L(W\mathrm{m}\mathrm{a}\mathrm{x}) =
1

\chi 

\biggl( 
log

\biggl( 
W\mathrm{m}\mathrm{a}\mathrm{x}

CW

\biggr) 
 - (n(\bfTheta , \chi ) - 1) log

\biggl( 
1

\chi 
log

\biggl( 
W\mathrm{m}\mathrm{a}\mathrm{x}

CW

\biggr) \biggr) \biggr) 
,(7.1)

the combination technique solution satisfies

Work [\scrM \scrI (L(W\mathrm{m}\mathrm{a}\mathrm{x}))]\leq W\mathrm{m}\mathrm{a}\mathrm{x},(7.2)

limsup
W\mathrm{m}\mathrm{a}\mathrm{x}\rightarrow \infty 

Error [\scrM \scrI (L(W\mathrm{m}\mathrm{a}\mathrm{x}))]

W - \mu 
\mathrm{m}\mathrm{a}\mathrm{x}(log(W\mathrm{m}\mathrm{a}\mathrm{x})(\mu +1)(n(\bfTheta ,\chi ) - 1)

=C <\infty .(7.3)

Proof. Due to Assumption 4, the total work associated to \scrI (L) is bounded by

Work [\scrM \scrI (L)(u)]) =
\sum 

(\bfitalpha ,\bfitbeta )\in \scrI (L)

\Delta W\bfitalpha ,\bfitbeta 

\leq C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\sum 
\{ (\bfitalpha ,\bfitbeta )\in \BbbN D+N

+ : (\bfitr +\bfitgamma )\cdot \bfitalpha +\widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| \leq L\} 
e\bfitgamma \cdot \bfitalpha +\mathrm{l}\mathrm{o}\mathrm{g} | \bfitbeta +\bfone | 

\leq C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\int 
\{ (\bfitalpha ,\bfitbeta )\in (1,\infty )D+N : (\bfitr +\bfitgamma )\cdot (\bfitalpha  - \bfone )+\widetilde \bfitg \cdot \bfitbeta +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta )| \leq L\} 

e\bfitgamma \cdot \bfitalpha +\mathrm{l}\mathrm{o}\mathrm{g} | \bfitbeta +\bfone | d\bfitalpha d\bfitbeta 

=C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\Biggl( 
D\prod 
i=1

e\gamma i

ri + \gamma i

\Biggr) \int 
\{ (\=\bfitalpha ,\bfitbeta )\in (0,\infty )D\times (1,\infty )N : | \=\bfitalpha | +\widetilde \bfitg \cdot \bfitbeta +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta )| \leq L\} 

e\bfTheta \cdot \=\bfitalpha +\mathrm{l}\mathrm{o}\mathrm{g} | \bfitbeta +\bfone | d\=\bfitalpha d\bfitbeta ,
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A CT FOR OCPs CONSTRAINED BY RANDOM PDEs 717

where we used Lemma 7.1, performed the change of variables \=\alpha i = (\alpha i - 1)(ri+\gamma i), and defined
\Theta i =

\gamma i
ri+\gamma i

. The change of variables \=\beta i = \beta i\widetilde gi leads to
Work [\scrM \scrI (L)(u)]\leq D\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}

\int 
\Bigl\{ 
(\=\bfitalpha ,\=\bfitbeta )\in (0,\infty )D\times \otimes N

i=1(\widetilde gi,\infty ): | \=\bfitalpha | +| \=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| \leq L
\Bigr\} e\bfTheta \cdot \=\bfitalpha +| \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( 
\=\bfitbeta \widetilde \bfitg +\bfone 

\Bigr) 
| 
d\=\bfitalpha d\=\bfitbeta ,

(7.4)

where D\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k} := C\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}(
\prod D
i=1

e\gamma i
ri+\gamma i

)(
\prod N
i=1

1\widetilde gi ). Denoting with Int the right-hand side of (7.4)
and using Lemma 7.4, we get

Int =

\int 
\Bigl\{ 
\=\bfitbeta \in \otimes N

i=1(\widetilde \bfitg i,\infty ): | \=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg ))| \leq L
\Bigr\} e| \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( 
\=\bfitbeta \widetilde \bfitg +\bfone 

\Bigr) 
| 
\int 
\Bigl\{ 
\=\bfitalpha \in (0,\infty )D: | \bfitalpha | \leq L - | \=\bfitbeta |  - | \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| 

\Bigr\} e\bfTheta \cdot \=\bfitalpha d\=\bfitalpha d\=\bfitbeta 

(7.5)

\leq 
\int 
\Bigl\{ 
\=\bfitbeta \in \otimes N

i=1(\widetilde \bfitg i,\infty ): | \=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| \leq L
\Bigr\} \scrU D(\bfTheta ,0)e| \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( 
\bfitbeta \widetilde \bfitg +\bfone 

\Bigr) 
| +\chi (L - | \=\bfitbeta |  - | \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| )L\eta (\Theta ,\chi ) - 1d\=\bfitbeta 

\leq \scrU D(\bfTheta ,0)e\chi L
\int 
\Bigl\{ 
\=\bfitbeta \in \otimes N

i=1(\widetilde \bfitg i,\infty ): | \=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| \leq L
\Bigr\} e| \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( 
\=\bfitbeta \widetilde \bfitg +\bfone 

\Bigr) 
| 
e - \chi (| 

\=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| )L\eta (\Theta ,\chi ) - 1d\=\bfitbeta 

\leq \scrU D(\bfTheta ,0)e\chi LL\eta (\Theta ,\chi ) - 1

\int 
\Bigl\{ 
\=\bfitbeta \in \otimes N

i=1(\widetilde \bfitg i,\infty ): | \=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| \leq L
\Bigr\} e| \mathrm{l}\mathrm{o}\mathrm{g}

\Bigl( 
\=\bfitbeta \widetilde \bfitg +\bfone 

\Bigr) 
| 
e - \chi (| 

\=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| )d\=\bfitbeta .

Plugging (7.5) into (7.4),

Work [\scrM \scrI (L)(u)]\leq CWL
\eta (\bfTheta ,\chi ) - 1e\chi L,

where CW =D\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{k}\scrU D(\bfTheta ,0)
\int \Bigl\{ 

\=\bfitbeta \in \otimes N
i=1(\widetilde \bfitg i,\infty ): | \=\bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| \leq L

\Bigr\} e| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg +\bfone )| e - \chi (| \bfitbeta | +| \mathrm{l}\mathrm{o}\mathrm{g}( \=\bfitbeta \widetilde \bfitg )| )d\=\bfitbeta <\infty as

the latter integral is bounded for every L. We now focus on the error estimate,

Error [\scrM \scrI (\widehat L)(u)]\leq C\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\sum 
\{ (\bfitalpha ,\bfitbeta )\in \BbbN D+N

+ : (\bfitr +\bfitgamma )\cdot \bfitalpha +\widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >L\} 
e - \bfitr \cdot \bfitalpha  - \widetilde \bfitg \cdot (\bfitbeta +\bfone )

=C\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r}

\left(   \sum 
\{ (\bfitalpha ,\bfitbeta )\in \BbbN D+N

+ : (\bfitr +\bfitgamma )\cdot \bfitalpha >L\} 
e - \bfitr \cdot \bfitalpha  - \widetilde \bfitg \cdot (\bfitbeta +\bfone )

+
\sum 

\{ \bfitalpha \in \BbbN D
+ (\bfitr +\bfitgamma )\cdot \bfitalpha \leq L\} 

e - \bfitr \cdot \bfitalpha 
\sum 

\{ \bfitbeta \in \BbbN N
+ \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >L - (\bfitr +\bfitgamma )\cdot \bfitalpha \} 

e - \widetilde \bfitg \cdot (\bfitbeta +\bfone )

\right)   .

(7.6)

Using the change of variables \=\alpha i = (ri + \gamma i)\alpha i, the first term can be bounded as

\sum 
\{ (\bfitalpha ,\bfitbeta )\in \BbbN D+N

+ : (\bfitr +\bfitgamma )\cdot \bfitalpha >L\} 
e - \bfitr \cdot \bfitalpha  - \widetilde \bfitg \cdot (\bfitbeta +\bfone ) =

\left(  \sum 
\bfitbeta \in \BbbN N

+

N\prod 
i=1

e - \widetilde gj(\beta j+1)

\right)  \left(  \sum 
\bfitalpha \in \BbbN N

+ : (\bfitr +\bfitgamma )\cdot \bfitalpha >L

e - \bfitr \cdot \bfitalpha 

\right)  
(7.7)

=

\Biggl( 
N\prod 
i=1

e - 2\widetilde gi
1 - e - \widetilde gi

\Biggr) \left(  \sum 
\bfitalpha \in \BbbN N

+ : (\bfitr +\bfitgamma )\cdot \bfitalpha >L

e - \bfitr \cdot \bfitalpha 

\right)  
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\leq 

\Biggl( 
N\prod 
i=1

e - 2\widetilde gi
1 - e - \widetilde gi

\Biggr) \int 
\bfitalpha \in (1,\infty )D: (\bfitr +\bfitgamma )\cdot \bfitalpha >L

e - \bfitr \cdot \bfitalpha +\bfitr d\bfitalpha 

\leq 

\Biggl( 
N\prod 
i=1

e - 2\widetilde gi
1 - e - \widetilde gi

\Biggr) \Biggl( 
D\prod 
i=1

eri

ri + \gamma i

\Biggr) \int 
\=\bfitalpha \in \otimes D

i=1(ri+\gamma i,\infty ): | \=\bfitalpha | >L
e - \bfPhi \cdot \=\bfitalpha d\=\bfitalpha 

\leq CE,1e
 - \delta LLn(\Phi ,\delta ) - 1,

where we used Lemma 7.5 with

\bfPhi i =
ri

ri + \gamma i
, \delta = min

i=1,...,N
\bfPhi i, and CE,1 :=

\Biggl( 
N\prod 
i=1

e - 2\widetilde gi
1 - e - \widetilde gi

\Biggr) \Biggl( 
D\prod 
i=1

eri

ri + \gamma i

\Biggr) 
\scrB D(\bfPhi ).

Concerning the second term, we first define H := (\bfitr + \bfitgamma ) \cdot \bfitalpha and \widehat L :=L - H, so that\sum 
\{ \bfitbeta \in \BbbN N

+ : \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >\widehat L\} 
e - \widetilde \bfitg \cdot (\bfitbeta +\bfone ) \leq 

\int 
\{ \bfitbeta \in \otimes N

i=1(1,\infty ): \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >\widehat L\} e
 - \widetilde \bfitg \cdot \bfitbeta d\bfitbeta 

= e| \widetilde \bfitg | 
\int 
\{ \bfitbeta \in \otimes N

i=1(1,\infty ): \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >\widehat L\} e
 - \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )|  - | \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| d\bfitbeta .

Setting ti = \widetilde gi(\beta i + 1) + log(\beta i + 1) = ti, q(ti) = \beta i, with q(ti)\leq ti\widetilde gi  - 1, leads to\sum 
\{ \bfitbeta \in \BbbN N

+ : \widetilde \bfitg \cdot \bfitbeta +| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >\widehat L\} 
e - \widetilde \bfitg \cdot (\bfitbeta +\bfone )(7.8)

\leq 

\Biggl( 
N\prod 
i=1

e\widetilde gi
\Biggr) \int 

\{ \bft \in \otimes D
i=1(2\widetilde gi+\mathrm{l}\mathrm{o}\mathrm{g}(2),\infty ): | \bft | >\widehat L\} e

 - | \bft | 

\Biggl( 
N\prod 
i=1

(q(ti) + 1)2\widetilde gj(q(ti) + 1)

\Biggr) 
d\bft 

\leq 

\Biggl( 
N\prod 
i=1

e\widetilde gi\widetilde g2i
\Biggr) \int 

\{ \bft \in \otimes D
i=1(2\widetilde gi+\mathrm{l}\mathrm{o}\mathrm{g}(2),\infty ): | \bft | >\widehat L\} e

 - | \bft | +| \mathrm{l}\mathrm{o}\mathrm{g}(\bft )| d\bft 

\leq CE,2e
 - \widehat L(\widehat L+ 1)2N - 1,

where we used Lemma 7.3 in the last step and set CE,2 = (
\prod N
i=1

e\widetilde gi\widetilde g2i ). Inserting (7.8) into the

second term of (7.6) and using Lemma 7.4,\sum 
\{ \bfitalpha \in \BbbN D

+ (\bfitr +\bfitgamma )\cdot \bfitalpha \leq L\} 
e - \bfitr \cdot \bfitalpha 

\sum 
\{ \bfitbeta \in \BbbN N

+ \widetilde \bfitg \cdot (\bfitbeta +\bfone )+| \mathrm{l}\mathrm{o}\mathrm{g}(\bfitbeta +\bfone )| >L - (\bfitr +\bfitgamma )\cdot \bfitalpha \} 
e - \widetilde \bfitg \cdot (\bfitbeta +\bfone )

\leq CE,2
\sum 

\{ \bfitalpha \in \BbbN D
+ (\bfitr +\bfitgamma )\cdot \bfitalpha \leq L\} 

e - L+\bfitgamma \cdot \bfitalpha (L+ 1 - (\bfitr + \bfitgamma ) \cdot \bfitalpha )2N - 1

\leq CE,2

\int 
\{ \bfitalpha \in (1,\infty )D: (\bfitr +\bfitgamma )\cdot (\bfitalpha  - \bfone )\leq L\} 

e - L+\bfitgamma \cdot \bfitalpha (L+ 1 - (\bfitr + \bfitgamma ) \cdot (\bfitalpha  - \bfone ))2N - 1

\leq CE,2

\Biggl( 
D\prod 
i=1

e\gamma i

\gamma i + ri

\Biggr) 
e - L

\int 
\{ \bfx \in (0,\infty )D: | \bfx | \leq L\} 

e\Theta \cdot \bfx (L+ 1 - | \bfx | )2N - 1d\bfx 

\leq CE,3e
(\chi  - 1)LLn(\bfTheta ,\chi ) - 1,
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where CE,3 = CE,2(
\prod D
i=1

e\gamma i
\gamma i+ri

)\scrU D(\bfTheta ,2N  - 1). Since \delta = 1 - \chi , n(\bfTheta , \chi ) = n(\bfPhi , \delta ), and using
the bounds for the two terms of (7.6), we conclude that

Error [\scrM \scrI (L)(u)]\leq CE,1e
 - \delta LL\eta (\bfPhi ,\delta ) - 1 +CE,3e

(\chi  - 1)LLn(\bfTheta ,\chi ) - 1 =CE,4e
(\chi  - 1)LLn(\bfTheta ,\chi ) - 1.

Finally, a direct calculation shows that (7.1) leads to (7.2) and (7.3).
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