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Abstract. The basic concepts of the differential geometry are shortly reviewed and applied to the study of
VES production function in the spirit of the works of Vı̂lcu and collaborators. A similar characterization
is given for a more general production function, namely the Kadiyala production function, in the case of
developable surfaces.

1. Introduction

The study of production functions in the context of neoclassical economy has a long tradition of research
from many fields of knowledge. As pointed out by T. M. Humphrey [9], the first to make a significant
contribution to the development of a mathematically consistent approach to the marginal productivity
theory was the German mathematical economist, location theorist, and agronomist Johann Heinrich von
Thünen, in the 19th century (for further details on the history of production functions, see the working
paper of S. K. Misha [16]).

The fortune of this mathematical model came in the 1927, when the economist P. Douglas and the
mathematics professor C. W. Cobb proposed their famous equation, largely used in the textbooks as well as
cited in articles and in surveys [6]. Over the following years, the Cobb-Douglas production function became
a key concept of neoclassical economics1) (for interesting updates and testing due to Douglas himself, see
[7]). At the end of the 1950s, R. M. Solow introduced a generalization of the Cobb-Douglas production
function: the CES (Constant Elasticity of Substitution) production function [21]; his idea was to aggregate
the inputs in a single quantity. The function that realizes this combination of inputs is the so-called aggregator
function. The aggregator function of CES functions has a constant elasticity of substitution2). However, a
different generalization was developed between the 1960s and 1970s by C. A. K. Lovell [13, 14], Y. G. Lu and
L. Fletcher [15] and N. S. Revanark [19, 20]: the VES (Variable Elasticity of Substitution) production function.
Our analysis stems from the study of this last class of functions (in particular, from the formalization due
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1)It is appropriate to notice that the interpretation of the Cobb-Douglas production function is still a debated topic, as one can read,
e.g., in [12].

2)We recall that in neoclassical production theory the elasticity of substitution, introduced by J. Hicks in the 1930s [8], provides a
measure degree of substitutability between two factors of productions.
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to Revanark). The approach which we shall use could be called the differential geometric approach. This
particular technique, in connection with the study of production functions, was introduced and developed
much more recently by A. D. Vı̂lcu, and G. E. Vı̂lcu [22–26]. Many contributions are due to B.-Y. Chen [1–5],
and X. Wang [28, 29], as well. The classical theory of production functions is based on the projections of
such functions on a plane, but such an approach does not seem exhaustive, at least from the mathematical
point of view. Vı̂lcu solved this problem by identifying a production function Q : Rn

→ R with Q, the
graph of Q; this turns out to be the nonparametric hypersurface of the (n + 1)-dimensional Euclidean space
Rn+1 defined by:

G(x1, . . . , xn) = (x1, . . . , xn,Q(x1, . . . , xn)) (x1, . . . , xn) ∈ Rn
+. (1)

Thanks to this reinterpretation, one can study the production functions in terms of the geometry of their
graphs G ⊂ Rn+1.

Remark 1.1. We are denoting with G : Rn
→ Rn+1 a parametrization of the hypersurfaceG, which is a n-dimensional

subset of the (n + 1)-dimensional Euclidean space. This distinction is rather important in the formalism of differential
geometry. If G is defined in A ⊂ Rn, then G = G(A).

The aim of the paper is twofold. Starting from basic concepts of differential geometry of surfaces, we shall
study the 2-inputs (i.e. 2- dimensional) VES production function, obtaining a result, which essentially agree
to those achieve by Vı̂lcu and collaborators for the generalized Cobb-Douglas production function, and
for the generalized CES production function in relation with the Gaussian curvature of the corresponding
surface. Consequently, we explore a more general 2-inputs production function introduced by Kadiyala
in the 1970s [11]. A renewed interest for the function introduced by Kadiyala seems to have arisen in
recent years, particularly due to the works of C. A. Ioan and G. Ioan [10] and Vı̂lcu [27]. For this particular
function, which is a combination of Cobb-Douglas, CES and VES production functions, we prove a result
on the corresponding Gaussian curvature in the case of developable surfaces.

The paper is organized as follows. In Section 2 we present an overview of the differential geometry of
surfaces, with basic definitions and properties. In Section 3 we study the VES production function as a
surface, proving a result which links the returns to scale with the Gaussian curvature (in the same way as
done by Vı̂lcu, for instance, in [26]). In Section 4 we show that the results concerning returns to scale and
Gaussian curvature are not valid for a more general 2-inputs production function, namely the Kadiyala
production function. Finally, in Section 5 we draw the conclusion, giving some suggestions for further
developments.

2. Basic concepts of Differential Geometry

In this section we recall some basic concepts of differential geometry of 2-dimensional surfaces inR3 (we
refer to [17] for further readings); these concepts can easily be generalized to n-dimensional hypersurfaces
in Rn+1, for which we refer to [26]; however, it is unnecessary for the purpose of this article, in which we
focus on functions of two variables, namely the VES and the Kadiyala production functions.

Let U be an open set in R2, and let f : U→ R be a (smooth) function. Let F : R2
→ R3, defined as

F(x1, x2) = (x1, x2, f (x1, x2)),

be the parametrization of the surface

F = {(x1, x2, f (x1, x2)) ∈ R3
|(x1, x2) ∈ U}. (2)

Denote with 〈·, ·〉 the natural inner product on R3, and with ‖·‖ the norm it induces. With this notation, we
can give the following:
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Definition 2.1. The first fundamental form 1 of the surface F is given by

1 :=
2∑

i=1

1iidx2
i + 2

∑
1≤i< j≤2

1i jdxidx j = 111dx2
1 + 122dx2

2 + 2112dx1dx2, (3)

where

1ii = 〈
∂ f
∂xi

,
∂ f
∂xi
〉, i ∈ {1, 2} and 1i j = 〈

∂ f
∂xi

,
∂ f
∂x j
〉, 1 ≤ i < j ≤ 2. (4)

Definition 2.2. The second fundamental form h of the surface F is given by

h :=
2∑

i=1

hiidx2
i + 2

∑
1≤i< j≤2

hi jdxidx j = h11dx2
1 + h22dx2

2 + 2h12dx1dx2, (5)

where

hii = 〈N,
∂2 f
∂x2

i

〉, i ∈ {1, 2} and hi j = 〈N,
∂2 f
∂xi∂x j

〉, 1 ≤ i < j ≤ 2, (6)

and

N =

∂ f
∂x1
×

∂ f
∂x2∥∥∥∥ ∂ f

∂x1
×

∂ f
∂x2

∥∥∥∥ , (7)

is the Gauss map of the surface, and × indicates the vector product in R3; i.e., N is the unit normal vector of the
surface in each point.

Remark 2.3. The standard notation for the first and second fundamental form is to indicate their (symmetric) matrix
representations with the Roman numeral I = (1i j)i, j and II = (hi j)i, j, respectively.

We can now give the concluding definitions for this section:

Definition 2.4. The Gaussian curvature of a point x of the surface is given by

K(x) =
det[II](x)
det[I](x)

. (8)

Definition 2.5. We call developable a surface having zero Gaussian curvature in all its points.

We are particularly interested in developable surfaces because they can be flattened on a plane by projection,
without losing essential information about their geometry, hence easing their study.
The main results of the paper are two theorems, which give conditions on the VES and Kadiyala production
functions, which ensure the corresponding surfaces are developable.

3. 2-Input VES Production Function

This section is devoted to the study of the VES production function, introduced by N. S. Revankar in
[18–20]:

Q(u, v) = kuδ(1−βρ)((ρ − 1)u + v)βδρ. (9)
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We shall assume the following set of hypotheses:

(?)



k > 0,
0 < β < 1,
0 < βρ < 1,
(ρ − 1)u + v > 0,
δ > 0.

In this settings, δ is the parameter of return to scale.

Figure 1: Plot of Q(u, v) for a random choice of the parameters β and ρ satisfying (?).

Remark 3.1. We recall that a VES production function has constant, increasing or decreasing returns to scale if
δ = 1, δ > 1, or δ < 1, respectively.

Remark 3.2. The assumptions (?) allows us to exclude degenerate cases in which, for instance, one of the two inputs
is removed. Moreover, the assumption (ρ − 1)u + v > 0 it is necessary when ρ < 1 to ensure the well-posedness of
Q(u, v) (it is clear that if ρ > 1, since u, v > 0, this condition is redundant). We notice also that for ρ < 1 we can
rewrite that condition as

u
v
<

1
1 − ρ

,

or, equivalently,

v
u
> 1 − ρ. (10)

By using the same notation of Sect. 1, we introduce the following VES surface parametrized by

G(u, v) = (u, v,Q(u, v)). (11)
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Remark 3.3. In [18], Revankar proved that the elasticity of substitution a for the VES production function is

σ(u, v) = 1 +
ρ − 1

1 − βρ
u
v
.

Hence, the VES production function varies linearly with the capital-labor ratio u/v. In [20], Revankar assumes σ > 0
obtaining, as an additional constraint for the economically relevant region of the variables domain,

v
u
>

1 − ρ
1 − βρ

,

which, since 1 − βρ < 1, is stricter than (10).

We can now present and prove the main theorem of this section.

Theorem 3.4. Let us consider the parametrization of a VES surface defined in Eq. (11), with Q(u, v) satisfying
conditions (?).

• The VES production function has constant return to scale if and only if the VES surface is developable.

• The VES production function has decreasing return to scale if and only if the VES hypersurface has positive
Gaussian curvature.

• The VES production function has increasing return to scale if and only if the VES hypersurface has negative
Gaussian curvature.

Proof. We can write the Gaussian curvature (defined as in Sec. 2) of the VES surface explicitly, using Eq.
(11), obtaining:

K =
β(δ − 1)δ2k2ρ(βρ − 1)u2(βδρ+δ+1)((ρ − 1)u + v)2βδρ+2

(DenF(u, v))2 , (12)

where

DenF(u, v) =δ2k2u2δ
(
u2

(
ρ
(
β2ρ + ρ − 2

)
+ 1

)
− 2(ρ − 1)uv(βρ − 1)+

v2(βρ − 1)2
)

((ρ − 1)u + v)2βδρ + ((ρ − 1)u + v)2u2βδρ+2

=δ2k2u2δ
(
β2ρ2u2 + ((ρ − 1)u − v(ρβ − 1))2

)
((ρ − 1)u + v)2βδρ+

((ρ − 1)u + v)2u2βδρ+2.

It is easy to see that DenF(u, v) , 0 for u, v > 0. The claim follows immediately, keeping in mind assumptions
(?).

4. 2-Input Kadiyala Production Function

In the 1970s, Kadiyala introduced an interesting generalization of production functions [11] (see also
the works already mentioned by Ioan [10] and Vı̂lcu [27].), which in this section we shall study with a
differential geometry approach. The production function is given by:

P(u, v) =
(
k1uβ1+β2 + 2k2uβ1 vβ2 + k3vβ1+β2

) δ
β1+β2 . (13)

We shall assume the following set of hypotheses:
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(??)



k1 + 2k2 + k3 = 1,
ki ≥ 0, i = 1, 2, 3,
(k1, k2) , (0, 0),
(k2, k3) , (0, 0),
β1(β1 + β2) > 0,
β2(β1 + β2) > 0,
δ > 0.

As in the previous section, δ > 0 is the parameter of returns to scale.

Figure 2: Visualization of P(u, v) for a random choice of the parameters β1, β2 and δ < 1.

Remark 4.1. We are assuming k1 + 2k2 + k3 = 1, without loss of generality. The function P(u, v) is homogeneous of
degree one (in the inputs u and v) when δ = 1 (i.e., for constant returns to scale). We also assume that β1 and β2 have
the same sign as β1 + β2. In this way, we ensure that the marginal products are non-negative. The two conditions
(k1, k2) , (0, 0) and (k2, k3) , (0, 0) exclude the possibility of the elimination of one input, which would lead to a
degenerate production function.

Remark 4.2. We notice that for k2 = 0 we recover a CES-type production function (setting also β1+β2 < 1); for k3 = 0
we obtain the Lu-Fletcher-type production function; for k1 = 0, k3 = 0, and δ = 1 we obtain a Cobb-Douglas-type
production function3); finally, for β1 = 1

ρµ − 1, β2 = 1, k3 = 0 we get a VES-type production function back.

3)We are referring here to the classical Cobb-Douglas function with constant return to scale (δ = 1):

Q(u, v) = Au1−αvα, α =
β1

β1 + β2
.

To obtain increasing/decreasing returns to scale the reader could keep δ as free parameter.
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Figure 3: Visualization of P(u, v) for a random choice of the parameters β1, β2 and δ > 1.

By using the same notation as Sect. 1, we introduce the following
Kadiyala surface parametrized by

G(u, v) = (u, v,P(u, v)). (14)

Analogously to the previous section, we can now state the main result.

Theorem 4.3. Let us consider the Kadiyala surface with the parametrization given by Eq. (14), with P(u, v) satisfying
conditions (??). Then the Kadiyala surface is developable if and only if one of the following conditions holds:

• δ = 1 (i.e. the Kadiyala production function has constant returns to scale).

• k2 = 0 and β1 + β2 = 1

• β1 = β2 = 1 and k2
2 − k1k3 = 0.

In particular the last two cases implies that the Kadiyala production function is a perfect substitutes production
function.

Proof. Firstly, we explicitly calculate the Gaussian curvature of the Kadiyala surface and we obtain:

K =
T1(u, v) · T2(u, v)

(DenG(u, v))2 ,

where

T1(u, v) =
(
β1 + β2

) 2(δ − 1)δ2uβ1+2vβ2+2
·

·

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2

+2,

T2(u, v) =
(
β1 + β2

)
k1uβ2

(
2
(
β2 − 1

)
β2k2uβ1 + (β2

1+

+
(
2β2 − 1

)
β1 +

(
β2 − 1

)
β2)k3vβ1

)
− 2β1k2vβ2 ·

·

(
2β2k2uβ1 −

(
β1 − 1

) (
β1 + β2

)
k3vβ1

)
,
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and

DenG(u, v) = A1 + A2 + A3 + A4 + A5,

with

A1 =
(
β1 + β2

) 2k2
1v2u2(β1+β2)·

·

(
δ2

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2 + u2

)
A2 =

(
β1 + β2

) 2k2
3u2v2(β1+β2)

·

·

(
δ2

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2 + v2

)
A3 =4

(
β1 + β2

)
k2k3uβ1+2vβ1+2β2 ·

·

(
β2

(
δ2

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2 + v2

)
+ β1v2

)
A4 =4k2

2u2β1 v2β2 ·

·

(
β2

1v2
(
δ2

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2 + u2

)
+ β2

2u2
·

·

(
δ2

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2 + v2

)
+ 2β1β2u2v2

)
A5 =2

(
β1 + β2

)
k1uβ1+β2 vβ2+2

·

·

( (
β1 + β2

)
k3u2vβ1 + 2k2uβ1 ·

·

(
β1

(
δ2

(
k1uβ1+β2 + vβ2

(
2k2uβ1 + k3vβ1

)) 2δ
β1+β2 + u2

)
+ β2u2

) )
DenG(u, v) is clearly positive for (u, v) , (0, 0), since it consists of sums and products of positive terms4).
To prove the thesis we need to describe the parameter set in which K ≡ 0. We remark that

K ≡ 0 ⇐⇒ T1(u, v) ≡ 0 ∨ T2(u, v) ≡ 0.

If δ = 1, we immediately get T1(u, v) ≡ 0, and hence K ≡ 0. Let us assume δ , 1. In this case T1(u, v) , 0, so
we can conclude that

T1(u, v) ≡ 0 ⇐⇒ δ = 1.

We shall now study T2(u, v). Firstly, we rewrite T2(u, v), collecting powers of u and v as follows:

T2(u, v) =
(
2β3

2 + 2β1β
2
2 − 2β2

2 − 2β1β2

)
k1k2uβ1+β2

− 4β1β2k2
2uβ1 vβ2

+
(
β3

1 + 3β2β
2
1 − β

2
1 + 3β2

2β1 − 2β2β1 + β3
2 − β

2
2

)
k1k3uβ2 vβ1

+
(
2β3

1 + 2β2β
2
1 − 2β2

1 − 2β2β1

)
k2k3vβ1+β2 .

If k1 = 0 (or, by symmetry, if k3 = 0), we obtain T(u, v) , 0 (in the first quadrant). In the case k2 = 0, we have

T2(u, v) =
(
β3

1 + 3β2β
2
1 − β

2
1 + 3β2

2β1 − 2β2β1 + β3
2 − β

2
2

)
k1k3uβ2 vβ1

=
(
β1 + β2 − 1

) (
β1 + β2

) 2k1k3uβ2 vβ1

We get T2(u, v) ≡ 0 if and only if5) β1 + β2 = 1.
Finally, let we assume ki , 0 for i = 1, 2, 3. If β1 , β2 it is impossible6) to obtain T2(u, v) = 0. Thus, let us

4)We recall that (??) implies that β1, β1 and β1 + β2 have the same sign.
5)The solution β1 = −β2 is forbidden by (??).
6)Because of, e.g., the term −4β1β2k2

2uβ1 vβ2 .
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fix β1 = β2 = β. So T2(u, v) becomes:

T2(u, v) =4β2 (
β − 1

)
k1k2u2β+

4β2
((

2β − 1
)

k1k3 − k2
2

)
uβvβ+

4β2 (
β − 1

)
k2k3v2β,

which is equal to 0 if and only if7) β = 1 and k1k3 = k2
2. The proof is completed by noting that

T2(u, v) ≡ 0 ⇐⇒
(
k2 = 0 ∧ β1 + β2 = 1

)
∨

(
β1 = β2 = 1 ∧ k1k3 = k2

2

)
.

In conclusion, we notice that for k2 = 0 and β1 + β2 = 1 we have the following function:

P1(u, v) = (k1u + k3v)δ.

Moreover, for β1 = β2 = 1 and k2
2 − k1k3 = 0 we obtain

P2(u, v) =
(√

k1u +
√

k3v
)δ
.

Thus, both cases lead to a perfect substitutes production function.

5. Summary and conclusions

In this paper we analyze two production functions from the point of view of differential geometry.
In particular, in accordance with the approach of Vı̂lcu, we give a characterization of the (2-input) VES

function in terms of curvature of the related surface. This result is analogous (as we expected) to the results
obtained by Vı̂lcu for the Cobb-Douglas and the CES production function.

The second part of the paper is devoted to another kind of production function, which could be seen as
a combination of the most famous (2-inputs) production functions. We call it Kadyiala production function.
For the latter, computations become more cumbersome, but it is still possible to give a characterization
connected with the Gaussian curvature of the corresponding surface, at least in the case of developable
surfaces. The constant returns to scale is a necessary condition if we suppose that the Kadyiala production
function is not a perfect substitutes production function; this result is consistent with the previous works
of Vı̂lcu, as well.

We conclude with a short outlook on possible research perspectives: a natural successive step in our
analysis would be to study in detail the sign of the curvature of the Kadyiala production function, its
dependence on specific choices of the parameters and the interpretation of such picks. Another logical path
to follow would be to generalize the results presented in this paper for functions of a generic number of
inputs n; however, one would need to propose a clever way of analyzing such a function, since computations
proved to be cumbersome even for the 2-dimensional case; in this regard, it would be particularly interesting
to study the connections between our work and recent papers by Ioan [10] and Vı̂lcu [27].

Acknowledgments: NC and MS would like to thank the University of Pavia and the University of Trento,
respectively, for supporting their research.
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