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Geometric Relational Framework for General-Relativistic
Gauge Field Theories

Jordan T. François* and Lucrezia Ravera*

In loving memory of Olivia, who nurtured her young nephew’s nascent passion for the universe, and
whose curiosity, creative energy, and dedication continue to shine upon us.

It is recalled how relationality arises as the core insight of general-relativistic
gauge field theories from the articulation of the generalized hole and
point-coincidence arguments. Hence, a compelling case for a manifestly
relational framework ensues naturally. A formulation for such a framework is
proposed, based on a significant development of the dressing field method of
symmetry reduction. A version for the group Aut(P) of automorphisms of a
principal bundle P over a manifoldM is first developed, as it is the most
natural and elegant, and as P hosts all the mathematical structures relevant to
general-relativistic gauge field theory. However, as the standard formulation is
local, onM, the relational framework for local field theory is then developed.
The generalized point-coincidence argument is manifestly implemented,
whereby the physical field-theoretical degrees of freedoms co-define each
other and define, coordinatize, the physical spacetime itself. Applying the
framework to General Relativity, relational Einstein equations are obtained,
encompassing various notions of “scalar coordinatization” à la
Kretschmann–Komar and Brown–Kuchař.

1. Introduction

A keymoment in the development of General Relativity (GR) was
the realization by Einstein of the meaning of diffeomorphism
covariance in the theory: the fact that spacetime points, or re-
gions, are defined relationally, via field values coincidences, and
so are, by extension, the physical degrees of freedoms (d.o.f.)
of those fields. The conclusion results from the articulation
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of the famous “hole argument” and
“point-coincidence argument”. This es-
sential physical insight, relationality, at
the heart of general-relativistic physics is
curiously often overlooked. Which unfor-
tunately leads to misleading statements
spreading frictionlessly in the modern
technical literature.
In Section 2, we therefore propose to

briefly recapitulate the logic behind the
relational picture in general-relativistic
gauge field theory (gRGFT), detailed in
ref. [1]. We start with reminding the logic
as it arises in GR, and then also argue
that a similar line of arguments makes
a strong case for the notion that the
gauge principle (GP) in gauge field the-
ory (GFT) is a way to encode the re-
lational character of gauge physics. For
this, one has to admit that the internal
d.o.f. of gauge fields are probing an en-
riched spacetime whose points are not

structureless: such a space is described by the geometry of a
fiber bundle P (bundle geometry being widely recognized as the
foundation of classical GFT). We articulate the dialectics arising
from requiring “gauge invariance” under both passive and ac-
tive gauge transformations on a bundle. In such a space, we ar-
gue that relationality results from the conjunction of an “internal
hole argument” and an “internal point-coincidence argument”.
Finally, bringing GR and GFT together, we thus conclude that
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the paradigmatic core of the framework of gRGFT is the rela-
tional character of the physics it describes, and that it is encoded
in the requirement of covariance under the diffeomorphism and
gauge groups, its local covariance groups.
Therefore, the current default formalism of gRGFT is mani-

festly covariant and tacitly relational. It is certainly a worthy en-
deavor to search for an invariant andmanifestly relational formu-
lation of gRGFT, which would have many advantages: its observ-
ables and fundamental d.o.f. would be easily identified, its field
equations would have a well-posed Cauchy problem, its quantiza-
tion would possibly be more easily achieved (an idea going back
at least to Dirac[2,3]), etc. In this paper, we propose such a formu-
lation based on the dressing field method (DFM) of symmetry
reduction[4–8] – see also ref. [9]. The latter being best understood
in terms of the geometry of field space, we will give our account
of this geometry, twice over.
First, in Section 3, we shall consider what we call the “global

field space”, i.e., the space of fields (differential forms) on a finite-
dimensional principal bundle P over a base manifold M, with
structure Lie group H. This global field space will be described
as an infinite-dimensional principal bundle with structure group
the automorphismgroupAut(P) ofPwhich contains (so to speak)
both diffeomorphisms of its base manifoldM and the subgroup
of vertical automorphisms, also known as (a.k.a.) the gauge
group of P. We further frame integration on P as an operation
on what we call the “associated bundle of regions” of P. Then,
in Section 4, we develop the DFM for Aut(P): in a nutshell, the
method amounts to a systematic algorithm to build basic objects
on the global field space, and on the bundle of regions. In the lat-
ter case, a notion of field-dependent regions of P arises naturally.
The standard formulation of field theory is not done on P, but

rather on its basemanifoldM, in what onemay call “bundle coor-
dinate patches”: field theory is thus done non-intrinsically, up-to
bundle coordinate changes (a.k.a. “gauge choices”). Yet the bun-
dle P is the natural space hosting the mathematical structures
relevant to field theory. In that respect, it may seem that a more
fundamental formulation of gRGFT on P is lacking. It is as if the
only available, state of the art, formulation of GR was its coordi-
nate tensor calculus version, rather than its formulation via in-
trinsic differential geometric methods. When such a bundle for-
mulation of gRGFT is available, our formalism will allow its re-
lational formulation. This is one of the motivation for pursuing
it to the extent we do.
Another motivation is that it gives a (much simpler) template

for the formalism as it applies to local field theory. The latter re-
quires to elaborate on the bundle geometry of what we call the
“local field space”, i.e., fields on M that are the local representa-
tives of global objects living on P. The structure group of the local
field space is the group Diff(M)⋉loc – withloc the local gauge
group of internal gauge theory – usually understood to be the co-
variance group of gRGFT. We develop this bundle geometry in
Section 5, also framing integration as an operation on the asso-
ciated bundle of regions of M. The DFM then implies to build
basic objects on the local field space and on its associated bun-
dle of regions. The physical relational spacetime arises from the
notion of dressed integrals. The formalism is applied to obtain a
manifestly relational and invariant reformulation of a gRGFT.We
illustrate it on GR and GR coupled to (scalar) electromagnetism
(EM). In the conclusion 6, we take stock of our results and sketch

further developments of our program. Appendices complete the
main text.

2. Relationality in General-Relativistic Gauge Field
Theory

The statement that physics is relational may appear too obvious
tomention. At an elementary level it may be understood as a sim-
ple kinematical proposition, meaning that physical objects evolve
with respect to (w.r.t.) each other. General-relativistic physics adds
two fundamental refinements. The first is that the very definition
of physical objects has to be relational, so that they co-define, and
evolve w.r.t., each others. Secondly, it takes this refinement so se-
riously so as to insist that there are no physical entities that can
influence others without being influenced in return: as it is often
phrased “nothing can act upon without being acted upon”. This
implies not only that no physical structure may constitute an ab-
solute reference (i.e., a fixed background) but also that these are
unnecessary. They arise only as limit cases of more fundamental
dynamical entities. This is known as background independence.
It is usually much less widely appreciated that the physics of

GFT shares this fundamental relational character, so that it is a
core insight of the union of the two: gRGFT. In this global frame-
work, relationality emerges from the requirement of heuristic
symmetry principles, the general covariance (GC) and GPs, un-
derstood as principles of “democratic epistemic access” toNature,
according to which there are no privileged situated viewpoints to
contemplate the law of Physics. The dialectics between the gen-
eralized hole argument and point-coincidence argument is key
to the outcome. The precise logic is laid out in detail in ref. [1].
As it serves as motivational background for this work, we briefly
review it below.

2.1. General-Relativistic Physics

The principle of GC of field equations requires that laws of
physics be indifferent to the choice of coordinates, which im-
plies that the equations describing these laws, the field equations,
be tensorial. In a first step of analysis, it means that the physics
described is that of a spacetime and its (field) content faithfully
modeled by a differentiable manifold M and fields ϕ defined on
it, satisfying tensorial field equations E(ϕ): The geometrical en-
tities (M,ϕ) are coordinate-invariant, and model the objective –
i.e., viewpoint independent – structure of spacetime and its field
content.
But a second step of analysis is required. As the automor-

phism group ofM, diffeomorphisms Diff(M), are also automor-
phisms of any natural bundles over M and their spaces of sec-
tions, i.e., of all geometric objects on M, in particular of the
space of tensors. The field equations are then Diff(M)-covariant,
so that Diff (M) is an automorphism group of the solution space
 := {ϕ |E(ϕ) = 0}, which is furthermore foliated into orbits: any
solution ϕ ∈  has a Diff(M)-orbitϕ ⊂  .1 This has fundamen-
tal consequences, stemming from articulating Einstein’s famous
hole argument and point-coincidence argument.[10–13]

1 The action of Diff(M) is a priori not free, a solution may have Killing
symmetries, 𝖪ϕ := {𝜓 ∈ Diff(M) |𝜓∗ϕ = ϕ} ≠ idM .
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Figure 1. Relationality in the general-relativistic framework.

The hole argument highlights the consequence of the colli-
sion between Diff(M)-covariance of E(ϕ) = 0 and the view that
(M,𝜙) faithfully represent a physical state of affair. It is standard
to phrase it in terms of solutions ϕ,ϕ′ ∈ ϕ, i.e., ϕ′ = 𝜓∗ϕ, such
that (s.t.)𝜓 is a compactly supported diffeomorphismwhose sup-
port D𝜓 ⊂ M is the “hole”: Manifestly, such a situation raises an
issue with the Cauchy problem, and in particular with the ini-
tial value problem, i.e., with determinism. To avoid these, two
options are available: One may either renounce GC of the field
equations – which was envisaged by Einstein in the 1913-1915
period[10] – or one may conclude that all solutions within the
same Diff(M)-orbit ϕ represent the same physical state. This
one-to-many correspondence between a physical state and its
mathematical descriptions in general/Diff (M)-covariant theories
means they are unable to physically distinguish betweenDiff(M)-
related solutions of E = 0, and consequently make no physical
distinction between Diff(M)-related points ofM. In other words,
spacetime and its field content are not described by (M,𝜙) only,
but by its Diff (M)-class.
This fact, far from being a drawback of the formalism, en-

codes the essential insight of GR physics, which Einstein iden-
tified through his famous point-coincidence argument: it is the
apparently obvious observation that physical interactions – thus
all measurements – happen as spacetime coincidences of the ob-
jects involved, and that the description of such coincidences is
Diff (M)-invariant. We may write this statement of the Diff(M)-
invariance of point-wise mutual relations  among the fields in
the collection {ϕ} symbolically as

 :  ×M →  ×M∕∼

≃
←←←←←←→ Relational spatiotemporal physical d.o.f.,

(ϕ, x) → (ϕ, x) ∼
(
𝜓∗ϕ,𝜓−1(x)

)
→ (ϕ; x) = (𝜓∗ϕ;𝜓−1(x)),

(1)

where  ×M∕∼ is the quotient of  ×M by the equivalence re-
lation (ϕ, x) ∼

(
𝜓∗ϕ,𝜓−1(x)

)
, i.e., it is the space of these equiv-

alence classes.2 The point-coincidence argument not only dis-
solves the apparent indeterminism issue raised by the hole argu-
ment, but taken to its logical conclusion it may be read both ways:

(1) can be understood tomean first that physical spacetime points
are defined, or individuated, as relational coincidences of distinct
physical field-theoretical d.o.f., and then, second, that these d.o.f.
are not instantiated within the individual, mathematical, fields
{ϕ} but by the relations among them.
In summary, the ultimate (ontological) consequence of the

(epistemic) GC principle, resulting from the conjunction of the
hole and point-coincidence arguments, is the relationality of
general-relativistic physics, which wemay state as follows: Space-
time is relationally defined via its field content, and fields are re-
lationally defined, and evolve, w.r.t. each other. Relationality of
physics is thus what is tacitly encoded by the Diff(M)-covariance
of a general-relativistic theory.3 The diagram Figure 1 summa-
rizes the logic leading to the relational picture in GR.
An all but similar analysis can be carried through for GFT.

2.2. Gauge Field Physics

The GP requires that the laws of physics be indifferent to the
choice of “gauge” representatives of the fields under considera-
tion, which implies that the field equations describing these laws
be gauge-tensorial. Classical GFT being based on the geometry
of fiber bundles, one easily identifies changes of gauge repre-
sentatives as changes of principal bundle coordinates, a.k.a. lo-
cal gluings, or passive gauge transformations. The GP can thus be
understood, in first analysis, to imply that gauge field physics
describes the structure and dynamics of an enriched spacetime

2 We shall meet such spaces later, in Section 3.5.1, understood as “as-
sociated bundles” to the field space Φ seen as an infinite-dimensional
principal bundle.

3 We may add that relationality is also a priori a feature of solutions of
E(ϕ) = 0 with Killing symmetries 𝖪ϕ ⊂ Diff(M), the subgroup 𝖪ϕ en-
coding further physical properties of a solution: e.g., signaling that ϕ
has a privileged class of observers. This holds in particular for homo-
geneous metric solutions, ϕ = g, among which Minkowski solution
g = 𝜂. Thus, as Kretschmann hinted at, Special Relativity (SR) in fact
enjoys Diff (M)-covariance. What makes it special is that its field equa-
tion E(g) = Riem(g) = 0 implies that the metric decouples from other
fields and has frozen dynamics (no d.o.f.), making it a background
structure. The solution g = 𝜂 has a Killing group, the Poincaré group
𝖪𝜂 = ISO(1, 3), distinguishing geodesic (inertial) observers as privi-
leged.
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and its field content, faithfully represented by a smooth princi-
pal fiber bundle P and fields ϕ defined on it, satisfying gauge-
tensorial equations E(ϕ) = 0: The geometrical objects (P,ϕ) are
bundle-coordinate invariant, and model the objective – i.e., view-
point independent – structure of the enriched spacetime and its
gauge-field content.
Now, the group of vertical automorphisms Autv(P) of the bun-

dle, isomorphic to its gauge group, is an automorphism group
of the geometric objects defined on P, notably connections (i.e.,
gauge potentials) and tensorial forms (field strengths, matter
fields and their covariant derivatives): it defines their active gauge
transformations. The field equations are then Autv(P)-covariant,
and Autv(P) is thus an automorphism group of the space of so-
lutions  := {ϕ |E(ϕ) = 0}, which it foliates into orbits: any so-
lution ϕ ∈  has a Autv(P)-orbit ϕ ⊂  .4 From this fact, one
may articulate an internal hole argument and an internal point-
coincidence argument.
The internal hole argument stresses the incompatibility be-

tween Autv(P)-covariance of E(ϕ) = 0 and the view that (P,ϕ)
faithfully represent the physical structure of an enriched space-
time and its field content. It can be expressed thus: The exis-
tence of two solutions ϕ,ϕ′ ∈ ϕ, i.e., ϕ′ = 𝜓∗ϕ, s.t. 𝜓 is a com-
pactly supported vertical automorphism whose support D𝜓 ⊂ P
is the “internal” hole, manifestly raises an issue with the Cauchy
problem and determinism. There are again two possibilities to
deal with this: One may either drop the requirement of gauge-
covariance of the theory (abandon the GP), which is unadvis-
able given the empirical success of the GFT framework, or con-
clude that all solutions within the same Autv(P)-orbit ϕ repre-
sent a single physical state. This is the well-know fact that in
GFT there is a one-to-many correspondence between a physical
state and its mathematical descriptions. A GFT is thus unable
to physically distinguish between Autv(P)-related solutions of the
field equations E(ϕ) = 0, and consequently cannot distinguish
Autv(P)-related points within fibers of P either. One must then
conclude that the enriched spacetime and its field content is not
described by (P,ϕ), but by its Autv(P)-class.
The active gauge-covariance under Autv(P) is not a mere re-

dundancy, it encodes a fundamental physical insight, estab-
lished by the internal point-coincidence argument, which is this:
Only the relative values of the internal d.o.f. of the fields at a
point p ∈ P have physical meaning, and the description of these
point-wise coincidences is Autv(P)-invariant.

5 The internal point-
coincidence argument dissolves any appearance of indetermin-
ism arising from (active) gauge symmetry of the theory and the
associated internal hole argument. Taking it a step further, it can
be understood to mean that points of the physical internal struc-
ture of spacetime are defined via coincidences of distinct internal
physical field-theoretical d.o.f., and that these d.o.f. do not belong
to the individual mathematical fields {ϕ} per se, but are instanti-
ated as internal relations among them.
Summarizing, the ontological consequence of the GP, result-

ing from the internal hole and point-coincidence arguments, is

4 There again, the action of Autv(P) is a priori not free: some solutions
may have gauge Killing symmetries, gt𝖪ϕ ≠ idP .

5 For example, in QED, only the relative phase of the electromagnetic
(EM) potential and charged field is meaningful. A stark illustration of
this is the Aharonov–Bohm (AB) effect.

the relationality of GFT physics, which one may state thus: The
internal structure of spacetime is relationally defined via its field
content, and internal d.o.f. are relationally defined and evolve
w.r.t. each other. Relationality of gauge field physics is thus tacitly
encoded by the Autv(P)-covariance of a GFT.

6

The lessons from the general-relativistic and gauge field-
theoretic frameworks obviously carry over to their union, which
we now consider.

2.3. General-Relativistic Gauge Field Theory

Taken together, the GC principle and the GP are the starting
points of the framework of gRGFT: They must be understood as
principles of democratic epistemic access to Nature, technically
implemented as the requirement that the field equations repre-
senting the laws of physics must be general covariant and gauge-
covariant, i.e., tensorial and gauge-tensorial.
In first analysis, this means that the general-relativistic gauge

physics describes the structure and dynamics of an enriched
spacetime, with structureful points, and its field content. The en-
riched spacetime is described by a principal bundle P with struc-
ture group H, acting freely (and transitively on fibers, i.e., H-
orbits), so that the space of fibers is a manifold P∕H = M (the
basemanifold) and one has the projectionmap 𝜋 : P → M. Thus,
the geometric structure that is to describe the spatiotemporal
d.o.f. is seen to emerge as a quotient space of the geometric struc-
ture describing the totality of the elementary d.o.f. (spatiotem-
poral + internal). Physical fields are described by geometric ob-
jects 𝜙 on P, satisfying tensorial and gauge-tensorial field equa-
tions E(ϕ) = 0. The geometric structure (P,ϕ) is coordinate and
bundle-coordinate invariant, andmodels the objective, viewpoint
independent, structure of the enriched relativistic spacetime and
its gauge field content.
Now, themaximal group of transformations of a bundle P is its

group of automorphisms Aut(P): the subgroup of H-equivariant
diffeomorphisms, preserving the fibration structure. It thus in-
duces smooth diffeomorphisms of the space of fibers P∕H = M:
there is a surjection 𝜋̃ : Aut(P) → Diff(M). The group of vertical
automorphisms induces the identity transformation onM – i.e.,
it is the kernel of 𝜋̃ – and is contained as a normal subgroup,
Autv(P) ⊲ Aut(P).7 We have the short exact sequence (SES) of
groups

idP → Autv(P) ≃  ⊲
←←←←←←→ Aut(P)

𝜋̃
←←←←←→ Diff(M) → idM. (2)

Naturally, Aut(P) acts as an automorphism group on the space of
geometric objects on P, notably connections and tensorial forms:
its action on objects of those spaces defines their combined

6 Notice that relationality is also enjoyed in particular by solutions with
gauge Killing symmetries gt𝖪ϕ ⊂ Autv(P) – the latter encoding further
physical properties of the solution.

7 One may define vertical diffeomorphisms of P, Diff v(P) :=
{
𝜓 ∈

Diff(P) |𝜋 ◦𝜓 = 𝜋}, so that Autv(P) ⊂ Diff v(P), which also induce
idM ∈ Diff(M) on M. But, since these are not H-equivariant, they are
not natural morphisms (arrows) in the category of principal bundles.
Still, they induce generalized gauge transformations, so are relevant for
GFT. See refs. [8, 14]. We will encounter this structure again in the
next section.
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Figure 2. Relationality in general-relativistic gauge field theory.

active gauge transformations and diffeomorphism transforma-
tions. The field equations of a general-relativistic gauge theory are
thus Aut(P)-covariant, and Aut(P), as an automorphism group of
the space of solutions  := {ϕ |E(ϕ) = 0}, foliates it into orbits
so that a solution ϕ ∈  has an Aut(P)-orbit ϕ ⊂  . This set the
stage for the generalized hole and point-coincidence arguments.
The generalized hole argument establishes the clash between

Aut(P)-covariance of the field equations E(ϕ) = 0 and the ini-
tial notion that (P,ϕ) faithfully represents an enriched general-
relativistic spacetime and its gauge field content. Indeed, the pos-
sibility of having two solutions ϕ,ϕ′ ∈ ϕ, i.e., ϕ′ = 𝜓∗ϕ, s.t. 𝜓 is
a compactly supported automorphism whose support D𝜓 ⊂ P is
the “bundle hole”, is an issue for the Cauchy problem and deter-
minism. The empirical success of the framework, preventing us
to abandon GC and gauge-covariance, forces to admit that phys-
ical d.o.f. have to be Aut(P)-invariant, yielding the revision: The
structure and dynamics of the enriched general-relativistic space-
time and its gauge field content are modeled by the Aut(P)-class
of (P,ϕ).
Again, Aut(P)-covariance, far from being a mere redundancy,

encodes the fundamental physical insight brought forth by the
generalized point-coincidence argument: Only the relative values
of the fields at a point p ∈ P have a physical meaning, and the
description of these point-wise coincidences is invariant under
automorphisms of P. The Aut(P)-invariance of point-wisemutual
relations between the fields {ϕ} we shall write

 :  × P →  × P∕∼
≃
←←←←←←→ Relational physical d.o.f.,

(ϕ, p) → (ϕ, p) ∼
(
𝜓∗ϕ,𝜓−1(p)

)
→ (ϕ; p) = (𝜓∗ϕ;𝜓−1(p)),

(3)

where  × P∕∼ is the quotient of  × P by the equivalence re-
lation (ϕ, p) ∼

(
𝜓∗ϕ,𝜓−1(p)

)
, for 𝜓 ∈ Aut(P) – See Section 3.5.1.

Taking the generalized point-coincidence argument to its logical
conclusion implies that (3) can be understood to mean both that
points of the physical enriched spacetime are defined via coinci-
dences of distinct physical field-theoretical d.o.f., and that the lat-
ter are not the individual mathematical fields {ϕ} per se, but the
relational d.o.f. established between them.
The key ontological consequence of the epistemicGC andGPs,

reached via the articulation of the generalized hole and point-

coincidence arguments, is the relationality of general-relativistic
gauge physics: The enriched spacetime is relationally defined via
its field content, and all physical d.o.f. are relationally defined
and evolve w.r.t. each other. The diagram Figure 2 summarizes
the logic.
The above logic, establishing relationality as the conceptual

core of gRGFT, would naturally extended to any (empirically suc-
cessful) field theory resting on covariance/invariance under local
symmetries, as thesemay point to an underlying geometric struc-
ture modeling objective physical entities. For example, it could
apply to models of supersymmetric theory, such as supergravity
or stringsmodels, as well as higher gauge theory – relying respec-
tively on supergeometry, higher geometry, or higher supergeom-
etry – if ever these were to make relevant empirical contact with
fundamental physics.
In the standard mathematical formulation of gRGFT, relation-

ality of physics is tacit, encoded in the manifest invariance, or co-
variance, of the theory under its symmetries (Diff (M), Autv(P) ≃, and Aut(P)). It can thus be easily overlooked, which may
lead to a number of unfortunate misconceptions. For instance,
the notion that “boundaries” break Diff(M) or -gauge symme-
tries, which has the same conceptual structure as a hole argu-
ment. This notion evaporates once it is recognized that a physical
boundary is relationally defined, and is invariant (under Diff (M),
Autv(P) ≃ , or Aut(P)). This and similar misconceptions, to-
gether with the various countermeasures put forward to solve the
alleged issue, would be avoided had one a framework in which
both relationality and strict invariance are manifest. Such a refor-
mulation of gRGFT would also give ready access to the observ-
ables of a theory.
In the following, we propose such a framework, whose techni-

cal touchstone is theDFM. It is best formulatedwithin the bundle
geometry of the space of fields of a general-relativistic GFT. In the
next Section 3, we give our account of this bundle geometry, be-
fore describing the DFM for the gRGFT framework in Section 4.
Its adaptation to field theory is the object of Section 5.

3. Geometry of Global Field Space

In this section we elaborate on the geometry of field space as
an infinite-dimensional fiber bundle, extending standard no-
tions defined in the finite-dimensional context to the infinite-
dimensional setting.[15,16]
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3.1. Field Space as a Principal Bundle

We are interested in gauge field theories based on a principal
bundle P(M,H) with structure group H. For a realistic descrip-
tion of spinorial matter fields, the principal bundles considered
must be of the form P = Q ×OM with H = G × SO(r, s), where
Q(M,G) is aG-bundle overM andOM is the orthonormal frame
bundle of M.8 Therefore, our field space Φ is made of tensors
or differential forms taking values in various representations V
ofH,Ω∙(P)⊗ V . For example (Ehresmann or Cartan) connection
1-forms and their curvature 2-forms (V = LieH), orV -valued ten-
sorial 0-forms (describing e.g., charged spinors) and their covari-
ant derivative 1-forms. A collection of such objects will be noted
as 𝜙 ∈ Φ, i.e., it is a single point in field space.
The group Aut(P) has a natural action by pullback onΦ: Given

𝜙 ∈ Φ and 𝜓 ∈ Aut(P) we have 𝜙𝜓 := 𝜓∗𝜙, where the left-hand
side is a notation for the pullback on the right-hand side. This
is a right-action since it is well-known that the pullback satis-

fies (f ◦ g)∗ = g∗ ◦ f ∗ for any two smoothmapsM
g
←←←←←→ N

f
←←←←←→ Q .9 We

therefore write

Φ × Aut(P) → Φ,

(𝜙,𝜓) → R𝜓𝜙 := 𝜓∗𝜙,
(4)

with indeed, for another 𝜓 ′ ∈ Aut(P): R𝜓 ′R𝜓𝜙 := 𝜓 ′∗𝜓∗𝜙 =
(𝜓 ◦𝜓 ′)∗𝜙 =: R𝜓 ◦𝜓 ′𝜙. The field space is fibered by the action of
Aut(P), the fiber through a point 𝜙 being its orbit (𝜙) under
automorphisms. We denote the set of orbits, or moduli space,
by Φ∕Aut(P) =: . Under adequate restrictions of either of Φ
or Aut(P), the field space Φ can be understood as an infinite-
dimensional principal fiber bundle over the base  with struc-
ture group Aut(P):10

Φ
𝜋
←←←←←→ ,

𝜙 → 𝜋(𝜙) =: [𝜙].
(5)

The projection 𝜋 is s.t. 𝜋 ◦R𝜓 = 𝜋. The fiber over a point [𝜙] ∈,
𝜋−1([𝜙]) = (𝜙), is diffeomorphic to the structure groupAut(P) as
a manifold. We pass on the local bundle structure ofΦ: since the
space of orbits is not manageable operationally, one usually does
not work on it. For details we refer the reader to ref. [8].

3.1.1. Natural Transformation Groups

As an infinite-dimensional manifold, Φ has a diffeomorphism
group Diff (Φ), but as a principal bundle its maximal transforma-
tion group is its group of automorphisms

Aut(Φ) :=
{
Ξ ∈ Diff (Φ) |Ξ ◦R𝜓 = R𝜓 ◦Ξ

}
, (6)

8 P = Q ×OM is bundle over M, not M ×M: it is a pullback, or fibered
product in the category of principal bundles.

9 This is clear on forms, a.k.a. contravariant tensors. On vector fields and
more general covariant tensors, the pullback action is the pushforward
by the inverse: 𝜓∗ := 𝜓−1∗. So, on general (mixed) tensors on P, 𝜓∗ is
indeed a well-defined right action of Aut(P).

10 In particular, this requires that all points 𝜙 have trivial stability groups,
meaning that we a priori reject Killing symmetries of 𝜙.

whose elements preserve the fibration structure and thus project
naturally as elements of Diff ().
The subgroup of vertical diffeomorphisms

Diff v(Φ) := {Ξ ∈ Diff (Φ) |𝜋 ◦Ξ = 𝜋} (7)

induces the identity transformation on : Since these are
motions along fibers, to Ξ ∈ Diff v(Φ) must correspond
a unique 𝝍 : Φ → Aut(P) s.t. Ξ(𝜙) = R𝝍 (𝜙)𝜙 := [𝝍 (𝜙)]∗𝜙:
i.e., Diff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
. Notice that the map com-

position law for Diff v(Φ) gives rise to a peculiar compo-
sition operation for C∞

(
Φ,Aut(P)

)
: For Ξ,Ξ′ ∈ Diff v(Φ)

to which correspond 𝝍 ,𝝍 ′ ∈ C∞
(
Φ,Aut(P)

)
, one finds

Ξ′◦Ξ (𝜙) = R𝝍 ′(Ξ(𝜙)) Ξ(𝜙) = R𝝍 ′(Ξ(𝜙)) R𝝍 (𝜙)𝜙 = R𝝍 (𝜙) ◦𝝍 ′(Ξ(𝜙))𝜙.
Thus we have,

Ξ′ ◦Ξ ∈ Dif f v(Φ) corresponds to 𝝍 ◦
(
𝝍 ′ ◦R𝝍

)
∈ C∞

(
Φ,Aut(P)

)
. (8)

Remark the distinction between the composition law ◦ of maps
on Φ, and the composition law ◦ of maps on P.
This is an example of the composition law of the infinite-

dimensional group of bisections of a Lie groupoid.[17–19] As
a mater of fact, what we have been discussing above can
be reframed in the groupoid framework as follows: One de-
fines the generalized action groupoid 𝚪 ⇉ Φ with 𝚪 = Φ⋊(
C∞
(
Φ,Aut(P)

)
≃ Diff v(Φ)

)
, and with source and target maps

s : 𝚪→ Φ, (𝜙,𝝍 ≃ Ξ) → 𝜙, and t : 𝚪 → Φ, (𝜙,𝝍 ≃ Ξ) → Ξ(𝜙) =
𝝍 (𝜙)∗𝜙. The associative composition law: g ◦ f ∈ 𝚪 for f, g ∈ 𝚪 is
defined whenever t(f ) = s(g). It generalizes the action groupoid
𝚪̄ = Φ⋊ Aut(P) ⇉ Φ associated with the right action of Aut(P)
on Φ. The group of bisections (𝚪) of 𝚪 is the set of sections of
s – maps 𝜎 : Φ → 𝚪, 𝜙 → 𝜎(𝜙) = (𝜙,𝝍 ∼ Ξ) s.t. s ◦ 𝜎 = idΦ – s.t.
t ◦ 𝜎 : Φ → Φ is invertible: thus t ◦ 𝜎 ∈ Diff (Φ). We have indeed,
for 𝜎 ∈ (𝚪), that t ◦ 𝜎 = Ξ (= 𝝍∗) ∈ Diff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
.

The group law of bisections is defined as
(
𝜎2 ⋆ 𝜎1

)
(𝜙) :=

𝜎2
(
(t ◦ 𝜎1(𝜙)

)
◦𝜎1(𝜙). After composition with the target map t

on the left, this reproduces precisely the peculiar group law
(8). Then, slightly abusing the terminology, we may refer to
C∞
(
Φ,Aut(P)

)
as the group of bisections of the generalized ac-

tion groupoid 𝚪 associated to Φ. In the rest of this paper though,
we will simply, and accurately, refer to it as the group of generat-
ing maps of Diff v(Φ).
This generalizes the subgroup of vertical automorphisms

Autv(Φ) :=
{
Ξ ∈ Aut(Φ) |𝜋 ◦Ξ = 𝜋} = Diff v(Φ) ∩ Aut(Φ), (9)

isomorphic to the gauge group

Aut(P) :=
{
𝝍 : Φ→ Aut(P) |𝝍 (𝜙𝜓 ) = 𝜓−1 ◦𝝍 (𝜙) ◦𝜓} (10)

via Ξ(𝜙) = R𝝍 (𝜙) 𝜙 still. The equivariance of elements𝝍 of Aut(P)
implies that to Ξ′◦Ξ ∈ Autv(Φ) corresponds𝝍 ′ ◦𝝍 ∈ Aut(P): i.e.,
the composition operation ◦ in Autv(Φ) translates to the usual
composition operation ◦ of the group Aut(P).
We have that Aut(Φ) is in the normalizer of Diff v(Φ)

and, since a group is a subgroup of its normalizer, we get:
NDiff (Φ)

(
Diff v(Φ)

)
⊃ ⟨Diff v(Φ) ∪ Aut(Φ)⟩. We have the special
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case NDiff (Φ)
(
Autv(Φ)

)
= Aut(Φ), i.e., Autv(Φ) ⊲ Aut(Φ), which

gives the SES

idΦ → Aut(P) ≃ Autv(Φ)
⊲
←←←←←←→ Aut(Φ) ←→ Diff () → id, (11)

where the image of each arrow is in the kernel of the next. One
often encounters in the literature the notion of “field-dependent”
gauge transformations and diffeomorphisms. The proper math-
ematical embodiment of this notion is the group Diff v(Φ) ≃
C∞
(
Φ,Aut(P)

)
. Nonetheless, stricto sensu, the gauge trans-

formations on Φ are defined via the action of the subgroup
Autv(Φ) ≃ Aut(P). The structure group Aut(P) supplies the no-
tion of “field-independent” gauge transformations and diffeomor-
phisms. The linearization of (11) gives a SES of Lie algebras defin-
ing the Atiyah Lie algebroid of the principal bundle Φ.
To study the differential structure of Φ, let us first recall the

following general results. Consider the manifoldsM,N and their
tangent bundles TM, TN, together with a diffeomorphism 𝜓 :
M → N and the flow ϕ𝜏 : N → N of a vector field X ∈ Γ(TN), s.t.
X|ϕ0 = d

d𝜏
ϕ𝜏 |𝜏=0 ∈ Tϕ0N. One defines the flow

𝜑𝜏 := 𝜓−1 ◦ϕ𝜏 ◦𝜓 : M → M (12)

of a vector field Y ∈ Γ(TM) related to X as

Y := d
d𝜏

(
𝜓−1 ◦ϕ𝜏 ◦𝜓

)|||𝜏=0 = (𝜓−1)∗ X ◦𝜓. (13)

We have the composition of mapsM
𝜓
←←←←←←→ N

X
←←←←←←→ TN

(𝜓−1)∗
←←←←←←←←←←←←←←←←←←←←←→ TM re-

sulting in the above vector field Y : M ←→ TM. So, X ∈ Γ(TN) and
Y ∈ Γ(TM) are 𝜓 -related (13) when their flows are 𝜓 -conjugated
(12). Furthermore, 𝜓 -relatedness is a morphism of Lie algebras,
that is [Y, Y ′] = (𝜓−1)∗[X, X

′] ◦𝜓 .
As a variation of the above, suppose 𝜙 is some tensor field on

M and 𝔏X𝜙 its Lie derivative along X ∈ Γ(TM) with flow 𝜑𝜏 , for
𝜓 ∈ Diff(M) we have

𝜓∗
(
𝔏X𝜙

)
= 𝜓∗ d

d𝜏
𝜑∗
𝜏
𝜙
|||𝜏=0 = d

d𝜏
(𝜑𝜏 ◦𝜓)

∗𝜙
|||𝜏=0

= d
d𝜏
(𝜑𝜏 ◦𝜓)

∗ (𝜓−1)∗𝜓∗𝜙|||𝜏=0
= d

d𝜏
(𝜓−1 ◦𝜑𝜏 ◦𝜓)

∗ 𝜓∗𝜙
|||𝜏=0

=: 𝔏[(𝜓−1)∗X ◦𝜓 ] (𝜓
∗𝜙).

(14)

3.2. Differential Structure

As a manifold, Φ has a tangent bundle TΦ, a cotangent bun-
dle T⋆Φ, or more generally a space of forms Ω∙(Φ). Considering
these structures in turn, it will be important to distinguish the
pushforward and pullback on P and Φ: we reserve ∗ to denote
these operations on P, and ⋆ for their counterparts on Φ.

3.2.1. Tangent Bundle and Subbundles

Sections of the tangent bundle 𝔛 : Φ → TΦ are vector fields on
Φ, we note𝔛 ∈ Γ(TΦ). They form a Lie algebra under the bracket

of vector field [ , ] : Γ(TΦ) × Γ(TΦ) → Γ(TΦ). Wemay write a vec-
tor field at𝜙 ∈ Φ as𝔛|𝜙 = d

d𝜏
Ψ𝜏 (𝜙)|𝜏=0, withΨ𝜏 ∈ Diff (Φ) its flow

s.t.Ψ𝜏=0(𝜙) = 𝜙. As derivations of the algebra of functionsC∞(Φ)
we write: 𝔛 = 𝔛(𝜙) 𝛿

𝛿𝜙
, where 𝛿

𝛿𝜙
denotes the functional differ-

entiation w.r.t. 𝜙, and 𝔛(𝜙) are the functional components. The
Lie bracket in the Lie algebra of Diff (Φ) is minus the bracket in
Γ(TΦ): 𝖉𝖎𝖋𝖋(Φ) :=

(
Γ(TΦ),−[ , ]Γ(TΦ)

)
.

The pushforward by the projection is 𝜋⋆ : T𝜙Φ → T𝜋(𝜙) =
T[𝜙]. The pushforward by the right action of 𝜓 ∈ Aut(P) is
R𝜓⋆ : T𝜙Φ → T𝜓∗𝜙Φ. In general R𝜓⋆𝔛|𝜙 ≠ 𝔛|𝜓∗𝜙, meaning that
a generic vector field “rotates” as it is pushed vertically along
fibers. So, in general, 𝜋⋆𝔛 is not a well-defined vector field on
the base : at [𝜙] ∈ the vector obtained would vary depend-
ing on where on the fiber over [𝜙] the projection is taken.
The Lie subalgebra of right-invariant vector fields, which do not

rotate as they are pushed vertically, is

Γinv(TΦ) :=
{
𝔛 ∈ Γ(TΦ) |R𝜓⋆𝔛|𝜙 = 𝔛|𝜓∗𝜙}. (15)

They have well-defined projections on : For 𝔛 ∈ Γinv(TΦ),
we have 𝜋⋆𝔛|𝜓∗𝜙 = 𝜋⋆R𝜓⋆𝔛|𝜙 = (𝜋 ◦R𝜓 )⋆𝔛|𝜙 = 𝜋⋆𝔛|𝜙 =: 𝔜|[𝜙] ∈
T[𝜙]. Then, 𝜋⋆𝔛 =: 𝔜 ∈ Γ(T) is a well-defined vector field.
The defining property of invariant vector fields implies that their
flows are automorphisms of Φ: we have

R𝜓⋆𝔛|𝜙 = d
d𝜏
R𝜓Ψ𝜏 (𝜙)

|||𝜏=0 and 𝔛|R𝜓𝜙 = d
d𝜏
Ψ𝜏 (R𝜓𝜙)

|||𝜏=0, (16)

which implies R𝜓 ◦Ψ𝜏 = Ψ𝜏 ◦R𝜓 . The Lie subalgebra Γinv(TΦ) is
thus the Lie algebra of Aut(Φ):

𝖆𝖚𝖙(Φ) =
(
Γinv(TΦ);−[ , ]Γ(TΦ)

)
. (17)

The latter should not be confused with the Lie algebra 𝔞𝔲𝔱(P) of
the structure group Aut(P):

𝔞𝔲𝔱(P) =
(
Γinv(TP);−[ , ]Γ(TP)

)
. (18)

We may use the notation [X, Y ]𝔞𝔲𝔱 := −[X, Y ]Γ(TP) when useful.
The vertical tangent bundle VΦ := ker𝜋⋆ is a canonical sub-

bundle of the tangent bundle TΦ. Vertical vector fields are el-
ements of Γ(VΦ) := {𝔛 ∈ Γ(TΦ) |𝜋⋆𝔛 = 0}. Since VΦ is a sub-
bundle,Γ(VΦ) is a Lie ideal ofΓ(TΦ). Indeed, since 𝜋⋆ : Γ(TΦ) →
Γ(T) is a Lie algebra morphism, we have, for 𝔛 ∈ Γ(VΦ) and
𝔜 ∈ Γ(TΦ): 𝜋⋆[𝔛,𝔜] = [𝜋⋆𝔛,𝜋⋆𝔜] = [0,𝜋⋆𝔜] = 0, i.e. [𝔛,𝔜] ∈
Γ(VΦ).
We now consider the vertical vector fields induced by the re-

spective actions of 𝔞𝔲𝔱(P), 𝖆𝖚𝖙(P) and 𝖉𝖎𝖋𝖋v(Φ). A fundamental
vertical vector field at 𝜙 ∈ Φ generated by X = d

d𝜏
𝜓𝜏 |𝜏=0 ∈ 𝔞𝔲𝔱(P)

with flow 𝜓𝜏 ∈ Aut(P) is:

Xv|𝜙 := d
d𝜏
R𝜓𝜏𝜙

|||𝜏=0 = d
d𝜏
𝜓∗
𝜏
𝜙
|||𝜏=0 =: 𝔏X𝜙, (19)

The Lie derivative on P is also given by the Cartan formula
𝔏X = [𝜄x, d] = 𝜄Xd + d𝜄X , with d the de Rham exterior derivative
on P. It is a degree 0 derivation of the algebra Ω∙(P) of forms
on P, since 𝜄X is of degree −1 and d is of degree 1. Mani-
festly, fundamental vector fields satisfy 𝜋⋆X

v ≡ 0, since 𝜋⋆X
v|𝜙 =

d
d𝜏
𝜋 ◦R𝜓𝜏𝜙|𝜏=0 = d

d𝜏
𝜋(𝜙)|𝜏=0. One shows (see Appendix B) that
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the map |v : 𝔞𝔲𝔱(P) → Γ(VΦ), X → Xv, is a Lie algebra mor-
phism: i.e., ([X, Y ]𝔞𝔲𝔱)

v = (−[X, Y ]Γ(TP))v = [Xv, Yv]. The pushfor-
ward by the right-action of Aut(P) on a fundamental vertical vec-
tor field is:

R𝜓⋆X
v|𝜙 := d

d𝜏
R𝜓 ◦R𝜓𝜏𝜙

|||𝜏=0 = d
d𝜏
R𝜓𝜏 ◦𝜓𝜙

|||𝜏=0
= d

d𝜏
R𝜓𝜏 ◦𝜓 R𝜓−1 ◦𝜓 𝜙

|||𝜏=0
= d

d𝜏
R(𝜓−1 ◦𝜓𝜏 ◦𝜓)

R𝜓 𝜙
|||𝜏=0 = d

d𝜏
R(𝜓−1 ◦𝜓𝜏 ◦𝜓)

𝜓∗𝜙
|||𝜏=0

= :
(
(𝜓−1)∗ X ◦𝜓

)v|𝜓∗𝜙.
(20)

Therefore, fundamental vector fields generated by 𝔞𝔲𝔱(P) are
not right-invariant.
On the other hand, the fundamental vector fields induced by

𝖆𝖚𝖙(P), the Lie algebra of the gauge group Aut(P), are right-
invariant. To 𝝍 𝜏 ∈ Aut(P) corresponds X = d

d𝜏
𝝍 𝜏 |𝜏=0 ∈ 𝖆𝖚𝖙(P).

Given the definition (10) of the gauge group, whose elements
transformation property is R⋆

𝜓
𝝍 = 𝜓−1 ◦𝝍 ◦𝜓 , by (12)–(13) we

have

𝖆𝖚𝖙(P) :=
{
X : Φ → 𝔞𝔲𝔱(P) | R⋆

𝜓
X = (𝜓−1)∗ X ◦𝜓

}
. (21)

This transformation property can also be written as: X (𝜙𝜓 ) =
X (𝜓∗𝜙) = (𝜓−1)∗ X (𝜙) ◦𝜓 . Observe that the infinitesimal version
is given by the Lie derivative on Φ along the corresponding fun-
damental vector field:

LXvX = Xv(X ) = d
d𝜏
R⋆
𝜓𝜏
X |||𝜏=0 = d

d𝜏
(𝜓−1

𝜏
)∗ X ◦𝜓𝜏

|||𝜏=0
=:𝔏XX = [X,X ]Γ(TP) = [X , X ]𝔞𝔲𝔱.

(22)

A fundamental vector field generated by X ∈ 𝖆𝖚𝖙(P) is

X v|𝜙 := d
d𝜏
R𝝍𝜏 (𝜙)𝜙

|||𝜏=0 = d
d𝜏
(𝝍 𝜏 (𝜙))

∗𝜙
|||𝜏=0 =: 𝔏X𝜙. (23)

Its pushforward by the right-action of Aut(P) is

R𝜓⋆X
v|𝜙 := d

d𝜏
R𝜓 ◦R𝝍𝜏 (𝜙)𝜙

|||𝜏=0 = d
d𝜏
R(𝜓−1 ◦𝝍𝜏 (𝜙) ◦𝜓)

R𝜓 𝜙
|||𝜏=0

= d
d𝜏
R𝝍𝜏 (𝜓∗𝜙) 𝜓

∗𝜙
|||𝜏=0 =: X v|𝜓∗𝜙.

(24)

Furthermore, one shows (see Appendix B) that the “vertical-
ity map” |v : 𝖆𝖚𝖙(P) → Γinv(VΦ), X → X v, is a Lie algebra anti-
morphism: i.e., ([X ,Y ]𝔞𝔲𝔱)

v = (−[X ,Y ]Γ(TP))v = −[X v,Y v]. There-
fore, since the Lie subalgebra of right-invariant vertical vector
fields is the Lie algebra of the group Autv(Φ), we have

𝖆𝖚𝖙(P) ≃ 𝖆𝖚𝖙v(Φ) =
(
Γinv(VΦ);−[ , ]Γ(TΦ)

)
. (25)

We can thus write the infinitesimal version of (11), i.e., the SES
describing the Atiyah Lie algebroid of the bundle Φ:

0 → 𝖆𝖚𝖙(P) ≃ 𝖆𝖚𝖙v(Φ)
|v
←←←←←←→ 𝖆𝖚𝖙(Φ)

𝜋⋆
←←←←←←←←←→ 𝖉𝖎𝖋𝖋() → 0, (26)

A splitting of this SES, i.e., the datum of amap 𝖆𝖚𝖙(Φ) → 𝖆𝖚𝖙(P)
– or equivalently of a map 𝖉𝖎𝖋𝖋() → 𝖆𝖚𝖙(Φ) – which would al-

low to decompose a (right-invariant) vector field onΦ as a sum of
a gauge element and a vector field on, is supplied by a choice
of Ehresmann connection 1-form on Φ.
Finally, consider the Lie algebra of the group of vertical diffeo-

morphisms Diff v(Φ):

𝖉𝖎𝖋𝖋v(Φ) :=
{
X v|𝜙 = d

d𝜏
Ξ𝜏 (𝜙)

|||𝜏=0 = d
d𝜏
R𝝍𝜏 (𝜙)𝜙

|||𝜏=0 ∈ Γ(VΦ)}, (27)

where Ξ𝜏 ∈ Diff v(Φ), and 𝝍 𝜏 ∈ C∞
(
Φ,Aut(P)

)
is the flow of

X : Φ → Γinv(TP) ≃ 𝔞𝔲𝔱(P). Therefore, we have that 𝖉𝖎𝖋𝖋v(Φ) ≃
C∞
(
Φ, 𝔞𝔲𝔱(P)

)
. The pushforward of X v by the action of Aut(P)

is the same as for a fundamental vector field (20),

R𝜓⋆X
v|𝜙 = ((𝜓−1)∗ X ◦𝜓

)v|𝜓∗𝜙. (28)

The map |v : C∞ (Φ, 𝔞𝔲𝔱(P))→ Γ(VΦ) is a Lie algebra mor-
phism, yet the bracket on C∞

(
Φ, 𝔞𝔲𝔱(P)

)
extends the bracket in

𝔞𝔲𝔱(P) taking into account theΦ-dependence of its elements. In-
deed, for X v,Y v ∈ 𝖉𝖎𝖋𝖋v(Φ) one has

[X v,Y v]Γ(TΦ) = {−[X ,Y ]Γ(TP)}v + [X v(Y )]v − [Y v(X )]v

=
{
[X ,Y ]𝔞𝔲𝔱 + X v(Y ) − Y v(X )

}v =: {X ,Y}v. (29)

The result is proven in ref. [14] for the finite-dimensional case.
The bracket on C∞

(
Φ, 𝔞𝔲𝔱(P)

)
is

{X ,Y} := [X ,Y ]𝔞𝔲𝔱 + X v(Y ) − Y v(X ). (30)

From this follows naturally that,

[LX v , LY v ] = L[X v ,Y v ] = L{X ,Y}v . (31)

The relation (29) is the infinitesimal version of (8), (30) reflecting
the bisection composition law in C∞

(
Φ,Aut(P)

)
.

Echoing our discussion of the action groupoid 𝚪, let us
briefly recall the Lie algebroid picture of the above.[17,20] As-
sociated to the action of 𝔞𝔲𝔱(P) on Φ, i.e., to the Lie algebra
morphism 𝛼 = |v : 𝔞𝔲𝔱(P) → Γ(VΦ) ⊂ Γ(TΦ), is the action (or
transformation) Lie algebroid A = Φ⋊ 𝔞𝔲𝔱(P) → Φ with anchor
𝜌 : A → VΦ ⊂ TΦ, (𝜙, X ) → 𝛼(X)|𝜙 = Xv|𝜙, inducing the Lie al-
gebra morphism 𝜌̃ : Γ(A) → Γ(VΦ) ⊂ Γ(TΦ). The space of sec-
tions Γ(A) = {Φ → A,𝜙 →

(
𝜙,X (𝜙)

)
} is naturally identified with

the space C∞
(
Φ, 𝔞𝔲𝔱(P)

)
,11 so that 𝜌̃ = 𝛼 = |v. The Lie algebroid

bracket [ , ]Γ(A) is uniquely determined by the Leibniz condi-
tion [X , f Y ]Γ(A) = f [X ,Y ]Γ(A) + 𝜌̃(X )f ⋅ Y , for f ∈ C∞(Φ), and the
requirement that [ , ]Γ(A) = [ , ]𝔞𝔲𝔱(P) on constant sections. It is
found to be: [X ,Y ]Γ(A) = [X ,Y ]𝔞𝔲𝔱(P) + 𝜌̃(X )Y − 𝜌̃(Y )X . The action
Lie algebroid bracket indeed reproduces (30) above.
Quite intuitively, the action Lie algebroid A is the limit of the

action Lie groupoid 𝚪 when the target and source maps are in-
finitesimally close. Hence C∞

(
Φ, 𝔞𝔲𝔱(P)

)
≃ Γ(A) is the Lie alge-

bra of the group (of bisections)C∞
(
Φ,Aut(P)

)
, as we have shown

explicitly above.
Remark that Lie algebroid brackets appear at two levels in the

geometry just exposed. First, as previously mentioned, the SES

11 Sections of Γ(A) are just the graphs of elements of C∞
(
Φ, 𝔞𝔲𝔱(P)

)
.
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(26) defines the (transitive) Atiyah Lie algebroid ofΦ as a principal
bundle. So, the bracket in 𝖆𝖚𝖙(Φ) is a Lie algebroid bracket. This
would be true for any choice of structure group forΦ – i.e., an in-
ternal gauge group Autv(P) ≃ , or Diff (M) as done in ref. [8]. Its
restriction to 𝖆𝖚𝖙v(Φ) trivializes as the Lie bracket of the Lie alge-
bra of the gauge group of Φ. In the case at hand, with structure
group Aut(P) for Φ, this Lie algebra is 𝖆𝖚𝖙(P): so the Lie algebra
bracket is the Lie algebroid bracket ofP. The (action Lie algebroid)
bracket (30) in C∞

(
Φ, 𝔞𝔲𝔱(P)

)
≃ Diff v(Φ) ⊃ 𝖆𝖚𝖙(P) ≃ 𝖆𝖚𝖙v(Φ)

extends the bracket of the Lie algebra of the gauge group of Φ; in
our case, it extends the Atiyah Lie algebroid bracket [ , ]𝔞𝔲𝔱 of P.
To the best of our knowledge, the first introduction of a bracket

of the type (30) is to be found in Bergmann & Komar[21] (for 𝜙 =
g𝜇𝜈 and C

∞ (Φ,Diff(M)
)
) and Salisbury & Sundermeyer[22] – one

may look up equations (3.1)–(3.2) in ref. [21] and equation (2.1) in
ref. [22]. It was later reintroduced by Barnich & Troessaert in ref.
[23], Equation (8), for the study of asymptotic symmetries of GR.
This bracket also appears more recently in the covariant phase
space literature, e.g., in refs. [24–28]. It has been interpreted as an
action Lie algebroid bracket first in ref. [29]. In the next section we
will show that it is also a special case of the Frölicher-Nijenhuis
(FN) bracket of vector-valued forms.
Finally, we state the following result (proven in Appendix B),

key to the geometric definition of general vertical and gauge
transformations on field space. The pushforward by a verti-
cal diffeomorphism Ξ ∈ Diff v(Φ), to which corresponds 𝝍 ∈
C∞
(
Φ,Aut(P)

)
, is a map Ξ⋆ : T𝜙Φ → TΞ(𝜙)Φ = T𝝍∗𝜙Φ. For a

generic 𝔛 ∈ Γ(TΦ) it is

Ξ⋆𝔛|𝜙 = R𝝍 (𝜙)⋆𝔛|𝜙 + {𝝍 (𝜙)−1∗ d𝝍 |𝜙(𝔛|𝜙)}v|Ξ(𝜙)
= R𝝍 (𝜙)⋆

(
𝔛|𝜙 + {d𝝍 |𝜙(𝔛|𝜙) ◦𝝍 (𝜙)−1}v|𝜙). (32)

The proof holds the same for Ξ ∈ Autv(Φ) ∼ 𝝍 ∈ Aut(P). This re-
lation can be used to obtain the formula for repeated pushfor-
wards: e.g., to obtain the result for (Ξ′◦Ξ)⋆𝔛|𝜙, per (8), one only
needs to substitute 𝝍 → 𝝍◦

(
𝝍 ′◦R𝝍

)
. In case Ξ,Ξ′ ∈ Autv(Φ),

one substitutes 𝝍 → 𝝍 ′ ◦𝝍 .

3.2.2. Differential Forms and Their Derivations

Consider the space of forms Ω∙(Φ) with the graded Lie alge-
bra of its derivations Der∙

(
Ω∙(Φ)

)
=
⨁

kDerk
(
Ω∙(Φ)

)
whose

graded bracket is [Dk,Dl] = Dk ◦Dl − (−)klDl ◦Dk, with Di ∈
Deri

(
Ω∙(Φ)

)
.

The de Rham complex of Φ is
(
Ω∙(Φ); d

)
with d ∈ Der1 the de

Rham (exterior) derivative, which is nilpotent – d2 = 0 = 1∕2[d, d]
– and defined via the Koszul formula. The exterior product ∧ is
defined on scalar-valued forms as usual, so that

(
Ω∙(Φ,𝕂),∧, d

)
is a differential graded algebra. The exterior product can also be
defined on the space Ω∙(Φ,𝖠) of forms with values in an alge-
bra (𝖠, ⋅), using the product in 𝖠 instead of the product in 𝕂.
So
(
Ω∙(Φ,𝖠),∧, d

)
is a again a differential graded algebra.12

12 On the other hand, an exterior product cannot be defined on Ω∙(Φ,V )
where V is merely a vector space.

One may define vector field-valued differential forms
Ω∙(Φ, TΦ) = Ω∙(Φ)⊗ TΦ. Then, the subalgebra of algebraic
derivations is defined as D|Ω0(Φ) = 0; they have the form
𝜄K ∈ Derk−1 for K ∈ Ωk(Φ, TΦ), with 𝜄 the inner product. It
generalizes the inner contraction of a form on a vector field: For
𝜔⊗𝔛 ∈ Ω∙(Φ, TΦ) we have 𝜄K (𝜔⊗𝔛) := 𝜄K𝜔⊗𝔛 = 𝝎 ◦K ⊗𝔛.
The Nijenhuis-Richardson bracket (or algebraic bracket) is defined
by

[K , L]NR := 𝜄KL − (−)(k−1)(l−1) 𝜄LK (33)

and makes the map 𝜄 : Ω∙(Φ, TΦ) → Der∙
(
Ω∙(Φ)

)
, K → 𝜄K , a

graded Lie algebra morphism:

[𝜄K , 𝜄L] = 𝜄[K ,L]NR . (34)

The Nijenhuis-Lie derivative is the map

L := [𝜄, d] : Ω∙(Φ, TΦ) → Der∙
(
Ω∙(Φ)

)
K → LK := 𝜄Kd − (−)k−1d𝜄K .

(35)

We have LK ∈ Derk for K ∈ Ωk(Φ, TΦ). It generalizes the Lie
derivative along vector fields, L𝔛 ∈ Der0. It is s.t. [LK , d] = 0.
Given K = K ⊗𝔛 ∈ Ωk(Φ, TΦ) and J = J⊗𝔜 ∈ Ωl(Φ, TΦ), the
FN bracket is

[K , J]FN = K ∧ J⊗ [𝔛,𝔜] + K ∧ L𝔛J⊗𝔜 − L𝔜K ∧ J⊗𝔛

+ (−)k
(
dK ∧ 𝜄𝔛J⊗𝔜 + 𝜄𝔜K ∧ dJ⊗𝔛

)
. (36)

It makes the Nijenhuis–Lie derivative a morphism of graded Lie
algebras:

[LK , LJ ] = L[K ,J]FN . (37)

The following relations hold:

[LK , 𝜄J ] = 𝜄[K ,J]FN − (−)
k(l−1)L(𝜄K J),

[𝜄J , LK ] = L(𝜄K J) + (−)
k 𝜄[J,K ]FN

.
(38)

For a systematic exposition of the above notions (in the finite-
dimensional setting), see ref. [30] Chapter II, Section 8.
The FN bracket reproduces the bracket (29) as a special case.

Indeed, specializing (36) in degree 0, for f = f ⊗𝔛 and g = g ⊗
𝔜 ∈ Ω0(Φ, TΦ) we get

[f , g]FN = f ∧ g ⊗ [𝔛,𝔜] + f ∧ L𝔛g ⊗𝔜 − L𝔜f ∧ g ⊗𝔛,

= f ∧ g ⊗ [𝔛,𝔜] + [f , dg]NR − [g, df ]NR, (39)

and

[Lf , 𝜄g ] = 𝜄[f ,g]FN . (40)

The map |v : C∞ (Φ, 𝔞𝔲𝔱(P))→ Γ(VΦ), X → X v, allows to see
X v ∈ 𝔡𝔦𝔣𝔣v(Φ) as a (vertical) vector-valued 0-form on Φ: X v ∈

Fortschr. Phys. 2024, 2400149 2400149 (9 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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Ω0(Φ, VΦ) ⊂ Ω∙(Φ, TΦ). The Nijenhuis-Richardson and FN
brackets thus apply: for X v,Y v ∈ Ω0(Φ, VΦ) we find

[X v, dY v]NR = {𝜄X vdY}v = {X v(Y )}v,

[dX v,Y v]NR = −[Y v, dX v]NR = −{𝜄Y vdX}v = −{Y v(X )}v,
(41)

so that the FN bracket for 0-forms (39) is

[X v,Y v]FN =
(
[X ,Y ]𝔞𝔲𝔱 + X v(Y ) − Y v(X )

)v = {X ,Y}v. (42)

Then we have the following special cases of identities (34), (38),
and (37) among derivations in Der∙:

[𝜄X v , 𝜄{dY}v ] = 𝜄[X v ,dY v ]NR
= 𝜄{𝜄Xv dY}v , (43)

[LX v , 𝜄Y v ] = 𝜄[X v ,Y v ]FN
, (44)

[LX v , LY v ] = L[X v ,Y v ]FN
= L{X ,Y}v . (45)

As expected, (45) reproduces (31). The above reproduces as spe-
cial cases various identities derived heuristically in the covariant
phase space literature, e.g., refs. [24, 25, 27].
Remarkable Forms: The action by pullback of Aut(P) on a

form 𝜶 ∈ Ω∙(Φ) defines its equivariance, R⋆
𝜓
𝛼. The action by pull-

back of Diff v(Φ) ≃ C∞
(
Φ,Aut(P)

)
, which we write 𝜶𝝍 := Ξ⋆𝜶,

defines vertical transformations, while the action by pullback of
Autv(Φ) ≃ Aut(P) defines gauge transformations.
We write a generic form at 𝜙 ∈ Φ as

𝜶|𝜙 = 𝛼 (∧∙d𝜙|𝜙;𝜙) , (46)

where d𝜙 ∈ Ω1(Φ) is the basis 1-form on Φ and 𝛼( ; ) is the
functional expression of 𝜶, alternating multilinear in the first ar-
guments and with arbitrary 𝜙-dependence in the second argu-
ment (in physics, often polynomial). The equivariance and verti-
cal transformation of 𝜶 are:

R⋆
𝜓
𝜶|𝜙𝜓 = 𝛼

(
∧∙R⋆

𝜓
d𝜙|𝜙𝜓 ; R𝜓𝜙

)
= 𝛼
(
∧∙R⋆

𝜓
d𝜙|𝜙𝜓 ; 𝜙𝜓

)
,

for 𝜓 ∈ Aut(P),

𝜶
𝝍|𝜙 := Ξ⋆𝜶|Ξ(𝜙) = 𝛼 (∧∙Ξ⋆d𝜙|Ξ(𝜙); Ξ(𝜙)) = 𝛼 (∧∙Ξ⋆d𝜙|𝜙𝝍 ; 𝜙𝝍) ,

for Ξ ∈ Dif f v(Φ) ∼ 𝝍 ∈ C∞
(
Φ,Aut(P)

)
.

(47)

The infinitesimal equivariance and vertical transformations are
given by the (Nijenhuis-)Lie derivative along the elements of
Γ(VΦ) generated respectively by 𝔞𝔲𝔱(P) and C∞

(
Φ, 𝔞𝔲𝔱(P)

)
:

LXv𝜶 = d
d𝜏
R⋆
𝜓𝜏
𝜶
|||𝜏=0 with X ∈ 𝔞𝔲𝔱(P),

LX v𝜶 = d
d𝜏
Ξ⋆
𝜏
𝜶
|||𝜏=0 with X ∈ C∞

(
Φ, 𝔞𝔲𝔱(P)

)
.

(48)

There are forms of particular interest whose gauge transforma-
tions need not be computed explicitly, but rather are read from
the forms special properties.

First, equivariant forms are those whose equivariance is con-
trolled by either representations of the structure group, or by 1-
cocycles for the action of the structure group. Standard equivari-
ant forms are valued in representations (𝜌,V ) of the structure
group Aut(P) and s.t.:

Ω∙eq(Φ, 𝜌) :=
{
𝜶 ∈ Ω∙(Φ,V ) |R⋆

𝜓
𝜶|𝜙𝜓 = 𝜌(𝜓)−1𝜶|𝜙

}
. (49)

The infinitesimal version of the equivariance property is LXv𝜶 =
−𝜌∗(X )𝜶 for X ∈ 𝔞𝔲𝔱(P).
The twisted equivariant forms[31] have equivariance controlled

by a 1-cocycle for the action of Aut(P) on Φ, i.e., a map:

C : Φ × Aut(P) → G,

G some Lie group (possibly infinite-dimensional).

(𝜙,𝜓) → C(𝜙;𝜓) s.t.

C(𝜙;𝜓 ′ ◦𝜓) = C(𝜙;𝜓 ′) ⋅ C(𝜙𝜓
′
;𝜓).

(50)

Manifestly, 𝜙-independent 1-cocycles are group morphisms, i.e.,
1-cocycles are generalizations of representations. From the 1-
cocycle property (50) follows that C(𝜙; idM) = idG = C(𝜙𝜓 ; idM),
thus that C(𝜙;𝜓)−1= C(𝜙𝜓 ;𝜓−1). Given aG-space V , one defines
twisted equivariant forms as

Ω∙eq(Φ, C) :=
{
𝜶 ∈ Ω∙(Φ,V ) |R⋆

𝜓
𝜶|𝜙𝜓 = C(𝜙;𝜓)−1𝜶|𝜙

}
. (51)

The property (50) ensures compatibility with the right ac-
tion: R⋆

𝜓 ′
R⋆
𝜓
= R⋆

𝜓 ′◦𝜓 . The infinitesimal equivariance is LXv𝜶 =
−a(X ;𝜙)𝜶, where a(X,𝜙) := d

d𝜏
C(𝜙,𝜓𝜏 )|𝜏=0 is a 1-cocycle for the

action of 𝔞𝔲𝔱(P) on Φ:

a : Φ × 𝔞𝔲𝔱(P) → 𝔤, 𝔤 the Lie algebra of G.

(𝜙, X) → a(X ;𝜙) s.t.

Xv ⋅ a(Y ;𝜙) − Yv ⋅ a(X ;𝜙) +
[
a(X ;𝜙), a(Y ;𝜙)

]
𝔤

= a([X, Y ]𝔞𝔲𝔱;𝜙).

(52)

The infinitesimal relation (52) ensures compatibility with the
right action: [LXv , LXv ] = L[Xv,Yv ] = L([X,Y ]𝔞𝔲𝔱)v . Observe that it is a
non-Abelian generalization of the Wess-Zumino (WZ) consis-
tency condition for anomalies a(X ;𝜙). The WZ consistency con-
dition being reproduced for G Abelian.
The subspace of invariant forms are those whose equivariance

is trivial, and horizontal forms are those vanishing on vertical vec-
tor field:

Ω∙inv(Φ) =
{
𝜶 ∈ Ω∙(Φ) |R⋆

𝜓
𝜶 = 𝜶

}
, infinitesimally LXv𝜶 = 0,

Ω∙hor(Φ) = {𝜶 ∈ Ω∙(Φ) | 𝜄Xv𝜶 = 0}.
(53)

A form which is both equivariant and horizontal is said tenso-
rial. We have thus standard tensorial forms
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Ω∙tens(Φ, 𝜌) :=
{
𝜶 ∈ Ω∙(Φ,V ) |R⋆

𝜓
𝜶 = 𝜌(𝜓)−1𝜶, & 𝜄Xv𝜶 = 0

}
.

(54)

Similarly, the space of twisted tensorial forms is

Ω∙tens(Φ, C) :=
{
𝜶 ∈ Ω∙(Φ,V ) |R⋆

𝜓
𝜶 = C(𝜙;𝜓)−1𝜶, & 𝜄Xv𝜶 = 0

}
.

(55)

In either case, we have Ω0
tens(Φ) = Ω

0
eq(Φ).

Let us recall the well-known fact that the de Rham derivative
d does not preserve the space of tensorial forms (horizontality is
lost). This is a reason for the introduction of a notion of connection
onΦ so as to define a covariant derivative on the space of tensorial
forms. As we will review in Section 3.4 below, for standard tenso-
rial forms one needs an Ehresmann connection 1-form, while for
twisted tensorial forms one needs a generalization called twisted
connection.[31]

Finally, forms that are both invariant and horizontal are called
basic:

Ω∙basic(Φ) :=
{
𝜶 ∈ Ω∙(Φ) |R⋆

𝜓
𝜶 = 𝜶& 𝜄Xv𝜶 = 0

}
. (56)

This space is preserved by d, so
(
Ω∙basic(Φ), d

)
is a subcomplex of

the de Rham complex ofΦ: the basic subcomplex. Therefore, basic
forms can also be defined as Im(𝜋⋆) (hence their name):

Ω∙basic(Φ) := {𝜶 ∈ Ω∙(Φ) |∃ 𝜷 ∈ Ω∙() s.t. 𝜶 = 𝜋⋆𝜷}. (57)

The cohomology of
(
Ω∙basic(Φ), d

)
is the equivariant cohomology of

Φ. As [d,𝜋⋆] = 0, it is isomorphic to the cohomology
(
Ω∙(), d

)
of the base moduli space. Hence its importance, especially when
it is unpractical (or impossible) to work concretely on, as it is
the case in GFT.
We stress that the analogue of Γinv(TΦ) for forms is notΩ∙inv(Φ)

but Ω∙basic(Φ). Only basic forms project to well-defined forms in
Ω∙(), containing only physical d.o.f. In Section 4, we will detail
a systematic method to build the basic version 𝜶b ∈ Ω∙basic(Φ) of
a form 𝜶 ∈ Ω∙(Φ).

3.3. Vertical Transformations and Gauge Transformations

As previously seen, the vertical transformation a form 𝜶 ∈ Ω∙(Φ)
is its pullback byDiff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
: 𝜶𝝍 := Ξ⋆𝜶. The no-

tation on the left-hand side is justified by the fact that the vertical
transformation is expressed in term of the generating element
𝝍 ∈ C∞

(
Φ,Aut(P)

)
associated to Ξ ∈ Diff v(Φ). Performing two

vertical transformations, using (8), one has

(𝜶𝝍 )𝝍
′
:= Ξ′⋆Ξ⋆𝜶 =

(
Ξ ◦Ξ′

)⋆
𝜶 =: 𝜶𝝍 ′ ◦ (𝝍 ◦R𝝍′ ). (58)

For gauge transformations, defined by the action of Autv(Φ) ≃
Aut(P), whose elements have specific equivariance R⋆

𝜓
𝝍 =

𝝍◦R𝜓 = 𝜓−1 ◦𝝍 ◦𝜓 , the previous expression simplifies:

(𝜶𝝍 )𝝍
′
= 𝜶𝝍 ◦𝝍 ′ . (59)

Infinitesimal vertical transformations by 𝖉𝖎𝖋𝖋v(Φ) ≃
C∞(Φ, 𝔞𝔲𝔱(P)) are given by the Nijenhuis–Lie derivative:

LX v𝜶 =
⎧⎪⎨⎪⎩

d
d𝜏
Ξ⋆
𝜏
𝜶
|||𝜏=0

[𝜄X v , d]𝜶
so [LX v , LY v ]𝜶 = L[X v ,Y v ]FN

𝜶 = L{X ,Y}v 𝜶.

(60)

The second equation uses (31)/(45). It is the infinitesimal ver-
sion of (58). For infinitesimal gauge transformations, defined
by the action of 𝖆𝖚𝖙v(Φ) ≃ 𝖆𝖚𝖙(P), this reduces to [LX v , LY v ]𝜶 =
L(−[X ,Y ]𝔞𝔲𝔱)v 𝜶 = L([X ,Y ]Γ(TP) )v 𝜶.
To get concrete expressions, one uses the duality between pull-

back and pushforward together with (32): For any 𝔛,𝔛′,… ∈
Γ(TΦ) one has

𝜶
𝝍|𝜙(𝔛|𝜙,…) = Ξ⋆𝜶|Ξ(𝜙)(𝔛|𝜙,…) = 𝜶|Ξ(𝜙)(Ξ⋆𝔛|𝜙,…)

= 𝜶|𝜙𝝍 (𝜙)
(
R𝝍 (𝜙)⋆

(
𝔛|𝜙 + {d𝝍 |𝜙(𝔛|𝜙) ◦𝝍 (𝜙)−1}v|𝜙),…)

= R⋆
𝝍 (𝜙) 𝜶|𝜙𝝍 (𝜙)

(
𝔛|𝜙 + {d𝝍 |𝜙(𝔛|𝜙) ◦𝝍 (𝜙)−1}v|𝜙,…).

(61)

It is clear from (61) that the vertical transformation of a form is
controlled by its equivariance and verticality properties. In par-
ticular, the vertical transformation of a tensorial form is simply
given by its equivariance:

For 𝜶 ∈ Ω∙tens(Φ, 𝜌), 𝜶𝝍 = 𝜌(𝝍 )−1𝜶.

For 𝜶 ∈ Ω∙tens(Φ, C), 𝜶𝝍 = C(𝝍 )−1𝜶.
(62)

In the second line we introduce the simplified notation
[C(𝝍 )](𝜙) := C

(
𝜙;𝝍 (𝜙)

)
. The map C(𝝍 ) : Φ→ G is twice depen-

dent on the point 𝜙 ∈ Φ. We stress that 𝜶𝝍 = Ξ⋆𝜶 ∉ Ω∙tens(Φ, 𝜌)
unless 𝝍 ∈ Aut(P) ∼ Ξ ∈ Autv(Φ) – see ref. [14] – making gauge
transformations special indeed: they preserve the space of tenso-
rial forms, while Diff v(Φ) does not.
The infinitesimal versions of (61) is, by definition (60),

LX v𝜶 = d
d𝜏
R⋆
𝝍𝜏
𝜶
|||𝜏=0 + 𝜄{dX}v𝜶, (63)

with X = d
d𝜏
𝝍 𝜏
|||𝜏=0. Notice that {dX}v can be seen as an element

of Ω1(Φ, VΦ), so 𝜄{dX}v is an algebraic derivation (of degree 0) as
discussed in Section 3.2.2. For 𝜶 ∈ Ω∙eq(𝜙), depending if it is stan-
dard or twisted equivariant, (63) specializes to:

LX v𝜶 =

{
−𝜌∗(X )𝜶 + 𝜄{dX}v𝜶,
−a(X )𝜶 + 𝜄{dX}v𝜶,

(64)

where we introduce the notation [a(X )](𝜙) := a
(
X (𝜙);𝜙

)
for the

linearized 1-cocycle. In particular, for the pullback representation
𝜌(𝜓)−1 = 𝜓∗, i.e., forΩ∙(P)-valued (or tensor-valued) forms𝜶, (63)
gives naturally:

LX v𝜶 = 𝔏X𝜶 + 𝜄{dX}v𝜶. (65)
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This formula clarifies the geometrical meaning of the so-called
“anomaly operator”, ΔX , featuring in the covariant phase space
literature:[24,25,32–34] in our notations ΔX := LX v − 𝔏X − 𝜄{dX}v . This
operator can only be non-zero on Φ in theories admitting back-
ground non-dynamical structures or fields “breaking” Aut(P)-
covariance. Those fundamentally fail to comply with the core
physical (symmetry) principles of general-relativistic GFT. We
further elaborate on this point in Section 4.
The infinitesimal versions of (62), for tensorial forms, are:

LX v𝜶 = −𝜌∗(X )𝜶 and LX v𝜶 = −a(X )𝜶. (66)

From the commutativity property (31)/(45) of the Nijenhuis–Lie
derivative applied to a twisted tensorial form 𝜶, [LX v , LY v ]𝜶 =
L[X v ,Y v ]FN

𝜶 = L{X ,Y}v 𝜶, follows the relation for the infinitesimal 1-
cocycle:

(67)

The second equation is obtained from the first using the FN
bracket (42)/(29): The notation means that the elements
Y ,X are considered 𝜙-independent, so X v,Y v pass through.
Therefore, (67) reproduces the defining infinitesimal 1-cocycle
property (52).
To illustrate, let us consider the case of elements of the gauge

group, 𝜼 ∈ Aut(P), and its Lie algebra, Y ∈ 𝖆𝖚𝖙(P). As 0-forms
they are trivially horizontal, and their equivariance are specified
by definition (10)–(21): they are thus tensorial, so we have

𝜼𝝍 = 𝝍−1 ◦ 𝜼 ◦𝝍 , and Y𝝍 = (𝝍−1)∗Y ◦𝝍 . (68)

The infinitesimal gauge transformation of Y is then LX vY =
𝔏XY = [Y ,X ]𝔞𝔲𝔱(P), as expected from its infinitesimal equivari-
ance (22).
As a special case of (62), or given their definition, basic forms

are strictly gauge invariant:

For 𝜶 ∈ Ω∙basic(Φ) : 𝜶𝝍 = 𝜶, so LX v𝜶 = 0. (69)

Another important example is that of the basis 1-form d𝜙 ∈
Ω1(Φ), since its vertical transformation d𝜙𝝍 := Ξ⋆d𝜙 features in
the general formulae (47) for the vertical transformation of a
generic form. The equivariance and verticality properties of d𝜙
are given by definition:

R⋆
𝜓
d𝜙 := 𝜓∗d𝜙, and 𝜾Xvd𝜙 := 𝔏X𝜙. (70)

The verticality must reproduce the 𝔞𝔲𝔱(P)-transformation of the
field 𝜙. It is then immediate that

d𝜙𝝍 := Ξ⋆d𝜙 = 𝝍∗(d𝜙 + 𝔏d𝝍 ◦𝝍−1𝜙
)
. (71)

This generalizes a standard result of the covariant phase space
literature (see e.g., ref. [35]). From (65), the linear version is

LX vd𝜙 = 𝔏Xd𝜙 + 𝔏dX𝜙. (72)

The same may be obtained via LX vd𝜙 = d(𝜄X vd𝜙) = d
(
𝔏X𝜙

)
.

3.4. Connections on Field Space

As previously observed, the exterior derivative d does not preserve
Ω∙tens(Φ) of standard/twisted tensorial forms. To build a first order
linear differential operator that does, the covariant derivative, one
needs to endowΦwith an adequate notion of connection 1-form.

3.4.1. Ehresmann Connections

A Ehresmann connection 1-form 𝝎 ∈ Ω1
eq

(
Φ, 𝔞𝔲𝔱(P)

)
on field

space Φ is defined by the following two properties:

𝝎|𝜙
(
Xv|𝜙
)
= X, for X ∈ 𝔞𝔲𝔱(P),

R⋆
𝜓
𝝎|𝜙𝜓 = 𝜓−1∗ 𝝎|𝜙◦𝜓.

(73)

Infinitesimally, the equivariance of the connection under 𝔞𝔲𝔱(P)
is

LXv𝝎 = d
d𝜏
R⋆
𝜓𝜏
𝝎
|||𝜏=0 = d

d𝜏
𝜓−1
𝜏 ∗𝝎 ◦𝜓𝜏

|||𝜏=0 = [X,𝝎]Γ(TP) = [𝝎, X ]𝔞𝔲𝔱(P).

(74)

The space of connection  is an affine space modeled on
the vector space Ω1

tens

(
Φ, 𝔞𝔲𝔱(P)

)
: For 𝝎,𝝎′ ∈ , we have

that 𝜷 := 𝝎′ − 𝝎 ∈ Ω1
tens

(
Φ, 𝔞𝔲𝔱(P)

)
. Or, given 𝝎 ∈  and 𝜷 ∈

Ω1
tens

(
Φ, 𝔞𝔲𝔱(P)

)
, we have that 𝝎′ = 𝝎 + 𝜷 ∈ .

A connection allows to define the horizontal subbundleHΦ :=
ker𝝎 complementary to the vertical subbundle, TΦ = VΦ⊕
HΦ. The horizontal projection is the map |h : TΦ → HΦ, 𝔛 →
𝔛h := 𝔛 − [𝝎(𝔛)]v, as clearly 𝝎(𝔛h) = 0.
A covariant derivative associated to 𝝎 is defined as D := d◦|h :

Ω∙eq (Φ, 𝜌) → Ω∙+1tens(Φ, 𝜌). On tensorial forms it has the algebraic
expressionD : Ω∙tens(Φ, 𝜌) → Ω∙+1tens(Φ, 𝜌),𝜶 → D𝜶 = d𝜶 + 𝜌∗(𝝎)𝜶,
the sought after first order linear operator.
The curvature 2-form is defined as 𝛀 := d𝝎◦|h, which implies

𝛀 ∈ Ω2
tens

(
Φ, 𝔞𝔲𝔱(P)

)
. Algebraically, it is also given by Cartan

structure equation

𝛀 = d𝝎 + 1
2
[𝝎,𝝎]𝔞𝔲𝔱(P). (75)

The Bianchi identity D𝛀 = d𝛀 + [𝝎,𝛀]𝔞𝔲𝔱(P) ≡ 0 is an algebraic
consequence. On tensorial forms, D ◦D = 𝜌∗(𝛀). To prove (75),
the FN bracket (42)/(29) plays a key role. Indeed, one needs to
show that both sides of the equality vanish on X v,Y v ∈ 𝖉𝖎𝖋𝖋v(Φ)
with X ,Y ∈ C∞

(
Φ, 𝔞𝔲𝔱(P)

)
. It is the case of the left-hand side

since (X v)h ≡ 0; the right-hand side, using Koszul formula for d
and (29), yields:

d𝝎(X v,Y v) + [𝝎(X v),𝝎(Y v)]𝔞𝔲𝔱(P)

= X v
(
𝜔(Y v)

)
− Y v

(
𝜔(X v)

)
− 𝝎([X v,Y v]) + [X ,Y ]𝔞𝔲𝔱(P)

= X v(Y ) − Y v(X ) − 𝝎
(
{X ,Y}v

)
+ [X ,Y ]𝔞𝔲𝔱(P)

= [X ,Y ]𝔞𝔲𝔱(P) + X v(Y ) − Y v(X ) − {X ,Y} ≡ 0. (76)

Given the defining equivariance and verticality properties (73)
of a connection, using (32)/(61) one shows that its vertical trans-

Fortschr. Phys. 2024, 2400149 2400149 (12 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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formation under Diff v(Φ) ≃ C∞
(
Φ,Aut(P)

)
is

𝝎𝝍 := Ξ⋆𝝎 = 𝝍−1
∗ 𝝎 ◦𝝍 + 𝝍−1

∗ d𝝍 . (77)

The formula is the same for its gauge transformation un-
der Autv(Φ) ≃ Aut(P). The difference between the two is seen
only upon repeated transformations of each type, as stressed
in Section 3.3, see (58)–(59). Here again, we note that 𝝎𝝍 =
Ξ⋆𝝎 ∉  unless 𝝍 ∈ Diff (M) ∼ Ξ ∈ Autv(Φ) – see ref. [14] –
only Autv(Φ) ≃ Aut(P) preserves . By (60), the 𝖉𝖎𝖋𝖋v(Φ) ≃
C∞
(
Φ, 𝔞𝔲𝔱(P)

)
transformations of a connection are given by the

Nijenhuis–Lie derivative,

LX v𝝎 = dX + [𝝎,X ]𝔞𝔲𝔱(P). (78)

Infinitesimal gauge transformations, under 𝖆𝖚𝖙v(Φ) ≃ 𝖆𝖚𝖙(P),
are given by the same relation, but can be written LX v𝝎 = DX
as X ∈ 𝖆𝖚𝖙(P) is a tensorial 0-form. Similarly, the finite and in-
finitesimal vertical transformations of the curvature (and gauge
transformations, with the above caveat) are given, as special cases
of (62) and (66), by:

𝛀𝝍 := Ξ⋆𝛀 = 𝝍−1
∗ 𝛀 ◦𝝍 , so LX v𝛀 = [𝛀,X ]𝔞𝔲𝔱(P). (79)

Equation (77) allows to write the following useful
lemma: For 𝜶,D𝜶 ∈ Ω∙tens(Φ, 𝜌), we have on the one hand
dΞ⋆𝜶 = d

(
𝜌(𝝍 )−1𝜶

)
. On the other hand, by Ξ⋆D𝜶 = 𝜌(𝝍 )−1D𝜶,

Ξ⋆d𝜶 = 𝜌(𝝍 )−1D𝜶 − Ξ⋆
(
𝜌∗(𝝎)𝜶

)
= 𝜌(𝝍 )−1d𝜶 + 𝜌(𝝍 )−1 𝜌∗(𝝎)𝜶 − 𝜌∗(𝝎𝝍 )𝜶𝝍

= 𝜌(𝝍 )−1d𝜶 − 𝜌∗(𝝍−1
∗ d𝝍 )𝜌(𝝍 )−1𝜶

= 𝜌(𝝍 )−1
(
d𝜶 − 𝜌∗(d𝝍 ◦𝝍−1)𝜶

)
.

By naturality of the exterior derivative, [Ξ⋆, d] = 0, we obtain the
identity:

d
(
𝜌(𝝍 )−1𝜶

)
= 𝜌(𝝍 )−1

(
d𝜶 − 𝜌∗(d𝝍 ◦𝝍−1)𝜶

)
. (80)

In particular, for the pullback representation, 𝜌(𝜓)−1= 𝜓∗ and
−𝜌∗(X) = 𝔏X , this is:

d(𝝍∗𝜶) = 𝝍∗(d𝜶 + 𝔏d𝝍 ◦𝝍−1𝜶
)
. (81)

The latter appears in the covariant phase space literature, e.g., in
refs. [35, 36].13

3.4.2. Twisted Connections

Twisted equivariant/tensorial forms 𝜶 have values in a G-space
V ,G a (possibly infinite-dimensional) Lie group, and their equiv-
ariance is given by a 1-cocycle (50) for the action of Aut(P) on Φ,

13 It ought not to be confused with with (71) as, despite the superficial
similarity, the two results are distinct geometric statements.

C : Φ × Aut(P) → G, (𝜙,𝜓) → C(𝜙;𝜓), s.t.

R⋆
𝜓
𝜶 = C(𝜙;𝜓)−1𝜶, with C(𝜙;𝜓 ′ ◦𝜓) = C(𝜙;𝜓 ′) ⋅ C(𝜙𝜓

′
;𝜓).

(82)

Their infinitesimal equivariance is given by LXv𝜶 = −a(X,𝜙)𝜶,
with a(X,𝜙) := d

d𝜏
C(𝜙,𝜓𝜏 )|𝜏=0 a 1-cocycle (52) for the action of

𝔞𝔲𝔱(P) on Φ. If the target group of the 1-cocycle is the automor-
phism group itself, G = Aut(P), or a subgroup thereof, and V is
a space of tensors of P, (82) specializes to

R⋆
𝜓
𝜶 = C(𝜙;𝜓)∗𝜶, with C(𝜙;𝜓 ′ ◦𝜓) = C(𝜙;𝜓 ′) ◦C(𝜙𝜓

′
;𝜓).

(83)

A twisted connection 1-form𝝕 ∈ Ω1
eq
(Φ, 𝔤) is defined by the two

properties:

𝝕|𝜙
(
Xv|𝜙
)
= d

d𝜏
C(𝜙;𝜓𝜏 )

|||𝜏=0 = a(X,𝜙) ∈ 𝔤, for X ∈ 𝔞𝔲𝔱(P),

R⋆
𝜓
𝝕|𝜙𝜓 = AdC(𝜙;𝜓)−1 𝝕|𝜙 + C(𝜙;𝜓)−1dC( ;𝜓)|𝜙.

(84)

In the special case G = Aut(P), the equivariance of 𝝕 ∈
Ω1
eq

(
Φ, 𝔞𝔲𝔱(P)

)
is

R⋆
𝜓
𝝕|𝜙𝜓 = [C(𝜙;𝜓))−1]∗𝝕|𝜙 ◦C(𝜙;𝜓) + [C(𝜙;𝜓))−1]∗dC( ;𝜓)|𝜙,

(85)

The infinitesimal equivariance under 𝔞𝔲𝔱(P) is

LXv𝝕 = d
d𝜏
R⋆
𝜓𝜏
𝝕
|||𝜏=0 = da(X ; ) + [𝝕, a(X ; )]𝔤. (86)

Or, in the case G = Aut(P), LXv𝝕 = da(X ; ) + [𝝕, a(X ; )]𝔞𝔲𝔱(P).
The space of twisted connections ̄ is an affine space mod-

eled on the vector space Ω1
tens

(Φ, 𝔤): For 𝝎,𝝎′ ∈ , we have 𝜷 :=
𝝎′ − 𝝎 ∈ Ω1

tens
(Φ, 𝔤). Or, given 𝝎 ∈ ̄ and 𝜷 ∈ Ω1

tens
(Φ, 𝔤), we

have that 𝝎′ = 𝝎 + 𝜷 ∈ ̄.
A twisted covariant derivative is defined as D̄ : Ω∙eq (Φ, C) →

Ω∙+1tens(Φ, C), 𝜶 → D̄𝜶 := d𝜶 + 𝜌∗(𝝕)𝜶. This is the first order lin-
ear operator adapted to twisted equivariant/tensorial forms.
The curvature 2-form of 𝝕 is defined by the Cartan structure

equation:

𝛀̄ := d𝝕 + 1
2
[𝝕,𝝕]𝔤 ∈ Ω2

tens
(Φ, 𝔤). (87)

It thus satisfies the Bianchi identity, D̄𝛀̄ = d𝛀̄ + [𝝕, 𝛀̄]𝔤 = 0.
And it holds that D̄ ◦ D̄ = 𝜌∗(𝛀̄). For Xv, Yv ∈ Γ(VΦ) with X, Y ∈
𝔡𝔦𝔣𝔣(M), we have

𝛀̄(Xv, Yv) = Xv
(
𝜔(Yv)

)
− Yv

(
𝜔(Xv)

)
− 𝝎([Xv, Yv])

+ [𝝎(Xv),𝝎(Yv)]𝔤

0 = Xv
(
a(Y ;𝜙)

)
− Yv

(
a(X ;𝜙)

)
− a([X, Y ]𝔞𝔲𝔱(P);𝜙)

+ [a(X ;𝜙), a(Y ;𝜙)]𝔤,

(88)

which reproduces the infinitesimal 1-cocycle property (52).
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The vertical transformation under Diff v(Φ) ≃ C∞
(
Φ,Aut(P)

)
of a twisted connection is found to be, using (84) and (32)/(61),

𝝕𝝍 := Ξ⋆𝝕 = AdC(𝝍 )−1 𝝕 + C(𝝍 )−1dC(𝝍 ). (89)

In case G = Aut(P) this specializes to: 𝝕𝝍 = C(𝝍 )−1∗ 𝝕 ◦C(𝝍 ) +
C(𝝍 )−1∗ dC(𝝍 ). Gauge transformations under Autv(Φ) ≃ Aut(P)
are given by the same formula, the difference showing upon re-
peated transformations of each type, see (58)–(59) in Section 3.3.
Transformations of a twisted connection under 𝖉𝖎𝖋𝖋v(Φ) ≃
C∞
(
Φ, 𝔞𝔲𝔱(P)

)
are given by the Nijenhuis–Lie derivative,

LX v𝝕 = da(X ) + [𝝕, a(X )]𝔤. (90)

Infinitesimal gauge transformations, under 𝖆𝖚𝖙v(Φ) ≃ 𝖆𝖚𝖙(P),
are given by the same relation. The difference being seen
upon iteration, as reflected by the commutation property of the
Nijenhuis–Lie derivative (31)/(45).
Finite and infinitesimal general vertical transformations of the

curvature are given by,

𝛀̄𝝍 := Ξ⋆𝛀̄ = AdC(𝝍 )−1 𝛀̄, so LX v𝛀̄ = [𝛀̄, a(X )]𝔤. (91)

For G = Aut(P), this is 𝛀̄𝝍 := Ξ⋆𝛀̄ = 𝝍−1
∗ 𝛀̄ ◦𝝍 and LX v𝛀̄ =

[𝛀̄,X ]𝔞𝔲𝔱(P). These illustrate (62) and (66). The same relations
hold for its gauge transformations, with the usual caveat. When
X v,Y v ∈ 𝖉𝖎𝖋𝖋v(Φ) with X ,Y ∈ C∞

(
Φ, 𝔞𝔲𝔱(P)

)
, using the defini-

tion (42)/(29) of the FN bracket, we have

(92)

This reproduces (67), where the notation of the last line was
first used.

3.5. Associated Bundles, Bundle of Regions of P and Integration

Given a principal fiber bundle, it is standard that one can build
an associate bundle (over the same base) via each representation
of the structure group. This can be generalized by replacing rep-
resentation by 1-cocycles for the action of the structure group.[31]

Below we review these constructions in our case, where the prin-
cipal bundle is Φ with structure group Aut(P).
Given a representation space (𝜌,V ) of Aut(P), consider the

direct product space Φ × V , with the two natural projections:
𝜋Φ : Φ × V → Φ and 𝜋V : Φ × V → V . One defines a right action
of Aut(P) on Φ × V by:

(Φ × V ) × Aut(P) → Φ × V ,(
(𝜙, v),𝜓

)
→
(
𝜓∗𝜙, 𝜌(𝜓)−1v

)
=
(
R𝜓𝜙, 𝜌(𝜓)

−1v
)

=: R̄𝜓 (𝜙, v).

(93)

The bundle E associated to Φ via the representation 𝜌 is the quo-
tient of Φ × V by R̄:

E = Φ ×𝜌 V := Φ × V∕∼ (94)

where (𝜙′, v′) ∼ (𝜙, v) when ∃𝜓 ∈ Aut(P) s.t. (𝜙′, v′) = R̄𝜓 (𝜙, v).
We write 𝜋̄E : Φ × V → E. A point in E is an equivalence class

e = [𝜙, v]. The projection of E
𝜋E
←←←←←←←←←→  is 𝜋E([𝜙, v]) := 𝜋(𝜙) = [𝜙]. It

is a well-known result that there is a bijection between sections of
E and V -valued 𝜌-equivariant functions on Φ:

Γ(E) :=
{
s :  → E

}
≃ Ω0

eq
(Φ, 𝜌)

:=
{
𝝋 : Φ → V |R⋆

𝜓
𝝋 = 𝜌(𝜓)−1𝝋

}
,

(95)

the isomorphism being s([𝜙]) = [𝜙,𝝋(𝜙)]. Equivariant functions
are tensorial 0-forms, so their vertical (gauge) transformations
are given by (62)–(66): 𝝋𝝍 = 𝜌(𝝍 )−1𝝋 and LX v𝝋 = −𝜌∗(X )𝝋,
for 𝝍 ∈ C∞

(
Φ,Aut(P)

)
≃ Diff v(Φ) and X ∈ C∞

(
Φ, 𝔞𝔲𝔱(P)

)
≃

𝖉𝖎𝖋𝖋v(Φ). A Ehresmann connection is needed for their covariant
differentiation, see Section 3.4.1.
The construction holds the same replacing representations

𝜌 by 1-cocycles C : Φ × Aut(P) → G as defined by (50) in Sec-
tion 3.2.2. Given a G-space V , one defines the right action
of Aut(P) on Φ × V : (Φ × V ) × Aut(P) → Φ × V ,

(
(𝜙, v),𝜓

)
→

R̄𝜓 (𝜙, v) =
(
𝜓∗𝜙, C(𝜙;𝜓)−1v

)
. The twisted bundle Ẽ →  asso-

ciated to Φ via the 1-cocycle C is then: Ẽ = Φ ×C V := Φ × V∕∼,
with

(
𝜓∗𝜙, C(𝜙;𝜓)−1v

)
∼ (𝜙, v). As above, its space of sections is

isomorphic to the space of twisted equivariant function on Φ:

Γ
(
Ẽ
)
:=
{
s̃ :  → Ẽ

}
≃ Ω0

eq
(Φ, C)

:=
{
𝝋̃ : Φ → V |R⋆

𝜓
𝝋̃ = C(𝜙;𝜓)−1𝝋̃

}
.

(96)

The vertical transformation of such twisted equivariant functions
is given by (62)–(66). A twisted connection as discussed in Sec-
tion 3.4.2 is needed for their covariant differentiation.

3.5.1. Associated Bundle of Regions

Let E = V̄ (P) be the bundle canonically associated to Φ via the
defining representation of Aut(P): the 𝜎-algebra of open sets of P,
V (P) :=

{
V ⊂ P |V open set

}
.14 The right action of Aut(P) on the

product space Φ × V (P) is(
Φ × V (P)

)
× Aut(P) → Φ × V (P),(
(𝜙, V),𝜓

)
→ R̄𝜓 (𝜙, V) :=

(
𝜓∗𝜙,𝜓−1(V)

)
.

(97)

The associated bundle of regions of P is thus:

V̄ (P) = Φ ×Aut(P) V (P) := Φ × V (P)∕∼. (98)

Its space of sections Γ
(
V̄ (P)

)
:=
{
s̄ :  → V̄ (P)

}
is isomorphic

to

Ω0
eq

(
Φ,V (P)

)
:=
{
V : Φ → V (P) |R⋆

𝜓
V = 𝜓−1(V )

}
. (99)

14 It is actually the defining representation of Diff (P), as a (Lie) pseudo-
group[37] and restricts naturally to Aut(P).
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 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202400149 by Jordan François - C

ochraneItalia , W
iley O

nline L
ibrary on [08/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

A map 𝜙→ V (𝜙) may be seen as a “field-dependent” open
set of P, a region of P defined in a “𝜙-relative” and Aut(P)-
equivariant way. By (62)–(66), its transformations under
Diff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
and 𝖉𝖎𝖋𝖋v(Φ) ≃ C∞

(
Φ, 𝔞𝔲𝔱(P)

)
are respectively:

V𝝍 = 𝝍−1(V ), and LX vV = −X (V ). (100)

Integration on P provides just such an example of equivariant
function, as can be shown by framing it as a natural construction
over Φ × V (P).

3.5.2. Integration Map

Associated bundles are defined via the action of the structure
group Aut(P) on Φ × V : R̄𝜓 (𝜙, v) :=

(
𝜓∗𝜙, 𝜌(𝜓)−1v

)
. The corre-

sponding action of C∞
(
Φ,Aut(P)

)
≃ Diff v(Φ) is

(Φ × V ) × C∞
(
Φ,Aut(P)

)
→ Φ × V ,(

(𝜙, v),𝝍
)
→
(
𝝍∗𝜙, 𝜌(𝝍 )−1v

)
=
(
Ξ(𝜙), 𝜌(𝝍 )−1v

)
=: Ξ̄(𝜙, v).

(101)

In particular, for 𝝍 ∈ Aut(P) we have Ξ̄◦R̄𝜓 = R̄𝜓◦Ξ̄. The ac-
tion of C∞

(
Φ, 𝔞𝔲𝔱(P)

)
≃ 𝖉𝖎𝖋𝖋v(Φ) is the linearization (Φ × V ) ×

C∞
(
Φ, 𝔞𝔲𝔱(P)

)
→ V(Φ × V ) ≃ VΦ⊕ VV ⊂ T(P × V ).

The induced actions of Aut(P) and C∞
(
Φ,Aut(P)

)
≃ Diff v(Φ)

on Ω∙(Φ) × V are(
Ω∙(Φ) × V

)
× Aut(P) → Ω∙(Φ) × V ,(
(𝜶, v),𝜓

)
→
(
R⋆
𝜓
𝜶, 𝜌(𝜓)−1v

)
=: R̃𝜓 (𝜶, v)

(102)

and(
Ω∙(Φ) × V

)
× C∞

(
Φ,Aut(P)

)
→ Ω∙(Φ) × V ,(

(𝜶, v),𝝍
)
→
(
Ξ⋆𝜶, 𝜌(𝝍 )−1v

)
=: Ξ̃(𝜶, v).

(103)

Correspondingly, the induced actions of 𝔞𝔲𝔱(P) and
C∞
(
Φ, 𝔞𝔲𝔱(P)

)
≃ 𝖉𝖎𝖋𝖋v(Φ) are the linearizations:(

(𝜶, v), X
)
→ d

d𝜏
R̃𝜓𝜏 (𝜶, v)

|||𝜏=0 = (LXv𝜶, v
)
⊕
(
𝜶, −𝜌∗(X)v

)
,(

(𝜶, v),X
)
→ d

d𝜏
Ξ̃𝜏 (𝜶, v)

|||𝜏=0 = (LX v𝜶, v
)
⊕
(
𝜶, −𝜌∗(X )v

)
.

(104)

Furthermore, given a representation (𝜌̃,W ) of Aut(P),

if 𝜶 ∈ Ω∙eq(Φ,W ) then R̃𝜓 (𝜶, v) =
(
R⋆
𝜓
𝜶, 𝜌(𝜓)−1v

)
=
(
𝜌̃(𝜓)−1𝜶, 𝜌(𝜓)−1v

)
,

if 𝜶 ∈ Ω∙tens(Φ,W ) then Ξ̃(𝜶, v) =
(
Ξ⋆𝜶, 𝜌(𝝍 )−1v

)
=
(
𝜌̃(𝝍 )−1𝜶, 𝜌(𝝍 )−1v

)
, (105)

with linearizations read from (104). The exterior derivative d
on Φ extends to Φ × V as d → d × id. Yet, after the action of

C∞
(
Φ, 𝔞𝔲𝔱(P)

)
≃ 𝖉𝖎𝖋𝖋v(Φ) and due to the 𝜙-dependence of 𝝍 , it

will also act on the second factor 𝜌(𝝍 )−1v.
Let (𝜌̄,V ∗) be a representation of Aut(P) dual to (𝜌,V ) w.r.t. a

non-degenerate Aut(P)-invariant pairing

⟨ , ⟩ : V ∗ × V → ℝ,

(w, v) → ⟨w, v⟩, s.t. ⟨ 𝜌̄(𝜓)w, 𝜌(𝜓)v⟩ = ⟨w, v⟩. (106)

Under the action of 𝔞𝔲𝔱(P), with induced representation 𝜌̄∗ and
𝜌∗, it holds that

⟨ 𝜌̄∗(X)w, v⟩ + ⟨w, 𝜌∗(X)v⟩ = 0. (107)

For 𝜶 ∈ Ω∙(Φ,V ∗), let us define the operation  onΩ∙(Φ,V ∗) × V
by,

 : Ω∙(Φ,V ∗) × V → Ω∙(Φ),

(𝜶, v) → (𝜶, v) := ⟨𝜶, v⟩. (108)

This can be seen as an object on Φ × V :

(𝜶, ) : Φ × V → Λ∙(Φ),

(𝜙, v) → (𝜶|𝜙, v) := ⟨𝜶|𝜙, v⟩. (109)

We thus have:

d(𝜶, ) = (d𝜶, ), and 𝜄𝔛(𝜶, ) = (𝜄𝔛𝜶, ) for 𝔛 ∈ Γ(TΦ).

(110)

The induced actions of Aut(P) and C∞
(
Φ,Aut(P)

)
≃ Diff v(Φ) on

such objects are:

R̃⋆
𝜓
(𝜶, )|(𝜓∗𝜙, 𝜌(𝜓)−1v) := ⟨ , ⟩ ◦ R̃𝜓 (𝜶, v) = ⟨R⋆𝜓𝜶|𝜓∗𝜙, 𝜌(𝜓)−1v⟩,

Ξ̃⋆(𝜶, )|(Ξ(𝜙), 𝜌(𝝍 )−1v) := ⟨ , ⟩ ◦ Ξ̃(𝜶, v) = ⟨Ξ⋆𝜶|Ξ(𝜙), 𝜌(𝝍 )−1v⟩.
(111)

The actions of 𝔞𝔲𝔱(P) and C∞
(
Φ, 𝔞𝔲𝔱(P)

)
≃ 𝖉𝖎𝖋𝖋v(Φ) are thus:

d
d𝜏
R̃⋆
𝜓𝜏
(𝜶, v) |||𝜏=0 = ⟨LXv𝜶, v⟩ + ⟨𝜶, −𝜌∗(X )v⟩,

d
d𝜏
Ξ̃⋆
𝜏
(𝜶, v) |||𝜏=0 = ⟨LX v𝜶, v⟩ + ⟨𝜶, −𝜌∗(X )v⟩. (112)

Observe that for 𝜶 ∈ Ω∙eq(Φ,V
∗):

R̃⋆
𝜓
(𝜶, )|(𝜓∗𝜙, 𝜌(𝜓)−1v) := ⟨R⋆𝜓𝜶|𝜓∗𝜙, 𝜌(𝜓)−1v⟩

= ⟨𝜌̄(𝜓)−1𝜶|𝜙, 𝜌(𝜓)−1v⟩ = ⟨𝜶|𝜙, v⟩
=:(𝜶, )|(𝜙,v).

(113)

From this follows, by (112):

⟨LXv𝜶, v⟩ + ⟨𝜶, −𝜌∗(X)v⟩ = 0, X ∈ 𝔞𝔲𝔱(P).

⟨−𝜌̄∗(X )𝜶, v⟩ + ⟨𝜶, −𝜌∗(X)v⟩ = 0.
(114)
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If 𝜶 ∈ Ω∙tens(Φ,V
∗):

Ξ̃⋆(𝜶, )|(Ξ(𝜙), 𝜌(𝜓)−1v) := ⟨Ξ⋆𝜶|Ξ(𝜙), 𝜌(𝝍 )−1v⟩
= ⟨𝜌̄(𝝍 )−1𝜶|𝜙, 𝜌(𝝍 )−1v⟩ = ⟨𝜶|𝜙, v⟩
=:(𝜶, )|(𝜙,v).

(115)

And it follows by (112):

⟨LX v𝜶, v⟩ + ⟨𝜶, −𝜌∗(X )v⟩ = 0, X ∈ C∞(Φ, 𝔞𝔲𝔱(P)).

⟨−𝜌̄∗(X ) 𝛼, v⟩ + ⟨𝜶, −𝜌∗(X )v⟩ = 0.
(116)

When 𝜶 is tensorial, (𝜶, ) is “basic” on Φ × V , meaning it is
well-defined on E = Φ × V∕∼. Since (𝜶, ) is constant along an
Aut(P)-orbit in Φ × V , it allows to define 𝝋(𝜶)∈ Ω0

eq(Φ, 𝜌) via:

𝝋(𝜶)(𝜙) := 𝜋V (𝜙, v)|(𝜶|𝜙 ,v)=cst ≡ v,

𝝋(𝜶)(𝜓∗𝜙) := 𝜋V (𝜓∗𝜙, 𝜌(𝜓)−1v)|(𝜶|𝜙 ,v)=cst ≡ 𝜌(𝜓)−1v.
(117)

By (95), the latter is equivalent to a section s(𝜶) :  → E.
Observe that (115) implies that for 𝜶 ∈ Ω∙tens(Φ,V

∗) one has
d Ξ̃⋆(𝜶, ) = d(𝜶, ) = (d𝜶, ). Also, we derive the following
lemma:

Ξ̃⋆⟨d𝜶, v⟩ := ⟨Ξ⋆d𝜶, 𝜌(𝝍 )−1v⟩ = ⟨dΞ⋆𝜶, 𝜌(𝝍 )−1v⟩
= ⟨d 𝜌̄(𝝍 )−1𝜶, 𝜌(𝝍 )−1v⟩
= ⟨𝜌̄(𝝍 )−1(d𝜶 − 𝜌̄∗(d𝝍 ◦𝝍−1)𝜶

)
, 𝜌(𝝍 )−1v⟩

= ⟨d𝜶 − 𝜌̄∗(d𝝍 ◦𝝍−1)𝜶, v⟩,
→ Ξ̃⋆⟨d𝜶, v⟩ = ⟨d𝜶, v⟩ + ⟨−𝜌̄∗(d𝝍 ◦𝝍−1)𝜶, v⟩. (118)

We now specialize the above construction to the fundamen-
tal representation V = V (P) and the representation V ∗ = Ωtop(V)
of volume forms on V ∈ V (P) on which Aut(P) acts by pullback.
These are dual under the invariant integration pairing:

⟨ , ⟩ : 𝛀top(V) × V (P) → ℝ,

(𝜔, V) → ⟨𝜔, V⟩ := ∫V
𝜔.

(119)

The invariance property is the familiar identity

⟨𝜓∗𝜔,𝜓−1(V)⟩ = ⟨𝜔, V⟩ → ∫𝜓−1(V) 𝜓
∗𝜔 = ∫V

𝜔. (120)

This, as a special case of (107) with −𝜌̄∗(X) = 𝔏X and −𝜌∗(X ) =
−X , gives:

⟨𝔏X𝜔, V⟩ + ⟨𝜔,−X(V)⟩ = 0 → ∫V
𝔏X𝜔 + ∫−X(V) 𝜔 = 0.

(121)

This can be read as a continuity equation for the action of 𝔞𝔲𝔱(P).
By Stokes theorem, the de Rham derivative d on Ω∙(V) and the

boundary operator 𝜕 on V (P) are adjoint operators w.r.t. to the
integration pairing:

⟨d𝜔, V⟩ = ⟨𝜔, 𝜕V⟩ → ∫V
d𝜔 = ∫𝜕V 𝜔. (122)

Considering 𝜶 ∈ Ω∙
(
Φ,Ωtop(V)

)
, the field-dependent volume

forms, we define the integration map on Φ × V (P):

(𝜶|𝜙, V) = ⟨𝜶|𝜙, V⟩ := ∫V
𝜶|𝜙. (123)

The simplified notation 𝜶V may be used when more conve-
nient. As a special case of (110), we have d(𝜶, V) = (d𝜶, V)
and 𝜄𝔛(𝜶, V) = (𝜄𝔛𝜶, V) for 𝔛 ∈ Γ(TΦ). The induced actions
of Aut(P) and C∞

(
Φ,Aut(P)

)
≃ Diff v(Φ) on integrals are:

R̃⋆
𝜓
(𝜶, )|(𝜓∗𝜙, 𝜓−1(V)) := ⟨R⋆𝜓𝜶|𝜓∗𝜙, 𝜓−1(V)⟩ = ∫𝜓−1(V) R

⋆
𝜓
𝜶|𝜓∗𝜙,

Ξ̃⋆(𝜶, )|(Ξ(𝜙), 𝝍−1(V)) := ⟨Ξ⋆𝜶|Ξ(𝜙), 𝝍−1(V)⟩ = ∫
𝝍−1(V)

Ξ⋆𝜶|Ξ(𝜙).
(124)

In the latter case, d acts also on the transformed region
𝝍−1(V) due to the 𝜙-dependence of 𝝍 . We may write the
above as 𝜶V

𝜓 and 𝜶V
𝝍 , respectively. The actions of 𝔞𝔲𝔱(P) and

C∞
(
Φ, 𝔞𝔲𝔱(P)

)
≃ 𝖉𝖎𝖋𝖋v(Φ) on integrals are

d
d𝜏
R̃⋆
𝜓𝜏
(𝜶, V)|||𝜏=0 = ⟨LXv𝜶, V⟩ + ⟨𝜶,−X(V)⟩ =∫V

LXv𝜶 +∫−X(V) 𝜶,

d
d𝜏
Ξ̃⋆
𝜏
(𝜶, V)|||𝜏=0 = ⟨LX v𝜶, V⟩ + ⟨𝜶,−X (V)⟩ =∫V

LX v𝜶 +∫−X (V) 𝜶.
(125)

When convenient, we may write the above as 𝛿X𝜶V and 𝛿X 𝜶V re-
spectively.
When 𝜶 is tensorial on Φ, as a special case of the results (115)

above, we have that 𝜶V = (𝜶|𝜙, V) is C∞ (Φ,Aut(P))-invariant:
𝜶V

𝝍 = 𝜶V . From which follows

𝛿X𝜶V = 0 ⇒ ⟨LX v𝜶, V⟩ + ⟨𝜶,−X (V)⟩ = 0, X ∈ C∞(Φ, 𝔞𝔲𝔱(P)).

⟨𝔏X𝛼, V⟩ + ⟨𝜶,−X (V)⟩ = 0 → ∫V
𝔏X𝛼 + ∫−X (V) 𝜶 = 0,

(126)

as a special case of (116) and (125). This can be interpreted
as a continuity equation. For 𝜶 equivariant, we have Aut(P)-
invariance of its integral: 𝜶V

𝜓 = 𝜶V , and (126) holds mutatis
mutandis (X → X ). For 𝜶 tensorial, 𝜶V = (𝜶, V) is thus well-
defined on the bundle of regions V̄ (P) = Φ × V (P)∕∼, and one
may define an equivariant V (P)-valued function onΦ as in (117).
It also means that d(𝜶V

𝝍 ) = d𝜶V , i.e.,
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d⟨𝝍∗𝜶,𝝍−1(V)⟩ = ⟨d𝜶, V⟩ = d⟨𝜶, V⟩→ d ∫
𝝍−1(V)

𝝍∗𝜶

= ∫V
d𝜶 = d ∫V

𝜶. (127)

Also, specializing (118), we get the identity

(d𝜶V )
𝝍 = d𝜶V + ⟨𝔏d𝝍 ◦𝝍−1𝜶, V⟩,

⟨d𝜶, V⟩𝝍 = ⟨d𝜶, V⟩ + ⟨𝔏d𝝍 ◦𝝍−1𝜶, V⟩. (128)

As we will see in 5.1.2, the local version of the above are relevant
to the standard formulation of field theory, i.e., its formulation
on (U ⊂)M. The results as presented in this section are relevant
to a programmatic global formulation of gRGFT, on P. As indi-
cated in conclusion 6, this part of our program is to be pursued
in future work.

4. The Dressing Field Method

The DFM is a formal but systematic, algorithm to build basic
forms on a bundle. In the context of GFT, it allows to construct
gauge-invariants, generalizingDirac variables. First developed for
Yang–Mills theories and gauge gravity theories formulated via
Cartan geometry, i.e., for internal gauge groups,[4–7,38–42] it is then
extended to general-relativistic theories, i.e., for diffeomorphism
symmetry in ref. [8]. Its first (field-theoretic) application to super-
symmetric field theory (and supergravity) is given in ref. [43].
It can be understood as the geometric framework underlying

various notions encountered in recent literature on gauge theo-
ries and gravity: notably that of edge modes as introduced in ref.
[35] and further developed e.g., in refs. [27, 28, 33, 36], and that
of gravitational dressings[44–50] – see also ref. [51] – as well as “dy-
namical reference frames”,[52,53] or “embedding fields”.[28,54–56]

In ref. [8], dealing with Diff(M), it was argued that in the most
natural (favourable) situations the DFM renders manifest the
relational character of general-relativistic physics: It does so by
systematically implementing a notion of relational observables for
Diff (M)-theories.[57] In the following, we unify the internal and
Diff(M) versions of theDFM, treating themboth at the same time
by considering the extension of the method to the full automor-
phism group Aut(P) of a principal bundle.

4.1. Building Basic Forms via Dressing

LetQ → N be a reference fiber bundle with base N. The space of
Aut(P)-dressing fields is defined as the set of bundle morphisms
s.t.

r[Q, P] :=
{
u : Q → P | u𝜓 := 𝜓−1 ◦ u, with 𝜓 ∈ Aut(P)

}
⊂ Hom(Q, P). (129)

Which means that dressing fields are special morphisms in the
category of fiber bundles. The linearization of their defining prop-

erty is then 𝛿Xu := −X ◦ u for X ∈ 𝔞𝔲𝔱(P). The dressing map is
defined as:

|u : Φ → Φu,

𝜙 → 𝜙u := u∗𝜙.
(130)

The object 𝜙u, called the dressing of 𝜙, is Aut(P)-invariant: explic-
itly, (u∗𝜙)𝜓 := (u𝜓 )∗(𝜙𝜓 ) = (𝜓−1 ◦ u)∗(𝜓∗𝜙) = u∗𝜙. The space Φu

of dressed fields is a subset of fields living on Q .
We define field-dependent Aut(P)-dressing fields as

u : Φ → r[Q, P],

𝜙 → u(𝜙), s.t. R⋆
𝜓
u = 𝜓−1 ◦ u i.e., u(𝜙𝜓 ) = 𝜓−1 ◦ u(𝜙).

(131)

Said otherwise, u is an equivariant 0-form on Φ with value in the
representationr[Q, P] of Aut(P). Its infinitesimal equivariance,
i.e., 𝔞𝔲𝔱(P)-transformation, is then LXvu = −X ◦ u. Therefore, its
Diff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
and 𝖉𝖎𝖋𝖋v(Φ) ≃ C∞

(
Φ, 𝔞𝔲𝔱(P)

)
trans-

formations are, respectively:

u𝝍 := Ξ⋆u = 𝝍−1 ◦ u, and LX vu = −X ◦ u. (132)

A 𝜙-dependent dressing field induces a map

Fu : Φ → ,

𝜙 → Fu(𝜙) := u(𝜙)∗𝜙 ∼ [𝜙], s.t. Fu ◦R𝜓 = Fu.
(133)

It is constant along Aut(P)-orbits: Fu(𝜙
𝜓 ) = u(𝜙𝜓 )∗(𝜙𝜓 ) =(

𝜓−1 ◦ u(𝜙)
)∗
𝜓∗𝜙 = u(𝜙)∗𝜙 =: Fu(𝜙). As Aut(P)-orbits [𝜙] ∈

of 𝜙 ∈ Φ are represented by fields u(𝜙)∗𝜙 onQ , not on P, the im-
age of Fu can be understood as a “coordinatization” of. As an
Aut(P)-invariant, the dressed field 𝜙u represents physical d.o.f.
in a manifestly relationalway: the expression u(𝜙)∗𝜙 is an explicit
field-dependent coordinatization of the physical d.o.f., meaning
that physical d.o.f. are defined w.r.t. to each other. Dressed
fields 𝜙u are relational Dirac variables, also called “complete
observables” in refs. [57, 58]. Applying the DFM then amounts
to reformulate a field theory in a manifestly Aut(P)-invariant and
relational way.
The map (133) realizes the bundle projection, Fu ∼ 𝜋. It there-

fore allows to build basic forms on Φ, since Ω∙basic(Φ) = Im𝜋⋆ ≃
ImF⋆u . To build the basic counterpart of a form 𝜶 = 𝛼 (∧∙d𝜙;𝜙) ∈
Ω∙(Φ), one must first consider its formal analogue on the base
space 𝜶̄ = 𝛼 (∧∙d[𝜙]; [𝜙]) ∈ Ω∙(), then define

𝜶u := F⋆u 𝜶̄ = 𝛼
(
∧∙F⋆u d[𝜙];Fu(𝜙)

)
∈ Ω∙basic(Φ). (134)

We call this object the dressing of 𝜶. It is basic by construction,
so it is invariant under Diff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
– and under

Autv(Φ) ≃ Aut(P): (𝜶u)𝝍 = 𝜶u.
To get a final expression for 𝜶u, one needs F⋆u d[𝜙], a

basis for basic forms, expressed in terms of d𝜙 and u.
We may find it via the pushforward Fu⋆ : T𝜙Φ → TFu(𝜙)

,
𝔛|𝜙 → Fu⋆𝔛|𝜙. For a generic 𝔛 ∈ Γ(TΦ) with flow 𝜑𝜏 : Φ→

Φ, s.t. 𝔛|𝜙 = d
d𝜏
𝜑𝜏 (𝜙)|𝜏=0 = 𝔛(𝜙) 𝛿

𝛿𝜙
, one has F⋆u d[𝜙]|Fu(𝜙) (𝔛|𝜙) =

d[𝜙]|Fu(𝜙) (Fu⋆𝔛|𝜙). So,
Fortschr. Phys. 2024, 2400149 2400149 (17 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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Fu⋆𝔛|𝜙 := Fu⋆
d
d𝜏
𝜑𝜏 (𝜙)

|||𝜏=0 = d
d𝜏
Fu
(
𝜑𝜏 (𝜙)

) |||𝜏=0
= d

d𝜏
u
(
𝜑𝜏 (𝜙)

)∗(
𝜑𝜏 (𝜙)

) |||𝜏=0
= d

d𝜏
u
(
𝜑𝜏 (𝜙)

)∗
𝜙
|||𝜏=0 + d

d𝜏
u(𝜙)∗

(
𝜑𝜏 (𝜙)

) |||𝜏=0.
Inserting idQ = u(𝜙)−1◦u(𝜙) in the first term:
d
d𝜏
u(𝜙)∗u(𝜙)−1∗u(𝜑𝜏 (𝜙))

∗𝜙|𝜏=0 = u(𝜙)∗ d
d𝜏
(u(𝜑𝜏 (𝜙))◦u(𝜙)

−1)∗𝜙|𝜏=0.
The term u(𝜑𝜏 (𝜙)) ◦ u(𝜙)

−1 is a curve in P, so
d
d𝜏
u(𝜑𝜏 (𝜙))◦u(𝜙)

−1|𝜏=0 = du|𝜙(𝔛|𝜙) ◦ u(𝜙)−1 ∈ Γ(TP). Therefore,
d
d𝜏
u
(
𝜑𝜏 (𝜙)

)∗
𝜙
|||𝜏=0 = u(𝜙)∗ d

d𝜏

(
u
(
𝜑𝜏 (𝜙)

)
◦ u(𝜙)−1

)∗
𝜙
|||𝜏=0

= u(𝜙)∗𝔏du|𝜙(𝔛|𝜙) ◦ u(𝜙)−1𝜙. (135)

The second term is d
d𝜏
u(𝜙)∗(𝜑𝜏 (𝜙))|𝜏=0 =: d

d𝜏
Fu(𝜙)(𝜑𝜏 (𝜙))|𝜏=0 =

Fu(𝜙)⋆𝔛|𝜙. As a vector on, we find its expression as a derivation
by applying it to g ∈ C∞():[
Fu(𝜙)⋆𝔛

(
g
)]
([𝜙]) = d

d𝜏
g
(
Fu(𝜙)

(
𝜑𝜏 (𝜙)

)) |||𝜏=0
=
(

𝛿

𝛿[𝜙]
g
)(
Fu(𝜙)(𝜙)

) d
d𝜏
Fu(𝜙)

(
𝜑𝜏 (𝜙)

)|||𝜏=0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[𝔛(Fu(𝜙) )](𝜙)

=
(

𝛿

𝛿[𝜙]
g
)⎛⎜⎜⎜⎜⎝
u(𝜙)∗𝜙
⏟⏟⏟
∼[𝜙]

⎞⎟⎟⎟⎟⎠
(

𝛿

𝛿𝜙
Fu(𝜙)

)
(𝜙)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝛿

𝛿𝜙
u(𝜙)∗𝜙= u(𝜙)∗

𝔛(𝜙)

=
(

𝛿

𝛿[𝜙]
g
)
([𝜙]) u(𝜙)∗𝔛(𝜙)

=
[
u(𝜙)∗𝔛(𝜙) 𝛿

𝛿[𝜙]
(g)
]
([𝜙]).

We have finally

Fu⋆𝔛|𝜙 = u(𝜙)∗
(
𝔛(𝜙) + 𝔏du|𝜙(𝔛|𝜙) ◦ u(𝜙)−1𝜙

)
𝛿
𝛿[𝜙] |Fu(𝜙)(𝜙) . (136)

From which we find, for any 𝔛 ∈ Γ(TΦ):

F⋆u d[𝜙]|Fu(𝜙)(𝜙) (𝔛|𝜙) = d[𝜙]|Fu(𝜙)(𝜙) (Fu⋆𝔛|𝜙)
= d[𝜙]|Fu(𝜙)(𝜙)
×
(
u(𝜙)∗

(
𝔛(𝜙) + 𝔏du|𝜙(𝔛|𝜙)◦u(𝜙)−1𝜙

)
𝛿

𝛿[𝜙] |Fu(𝜙)(𝜙)
)

= u(𝜙)∗
(
𝔛(𝜙) + 𝔏du|𝜙(𝔛|𝜙) ◦ u(𝜙)−1𝜙

)
= u(𝜙)∗

(
d𝜙|𝜙 (𝔛|𝜙) + 𝔏du|𝜙(𝔛|𝜙) ◦ u(𝜙)−1𝜙

)
=
(
u(𝜙)∗

(
d𝜙|𝜙 + 𝔏du|𝜙 ◦ u(𝜙)−1𝜙

))
(𝔛|𝜙).

We get the dressing of d𝜙, the basic 1-form basis:

d𝜙u := F⋆u d[𝜙] = u∗
(
d𝜙 + 𝔏du ◦ u−1𝜙

)
∈ Ω1

basic(Φ). (137)

Inserted into (134), this yields the dressing of 𝜶:

𝜶u = 𝛼 (∧∙d𝜙u; 𝜙u) ∈ Ω∙basic(Φ). (138)

On account of the formal similarity between Ξ(𝜙) = 𝝍 (𝜙)∗𝜙
and Fu(𝜙) = u(𝜙)∗𝜙, and d𝜙𝝍 (71) and d𝜙u (137), resulting into
the close formal expressions of 𝜶𝝍 (47) and 𝜶u (134)–(138), the
following rule of thumb to obtain the dressing of any form 𝜶

holds: First compute the Diff v(Φ) ≃ C∞
(
Φ,Aut(P)

)
transforma-

tion 𝜶𝝍 , then substitute 𝝍 → u in the resulting expression to ob-
tain 𝜶u. This rule may be used be systematically.
For example, for𝜶 ∈ Ω∙tens(Φ, 𝜌) the rule gives us𝜶

u = 𝜌(u)−1𝜶.
For an Ehresmann connection, in view of (77), the rule ensures
that 𝝎u = u−1∗ 𝝎 ◦ u + u−1∗ du ∈ Ω1

basic(Φ). These two results allows
to write a lemma analogous to (80)–(81): For 𝜶,D𝜶 ∈ Ω∙tens(Φ, 𝜌),
we have d F⋆u 𝜶̄ = d

(
𝜌(u)−1𝜶

)
. On the other hand, since F⋆u D̄𝜶̄ =

d𝜶u + 𝜌∗(𝝎u)𝜶u = 𝜌(u)−1D𝜶, we have

F⋆u d𝜶̄ = 𝜌(u)
−1D𝜶 − 𝜌∗(𝝎u)𝜶u

= 𝜌(u)−1d𝜶 + 𝜌(u)−1 𝜌∗(𝝎)𝜶 − 𝜌∗(𝝎u)𝜶u

= 𝜌(u)−1d𝜶 − 𝜌∗(u−1∗ du)𝜌(u)−1𝜶

= 𝜌(u)−1
(
d𝜶 − 𝜌∗(du ◦ u−1)𝜶

)
.

By [F⋆u , d] = 0 (remark that the exterior derivatives belong to dif-
ferent spaces) we obtain:

d
(
𝜌(u)−1𝜶

)
= 𝜌(u)−1

(
d𝜶 − 𝜌∗(du ◦ u−1)𝜶

)
. (139)

For the pullback representation 𝜌(u)−1= u∗, this specializes to

d(u∗𝜶) = u∗
(
d𝜶 + 𝔏du ◦ u−1𝜶

)
. (140)

This identity, generalizing the one appearing e.g., in refs. [35, 36,
51], must not be conflated with (137). Despite their formal simi-
larity, these two results have distinct geometric origin.

4.1.1. Dressing Field and Flat Connections

• A field-dependent dressing field u, induces a flat Ehresmann
connection 𝝎0 := −du ◦ u−1 ∈ Ω1(Φ). By (132) we have

𝝎0|𝜙(Xv|𝜙) = −du|𝜙(Xv|𝜙) ◦ u(𝜙)−1 = −LXvu ◦ u(𝜙)−1

= X ◦ u(𝜙) ◦ u(𝜙)−1 = X ∈ 𝔞𝔲𝔱(P), (141)

and by (131), using the naturality of d, we get

R⋆
𝜓
𝝎0 = −R⋆𝜓du ◦ (R

⋆
𝜓
u)−1 = −d(R⋆

𝜓
u) ◦ (R⋆

𝜓
u)−1

= −d(𝜓−1 ◦ u) ◦ (𝜓−1 ◦ u)−1 = 𝜓−1∗ du ◦ u−1 ◦𝜓

= 𝜓−1∗ 𝝎0◦𝜓.

(142)
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These are indeed the defining properties (73) of an Ehresmann
connection, and Ω0 = d𝝎0 +

1
2
[𝝎0,𝝎0]𝔞𝔲𝔱(P) ≡ 0 is immediate.

It follows that, as a special case of (77) and (78),

𝝎
𝝍

0 = 𝝍
−1
∗ 𝝎0 ◦𝝍 + 𝝍−1

∗ d𝝍 , and LX v𝝎0 = dX + [𝝎0,X ]𝔞𝔲𝔱(P).

(143)

Thus, (137) can also be written as d𝜙u = u∗
(
d𝜙 − 𝔏𝝎0𝜙

)
∈

Ω1
basic(Φ).
The existence of a flat connection is a strong topological con-

straint on a bundle, then so is that of a global dressing field.
A global dressing field may indeed give a global trivialization
of the bundle Φ. However the field space may not be trivial
in general, and Gribov-like obstructions may exclude the exis-
tence of global dressing fields. Local dressing fields are always
compatible with the local triviality of Φ.

• A dressing field may also induce a flat twisted connection𝝕0 :=
−dC(u) ⋅ C(u)−1. To see this, one only has to assume that the 1-
cocycle (50) C : Φ × Aut(P) → G controlling the equivariance
(51) of twisted forms has a functional expression that can be
extended to C : Φ ×Hom(Q, P) → G. Then, we have the well-
defined map

C(u) : Φ → G,

𝜙 → [C(u)](𝜙) := C
(
𝜙; u(𝜙)

)
.

(144)

By the cocycle property (50), it is a twisted equivariant
0-form:15[
R⋆
𝜓
C(u)

]
(𝜙) =

[
C(u) ◦R𝜓

]
(𝜙) := C

(
𝜙𝜓 ; u(𝜙𝜓 )

)
= C
(
𝜙𝜓 ;𝜓−1 ◦ u(𝜙)

)
= C
(
𝜙𝜓 ;𝜓−1

)
⋅ C
(
𝜙; u(𝜙)

)
= C(𝜙;𝜓)−1 ⋅ C

(
𝜙; u(𝜙)

)
=:
[
C( ;𝜓)−1 ⋅ C(u)

]
(𝜙).

(145)

Its infinitesimal equivariance is LXvC(u) = 𝜄XvdC(u) =
−a(X ; ) ⋅ C(u). From these, one easily checks that 𝝕0 sat-
isfies the defining properties (84) of a twisted connection. As
a special case of (89)–(90), we have

𝝕
𝝍

0 = Ad
(
C(𝝍 )−1

)
𝝕0 + C(𝝍 )−1dC(𝝍 ), and

LX v𝝕0 = da(X ) + [𝝕0, a(X )]𝔤. (146)

As we will see in the next section, twisted dressings C(u) and
associated 𝝕0 underly the construction of WZ counterterms
in field theory.

4.2. Composition of Dressing Operations

As stated in introduction, the DFM has been first developed for
“internal symmetry groups” – for either Yang-Mills type theory,

15 Remark that it is then a dressing field for twisted forms.

or for gauge theories of gravity based on Cartan geometry – i.e.,
for Autv(P). It has been developed for general-relativistic theories,
i.e., for Diff (M), in ref. [8]. To indicate how to recover both cases
from the above construction, we may rely on the decomposition
(A8) in Appendix A of bundlemorphisms: anAut(P)-dressing can
be written as the composition u = fu ◦ 𝝊̄, as in the following dia-
gram

(147)

where 𝝊̄ : Φ → r[Q, P] is covering 𝝊 : Φ → r[N,M], 𝜙 →
( 𝝊[𝜙] : N → M) which is a Diff (M)-dressing as defined in ref. [8].
The map fu : Φ→ r[P, P], 𝜙 →

(
fu[𝜙] : P → P

)
, covers idM. The

latter is thus, omitting the 𝜙-dependence for notational simplic-
ity, of the form fu(p) := pu(p), with u : P → H. By definition of an
Autv(P)-dressing field, it satisfies f

𝜓
u = 𝜓−1 ◦ fu, for 𝜓 ∈ Autv(P),

so that

f 𝜓u (p) := 𝜓−1 ◦ fu(p) = 𝜓−1
(
pu(p)

)
= 𝜓−1(p)u(p) = p𝛾(p)−1u(p),

(148)

where 𝛾−1 ∈  is the gauge group element corresponding to
𝜓−1 ∈ Autv(P). One has thus that f

𝜓
u = fu𝛾 = f𝛾−1u, i.e., one finds

that the generating element u of the Autv(P)-dressing fu is

u : P → H, s.t. u𝛾 = 𝛾−1u. (149)

This is the bundle version of the original field-theoretic definition
of an -dressing field as given e.g., in refs. [4, 41].16

The decomposition u = fu ◦ 𝝊̄ is suggested by the semi-direct
product structure of Aut(P) = Diff ⋉ Autv(P), discussed in Ap-
pendix A. As illustrated by the diagram (147), it shows that one
may perform dressings in a stepwise manner: first dressing for
Autv(P) via fu and then for Diff via 𝝊̄. This works if, again as sug-
gested by the semi-direct structure of Aut(P), the two dressing
maps fu and 𝝊̄ satisfy, in addition to their defining relations (left
column below), the compatibility conditions (right column) un-
der 𝜓 = (ψ̄, 𝜂) ∈ Aut(P) = Diff ⋉ Autv(P):

f 𝜂u := 𝜂−1 ◦ fu, (150)

𝝊̄ ψ̄ := ψ̄−1 ◦ 𝝊̄, (151)

f ψ̄u := ψ̄−1 ◦ fu ◦ ψ̄, (152)

𝝊̄ 𝜂 := 𝝊̄. (153)

16 One may define a dressing for a subgroup of Autv(P), leading to a
partial symmetry reduction, to which corresponds a -dressing field
u : P → K ⊂ H s.t. u𝜅 = 𝜅−1u, for 𝜅 ∈  ⊂ . See e.g., refs. [6, 7]
for details.

Fortschr. Phys. 2024, 2400149 2400149 (19 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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The condition (152) ensures that the first dressed fields f ∗u 𝜙 re-

tains well-defined Diff -transformations, that can be dressed for
via (151). While condition (153) ensures that upon dressing by 𝝊̄
the Autv(P)-invariance is preserved. From these, one checks ex-
plicitly the invariance of the dressed fields 𝜙 u := u∗𝜙 = 𝝊̄∗f ∗u 𝜙:

(𝜙 u) 𝜂 =
(
𝝊̄∗f ∗u 𝜙

) 𝜂 = (𝝊̄ 𝜂) ∗(f ∗u 𝜙)
𝜂 = 𝝊̄ ∗ f ∗u 𝜙 = 𝜙

u,

(𝜙 u) 𝜓̄ = (𝝊̄∗f ∗u 𝜙)
𝜓̄ = (𝝊̄ 𝜓̄ ) ∗(f 𝜓̄u ) ∗𝜙𝜓̄

= (𝜓̄−1 ◦ 𝝊̄) ∗(𝜓̄−1 ◦ fu ◦ 𝜓̄) ∗𝜓̄∗𝜙

= 𝝊̄∗(𝜓̄−1) ∗𝜓̄∗f ∗u (𝜓̄
−1) ∗𝜓̄∗𝜙 = 𝜙 u,

(154)

by (150) and (153) in the first line, and by (151) and (152) in
the second line. From this immediately follows that [(𝜙 u) 𝜂 ] ψ̄ =
[(𝜙 u) ψ̄ ] 𝜂 . The consecutive dressing operations can be summa-
rized via the following sequence:(
Aut(P) = Diff ⋉ Autv(P);𝜙

) fu
←←←←←←←→
(
Diff ; f ∗u 𝜙

)
𝝊̄

←←←←←→
(
∅; 𝝊̄∗f ∗u 𝜙 = (fu ◦ 𝝊̄)

∗𝜙 =: u∗𝜙 = 𝜙u
)
. (155)

A similar pattern of stepwise dressings may also appear for
Autv(P) if it has a semi-direct structure. Then dressing compat-
ibility conditions such as (152)–(153) must hold, for the same
reasons. Such is notably the case in conformal Cartan geome-
try, where the DFM can be used to build conformal tractors and
twistors,[39,40] and applied to conformal gravity.[59] One may then
specialize the results of Section 4.1 to the distinct cases of Autv(P)
and Diff dressings. As we shall see in Section 5, this is especially
relevant when dealing with (local) field theory, where the semi-
direct structure of the local version of Aut(P) is unavoidable.

4.3. Residual Symmetries

Weought to discuss two kinds of residual symmetries in theDFM.
First, the genuine residual symmetry coming from the elimina-
tion of a subgroup of the original symmetry group. Secondly, a
new symmetry replacing the eliminated one, parametrising the
choice of dressing fields. Bothmay be present simultaneously, yet
in the following we discuss them in turn for the sake of clarity.

4.3.1. Residual Symmetries of the First Kind

Consider a dressing field u : Φ → r[Q, P] whose defining
equivariance is controlled by a subgroup Aut0(P):

R⋆
𝜑
u = 𝜑−1 ◦ u, for 𝜑 ∈ Aut0(P) ⊂ Aut(P). (156)

Applying the DFM is then equivalent to building a bundle projec-
tionΦ → Φ∕Aut0(P) =: Φu. ForΦu to be principal (sub)bundle in
its own right, the quotient Aut(P)∕Aut0(P) must be a group, so
Aut0(P) has to be a normal subgroup of Aut(P): Aut0(P) ⊲ Aut(P).
We assume that it is and denote Autr(P) := Aut(P)∕Aut0(P) the
residual structure group of Φu.

For instance, one may consider the subgroup of automor-
phisms Aut0(P) = Autc(P) whose domains P|D ⊂ P have 𝜋-
projections D ⊂ M that are compact subsets of M.17 Another
noteworthy example, as seen in the previous section, is the sub-
group of vertical automorphisms Aut0(P) = Autv(P), in which
case Autr(P) = Diff ≃ Diff(M). These are relevant examples for
local field theory applications, see Section 5.
Dressed objects 𝜶u are then Aut0(P)-basic on Φ, i.e., by con-

struction invariant under C∞
(
Φ,Aut0 (P)

)
⊂ C∞

(
Φ,Aut(P)

)
≃

Diff v(Φ), so in particular invariant under Aut0(P) ⊂ Aut(P).
One expects them to exhibit residual transformations under
C∞
(
Φ,Autr(P)

)
⊂ C∞

(
Φ,Aut(P)

)
. The transformation of 𝜶 un-

der C∞
(
Φ,Autr(P)

)
is known, so determining that of 𝜶u boils

down to finding the residual transformation of the dressing field
u under C∞

(
Φ,Autr(P)

)
, which is given by its equivariance R⋆

𝜓
u

for 𝜓 ∈ Autr(P).
We illustrate this in the following two propositions dealing

with two interesting cases that can be systematically treated. Let
us consider 𝜶 ∈ Ω∙tens (Φ, 𝜌) and 𝝎 ∈ , whose dressing by u as in
(156) above are 𝜶u and 𝝎u, both C∞

(
Φ,Aut0 (P)

)
-invariant.

Proposition 1. If u : Φ → r[Q, P], with Q ⊆ P, is s.t.

R⋆
𝜓
u = 𝜓−1 ◦ u ◦𝜓 , for 𝜓 ∈ Autr(P), (157)

then 𝜶u ∈ Ωtens (Φ, 𝜌) and 𝝎u ∈ . Then, their residual
C∞(Φ; Autr(P))-transformations are

(𝜶u)𝝍 = 𝜌(𝝍−1)𝜶u, and (𝝎u)𝝍 = 𝝍−1
∗ 𝝎u ◦𝝍 + 𝝍−1

∗ d𝝍 . (158)

Indeed, when 𝜶 is horizontal so is 𝜶u = 𝜌(u)−1𝜶, and R⋆
𝜓
𝜶u =

𝜌(R⋆
𝜓
u)−1R⋆

𝜓
𝜶 = 𝜌(𝜓−1 ◦ u ◦𝜓)−1𝜌(𝜓)−1𝜶 = 𝜌(𝜓−1)𝜶u. Also, given

the linearization of (157),

LXvu = 𝜄Xvdu = d
d𝜏
R⋆
𝜓𝜏
u |||𝜏=0 = −X ◦ u + u∗X, for

X := d
d𝜏
𝜓𝜏
|||𝜏=0 ∈ 𝔞𝔲𝔱r(P), (159)

one finds that 𝝎u(Xv) = u−1∗ 𝝎(X
v) ◦ u + u−1∗ du(Xv) = u−1∗ X ◦ u +

u−1∗
(
−X ◦ u + u∗X

)
= X . Then, by (157) and (73), we have

R⋆
𝜓
𝝎u = 𝜓−1∗ 𝝎u ◦𝜓 , for 𝜓 ∈ Autr(P). The dressed connection 𝝎

u

satisfies the defining properties (73) of an Autr(P)-principal con-
nection. Thus, (158) follows from (62) and (77). Remark that
𝝎u, being 𝔞𝔲𝔱(P)-valued, splits as an 𝔞𝔲𝔱r(P)-connection and an
𝔞𝔲𝔱0(P)-valued tensorial 1-form. In particular, from either re-
sults in (158), one derives that 𝛀u ∈ Ω2

tens(Φ, 𝔞𝔲𝔱(P)), so (𝛀
u)𝝍 =

𝝍−1
∗ 𝛀

u ◦𝝍 .

Proposition 2. If u : Φ → r[Q, P] is s.t.

R⋆
𝜓
u = 𝜓−1 ◦ u ◦C( ;𝜓), for 𝜓 ∈ Autr(P), (160)

where C : Φ × Autr(P) → Aut(Q) is a special case of 1-cocycle
(50), satisfying C(𝜙;𝜓 ′ ◦𝜓) = C(𝜙;𝜓 ′) ◦C(𝜙𝜓 ′ ;𝜓), then

17 In case the structure groupH of P is compact, their domains are com-
pact and these are indeed compactly supported automorphims.

Fortschr. Phys. 2024, 2400149 2400149 (20 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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𝜶u ∈ Ω∙tens (Φ, C) and 𝝎u ∈ ̄. Their residual C∞
(
Φ,Autr(P)

)
-

transformations are then

(𝜶u)𝝍 = 𝜌
(
C(𝝍 )

)−1
𝜶u, and

(𝝎u)𝝍 = C(𝝍 )−1∗ 𝝎
u ◦C(𝝍 ) + C(𝝍 )−1∗ dC(𝝍 ). (161)

As above, if 𝜶 is horizontal, so is 𝜶u = 𝜌(u)−1𝜶, and R⋆
𝜓
𝜶u =

𝜌(R⋆
𝜓
u)−1R⋆

𝜓
𝜶 = 𝜌(𝜓−1 ◦ u ◦C( ;𝜓))−1𝜌(𝜓)−1𝜶 = 𝜌(C( ;𝜓))−1𝜶u.

For 𝜌 the pullback action, 𝜌(𝜓)−1 = 𝜓∗, we have R⋆
𝜓
𝜶u =

C( ;𝜓)∗𝜶u and (𝜶u)𝝍 = C(𝝍 ))∗𝜶u. The linear version of (160)
reads

LXvu = 𝜄Xvdu = d
d𝜏
R⋆
𝜓𝜏
u|||𝜏=0 = −X ◦ u + u∗

d
d𝜏
C( ;𝜓𝜏 )

|||𝜏=0
= −X ◦ u + u∗ a(X ; ), for X ∈ 𝔞𝔲𝔱r(P). (162)

So one has 𝝎u(Xv) = u−1∗ 𝝎(X
v) ◦ u + u−1∗ du(Xv) = u−1∗ X ◦ u +

u−1∗
(
−X ◦ u + u∗ a(X ; )

)
= a(X ; ) ∈ 𝔞𝔲𝔱(Q). Also, given (160)

and (73), it is easily shown that: R⋆
𝜓
𝝎u = C( ;𝜓)−1∗ 𝝎u ◦C( ;𝜓) +

C( ;𝜓)−1∗ dC( ;𝜓), for 𝜓 ∈ Autr(P). The dressed connection
𝝎u satisfies the defining properties (84)–(85) of a Autr(P)-
twisted connection. The transformations (161) follow from
(62) and (89). From either follows that 𝛀u ∈ Ω2

tens
(Φ, C), so

(𝛀u)𝝍 = C(𝝍 )−1∗ 𝛀
u ◦C(𝝍 ).

4.3.2. Residual Symmetries of the Second Kind

The defining equivariance R⋆
𝜓
u = 𝜓−1 ◦ u of a dressing field u :

Φ → r[Q, P] means that, as a bundlemap u(𝜙) : Q → P, Aut(P)
acts on its target space. But then a priori there is a natural right
action of Aut(Q) on its source space, which we write:

r[Q, P] × Aut(Q) → r[Q, P]

(u,𝜑) → 𝜑∗u = u ◦𝜑 =: u𝜑.
(163)

One way to interpret this, is that two candidates dressing fields
u′ and u may a priori be related by an element 𝜑 ∈ Aut(Q): u′ =
u ◦𝜑 = u𝜑. The group Aut(Q) does not act onΦ, so we write𝜙𝜑 =
𝜙, but it acts on 𝜙u = Fu(𝜙) := u∗𝜙 as a field on Q :

𝜙u → 𝜙u𝜑 := (u𝜑)∗𝜙 = (u ◦𝜑)∗𝜙 = 𝜑∗(u∗𝜙) = 𝜑∗𝜙u. (164)

The space Φu of dressed fields is thus fibered by the right action
of Aut(Q):

Φu × Aut(Q) → Φu,

(𝜙u,𝜑) → R𝜑𝜙
u := 𝜑∗𝜙u.

(165)

So, in analogy with the original field spaceΦ, the space of dressed
fields is a principal bundle Φu

𝜋
←←←←←→ Φu∕Aut(Q) =: u.18We have

18 Provided that the action of Aut(Q) is free and transitive, which requires
in general some restriction on either Aut(Q) orΦu. See refs. [60, 61] in
the case of the action of a gauge group ≃ Autv(P) on the connection
space Φ =  of P.

the SES of groups

Aut(Q) ≃ Autv(Φu) → Aut(Φu) → Diff (u), (166)

where Aut(Q) :=
{
𝝋 : Φu → Aut(Q) |R⋆

𝜑
𝝋 = 𝜑−1 ◦𝝋 ◦𝜑

}
is the

gauge group ofΦu. The latter is a subgroup ofC∞
(
Φu,Aut(Q)

)
≃

Diff v(Φu), acting on Γ(TΦu) and Ω∙(Φu) as previously de-
scribed. In particular, in exact analogy with (47) and (71), a
dressed form 𝜶u = 𝛼 (∧∙d𝜙u;𝜙u) ∈ Ω∙(Φu) transforms under 𝝋 ∈
C∞
(
Φu,Aut(Q)

)
as:

(𝜶u)𝝋 = 𝛼
(
∧∙(d𝜙u)𝝋; (𝜙u)𝝋

)
, (167)

with (d𝜙u)𝝋 = 𝝋∗
(
d𝜙u + 𝔏{d𝝋 ◦𝝋−1}𝜙

u
)
, (168)

from which follows that (𝜶u)𝝋 = R⋆
𝝋
𝜶u + 𝜄{d𝝋 ◦𝝋−1}v𝜶

u.
We notice that (𝜙u)𝜑 is Aut(P)-invariant for all 𝜑 ∈ Aut(Q),

meaning that all representatives in the Aut(Q)-orbit Aut(Q)[𝜙
u]

of 𝜙u are valid coordinatizations of [𝜙] ∈. So, a priori
Aut(Q)[𝜙

u] ≃ Aut(P)[𝜙], and u ≃. By (166), it is clear that
Aut(Q) ≃ Autv(Φu) is isomorphic to the original gauge group
Aut(P) ≃ Autv(Φ), and that Diff (u) ≃ Diff (), which are
“physical symmetries”. A priori, the new symmetry Diff v(Φu) ⊃
Autv(Φu) does not enjoy a more direct physical interpretation
than the original symmetry it replaces.
The group C∞

(
Φu,Aut(Q)

)
≃ Diff v(Φu), and transformations

like (163), (165) and (168), encompass what is known, in the co-
variant phase space literature on edgemodes, as “surface symme-
tries” or “corner symmetries” – or more rarely as “physical sym-
metries”, which is misleading, per our previous remark.
We observe that, in concrete situations, the process by which

one constructs a dressing field u(𝜙) out of the field content of
a theory may be s.t. the choice reflected in the relation (163) is
parametrized by only a subgroup of Aut(Q), possibly even a dis-
crete one. A possibility forfeited for dressing fields introduced by
hand in a theory.

4.4. Dressed Regions and Integrals

In Section 3.5.2, we observed that for V ∈ V (P) and 𝜶 ∈
Ω∙
(
Φ,Ωtop(V)

)
, integrals 𝜶V = ⟨𝜶, V⟩ = ∫V 𝜶 are objects on Φ ×

V (P), with values in Ω∙(Φ). Integrals of tensorial integrand are
invariant under the action of C∞

(
Φ,Aut(P)

)
≃ Diff v(Φ), defined

by (124). Their projection along 𝜋̄ : Φ × V (P) → V̄ (P), (𝜙, V) →
[𝜙, V ] = [𝜓∗𝜙,𝜓−1(V)] is well-defined, and they can be said “ba-
sic” w.r.t. 𝜋̄. So, they descend on the associated bundle of regions
V̄ (P) := Φ × V (P)∕∼, which is the quotient of the product space
by the action of Aut(P) (97).
In Section 4.1, dressed objects were defined as being in Im𝜋⋆

(i.e., basic on Φ) with the projection realized via a dressing field,
Fu ∼ 𝜋. Relying on the formal similarity of the actions of Fu and
Ξ ∈ Diff v(Φ) ≃ C∞

(
Φ,Aut(P)

)
, the rule of thumb to obtain the

dressing 𝜶u of a form 𝜶 is to replace the field-dependent param-
eter 𝝍 in 𝜶𝝍 := Ξ⋆𝜶 by the dressing field u. In the same way,
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we define dressed integrals as being basic on Φ × V (P), i.e., in
Im 𝜋̄⋆, with the projection realized as:

F̄u : Φ × V (P) → V̄ (P) ≃ Φu × V (Q),

(𝜙, V) → F̄u(𝜙, V) :=
(
Fu(𝜙), u

−1(V)
)
=
(
𝜙u, u−1(V)

)
.
(169)

We highlight the fact that the region Vu := u−1(V) ∈ V (Q) is a
map Vu : Φ × V (P) → V (Q) s.t. for 𝜓 ∈ Aut(P):

(Vu)𝜓 := R̄⋆
𝜓
Vu = (R⋆

𝜓
u)−1 ◦𝜓−1(V)

= (𝜓−1 ◦ u)−1 ◦𝜓−1(V) = u−1(V) =: Vu. (170)

The same then holds for 𝝍 ∈ C∞
(
Φ,Aut(P)

)
≃ Diff v(Φ):

(Vu)𝝍 := Ξ̄⋆Vu = Vu. Therefore, Vu is a 𝜙-dependent Aut(P)-
invariant region of what we may call, as we did in Section 2,
the physical relationally defined enriched spacetime. As we have
seen there, the generalized hole argument and the generalized
point-coincidence argument establish that the physical enriched
spacetime is defined relationally, in an Aut(P)-invariant way, by
its physical gauge field content. A fact that is tacitly encoded by
the Aut(P)-covariance/invariance of general-relativistic gauge
field theories, and made manifest via the DFM: Vu are man-
ifestly Aut(P)-invariant and manifestly 𝜙-relationally defined
regions, faithfully representing regions of the physical enriched
spacetime, on which relationally defined and Aut(P)-invariant
fields 𝜙u := u∗𝜙 live – and might be integrated over. From this
follows that the physical, relational boundary 𝜕Vu of a true en-
riched spacetime region Vu is necessarily Aut(P)-invariant. This
observation is key to dissolve the so-called “boundary problems”
often discussed in field theory, as we will see in Section 5.2.4.
So, on the space Ω∙

(
Φ,Ωtop(V)

)
× V (P) we define:

F̃u : Ω∙
(
Φ,Ωtop(V)

)
× V (P) → Ω∙basic

(
Φ,Ωtop(Q)

)
× V (Q)

(𝜶, V) → F̃⋆u (𝜶, V) :=
(
𝜶u, u−1(V)

)
.

(171)

With indeed Ω∙basic
(
Φ,Ωtop(Q)

)
≃ Ω∙

(
Φu,Ωtop(Q)

)
, as dressed

fields 𝜙u live onQ . Then, in formal analogy with (124), the dress-
ing of an integral 𝜶V := ⟨𝜶, V⟩ = ∫V 𝜶 is

(𝜶V )
u = ⟨ , ⟩ ◦ F̃u(𝜶, V) = ⟨𝜶u, u−1(V)⟩ = ∫u−1(V)

𝜶u. (172)

We remark that the residual symmetry C∞
(
Φu,Aut(Q)

)
≃

Diff v(Φu) may act on dressed integrals, analogously to (124), as

(
(𝜶V )

u
)𝝋 = ∫

𝝋−1(Vu)
(𝜶u)𝝋. (173)

Now, for 𝜶 ∈ Ω∙tens
(
Φ,Ωtop(V)

)
one has

𝜶V
u = ⟨𝜶u, u−1(V)⟩ = ⟨u∗𝜶, u−1(V)⟩ = ⟨𝜶, V⟩ = 𝜶V , (174)

by the invariance property (120) of the integration pairing. There-
fore, d𝜶V = ⟨d𝜶, V⟩ = d⟨u∗𝜶, u−1(V)⟩ = d(𝜶V

u). The latter result
can also be proven using the lemma (139)–(140) and concluding

by the invariance property (121). This calculation also supplies
the analogue of (118)/(128):

(d𝜶V )
u = d𝜶V + ⟨𝔏du ◦ u−1𝜶, V⟩,⟨d𝜶, V⟩u = ⟨d𝜶, V⟩ + ⟨𝔏du ◦ u−1𝜶, V⟩. (175)

The local version is key to the interplay between the DFM and the
variational principle, as shown in Section 5.2.4.

5. Local Field Theory

Local field theory is usually expressed not directly via fields on a
principal bundle P, but via local representatives of these global
objects on (open sets of) the base space M. In this section, we
thus consider the local counterpart of the above formalism to ob-
tain applications to field theory in its standard formulation. As
we shall see, the local case features several subtleties. We thus
define the elementary notions and provide the most important
relations necessary for field theory.

5.1. Local Field Space

For local field theory, the field space Φ is now the space of lo-
cal representatives 𝜙 = {A, F,ϕ, Dϕ,…} onM of global object de-
fined on P: e.g., A is a gauge potential over U ⊂ M representing
the connection 𝜔 over P|U ⊂ P, while F is the field strength rep-
resenting the curvature Ω.
Locally, overU ⊂ M, the group Aut(P) of automorphisms – the

structure group of Φ seen as a principal bundle – is represented
as the semi-direct product group Diff(M)⋉loc, where loc is
the local representative of the gauge group of P (isomorphic to
Autv(P)):

loc =
{
γ, η : U → H | ηγ := γ−1ηγ}. (176)

This field-theoretic characterization of the local (active) gauge
group flows from the geometric definition of the gauge group
of P. Similarly, the action of loc on a (local) field 𝜙 is de-
fined as the local version of the action of  on the correspond-
ing global object: For example, the -gauge transformation of
𝜔 is 𝜔𝛾 := 𝜓∗𝜔 = 𝛾−1𝜔𝛾 + 𝛾−1d𝛾 , for 𝜓 ∈ Autv(P) ∼ 𝛾 ∈  – re-
mind the isomorphism 𝜓(p) = p𝛾(p) – which locally gives Aγ :=
γ−1Aγ + γ−1dγ, for γ ∈ loc. Likewise, for 𝛽 ∈ Ω∙tens(P, 𝜌), one has
𝛽𝛾 := 𝜓∗𝛽 = 𝜌(𝛾)−1𝛽, which gives locally bγ := 𝜌(γ)−1b. Take b =
{F,ϕ, Dϕ,…} with their respective representation 𝜌. The right ac-
tion of the structure group on Φ, the local version of (4), is then

Φ ×
(
Diff(M)⋉loc

)
→ Φ,

(𝜙, (ψ, γ)) → R(ψ,γ) 𝜙 = (ψ, γ)∗𝜙 := ψ∗(𝜙γ).
(177)

Remark that it does not matter which of Diff(M) or loc trans-
formation applies first. This follows from the fact that (ψ, γ) is
the local representative of a given automorphism 𝜓 = (ψ̄, 𝜂) ∈
Aut(P) = Diff ⋉ Autv(P) which, by (A2), is written as 𝜓(p) =
(𝜂 ◦ ψ̄) (p) = ψ̄(p)𝛾

(
ψ̄(p)

)
= ψ̄(p) (ψ̄∗𝛾) (p). The action (177) is the

local version of the pullback action 𝜓∗. The semi-direct struc-
ture (A12) of the local group Diff(M)⋉loc is inherited from the
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semi-direct structure of Aut(P) as detailed in Appendix A. It can
also be derived from field-theoretic considerations, by iterating
twice the transformation (177):

𝜙 → ψ′∗(𝜙γ′ ) = (ψ′∗𝜙)ψ′
∗γ′

→ ψ∗
([
(ψ′∗𝜙)ψ′

∗γ′
]γ)

=
[
(ψ∗ψ′∗𝜙)ψ∗ψ′

∗γ′
]ψ∗γ

=
[
(ψ∗ψ′∗𝜙)ψ∗ψ′

∗γ′
]ψ∗ψ′∗ψ′−1∗γ

= ψ∗ψ′∗
([
𝜙γ

′]ψ′−1∗γ)
= (ψ′ ◦ψ)∗

(
𝜙𝛾 ′⋅ (ψ′−1∗𝛾)

)
.

(178)

One may test this more explicitly for the simple case 𝜙 = b.
Given the right action of Diff(M)⋉loc on Φ, R(ψ,γ) R(ψ′ ,γ′) 𝜙 =
R(ψ′ ,γ′)⋅(ψ,γ) 𝜙, its semi-direct product is found to be(
ψ′, γ′

)
⋅ (ψ, γ) =

(
ψ′ ◦ψ, γ′ ⋅

(
ψ′−1∗γ

))
. (179)

The corresponding Lie algebra 𝔡𝔦𝔣𝔣(M)⊕ Lieloc is a semi-direct
sum with Lie bracket[
(X ′, 𝜆′), (X, 𝜆)

]
Lie
=
(
[X ′, X ]𝔡𝔦𝔣𝔣(M), [𝜆

′, 𝜆]LieH − X ′(𝜆) + X(𝜆′)
)
.

(180)

Remark that [X ′, X ]𝔡𝔦𝔣𝔣(M) := −[X ′, X ]Γ(TM). The bracket (180) can
also be understood as the bracket on sections of the (locally triv-
ialized) Atiyah Lie algebroid associated to P – see e.g., ref. [62] –
described by the SES

0 → Lieloc → 𝔡𝔦𝔣𝔣(M)⊕ Lieloc → 𝔡𝔦𝔣𝔣(M) → 0. (181)

The vertical subbundle of field space Φ
𝜋
←←←←←→ Φ∕(

Diff(M)⋉loc

)
=: , with  the moduli space of gauge

orbits, is VΦ := ker𝜋∗. The fundamental vertical vector field are

(X, 𝜆)v|𝜙 := d2

d𝜏ds
R(ψ𝜏 ,γs)𝜙

|||𝜏=0,s=0 = d2

d𝜏ds
ψ∗
𝜏
(𝜙γs )|||𝜏=0,s=0

= 𝔏X𝜙 + 𝛿𝜆𝜙 = Xv|𝜙 + 𝜆v|𝜙, (182)

with 𝔏X𝜙 is the Lie derivative of 𝜙 along the vector field X ∈
Γ(TM) generating the diffeomorphism ψ𝜏 ∈ Diff(M), and 𝛿𝜆𝜙 is
the infinitesimal (active) gauge transformation of 𝜙 by the ele-
ment 𝜆 : U → LieH ∈ Lie loc. For example, for 𝜙 = A this is
𝛿𝜆A = D𝜆, for𝜙 = b this is 𝛿𝜆b = −𝜌∗(𝜆)b. The pushforward by the(
Diff(M)⋉loc

)
-right action of a fundamental vector field is

R(ψ,γ)⋆ (X, 𝜆)
v|𝜙 := (Ad(ψ,γ)−1 (X, 𝜆) )v|R(ψ,γ)𝜙 (183)

where (ψ, γ)−1 =
(
ψ−1,ψ∗γ−1

)
and the adjoint action is given by

Ad(ψ,γ)−1 (X, 𝜆) =
(
ψ−1∗ X ◦ψ, ψ∗

(
Adγ−1𝜆 − γ−1𝔏X γ

) )
, (184)

as proven in (A14) of Appendix A.

The maximal group of transformations of the local field space
Φ is again

Aut(Φ) :=
{
Ξ ∈ Diff (Φ) |Ξ ◦R(ψ,γ) = R(ψ,γ) ◦Ξ

}
, (185)

whose elements cover those of Diff (). The vertical diffeomor-
phisms

Diff v(Φ) :=
{
Ξ ∈ Diff (Φ) |𝜋 ◦Ξ = 𝜋 } (186)

cover the identity id. Therefore, a vertical diffeomor-
phism is given by Ξ(𝜙) = R(𝛙(𝜙),𝛄(𝜙)) 𝜙 :=

(
𝛙(𝜙), 𝛄(𝜙)

)∗
𝜙,

with the maps (𝛙, 𝛄) : Φ → Diff(M)⋉loc, i.e., one has
Diff (Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
. The former is the action

Lie groupoid of Φ, the latter its group of sections. We have that,
as the local version of (8),

Ξ′ ◦Ξ ∈ Diff (Φ) corresponds to (𝛙, 𝛄) ⋅
((
𝛙′, 𝛄′

)
◦R(𝛙,𝛄)

)
∈ C∞

(
Φ,Diff(M)⋉loc

)
. (187)

This extends the normal subgroup of vertical automorphisms,

Autv(Φ) :=
{
Ξ ∈ Aut(Φ) |𝜋 ◦Ξ = 𝜋} ⊲ Aut(Φ), (188)

which is isomorphic, still via Ξ(𝜙) = R(𝛙(𝜙),𝛄(𝜙)) 𝜙 :=(
𝛙(𝜙), 𝛄(𝜙)

)∗
𝜙, to the gauge group

Diff (M)⋉ loc :=
{
(𝛙, 𝛄) : Φ → Diff(M)⋉loc |R⋆(ψ,γ)(𝛙, 𝛄)

= Conj(ψ, γ)−1(𝛙, 𝛄)
}
. (189)

By the equivariance of gauge group elements, one has as a spe-
cial case of (187) that to Ξ′ ◦Ξ ∈ Autv(Φ) corresponds the gauge
group element (𝛙′, 𝛄′) ⋅ (𝛙, 𝛄) ∈ Diff (M)⋉ loc. The SES associ-
ated to the local field space is

idΦ → Diff (M)⋉ loc ≃ Autv(Φ)
⊲
←←←←←←→ Aut(Φ) ←→ Diff () → id.

(190)

We have the Lie algebra morphism 𝔡𝔦𝔣𝔣v(Φ) ≃∞ (Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
induced by the “verticality map”

(182) |v : ∞ (Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
→ 𝖉𝖎𝖋𝖋v(Φ), (X ,𝝀) → (X ,𝝀)v.

The bracket is[
(X ,𝝀)v, (X ′,𝝀′)v

]
Γ(TΦ)

=
{[
(X ,𝝀), (X ′,𝝀′)

]
Lie
+ (X ,𝝀)v

(
(X ′,𝝀′)

)
− (X ′,𝝀′)v

(
(X ,𝝀)

)}v
=:
{
(X ,𝝀), (X ′,𝝀′)

}v
. (191)

It is the local version of (29). The extended bracket { , } on
C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
and can be understood both as the

action Lie algebroid bracket A = Φ⋊
(
𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
→ Φ

bracket, and as the FN bracket onΩ0(Φ, VΦ). Observe that, as al-
ready mentioned, [ , ]Lie is the trivial Atiyah Lie algebroid bracket
(180). So the (action Lie algebroid, FN) bracket { , } extends the

Fortschr. Phys. 2024, 2400149 2400149 (23 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202400149 by Jordan François - C

ochraneItalia , W
iley O

nline L
ibrary on [08/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

trivial Atiyah Lie algebroid bracket [ , ]Lie to field-dependent pa-
rameters with unspecified equivariance.
The right-invariant vector fields Γinv(TΦ) constitute the Lie al-

gebra 𝖆𝖚𝖙(Φ) of Aut(Φ), with Lie ideal 𝖆𝖚𝖙v(Φ). As a special case
of the above, we have the isomorphism 𝖆𝖚𝖙v(Φ) ≃ 𝖉𝖎𝖋𝖋(M)⊕
Lie loc, with the gauge Lie algebra

𝖉𝖎𝖋𝖋(M)⊕ Lieloc :=
{
(X ,𝝀) : Φ → 𝔡𝔦𝔣𝔣(M)⊕ Lieloc |R∗(ψ,γ)(X ,𝝀)

= Conj(ψ, γ)−1(X ,𝝀)
}
. (192)

So, by the equivariance of gauge Lie algebra elements, linearly
given by the adjoint action ad(X,𝜆) = [(X, 𝜆), ]Lie, (191) specializes
to[
(X ,𝝀)v, (X ′,𝝀′)v

]
Γ(TΦ) =

{
−
[
(X ,𝝀), (X ′,𝝀′)

]
Lie

}v
. (193)

We have the SES of Lie algebras

0 → 𝖉𝖎𝖋𝖋(M)⊕ Lie loc ≃ 𝖆𝖚𝖙v(Φ)
|v
←←←←←←→ 𝖆𝖚𝖙(Φ)

𝜋⋆
←←←←←←←←←→ 𝖉𝖎𝖋𝖋() → 0,

(194)

describing the Atiyah Lie algebroid associated to the local
field space.
The pushforward of 𝔛 ∈ Γ(TΦ) by Ξ ∈ Diff v(Φ) ∼ (𝛙, 𝛄) ∈

C∞
(
Φ,Diff(M)⋉loc

)
– a local version of (32) – is

Ξ⋆𝔛|𝜙 = R(𝛙,𝛄)⋆𝔛|𝜙 + {(𝛙, 𝛄)−1 ⋅ (d𝛙, d𝛄 )|𝜙(𝔛|𝜙)}v|Ξ(𝜙)
= R(𝛙,𝛄)⋆𝔛|𝜙 +

{(
𝛙−1∗ d𝛙,𝛙∗ (𝛄−1d𝛄)

)|𝜙(𝔛|𝜙)}v

|Ξ(𝜙)
Ξ⋆𝔛|𝜙 = R(𝛙,𝛄)⋆

(
𝔛|𝜙 + {(d𝛙, d𝛄 )|𝜙(𝔛|𝜙) ⋅ (𝛙, 𝛄)−1}v|𝜙)

= R(𝛙,𝛄)⋆
(
𝔛|𝜙 + {(d𝛙 ◦𝛙−1, d𝛄 𝛄−1

− 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1
)|𝜙 (𝔛|𝜙)}v

|𝜙
)

(195)

as proven in (B16)–(B22) in Appendix B. It is necessary to com-
pute geometrically vertical and gauge transformations on the lo-
cal field space Φ.

5.1.1. Forms on Local Field Space and Their Transformations

Forms 𝜶 = 𝛼 (∧∙d𝜙;𝜙) ∈ Ω∙(Φ) on the local field space, together
with the basic operations d, 𝜄𝔛, L𝔛, for𝔛 ∈ Γ(TΦ) – as well as the
extensions via the Nijenhuis-Richardson and FN brackets – are
defined as in section 3.2.2. Their equivariance is defined by (the
result of) R∗(ψ,γ)𝜶, with infinitesimal version given by L(X,𝜆)v𝜶. Of
special interest are tensorial forms: For (𝜌,V ) a representation for
Diff(M)⋉loc, one defines

Ω∙tens(Φ, 𝜌) :=
{
𝜶 ∈ Ω∙(Φ,V ) |R⋆(ψ,γ)𝜶 = 𝜌(ψ, γ)−1𝜶, & 𝜄(X,𝜆)v𝜶 = 0

}
.

(196)

The infinitesimal equivariance is then L(X,𝜆)v𝜶 = −𝜌∗ (X, 𝜆) 𝜶.
Given a 1-cocycle

C : Φ ×
(
Diff(M)⋉loc

)
→ G,

(𝜙; (ψ, γ)) → C(𝜙; (ψ, γ)),

s.t. C(𝜙; (ψ′, γ′) ⋅ (ψ, γ)) = C(𝜙; (ψ′, γ′))C
(
R(ψ′ ,γ′)𝜙; (ψ, γ)

)
,

(197)

and V a G-space, one extends the above to twisted tensorial forms

Ω∙tens(Φ, C)

:=
{
𝜶 ∈ Ω∙(Φ,V ) |R⋆(ψ,γ)𝜶 = C

(
𝜙; (ψ, γ)

)−1
𝜶, & 𝜄(X,𝜆)v𝜶 = 0

}
.

(198)

The infinitesimal equivariance is then L(X,𝜆)v𝜶 = −a
(
(X, 𝜆);𝜙

)
𝜶,

where a : Φ ×
(
𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
→ 𝔤 is the infinitesimal 1-

cocycle associated toC. Acting via [L(X,𝜆)v , L(X ′ ,𝜆′)v ] = L[(X,𝜆)v ,(X ′ ,𝜆′)v ] =
L([(X,𝜆),(X ′ ,𝜆′)]Lie)

v reproduces the defining
(
𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
-1-

cocycle property

(X, 𝜆)va
(
(X ′, 𝜆′);𝜙

)
−
(
X ′, 𝜆′

)v
a
(
(X, 𝜆);𝜙

)
+
[
a
(
(X, 𝜆);𝜙

)
, a
(
(X ′, 𝜆′);𝜙

)]
𝔤 = a

([
(X, 𝜆), (X ′, 𝜆′)

]
Lie
;𝜙
)
.

(199)

This, as we will see, generalizes theWZ consistency condition for
anomalies. Fundamental to our discussions are the basic forms,

Ω∙basic(Φ, C) :=
{
𝜶 ∈ Ω∙(Φ) |R⋆(ψ,γ)𝜶 = 𝜶, & 𝜄(X,𝜆)v𝜶 = 0

}
= {𝜶 ∈ Ω∙(Φ) |𝜶 = 𝜋⋆𝜷, for 𝜷 ∈ Ω∙()}.

(200)

Our aim in the next section will be to write basic counterparts of
forms on Φ via the DFM.
Vertical and Gauge Transformations: The finite vertical and

gauge transformations of forms are defined by the pullback ac-
tions of Diff v(Φ) and Autv(Φ) respectively: 𝜶 → 𝜶(𝛙,𝛄) := Ξ⋆𝜶,
with Ξ generated by (𝛙, 𝛄), element of ∞ (Φ,Diff(M)⋉loc

)
or

Diff (M)⋉ loc, and computed geometrically via (195):

𝜶(𝝍 ,𝜸)|𝜙 (𝔛|𝜙,⋯) := Ξ⋆𝜶|Ξ(𝜙) (𝔛|𝜙,⋯) = R⋆(𝝍 ,𝜸)𝜶|Ξ(𝜙)
×
(
𝔛|𝜙 + {(d𝝍 , d𝜸)|𝜙(𝔛|𝜙) ⋅ (𝝍 , 𝜸)−1}v|𝜙,⋯) .

(201)

Clearly, the transformation of a form is controlled by its equivari-
ance and verticality properties. The infinitesimal transformation
is given

L(X ,𝝀)v𝜶 =
d
d𝜏
R⋆(𝛙𝜏 ,𝛄𝜏 ) 𝜶

|||𝜏=0 + 𝜄(dX ,d𝝀)v 𝜶, (202)

with (X ,𝝀) := d
d𝜏

(
𝛙𝜏 , 𝛄𝜏

) |||𝜏=0 in ∞ (Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
or

𝖉𝖎𝖋𝖋(M)⊕ Lie loc. One may observe that (dX , d𝝀)v can be seen
as an element of Ω1(Φ, VΦ), so 𝜄(dX ,d𝝀)v is a degree 0 algebraic
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derivation, as discussed in Section 3.2.2. For standard and twisted
equivariant forms respectively, the above gives

L(X ,𝝀)v𝜶 =
{−𝜌∗(X ,𝝀)𝜶 + 𝜄(dX , d𝝀)v 𝜶,
−a(X ,𝝀)𝜶 + 𝜄(dX , d𝝀)v 𝜶,

(203)

where we introduce the notation
[
a(X ,𝝀)

]
(𝜙) := a

(
X (𝜙),𝝀(𝜙);𝜙

)
for the linearized 1-cocycle. In particular, for Ω∙(M)-valued
forms or tensor-valued forms, i.e., for the natural representation
𝜌(ψ, γ)−1 = (ψ∗, {−}γ) the above gives

L(X ,𝝀)v𝜶 =
(
𝔏X , 𝛿𝝀

)
𝜶 + 𝜄(dX , d𝝀)v 𝜶. (204)

This both generalizes and clarifies the geometrical meaning of
the “anomaly operators”, ΔX and Δ𝝀, featuring in refs. [24, 25,
32–34]: in our notation

(
ΔX ,Δ𝝀

)
:= L(X ,𝝀)v −

(
𝔏X , 𝛿𝝀

)
− 𝜄(dX , d𝝀)v .

As we signaled in the global case, this operator is non-zero
only in theories admitting background non-dynamical structures
or fields “breaking”

(
Diff(M)⋉loc

)
-covariance. Such theories

thus fail to comply with the core physical principles of gRGFT.
Observe that the field-dependent gauge algebra is given by the

commutator of Lie derivatives and involves the FN brackets (191)
of the field-dependent parameters[
L(𝛙,𝛄)v , L(𝛙′ ,𝛄′)v

]
= L[(𝛙,𝛄)v ,(𝛙′ ,𝛄′)v]FN = L{

(𝛙,𝛄),(𝛙′ ,𝛄′)
}v . (205)

As a special case of (201) and (203), a tensorial form 𝜶 ∈
Ω∙tens(Φ, 𝜌) transforms as

𝜶(𝛙,𝛄) = 𝜌(𝛙, 𝛄)−1𝜶, so L(X ,𝝀)v𝜶 = −𝜌∗(X ,𝝀)𝜶. (206)

For a twisted tensorial form 𝜶 ∈ Ω∙tens(Φ, C), instead, the trans-
formation reads

𝜶(𝛙,𝛄) = C(𝛙, 𝛄)−1𝜶, so L(X ,𝝀)v𝜶 = −a(X ,𝝀)𝜶, (207)

wherewe introduce the notation [C(𝛙, 𝛄)](𝜙) := C(𝜙; (𝛙(𝜙), 𝛄(𝜙)))
and [a(X ,𝝀)](𝜙) := a((X (𝜙),𝝀(𝜙));𝜙). Acting via (205) reproduces
the (𝖉𝖎𝖋𝖋(M)⊕ Lieloc)-1-cocycle property

(X ,𝝀)va
(
(X ′,𝝀′);𝜙

)
−
(
X ′,𝝀′

)v
a
(
(X ,𝝀);𝜙

)
+
[
a
(
(X ,𝝀);𝜙

)
, a
(
(X ′,𝝀′);𝜙

)]
𝔤 = a

({
(X ,𝝀), (X ′,𝝀′)

}
;𝜙
)
.

(208)

This actually reduces to (199), all computation done. As we know,
basic forms 𝜶 ∈ Ω∙basic(Φ) are invariant:

𝜶(𝛙,𝛄) = 𝜶, so L(X ,𝝀)v𝜶 = 0. (209)

A crucial example is the basis 1-form d𝜙 ∈ Ω1(Φ), whose
equivariance and verticality properties are defined as

(210)

Then, by (195) and (210), theDiff v(Φ) ≃ C∞
(
Φ,Diff(M)⋉loc

)
-

transformation of the basis 1-form is

d𝜙(𝛙,𝛄)|𝜙(𝔛|𝜙)
:= Ξ⋆d𝜙|Ξ(𝜙)(𝔛|𝜙)
= d𝜙|Ξ(𝜙)(Ξ⋆𝔛|𝜙)
= R⋆(𝛙,𝛄)d𝜙|Ξ(𝜙)

(
𝔛|𝜙 +

{[
(d𝛙, d𝛄) ⋅ (𝛙, 𝛄)−1

]|𝜙(𝔛|𝜙)|𝜙}v

|𝜙
)

= (𝛙, 𝛄)∗d𝜙|𝜙
×
(
𝔛|𝜙 +

{[(
d𝛙 ◦𝛙−1, d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)]|𝜙(𝔛|𝜙)|𝜙}v

|𝜙
)

= (𝛙, 𝛄)∗
[
d𝜙|𝜙 + 𝔏d𝛙 ◦𝛙−1𝜙 + 𝛿d𝛄𝛄−1−𝛄𝔏d𝛙 ◦𝛙−1 𝛄−1

𝜙
](
𝔛|𝜙)

= (𝛙, 𝛄)∗
[
d𝜙|𝜙 + 𝔏d𝛙 ◦𝛙−1𝜙 + 𝛿d𝛄𝛄−1𝜙 + 𝛿(𝔏d𝛙 ◦𝛙−1 𝛄)𝛄−1

𝜙
](
𝔛|𝜙).
(211)

Hence the final result,

d𝜙(𝛙,𝛄) = 𝛙∗
[(
d𝜙 + 𝔏d𝛙 ◦𝛙−1𝜙 + 𝛿(𝔏d𝛙 ◦𝛙−1 𝛄)𝛄−1

𝜙 + 𝛿d𝛄𝛄−1𝜙
)𝛄]

,

(212)

To crosscheck this result one may compute it in another, less
straightforward but still geometrical, way. From (210) one can de-
rive

R⋆(ψ,γ)d𝜙|R(ψ,γ)𝜙
[
(X, 𝜆)v|𝜙

]
= ψ∗

(
𝔏X (𝜙

γ) + 𝛿(Adγ−1 𝜆−γ−1𝔏X γ)𝜙
γ
)

→ (ψ, γ)∗d𝜙|𝜙
[
(X, 𝜆)v|𝜙

]
= ψ∗

((
𝔏X𝜙

)γ) + ψ∗((𝛿𝜆𝜙)γ)
= ψ∗

((
𝔏X𝜙

)γ) + ψ∗(𝛿Adγ−1 𝜆 𝜙γ), (213)

where, in the second line, we used the well-known identity(
𝛿𝜆𝜙
)γ = 𝛿Adγ−1 𝜆 𝜙γ. (214)

From this follows the useful identity

𝔏X (𝜙
γ) =

(
𝔏X𝜙 + 𝛿𝔏X γ ⋅ γ−1𝜙

)γ
. (215)

Then, the alternative way to compute the Diff v(Φ) ≃
C∞(Φ,Diff(M)⋉loc)-transformation of the basis 1-form
is
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d𝜙(𝝍 ,𝜸)|𝜙 (𝔛|𝜙)
:= Ξ⋆d𝜙|Ξ(𝜙) (𝔛|𝜙)
= d𝜙|Ξ(𝜙) (Ξ⋆𝔛|𝜙)
= d𝜙|Ξ(𝜙)

(
R(𝝍 ,𝜸)⋆𝔛|𝜙 +

[(
𝝍−1
∗ d𝝍 ,𝝍∗(𝜸−1d𝜸)

)|𝜙 (𝔛|𝜙)]v|Ξ(𝜙)
)

= R⋆(𝝍 ,𝜸) d𝜙|Ξ(𝜙) (𝔛|𝜙) + d𝜙|Ξ(𝜙)
×
([(

𝝍−1
∗ d𝝍 ,𝝍∗(𝜸−1d𝜸)

)|𝜙 (𝔛|𝜙)]v|Ξ(𝜙)
)

= (𝝍 , 𝜸)∗d𝜙|𝜙 (𝔛|𝜙) + 𝔏𝝍−1∗ d𝝍 |𝜙(𝔛|𝜙) Ξ(𝜙) + 𝛿[𝝍∗(𝜸−1d𝛾)]|𝜙(𝔛|𝜙) Ξ(𝜙)

= 𝝍∗ ([d𝜙|𝜙]𝜸 (𝔛|𝜙)) + 𝔏𝝍−1∗ d𝝍 |𝜙(𝔛|𝜙) 𝝍∗ (𝜙𝜸)

+ 𝛿[𝝍∗(𝜸−1d𝛾)]|𝜙(𝔛|𝜙) 𝝍∗ (𝜙𝜸)

= 𝝍∗ ([d𝜙|𝜙]𝜸 (𝔛|𝜙)) + 𝝍∗
(
𝔏d𝝍 |𝜙(𝔛|𝜙) ◦𝝍−1𝜙𝜸

)
+𝜓∗

(
𝛿(𝜸−1d𝛾)|𝜙(𝔛|𝜙) 𝜙𝜸

)
, (216)

where (14) is used for the second term of the last line. Using (214)
for the third term, we get the result

d𝜙(𝛙,𝛄) = 𝛙∗
(
d𝜙𝛄 + 𝔏d𝛙 ◦𝛙−1 𝜙

𝛄 +
(
𝛿d𝛄𝛄−1 𝜙

)𝛄)
. (217)

Using the identity (215) to rewrite the second term, we get the
alternative form

d𝜙(𝛙,𝛄) = 𝛙∗
[(
d𝜙 + 𝔏d𝛙 ◦𝛙−1 𝜙 + 𝛿(𝔏d𝛙 ◦𝛙−1 𝛄) 𝛄−1

𝜙 + 𝛿d𝛄𝛄−1 𝜙
)𝛄]

,

(218)

whichmatches (212). It is interesting to see the semi-direct struc-
ture of Diff (M)⋉loc manifest. These results encompass both
the pure Diff (M) case – see ref. [8] Equation (67) – and the pure
loc case (i.e., “internal”, Yang-Mills and/or Cartan geometric) –
see ref. [42] Equation (7), also ref. [6].19

Connections on Local Field Space: We now briefly cover the two
notions of connections adapted to the covariant derivation of ten-
sorial and twisted tensorial forms on the local field space Φ.

• Ehresmann connection 1-forms on Φ are 𝝎 =
(
𝝎Diff ,𝝎loc

)
∈

Ω1
eq

(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
s.t.

𝝎|𝜙
(
(X, 𝜆)v|𝜙

)
= (X, 𝜆) ∈ 𝔡𝔦𝔣𝔣(M)⊕ Lieloc,

R⋆(ψ,γ)𝝎 |R((ψ,γ))𝜙 = Ad(ψ,γ)−1 𝝎|𝜙.
(219)

19 In the last case, in ref. [42], the notation R⋆𝛾 d𝜙 = ρ(𝛾)
−1d𝜙 is used,

where ρ = (Ad, 𝜌) on d𝜙 = (dA, d𝜑), where 𝜑 is a matter field trans-
forming via the representation 𝜌. Indeed, dA transformsAd-tensorially
underloc because the space of gauge potentials (connections) is affine
modeled on Ad-tensorial forms.

The equivariance property can be written more explicitly as

R⋆(ψ,γ)
(
𝝎Diff ,𝝎loc

)
=
(
ψ−1∗ 𝝎Diff ◦ψ,ψ∗

(
Adγ−1𝝎loc

− γ−1𝔏𝝎Diff γ
))
.

(220)

The infinitesimal equivariance is thus given by

L(X,𝜆)v𝝎 =
[
𝝎, (X, 𝜆)

]
Lie
,

L(X,𝜆)v
(
𝝎Diff ,𝝎loc

)
=
[(
𝝎Diff ,𝝎loc

)
, (X, 𝜆)

]
Lie

=
(
[𝜔Diff , X ]𝔡𝔦𝔣𝔣(M), [𝝎loc

, 𝜆]LieH

− 𝝎Diff (𝜆) + X
(
𝝎loc

))
, (221)

as is also checked via the formula (180) for the Lie bracket. The
associated curvature 2-form 𝛀 =

(
𝛀Diff ,𝛀loc

)
∈ Ω2

tens
(Φ,Ad) is

given by the Cartan structure equation

𝛀 = d𝝎 + 1
2
[𝝎,𝝎]Lie,

→
(
𝛀Diff ,𝛀loc

)
=
(
d𝝎Diff +

1
2

[
𝝎Diff , 𝝎Diff

]
𝔡𝔦𝔣𝔣(M)

, d𝝎loc

+ 1
2

[
𝝎loc

,𝝎loc

]
Lie
− 𝝎Diff (𝝎loc

)
)
. (222)

The connection allows to define a covariant derivative on
tensorial forms D : Ω∙tens(Φ, 𝜌) → Ω∙+1tens(Φ, 𝜌), 𝛼 → D𝜶 = d𝜶 +
𝜌∗(𝝎)𝜶 = d𝜶 + 𝜌∗

(
𝝎Diff ,𝝎loc

)
𝜶. In particular, 𝛀 satisfies the

Bianchi identity D𝛀 = d𝛀 + [𝝎,𝛀]Lie ≡ 0.
The Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
-transformation of a

connection are easily found via by (219) and (195):

𝝎(𝛙,𝛄)|𝜙(𝔛|𝜙)
:= Ξ⋆𝝎|Ξ(𝜙)(𝔛|𝜙)
= 𝝎|Ξ(𝜙)(Ξ⋆𝔛|𝜙)
= 𝝎|Ξ(𝜙)

(
R(𝛙,𝛄)⋆𝔛|𝜙 +

[(
𝛙−1∗ d𝛙, 𝛙∗(𝛄−1d𝛄)

)|𝜙(𝔛|𝜙)]v|Ξ(𝜙)
)

= Ad(𝛙,𝛄)−1 𝝎|𝜙(𝔛|𝜙) + (𝛙−1∗ d𝛙, 𝛙∗(𝛄−1d𝛄)
)|𝜙(𝔛|𝜙). (223)

Which, by the explicit form of the adjoint action, gives

𝝎(𝛙,𝛄) := Ξ⋆𝝎 = Ad(𝛙,𝛄)−1𝝎 +
(
𝛙−1∗ d𝛙,𝛙∗(𝛄−1d𝛄)

)
,

→
(
𝝎
(𝛙,𝛄)
Diff , 𝝎(𝛙,𝛄)

loc

)
=
(
𝛙−1∗ 𝝎Diff ◦𝛙 +𝛙−1∗ d𝛙,𝛙∗

×
(
Ad𝛄−1𝝎loc

+ 𝛄−1d𝛄 − 𝛄−1𝔏𝝎Diff 𝛄
))
.

(224)

The transformations under C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
– and

𝖉𝖎𝖋𝖋(M)⊕ Lieloc – are, by (203),
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L(X ,𝝀)v𝝎 = −ad(X ,𝝀)𝝎 + (dX , d𝝀)

= d(X ,𝝀) +
[
𝝎, (X ,𝝀)

]
Lie
,

→ L(X ,𝝀)v
(
𝝎Diff ,𝝎loc

)
=
(
dX + [𝜔Diff ,X ]𝔡𝔦𝔣𝔣(M), d𝝀

+ [𝝎loc
,𝝀]LieH − 𝝎Diff (𝝀) + X

(
𝝎loc

))
.

(225)

For (X ,𝝀) ∈ 𝖉𝖎𝖋𝖋(M)⊕ Lieloc, i.e., tensorial 0-forms, one may
legitimately write the result as their (geometric) covariant deriva-
tive: L(X ,𝝀)v𝝎 = D(X ,𝝀).
Similarly, the Diff v(Φ) ≃ C∞(Φ,Diff(M)⋉loc)-

transformation of the curvature 𝛀 ∈ Ω∙tens(Φ,Ad) is given
by

𝛀(𝛙,𝛄) := Ξ⋆𝛀 = Ad(𝛙,𝛄)−1𝛀,

→
(
𝛀(𝛙,𝛄)

Diff ,𝛀(𝛙,𝛄)
loc

)
=
(
𝛙−1∗ 𝛀Diff ◦𝛙,𝛙∗

(
Ad𝛄−1𝛀loc

− 𝛄−1𝔏𝛀Diff
𝛄
))
,

(226)

with linear version

L(X ,𝝀)v𝛀 = −ad(X ,𝝀)𝛀 =
[
𝛀, (X ,𝝀)

]
Lie
,

→ L(X ,𝝀)v
(
𝛀Diff ,𝛀loc

)
=
(
[ΩDiff ,X ]𝔡𝔦𝔣𝔣(M), [𝛀loc

,𝝀]LieH

− 𝛀Diff (𝝀) + X
(
𝛀loc

))
. (227)

More could be said, but we refrain from pursuing too much tan-
gent observations.

• Twisted connection 1-forms on Φ are𝝕 ∈ Ω1
eq
(Φ, 𝔤) s.t.

𝝕|𝜙
(
(X, 𝜆)v|𝜙

)
= d

d𝜏
C
(
𝜙; (ψ𝜏 , γ𝜏 )

)|||𝜏=0 = a
(
(X, 𝜆);𝜙

)
∈ 𝔤,

R⋆(ψ,γ)𝝕|R((ψ,γ))𝜙 = AdC(𝜙;(ψ,γ))−1𝝕|𝜙 + C(𝜙; (ψ, γ))−1dC( ; (ψ, γ))|𝜙.
(228)

The infinitesimal equivariance is

L(X,𝜆)v 𝝕 = da
(
(X, 𝜆);

)
+
[
𝝕, a

(
𝜙; (X, 𝜆)

)]
𝔤. (229)

The twisted curvature 2-form 𝛀̄ ∈ Ω2
tens

(Φ, C) is defined by the
Cartan structure equation

𝛀̄ := d𝝕 + 1
2
[𝝕,𝝕]𝔤. (230)

The twisted connection allows to define a covariant derivative
on twisted forms D̄ : Ω∙eq(Φ, C) → Ω∙+1tens(Φ, C), 𝛼 → D̄𝜶 = d𝜶 +
𝝕𝜶. In particular, 𝛀̄ satisfies the Bianchi identity D̄𝛀̄ = d𝛀̄ +
[𝝕,𝛀]𝔤 = 0.
The vertical transformation under Diff v(Φ) ≃

C∞(𝜙,Diff(M)⋉loc) of a twisted connection is

𝝕(𝛙,𝛄) := Ξ⋆𝝕 = AdC(𝛙,𝛄)−1 𝝕 + C(𝛙, 𝛄)−1dC(𝛙, 𝛄). (231)

The infinitesimal version, under 𝖉𝖎𝖋𝖋v(Φ) ≃ C∞(Φ, 𝔡𝔦𝔣𝔣(M)⊕
Lieloc), is given by

L(X ,𝝀)v𝝕 = da(X ,𝝀) + [𝝕, a(X ,𝝀)]𝔤. (232)

Finite and infinitesimal general vertical transformations of the
curvature are given by,

𝛀̄(𝛙,𝛄) := Ξ⋆𝛀̄ = AdC(𝛙,𝛄)−1 𝛀̄, so L(X ,𝝀)v𝛀̄ = [𝛀̄, a(X ,𝝀)]𝔤.

(233)

Twisted geometry features in an essential way into gRGFT, as it
controls the phenomenon of loc and Diff(M) anomalies.[63,64]

5.1.2. Associated Bundle of Regions and Integration Theory for Local
Field Theory

Associated Bundle of Regions for Local Field Space: Given a rep-
resentation space (𝜌,V ) forDiff (M)⋉loc, and defining the right
action

(Φ × V ) ×
(
Diff(M)⋉loc

)
→ Φ × V ,(

(𝜙, v), (ψ, γ)
)
→
(
R(ψ,γ)𝜙, 𝜌(ψ, γ)−1v

)
=: R̄(ψ,γ)(𝜙, v),

(234)

one defines the associated bundle E := Φ ×𝜌 V := Φ × V∕∼, with
∼ the equivalence relation under the right action R̄. As usual one
has the isomorphism of spaces

Γ(E) :=
{
s :  → E

}
≃ Ω0

eq
(Φ, 𝜌)

:=
{
𝝋 : Φ → V |R⋆(ψ,γ)𝝋 = 𝜌(ψ, γ)−1𝝋}, (235)

The same construction holds when V is a G-space and
𝜌 is replaced by a 1-cocycle C : Φ ×

(
Diff(M)⋉loc

)
→ G,(

𝜙, (ψ, γ)
)
→ C

(
𝜙; (ψ, γ)

)
, so that one may build twisted associ-

ated bundles Ẽ := Φ ×C V whose sections are twisted tensorial 0-
forms.
One considers V = U(M) := {U ⊂ M |U open set}, the 𝜎-

algebra of open sets ofM, and the corresponding associated bundle
of regions ofM,

Ū(M) = Φ ×Diff(M)⋉loc
U(M) := Φ ×U(M)∕∼ (236)

where one the equivalence relation is under the right action

(Φ ×U(M)) ×
(
Diff(M)⋉loc

)
→ Φ ×U(M),(

(𝜙, U), (ψ, γ)
)
→
(
R(ψ,γ)𝜙,ψ−1(U)

)
=
(
ψ∗(𝜙γ),ψ−1(U)

)
=: R̄(ψ,γ)(𝜙, U). (237)

Fortschr. Phys. 2024, 2400149 2400149 (27 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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As a special case of the above, we have

Γ(Ū(M)) :=
{
s :  → Ū(M)

}
≃ Ω0

eq

(
Φ,U(M)

)
:=
{
U : Φ → U(M) |R⋆(ψ,γ)U = ψ−1(U)

}
. (238)

More explicitly, the equivariance can be written as

U
(
ψ∗(𝜙γ)

)
= ψ−1

(
U(𝜙)

)
. (239)

Such U’s can be understood as field-dependent, or 𝜙-relative,
regions of M. Notice that, naturally, loc has trivial action on
U(M) since M is defined as the space of fibers of P. So, U’s are
loc-basic 0-forms onΦ, and project onto the Diff(M)-subbundle
Φ′ ⊂ Φ.
The transformations of these equivariant 0-forms un-

der Diff v(Φ) ≃ C∞
(
Φ,Diff(M)⋉loc

)
and 𝖉𝖎𝖋𝖋v(Φ) ≃

C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
are

U (𝛙,𝛄) = 𝛙−1(U), and L(X ,𝝀)v = −X (U). (240)

In the following, we formulate integration onM as a natural op-
eration involving the above objects.
Integration in Local Field Theory: For pedagogical benefit, let

us start from general considerations before specializing to our
case of interest. The action (234) induces the action

(Φ × V ) × C∞
(
Φ,Diff(M)⋉loc

)
→ Φ × V ,

((𝜙, v), (𝛙, 𝛄)) →
(
R(𝛙,𝛄)𝜙, 𝜌(𝛙, 𝛄)−1v

)
= (Ξ(𝜙), 𝜌(𝛙, 𝛄)−1v) =: Ξ̄(𝜙, v).

(241)

The corresponding linearization is: (Φ × V ) ×
C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
→ V(Φ × V ) ≃ VΦ⊕ VV ⊂

T(P × V ). The induced actions of Diff (M)⋉loc and
C∞
(
Φ,Diff(M)⋉loc

)
≃ Diff v(Φ) on Ω∙(Φ) × V are

(Ω∙(Φ) × V ) ×
(
Diff(M)⋉loc

)
→ Ω∙(Φ) × V ,

((𝜶, v), (ψ, γ)) →
(
R⋆(ψ,γ)𝜶, 𝜌(ψ, γ)

−1v
)
=: R̃𝜓 (𝜶, v)

(242)

and(
Ω∙(Φ) × V

)
× C∞

(
Φ,Diff(M)⋉loc

)
→ Ω∙(Φ) × V ,(

(𝜶, v), (𝛙, 𝛄)
)
→
(
Ξ⋆𝜶, 𝜌(𝛙, 𝛄)−1v

)
=: Ξ̃(𝜶, v). (243)

The induced actions of 𝔡𝔦𝔣𝔣(M)⊕ Lieloc and
C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
≃ 𝖉𝖎𝖋𝖋v(Φ) are the linearizations:(

(𝜶, v), (X, 𝜆
)
→ d

d𝜏
R̃(ψ𝜏 ,γ𝜏 )(𝜶, v)

|||𝜏=0
=
(
L(X,𝜆)v𝜶, v

)
⊕
(
𝜶,−𝜌∗(X, 𝜆)v

)
,

(
(𝜶, v), (X ,𝝀)

)
→ d

d𝜏
Ξ̃𝜏 (𝜶, v)

|||𝜏=0
=
(
L(X ,𝝀)v𝜶, v

)
⊕
(
𝜶,−𝜌∗(X ,𝝀)v

)
. (244)

Given a representation space (𝜌̃,W ) of Diff (M)⋉loc,

if 𝜶 ∈ Ω∙eq(Φ,W ) then R̃𝜓 (𝜶, v) =
(
R⋆(ψ,γ)𝜶, 𝜌(ψ, γ)

−1v
)

=
(
𝜌̃(ψ, γ)−1𝜶, 𝜌(ψ, γ)−1v

)
,

if 𝜶 ∈ Ω∙tens(Φ,W ) then Ξ̃(𝜶, v) =
(
Ξ⋆𝜶, 𝜌(𝛙, 𝛄)−1v

)
=
(
𝜌̃(𝛙, 𝛄)−1𝜶, 𝜌(𝛙, 𝛄)−1v

)
,

(245)

with linearizations being read from (244). The exterior deriva-
tive d on Φ extends to Φ × V as d → d × id. But applying after
the action of C∞

(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
≃ 𝖉𝖎𝖋𝖋v(Φ), due to the 𝜙-

dependence of (𝛙, 𝛄), it will act on the factor 𝜌(𝛙, 𝛄)−1v.
Consider (𝜌̄,V ∗) a representation of Diff (M)⋉loc dual to

(𝜌,V ) w.r.t. a non-degenerate pairing

⟨ , ⟩ : V ∗ × V → ℝ,

(w, v) → ⟨w, v⟩. (246)

If it is
(
Diff(M)⋉loc

)
-invariant, it satisfies

⟨ 𝜌̄(ψ, γ)w, 𝜌(ψ, γ)v⟩ = ⟨w, v⟩,
→ ⟨ 𝜌̄∗(X, 𝜆)w, v⟩ + ⟨w, 𝜌∗(X, 𝜆)v⟩ = 0,

(247)

where the second line features the induced representation 𝜌̄∗ and
𝜌∗ for the action of 𝔡𝔦𝔣𝔣(M)⊕ Lieloc. For 𝜶 ∈ Ω∙(Φ,V ∗), we de-
fine an operation  on Ω∙(Φ,V ∗) × V by

 : Ω∙(Φ,V ∗) × V → Ω∙(Φ),

(𝜶, v) → (𝜶, v) := ⟨𝜶, v⟩, (248)

which can be understood as an object on Φ × V by

(𝜶, ) : Φ × V → Λ∙(Φ),

(𝜙, v) → (𝜶|𝜙, v) := ⟨𝜶|𝜙, v⟩. (249)

It is therefore the case that

d(𝜶, ) = (d𝜶, ) and 𝜄𝔛(𝜶, ) = (𝜄𝔛𝜶, ), for 𝔛 ∈ Γ(TΦ).

(250)

The induced actions of Diff (M)⋉loc and
C∞
(
Φ,Diff(M)⋉loc

)
≃ Diff v(Φ) on such objects are:

R̃⋆
𝜓
(𝜶, )|(R(ψ,γ)𝜙,𝜌(ψ,γ)−1v) := ⟨ , ⟩ ◦ R̃(ψ,γ)(𝜶, v)

= ⟨R⋆(ψ,γ)𝜶|R(ψ,γ)𝜙, 𝜌(ψ, γ)−1v⟩, (251)

Ξ̃⋆(𝜶, )|(Ξ(𝜙),𝜌(𝛙,𝛄)−1v) := ⟨ , ⟩ ◦ Ξ̃(𝜶, v) = ⟨Ξ⋆𝜶|Ξ(𝜙), 𝜌(𝛙, 𝛄)−1v⟩.
Fortschr. Phys. 2024, 2400149 2400149 (28 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH
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The actions of 𝔡𝔦𝔣𝔣(M)⊕ Lieloc and C∞(Φ, 𝔡𝔦𝔣𝔣(M)⊕
Lieloc) ≃ 𝖉𝖎𝖋𝖋v(Φ) are

d
d𝜏
R̃⋆(𝝍𝜏 ,𝛄𝜏 )(𝜶, v) |||𝜏=0 = ⟨L(X,𝜆)v𝜶, v⟩ + ⟨𝜶, −𝜌∗(X, 𝜆)v⟩,

d
d𝜏
Ξ̃⋆
𝜏
(𝜶, v) |||𝜏=0 = ⟨L(X ,𝝀)v𝜶, v⟩ + ⟨𝜶, −𝜌∗(X ,𝝀)v⟩. (252)

For 𝜶 ∈ Ω∙eq(Φ,V
∗) we have

R̃⋆(ψ,γ)(𝜶, )| (R(ψ,γ)𝜙,𝜌(ψ,γ)−1v) := ⟨R⋆(ψ,γ)𝜶|R(ψ,γ)𝜙, 𝜌(ψ, γ)−1v⟩
= ⟨𝜌̄(ψ, γ)−1𝜶|𝜙, 𝜌(ψ, γ)−1v⟩,

→ ⟨L(X,𝜆)v𝜶, v⟩ + ⟨𝜶,−𝜌∗(X, 𝜆)v⟩ = ⟨−𝜌̄∗(X, 𝜆)𝜶, v⟩
+ ⟨𝜶,−𝜌∗(X, 𝜆)v⟩. (253)

If the pairing is invariant, by (247) we then get

R̃⋆(ψ,γ)(𝜶, )| (R(ψ,γ)𝜙, 𝜌(ψ,γ)−1v) = ⟨𝜶|𝜙, v⟩ =: (𝜶, )|(𝜙,v),
→ ⟨−𝜌̄∗(X, 𝜆)𝜶, v⟩ + ⟨𝜶, −𝜌∗(X, 𝜆)v⟩ = 0.

(254)

If 𝜶 ∈ Ω∙tens(Φ,V
∗):

Ξ̃⋆(𝜶, )|(Ξ(𝜙),𝜌(ψ,γ)−1v) := ⟨Ξ⋆𝜶|Ξ(𝜙), 𝜌(𝛙, 𝛄)−1v⟩
= ⟨𝜌̄(𝛙, 𝛄)−1𝜶|𝜙, 𝜌(𝛙, 𝛄)−1v⟩,

→ ⟨L(X ,𝝀)v𝜶, v⟩ + ⟨𝜶,−𝜌∗(X ,𝝀)v⟩ = ⟨−𝜌̄∗(X ,𝝀)𝜶, v⟩
+ ⟨𝜶,−𝜌∗(X ,𝝀)v⟩. (255)

If the pairing is invariant, by (247) we get

Ξ̃⋆(𝜶, )|(Ξ(𝜙), 𝜌(ψ,γ)−1v) = ⟨𝜶|𝜙, v⟩ =: (𝜶, )|(𝜙,v),
→ ⟨−𝜌̄∗(X ,𝝀) 𝛼, v⟩ + ⟨𝜶, −𝜌∗(X ,𝝀)v⟩ = 0.

(256)

Whenever 𝜶 ∈ Ω∙tens(Φ,V
∗) and the pairing is invariant, (𝜶, )

is then “basic” on Φ × V , inducing a well-defined object on E =
Φ × V∕∼. Being constant along a

(
Diff(M)⋉loc

)
-orbit in Φ ×

V , (𝜶, ) allows to define 𝝋(𝜶)∈ Ω0
eq(Φ, 𝜌) via

𝝋(𝜶)(𝜙) := 𝜋V (𝜙, v)|(𝜶|𝜙 ,v)=cst ≡ v,

𝝋(𝜶)
(
R(ψ,γ)𝜙

)
:= 𝜋V

(
R(ψ,γ)𝜙, 𝜌(𝜓)

−1v
)|(𝜶|𝜙 ,v)=cst ≡ 𝜌(ψ, γ)−1v. (257)

As expressed by (235), the latter is equivalent to a section s(𝜶) : → E. By Equation (256) one can write d Ξ̃⋆(𝜶, ) = d(𝜶, ) =
(d𝜶, ). In that case, one also finds the following lemma to hold:

Ξ̃⋆⟨d𝜶, v⟩ := ⟨Ξ⋆d𝜶, 𝜌(𝛙, 𝛄)−1v⟩ = ⟨dΞ⋆𝜶, 𝜌(𝛙, 𝛄)−1v⟩
= ⟨d(𝜌̄(𝛙, 𝛄)−1𝜶), 𝜌(𝛙, 𝛄)−1v⟩
=
⟨
𝜌̄(𝛙, 𝛄)−1

(
d𝜶 − 𝜌̄∗

(
d(𝛙, 𝛄) ⋅ (𝛙, 𝛄)−1

)
𝜶
)
, 𝜌(𝛙, 𝛄)−1v

⟩
= ⟨d𝜶 − 𝜌̄∗((d𝛙, d𝛄) ⋅ (𝛙, 𝛄)−1)𝜶, v⟩,

→ Ξ̃⋆⟨d𝜶, v⟩

= ⟨d𝜶, v⟩ + ⟨−𝜌̄∗((d𝛙, d𝛄) ⋅ (𝛙, 𝛄)−1)𝜶, v⟩
= ⟨d𝜶, v⟩ + ⟨−𝜌̄∗(d𝛙 ◦𝛙−1, d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)
𝜶, v
⟩
,

(258)

using the result (B19) in the last line. We will see shortly a useful
application of this result.
The above construction specializes to the fundamental rep-

resentation spaces V = U(M) and V ∗ = Ωtop(U) (top forms on
U ∈ U(M)) for the action of Diff(M)⋉loc. They are dual un-
der the integration pairing:

⟨ , ⟩ : 𝛀top(U) ×U(M) → ℝ,

(𝜔, U) → ⟨𝜔, U⟩ := ∫U
𝜔.

(259)

This pairing is invariant if and only if 𝜔 isloc-invariant, 𝜔
γ = 𝜔,

since loc does not act on U ∈ U(M). We have then the special
case of (247), for 𝜌̄(ψ, γ)−1 = ψ∗ and 𝜌(ψ, γ)−1(U) = ψ−1(U), yield-
ing the identity:

⟨ψ∗𝜔,ψ−1(U)⟩ = ⟨𝜔, U⟩→ ∫ψ−1(U) ψ
∗𝜔 = ∫U

𝜔, (260)

reproducing the well-known Diff(M)-invariance of integration as
an intrinsic operation onM. This implies, for−𝜌̄∗(X, 𝜆) = 𝔏X and
−𝜌∗(X, 𝜆)(U) = −X(U):

⟨𝔏X𝜔, U⟩ + ⟨𝜔,−X(U)⟩ = 0 → ∫U
𝔏X𝜔 + ∫−X(U) 𝜔 = 0, (261)

which can be understood as a sort of continuity equation for the
action of 𝔡𝔦𝔣𝔣(M). By Stokes theorem, the de Rham derivative d on
Ω∙(U) and the boundary operator 𝜕 onU(M) are adjoint operators
w.r.t. to the integration pairing:

⟨d𝜔, U⟩ = ⟨𝜔, 𝜕U⟩ → ∫U
d𝜔 = ∫𝜕U 𝜔. (262)

Considering 𝜶 ∈ Ω∙
(
Φ,Ωtop(U)

)
, the field-dependent top

forms, we define the integration map on Φ ×U(M):

(𝜶|𝜙, U) = ⟨𝜶|𝜙, U⟩ := ∫U
𝜶|𝜙. (263)

We may use the notation 𝜶U when convenient. Equation (250)
holds here as a special case. The induced actions of Diff (M)⋉
loc and C

∞ (Φ,Diff(M)⋉loc

)
≃ Diff v(Φ) on integrals are, re-

spectively,

R̃⋆(ψ,γ)(𝜶, )|(R(ψ,γ)𝜙,ψ−1(U)) := ⟨R⋆(ψ,γ)𝜶|R(ψ,γ)𝜙,ψ−1(U)⟩
= ∫ψ−1(U) R

⋆
(ψ,γ)𝜶|ψ∗(𝜙γ), (264)

Ξ̃⋆(𝜶, )|(Ξ(𝜙),𝛙−1(U)) := ⟨Ξ⋆𝜶|Ξ(𝜙),𝛙−1(U)⟩ =∫𝛙−1(U)Ξ⋆𝜶|𝛙∗(𝜙𝛄).
We may write the above as 𝜶U

(ψ,γ) and 𝜶U
(𝛙,𝛄), respectively. Ap-

plying d on the second line, it will also act on the transformed
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region 𝛙−1(U) due to the 𝜙-dependence of 𝛙. One shows indeed
that

d
(
Ξ̄⋆⟨𝜶, U⟩) = ⟨dΞ⋆𝜶,𝛙−1(U)⟩ + ⟨Ξ⋆𝜶, d𝛙−1(U)⟩

= ⟨Ξ⋆d𝜶,𝛙−1(U)⟩ + ⟨Ξ⋆𝜶,−𝛙−1∗ d𝛙 ◦𝛙−1(U)⟩
= Ξ̄⋆⟨d𝜶, U⟩ − ⟨𝔏𝛙−1∗ d𝛙Ξ⋆𝜶,𝛙−1(U)⟩,

or d
(
𝜶U

(𝛙,𝛄)) = (d𝜶U

)(𝛙,𝛄) − ⟨𝔏𝛙−1∗ d𝛙Ξ⋆𝜶,𝛙−1(U)⟩. (265)

The identity (261) has been used to conclude. This means that on
Φ ×U(M) we have [𝚵̄⋆, d] ≠ 0 and the commutator is a boundary
term, ⟨𝜄𝛙−1∗ d𝛙Ξ⋆𝜶, 𝜕

(
𝛙−1(U)

)⟩, since 𝜶 is a top form onU and by
(262). This should be contrasted to the standard relation [𝚵⋆, d] =
0 holding on Φ.
From (264) the induced actions of 𝔡𝔦𝔣𝔣(M)⊕ Lieloc and

C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
≃ 𝖉𝖎𝖋𝖋v(Φ) on integrals are

d
d𝜏
R̃⋆(ψ𝜏 ,γ𝜏 )(𝜶, U)|||𝜏=0 = ⟨L(X,𝜆)v𝜶, U⟩ + ⟨𝜶,−X(U)⟩

= ∫U
L(X,𝜆)v𝜶 + ∫−X(U) 𝜶,

d
d𝜏
Ξ̃⋆
𝜏
(𝜶, U)|||𝜏=0 = ⟨L(X ,𝝀)v𝜶, U⟩ + ⟨𝜶,−X (U)⟩

= ∫U
L(X ,𝝀)v𝜶 + ∫−X (U) 𝜶. (266)

If convenient, we may use the notation 𝛿(X,𝜆)𝜶U and 𝛿(X ,𝝀)𝜶U for
the above results.
We shall consider in particular equivariant and tensorial forms

for the natural action of Diff(M)⋉loc, satisfying respectively

R⋆(ψ,γ)𝜶 = 𝜶
(ψ,γ) = 𝜌̄(ψ, γ)−1𝜶 = ψ∗(𝜶γ),

L(X,𝜆)v𝜶 = −𝜌̄∗(X, 𝜆)𝜶 = 𝔏X𝜶 + 𝛿𝜆𝜶,

Ξ⋆(ψ,γ)𝜶 = 𝜶
(𝛙,𝛄) = 𝜌̄(𝛙, 𝛄)−1𝜶 = 𝛙∗(𝜶𝛄),

L(X ,𝝀)v𝜶 = −𝜌̄∗(X ,𝝀)𝜶 = 𝔏X𝜶 + 𝛿𝝀𝜶.

(267)

Then we have that

d
(
𝜶U

(𝛙,𝛄)) = d⟨𝛙∗(𝜶𝛄),𝛙−1(U)⟩ = d⟨𝜶𝛄, U⟩ = ⟨d(𝜶𝛄), U⟩. (268)

And the relation (265) specializes to

d
(
𝜶U

(𝛙,𝛄)) = (d𝜶U

)(𝛙,𝛄) − ⟨𝔏𝛙−1∗ d𝛙 𝛙∗(𝜶𝛄),𝛙−1(U)⟩
=
(
d𝜶U

)(𝛙,𝛄) − ⟨𝛙∗𝔏d𝛙 ◦𝛙−1 (𝜶
𝛄),𝛙−1(U)⟩

=
(
d𝜶U

)(𝛙,𝛄) − ⟨𝔏d𝛙 ◦𝛙−1 (𝜶
𝛄), U⟩.

(269)

Taken together the last two results imply to derive the following
lemma:

d(𝛙∗𝜶) = 𝛙∗
(
d𝜶 + 𝔏d𝛙 ◦𝛙−1𝜶

)
. (270)

When 𝜶 is Diff (M)-tensorial and loc-basic on Φ – i.e., 𝜶𝜸 =
𝜶, and 𝛿𝝀𝜶 = 0 – Equation (256) holds and we have that 𝜶U =

(𝜶|𝜙, U) is C∞ (Φ,Diff(M)⋉loc

)
-invariant: 𝜶U

(𝛙,𝛄) = 𝜶U , and

𝛿(X ,𝝀)𝜶U = 0 ⇒ ⟨L(X ,𝝀)v𝜶, U⟩ + ⟨𝜶,−X (U)⟩ = 0,

⟨𝔏X𝛼, U⟩ + ⟨𝜶,−X (U)⟩ = 0

→ ∫U
𝔏X𝛼 + ∫−X (U) 𝜶 = 0. (271)

For 𝜶 Diff(M)-equivariant only, and loc-basic, we have invari-
ance of its integral: 𝜶U

(ψ,γ) = 𝜶U , and (271) holds substituting
(X ,𝝀) → (X, 𝜆).
For 𝜶 Diff(M)-tensorial andloc-basic, we thus have that 𝜶U =(𝜶, U) induces a well-defined object on the bundle of regions

Ū(M) = Φ ×U(M)∕∼ (so one may define an associated equivari-
ant U(M)-valued function on Φ). It also holds that d

(
𝜶U

(𝛙,𝛄)) =
d𝜶U , i.e.,

d⟨𝜶(𝝍 ,𝜸),𝝍−1(U)⟩ = ⟨d𝜶, U⟩ = d⟨𝜶, U⟩
→ d ∫

𝝍−1(U)
𝝍∗𝜶 = ∫U

d𝜶 = d ∫U
𝜶. (272)

Besides, specializing (258), we get the identities

(d𝜶U)
(𝛙,𝛄) = d𝜶U + ⟨𝔏d𝛙 ◦𝛙−1𝜶, U⟩,

⟨d𝜶, U⟩(𝛙,𝛄) = ⟨d𝜶, U⟩ + ⟨𝔏d𝛙 ◦𝛙−1𝜶, U⟩. (273)

As we now show, all this is relevant to local gRGFT and the vari-
ational principle. When 𝜶 is a loc-invariant Lagrangian 0-form
onΦ and top form on (U ⊂)M, equations (272)–(273) yield awell-
defined variational principle, meaning that the space of solutions
is preserved under C∞

(
Φ,Diff(M)⋉loc

)
≃ Diff v(Φ) transfor-

mations.

5.1.3. Lagrangian, Action and Geometric Prescription for the
Variational Principle in Field Theory

Lagrangian, Action and Anomalies: A gRGFT over a region
U ⊂ M is usually given by a choice of Lagrangian form L : Φ→
Ωn(U), 𝜙 → L(𝜙), with n = dimM.20 A priori, it may support a
non-trivial action of Diff(M)⋉loc, so that

R⋆(ψ,γ)L = ψ
∗(Lγ) = ψ∗

(
L + c( ; γ)

)
, (274)

where c : Φ ×loc → Ωn(U) is a loc-1-cocyle (with value
in an additive Abelian group) satisfying indeed c(𝜙; γ γ′) =
c(𝜙; 𝛾) + c(𝜙𝛾 ; 𝛾 ′). It is automatic, following from the defini-
tion c( ; γ) := R⋆γ L − L = L𝛾 − L. Defining similarly the Diff(M)-1-
cocycle c : Φ × Diff(M) → Ωn(U), (𝜙,ψ) → c(𝜙;ψ) := R⋆ψL − L =

20 Or an element of the d-cohomology class of L, as they give rise to the
same field equations, as we are about to see. Only the presymplectic po-
tential of the theory differs between members of the same class, which
may have relevant consequences regarding the symplectic structures
of the theories, and their quantization. Wemay write L = L′ + d𝓁, with
𝓁 the so-called “boundary Lagrangian”.
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ψ∗L − L, one finds the total
(
Diff(M)⋉loc

)
-1-cocycle to be

c
(
𝜙; (ψ, γ)

)
:= R⋆(ψ,γ)L − L = c(𝜙;ψ) + 𝜓∗c(𝜙; γ). (275)

Linearizing this 1-cocycle we get the
(
𝔡𝔦𝔣𝔣(M)⊕ Lie)-1-cocycle

a : Φ ×
(
𝔡𝔦𝔣𝔣(M)⊕ Lie)→ Ωn(U):

a((X, 𝜆); ) := d
d𝜏
c( ; (ψ𝜏 , γ𝜏 ))

|||𝜏=0 = d
d𝜏

(
R⋆(ψ𝜏 ,γ𝜏 )L − L

)|||𝜏=0 = L(X,𝜆)v L.

(276)

In other words, a Lagrangian is a priori a twisted tensorial form,
L ∈ Ω0

tens

(
Φ,Ωn(U)

)
. One then finds that

L(X,𝜆)v L =
d
d𝜏
c
(
; (ψ𝜏 , γ𝜏 )

)|||𝜏=0 = d
d𝜏

(
c( ;ψ𝜏 ) +

d
d𝜏
ψ∗
𝜏
c( ; γ𝜏 )

)|||𝜏=0
= a(X ; ) + 𝔏Xc( ; γ𝜏=0) + ψ∗𝜏=0a(𝜆; )

= a(X ; ) + a(𝜆; )

= 𝔏XL + 𝛿𝜆L = a
(
(X, 𝜆);

)
. (277)

We used the fact that γ𝜏=0 = idloc
, ψ𝜏=0 = idM, so c( ; idloc

) = 0.
The term a

(
(X, 𝜆);

)
is what one may call the classical (Diff (M)⋉

loc)-anomaly. As a special case of (199), it satisfies the identity

(X, 𝜆)va
(
(X ′, 𝜆′);𝜙

)
−
(
X ′, 𝜆′

)v
a((X, 𝜆);𝜙)

= a
([
(X, 𝜆), (X ′, 𝜆′)

]
Lie
;𝜙
)
, (278)

which is the classical analogue of the “Wess-Zumino consis-
tency condition”, and contains the combined consistency condi-
tions for both the Diff(M)-anomaly a(X ;𝜙) and theloc-anomaly
a(𝜆;𝜙). Indeed, we remind that (X, 𝜆)v = Xv + 𝜆v and that the Lie
bracket in 𝔡𝔦𝔣𝔣(M)⊕ Lieloc is (180), so (278) splits as:

Xva(X ′;𝜙) − X ′va(X ;𝜙) = a
(
[X, X ′]𝔡𝔦𝔣𝔣(M);𝜙

)
(279)

+ +

𝜆va(𝜆′;𝜙) − 𝜆′va(𝜆;𝜙) = a
(
[𝜆, 𝜆′]LieH;𝜙

)
(280)

+ +

Xv a(𝜆′;𝜙) + 𝜆va(X ′;𝜙) = a
(
−X ′(𝜆) + X(𝜆′);𝜙

)
. (281)

−X ′v a(𝜆;𝜙) − 𝜆′v a(X ;𝜙)

The line (279) is the Diff (M)-anomaly consistency condition,
(280) is that of the loc-anomaly, while (281) is the mutual con-
sistency condition between the two, reflecting (again) the semi-
direct structure of Diff (M)⋉loc.
Remembering that L has to be a top form on M (so dL ≡ 0),

and requiring that the field equations be preserved under loc-
transformations (i.e., imposing 𝛿𝜆L = d𝛽(𝜆; )), one may write

L(X,𝜆)v L = a((X, 𝜆); ) = a(X ; ) + a(𝜆; ) = 𝔏XL + 𝛿𝜆L

= d
(
𝜄XL + 𝛽(𝜆; )

)
=: d𝛽((X, 𝜆); ). (282)

This requirement is essential for a consistent treatment via co-
variant phase space methods, as we shall see elsewhere.
The Lagrangian being tensorial, its Diff v(Φ) ≃ C∞(Φ,

Diff(M)⋉loc)-transformation is thus easily found to be

L(𝛙,𝛄) := Ξ⋆L = 𝛙∗(L𝛄), (283)

while its 𝖉𝖎𝖋𝖋v(Φ) ≃ C∞(Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc)-transformation is

L(X ,𝝀)v L = a
(
(X ,𝝀);𝜙

)
= 𝔏XL + 𝛿𝝀L. (284)

The anomaly for 𝜙-dependent parameters satisfies, as a special
case of (208), the consistency condition

(X ,𝝀)va
(
(X ′,𝝀′);𝜙

)
−
(
X ′,𝝀′

)v
a
(
(X ,𝝀);𝜙

)
= a
({
(X ,𝝀), (X ′,𝝀′)

}
;𝜙
)
, (285)

which, using the bracket of C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
featuring

in (191), can be shown to reduce to (278).
The action functional over U is the map

S : Ω0
(
Φ,Ωn(U)

)
× Ū(M) → Ω0(Φ),

(L,U) → S = ⟨L,U⟩ := ∫U
L.

(286)

It is always Diff (M)-invariant, by (260), so there can be no
Diff(M)-anomaly for the action. A priori, there may be a loc-
anomaly: By (264), the action of Diff(M)⋉loc on the action is

S(ψ,γ) := R̃⋆(ψ,γ)S = ∫ψ−1(U) R
⋆
(ψ,γ)L = ∫ψ−1(U) ψ

∗(Lγ)

= ∫U
L + c( ; γ) =: S + 𝖼( ; γ). (287)

The term 𝖼 : Φ ×loc → ℝ, (𝜙, γ) → 𝖼(𝜙; γ), is aloc-1-cocycle. It
is the classical counterpart of the so-called WZ term, or yet “inte-
grated anomaly”, as its linearization is

𝖺(𝜆;𝜙) := d
d𝜏
𝖼(𝜙; 𝛾𝜏 )

|||𝜏=0 = ∫U

d
d𝜏
c(𝜙; 𝛾𝜏 )

|||𝜏=0 =: ∫U
a(𝜆;𝜙), (288)

featuring the loc-anomaly. Naturally, it satisfies the consistency
condition

𝜆v 𝖺(𝜆′;𝜙) − 𝜆′v 𝖺(𝜆;𝜙) = 𝖺
(
[𝜆, 𝜆′]LieH;𝜙

)
(289)

analogue to the non-integrated one (280). One may write the lin-
earization of (287), by (266) and (261):

𝛿(X,𝜆)S = ∫U
L(X,𝜆)v L + ∫−X(U) L = ∫U

𝛿𝜆L + 𝔏XL

+∫−X(U) L = ∫U
𝛿𝜆L = ∫U

a(𝜆;𝜙) = 𝖺(𝜆;𝜙), (290)

which shows indeed that there is no classical Diff (M)-anomaly.
Observe that, since loc does not act on Ū(M), by (250) it holds
that: 𝛿(X,𝜆)S = L𝜆vS = 𝜄𝜆vdS.
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The action can thus be seen as a twisted tensorial object. The
action of C∞

(
Φ,Diff(M)⋉loc

)
is, by (264),

S(𝛙,𝛄) := Ξ̃⋆S = ∫𝛙−1(U) Ξ
∗L = ∫U

L + c( ; 𝛄) =: S + 𝖼( ; 𝛄), (291)

while the action of C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
is, by (266)

𝛿(X ,𝝀)S = ∫U
L(X ,𝝀)v L + ∫−X (U) L = ∫U

𝛿𝝀L = 𝖺(𝝀;𝜙). (292)

Again, one has that 𝛿(X ,𝝀)S = L𝝀vS = 𝜄𝝀vdS. One may thus define
the twisted tensorial form Z ∈ Ω0

tens(Φ, C),

Z := exp i S, s.t. Z(ψ,γ) = C( ; γ)−1Z, with

C( ; γ) := exp {−i 𝖼( ; γ)},
(293)

whereC : Φ ×loc → U(1) is aloc-1-cocycle, with phase theWZ
term. As a twisted object, it must be acted upon via a twisted co-
variant derivative, D̄ := d +𝝕, where, by (228), the twisted con-
nection satisfies:

𝝕
(
(X, 𝜆)v

)
= d

d𝜏
C
(
𝜙; γ𝜏

)|||𝜏=0 = −i 𝖺(𝜆;𝜙) ∈ 𝔲(1) = iℝ,

R⋆(ψ,γ)𝝕 = 𝝕 + C( ; γ)−1dC( ; γ) = 𝝕 − id𝖼( ; γ).
(294)

The horizontality of the curvature 𝛀̄ = d𝝕 ∈ Ω2
tens(Φ, C), i.e.,

𝛀̄(𝜆v, 𝜆′v) ≡ 0, encodes/reproduces the consistency condition
(289). It is by definition the case that D̄Z ∈ Ω1

tens(Φ, C), but then
since

D̄Z = dZ +𝝕Z = (idS +𝝕)Z,

it follows that idS +𝝕 ∈ Ω1
basic(Φ), (295)

because Z carries the (twisted) equivariance. The object (295),
that one may write dS − i𝝕, is what one may call a “generalized
WZ improved action”: Indeed, the usual WZ improved action is
recovered as a special case for flat twisted connections𝝕0, which
are necessarily written in terms of dressing fields, as we will see
in the next section. The WS trick is then explained as coming
from twisted covariant derivation.
When there is no loc-anomaly, i.e., when S is(

Diff(M)⋉loc

)
-invariant, it induces a well-defined section on

the bundle of regions Ū(M) = Φ ×U(M)∕∼. It thus equivalently
defines a (Diff (M)⋉loc)-equivariant (tensorial) Ū(M)-valued
0-form,

US(𝜙) := 𝜋U (𝜙, U)|S=cst ≡ U,

US

(
ψ∗(𝜙γ)

)
:= 𝜋U

(
ψ∗(𝜙γ),ψ−1(U)

)|S=cst ≡ ψ−1(U). (296)

Its C∞
(
Φ,Diff(M)⋉loc

)
-transformation is then

U (𝛙,𝛄)
S = 𝛙−1(US), so L(X ,𝝀)vUS = −X (US). (297)

The map US we may interpret as defining Diff(M)-equivariant
“𝜙-relative” regions of M. This may be understood as a first for-
mal step towards be the concrete translation of the conceptual

insight, exposed in Section 2, that theories implementing the
symmetries of gRGFT (of GR in particular) – i.e., enforcing prin-
ciples of epistemic democracy – have a relational definition of
spacetime: that is, define spacetime regions relative to the d.o.f.
of their fields content.21It is of course only half the full picture,
which requires to see how fields d.o.f. relationally co-define each
other. A more complete formal relational picture is provided in
Section 5.2.
We remark that a quantum theory is also a priori a twisted ten-

sorial object, even for an invariant action S:

𝖹 := ∫ 𝛿𝜙 exp i
ℏ
S, s.t. 𝖹(ψ,γ) = C

(
; (ψ, γ)

)−1
𝖹, (298)

with 𝛿𝜙 is an integration measure on Φ, and where C : Φ ×(
Diff(M)⋉loc

)
→ U(1) is a 1-cocycle, whose linearization is

the the combined
(
Diff(M)⋉loc

)
-anomaly. It is the transfor-

mation of the measure 𝛿𝜙 that may generate a non-zero co-
cycle. Therefore, a Diff (M)-anomaly potentially occurs only in
quantum field theories. The twisted covariant derivative adapted
to 𝖹 ∈ Ω0

tens(Φ, C) is D̄𝖹 = d𝖹 +𝝕𝖹 ∈ Ω1
tens(Φ, C), with twisted

connection satisfying

𝝕
(
(X, 𝜆)v

)
= d

d𝜏
C
(
𝜙; (ψ𝜏 , γ𝜏 )

)|||𝜏=0 = − i
ℏ
𝖺((X, 𝜆);𝜙) ∈ 𝔲(1) = iℝ,

R⋆(ψ,γ)𝝕 = 𝝕 + C
(
; (X, 𝜆)

)−1
dC
(
; (X, 𝜆)

)
. (299)

The horizontality of the curvature 𝛀̄ = d𝝕 ∈ Ω2
tens(Φ, C), i.e.,

𝛀̄
(
(X, 𝜆)v, (X ′, 𝜆′v)

) ≡ 0, encodes/reproduces the WZ consis-
tency condition of the combined Diff(M)⋉loc quantum
anomaly, directly analogous to (278). We may observe that act-
ing only with d on 𝖹 is a well-defined geometric operation only
if 𝖹 ∈ Ω0

basic(Φ) – i.e., in the absence of quantum anomaly – as
then d is indeed a covariant derivative on basic forms, so that
d𝖹 ∈ Ω1

basic(Φ).
Variational Principle in Local Field Theory: We want to write

the variational principle for a gRGFT, and examine how the ob-
jects involved, notably the field equations, transform under the
action of C∞

(
Φ,Diff(M)⋉loc

)
. We write the variational prin-

ciple as

dS|𝜙 = 0 with dL|𝜙 = E|𝜙 + d𝜽|𝜙
= E(d𝜙;𝜙) + d𝜃(d𝜙;𝜙),

(300)

with E ∈ Ω1(Φ,Ωn(U)) the field equations 1-form, and 𝜽 ∈
Ω1(Φ,Ωn−1(U)) the so-called “presymplectic potential” of the the-
ory. Remember that in dS, the derivative d is extended from
Φ to Φ ×U(M) by (250). The space of solutions is defined as
 :=

{
𝜙 ∈ Φ | E|𝜙 = 0

}
. Our goal is to assess its stability under

the action of Diff v(Φ).

21 It is only a first step because, as we have shown, M is not space-
time. Still, US formally expresses, through its Diff (M)-equivariance,
the covariant relation between field d.o.f. and physical points/regions
of spacetime. Wemay call manifolds defined via the set of values (open
sets) of objects like US, “manifields”.

Fortschr. Phys. 2024, 2400149 2400149 (32 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202400149 by Jordan François - C

ochraneItalia , W
iley O

nline L
ibrary on [08/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

The equivariance and verticality properties of dL are easily
found. By, (274) we have

R⋆(ψ,γ)dL = dR⋆(ψ,γ)L = dψ∗
(
L + c( ; γ)

)
= ψ∗

(
dL + dc( ; γ)

)
. (301)

The verticality property of dL is just another way to see the in-
finitesimal equivariance of L, given by (282), so:

𝜄(X,𝜆)vdL = a
(
(X, 𝜆);

)
= a(X ; ) + a(𝜆; )

= d 𝛽
(
(X, 𝜆);

)
= d
(
𝜄XL + 𝛽(𝜆; )

)
.

(302)

This allows to compute geometrically the Diff v(Φ) ≃
C∞
(
Φ,Diff(M)⋉loc

)
-transformation of dL, using (195):

dL(𝝍 ,𝜸)|𝜙 (𝔛|𝜙) := Ξ⋆dL|𝜙(𝔛|𝜙) = dL|Ξ(𝜙) (Ξ⋆𝔛|𝜙)
= dL|Ξ(𝜙)

(
R(𝝍 ,𝜸)⋆𝔛|𝜙 +

{(
𝝍−1
∗ d𝝍 , 𝝍∗ (𝜸−1d𝜸)

)|𝜙(𝔛|𝜙)}v

|Ξ(𝜙)
)

= R⋆(𝝍 ,𝜸)dL|Ξ(𝜙)(𝔛|𝜙)
+ dLΞ(𝜙)

({(
𝝍−1
∗ d𝝍 , 𝝍∗ (𝜸−1d𝜸)

)|𝜙(𝔛|𝜙)}v

|Ξ(𝜙)
)

= 𝝍 (𝜙) ∗
(
dL + dc

(
; 𝜸(𝜙)

) )|𝜙(𝔛|𝜙)
+
[
a
(
𝝍−1
∗ d𝝍 ; Ξ(𝜙)

)
+ a
(
𝝍∗(𝜸−1d𝜸); Ξ(𝜙)

)]|𝜙(𝔛|𝜙). (303)

The second term is readily found to be

a
(
𝛙−1∗ d𝛙; Ξ(𝜙)

)
= 𝔏𝛙−1∗ d𝛙L

(
𝛙∗(𝜙𝛄)

)
= 𝔏𝛙−1∗ d𝛙𝛙∗L(𝜙𝛄)

= 𝛙∗𝔏d𝛙 ◦𝛙−1L(𝜙
𝛄)

= 𝛙∗
(
𝔏d𝛙 ◦𝛙−1

(
L + c( ; 𝛄)

) )
.

(304)

The last term is a bit more subtle: using the definition of the in-
finitesimal cocycle a and the defining property of c,

a
(
𝛙∗(𝛄−1d𝛄)|𝜙(𝔛|𝜙); Ξ(𝜙))
= 𝛙∗ a

(
𝛄−1d𝛄|𝜙(𝔛|𝜙); 𝜙𝛄)

= 𝛙∗ d
d𝜏
c
(
𝜙𝛄; exp {𝜏 (𝛄−1d𝛄)|𝜙(𝔛|𝜙)} ) |||𝜏=0

= 𝛙∗ d
d𝜏
c
(
𝜙𝛄; 𝛄(𝜙)−1 exp {𝜏 (d𝛄𝛄−1)|𝜙(𝔛|𝜙)}𝛄(𝜙) ) |||𝜏=0

= 𝛙∗ d
d𝜏
c
(
𝜙; exp {𝜏 (d𝛄𝛄−1)|𝜙(𝔛|𝜙)}𝛄(𝜙) ) − c

(
𝜙; 𝛄(𝜙)

) |||𝜏=0
= 𝛙∗ dc(𝜙; )|𝛄(𝜙) ◦ d𝛄|𝜙(𝔛|𝜙)
= 𝛙∗ dc(𝜙; 𝛄)|𝜙(𝔛|𝜙). (305)

Gathering all results, we get

dL(𝛙,𝛄)|𝜙 (𝔛|𝜙) = 𝛙(𝜙)∗
(
dL|𝜙 + dc

(
; 𝛄(𝜙)

)|𝜙 + dc(𝜙; 𝛄)|𝜙
+ 𝔏d𝛙 ◦𝛙−1

(
L + c( ; 𝛄)

)|𝜙) (𝔛|𝜙)

= 𝛙(𝜙)∗
(
dL|𝜙 + dc( ; 𝛄)|𝜙

+ 𝔏d𝛙 ◦𝛙−1
(
L + c( ; 𝛄)

)|𝜙) (𝔛|𝜙). (306)

Stating the result as valid ∀𝜙 ∈ Φ and ∀𝔛 ∈ Γ(TΦ), this is

dL(𝛙,𝛄) = 𝛙∗
(
dL + dc( ; 𝛄) + 𝔏d𝛙 ◦𝛙−1

(
L + c( ; 𝛄)

))
. (307)

This can be cross-checked by using [Ξ⋆, d] = 0 and computing
dΞ⋆L = d(L(𝛙,𝛄)). This generalizes Equation (233) in ref. [8].
We observe that for the

(
Diff(M)⋉loc

)
-transformed La-

grangian L(ψ,γ) = R⋆(ψ,γ)L to have the same field equations as L, it
must be the case that

dc(𝜙; γ) = db(𝜙; γ), (308)

where b(𝜙; γ) = b (d𝜙;𝜙, γ) is linear in d𝜙. This is a separate hy-
pothesis, that must be stressed as such. It is realized for ex-
ample in the case of 3D Chern–Simons theory, where c(A; γ) =
Tr
(
d(γdγ−1A) − 1

3
(γ−1dγ)3

)
so that b(A; γ) = Tr

(
γdγ−1dA

)
. Un-

der hypothesis (308), the result (307) gives

dL(𝛙,𝛄) = 𝛙∗
(
dL + db( ; 𝛄) + 𝔏d𝛙 ◦𝛙−1

(
L + c( ; 𝛄)

))
= 𝛙∗

(
dL + d

[
b( ; 𝛄) + 𝜄d𝛙 ◦𝛙−1L + 𝜄d𝛙 ◦𝛙−1 c( ; 𝛄)

])
,

(309)

where we use the fact that L and c( ; γ) are top forms on U ⊂ M.
Hence, dL transforms under Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
by a boundary term.
By (264), we find the C∞

(
Φ,Diff(M)⋉loc

)
-transformation

of dS to be

dS(𝛙,𝛄) = ∫𝛙−1(U) dL
(𝛙,𝛄) = ∫U

dL + dc( ; 𝛄) + 𝔏d𝛙 ◦𝛙−1
(
L + c( ; 𝛄)

)
.

(310)

Under the hypotesis (308), this gives

dS(𝛙,𝛄) = ∫U
dL + d

[
b( ; 𝛄) + 𝜄d𝛙 ◦𝛙−1L + 𝜄d𝛙 ◦𝛙−1 c( ; 𝛄)

]
= dS + ∫𝜕U b( ; 𝛄) + 𝜄d𝛙 ◦𝛙−1L + 𝜄d𝛙 ◦𝛙−1 c( ; 𝛄).

(311)

We see that if L is loc-invariant, so that c = 0 = b, this result is
indeed a special case of (273). The fact that dL, and dS, transform
with a boundary term hint at the fact that the variational princi-
ple remains well-defined under field-dependent transformations,
and that the space of solutions is preserved.
The fact of the lattermatter can be assessed by directly comput-

ing the transformation of the field equations E. For this, we need
both the equivariance and verticality properties of E. By (300)–
(301), we get

R⋆(ψ,γ)dL = R⋆(ψ,γ)E + R⋆(ψ,γ)d𝜽 = ψ
∗(E + d𝜽 + dc( ; γ)

)
. (312)

As things stand, we would not know how to split the loc-
equivariance of dL as contributions coming from that of E and
d𝜽. There are only two options to consider. The first would be
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that E contributes non-trivially, alongside 𝜽: In such cases, the
action of Diff (M)⋉loc does not preserve the space of solutions (a loc-transformation moves us “off-shell”). As this assump-
tion explicitly contravenes the foundational principles of gRGFT
as reminded in Section 2, we reject it.22 The only option compati-
ble with gRGFT is that E isloc-invariant. This then implies that
(308) holds, a condition thus revealed to be essential to gRGFT.
We therefore have the equivariance

R⋆(ψ,γ)E = ψ
∗E and R⋆(ψ,γ)𝜽 = ψ

∗(𝜽 + b( γ)
)
. (313)

We need now only find the verticality property of E. First, from
(282) and (300) we get:

𝜄(X,𝜆)vE = d
(
𝛽
(
(X, 𝜆);𝜙

)
− 𝜄(X,𝜆)v𝜽

)
𝜄XvE + 𝜄𝜆vE = d

(
𝜄XL − 𝜄Xv𝜽

)
+ d
(
𝛽(𝜆;𝜙) − 𝜄𝜆v𝜽

)
.

(314)

We may use these expressions to compute E(𝛙,𝛄), but the result
would not be conceptually enlightening. It turns out to be possi-
ble to write each of the two contributions on the r.h.s. above in
terms of the functional expression of E itself. To see this requires
of us to have a closer look at how (300) is obtained.
Since we are considering general-relativistic gauge field the-

ories, we remind that our space of fields is made of 𝜙 = {A, b},
where A = AYM + ACartan with AYM the local representative of a
Ehresmann connection (i.e., a Yang-Mills gauge potential) and
ACartan the local representative of a Cartan connection (i.e., a grav-
itational gauge potential), and b = {𝜑, F,…} are loc-tensorial
fields, with 𝜑 a matter field and F = FYM + FCartan the Yang-
Mills and gravitational field strengths. We have DA = F and
Db = db + 𝜌∗(A)b. SinceDF = 0, the Bianchi identity, andDDb =
𝜌∗(F)b, one shows that D2pb = 𝜌∗(Fp)b and D2p+1b = 𝜌∗(Fp)Db.
Thus, {𝜙, D𝜙} is an algebraically closed set of variables under the
action ofD; we may write thisD{𝜙} ⊂ {𝜙}. One easily shows that
XA = D(𝜄XA) + 𝜄XF and Xb = [𝜄X , D]b − 𝜌∗(𝜄XA)b, so we may
write the generic formula

𝜄Xvd𝜙 = X𝜙 = 𝜄XD𝜙 +D(𝜄X𝜙) − 𝜌∗(𝜄XA)𝜙. (315)

The Lagrangian L in gRGFTmust be (or inmost relevant cases,
is) built from an invariant polynomial P on LieH and representa-
tion V of H – in the latter case P is usually simply a H-invariant
bilinear form on V : i.e., it is s.t. P

(
𝜌(h)v1,… , 𝜌(h)vi,…

)
=

P
(
v1,… , vi,…

)
for h ∈ H and vi LieH- and/or V -valued vari-

ables ( 𝜌 = Ad in the former case). More symbolically, P ◦ 𝜌(H) =
P.23 By linearizing, this implies ΣiP(… , 𝜌∗(LieH)vi,…) = 0, and
the identity Σi(−)p(k1+⋯+ki−1)P

(
… , 𝜌∗(𝜂)vi,…

)
= 0, for 𝜂 a LieH-

valued p-form and the variables vi are now ki-forms.
Now, we may assume the Lagrangian to have the form L(𝜙) =

L̃(𝜙;D𝜙) – meaning it is defined on J1Φ, the 1st jet bundle of field

22 We remark that the extreme case where only E contributes, and 𝜽 is
invariant, is realized e.g., in the case of Massive Yang-Mills theory. See
appendix E in ref. [65].

23 This means that a Lagrangian L = P(b) would beloc-invariant: a pro-
totypical example is YM theory, LYM(𝜙) = P(F, ∗ F) = Tr(F ∗F). Such
is not always the case, e.g., 3D Chern–simons theory is LCS(𝜙) =
P(A, F) = Tr(AF − 1∕3A3). Remark that in both cases P = Tr.

space. Then we have,

dL|𝜙 = L̃0(d𝜙; {𝜙}) + L̃1(dD𝜙; {𝜙}), (316)

where {𝜙} means the collection of remaining 𝜙 and D𝜙 in the
respective functional expressions L̃0∕1, which are linear in their
first argument. All functional expressions L, L̃ and L̃0∕1 are built
from the H-invariant polynomial P. Using that dD𝜙 = D(d𝜙) +
𝜌∗(dA)𝜙 and integrating by parts, we obtain the formal expres-
sions of the field equation and presymplectic potential:

dL|𝜙 = L̃0
(
d𝜙; {𝜙}

)
+ L̃1

(
D(d𝜙) + 𝜌∗(dA)𝜙; {𝜙}

)
,

= L̃0
(
d𝜙; {𝜙}

)
+ dL̃1

(
d𝜙; {𝜙}

)
− (−)|𝜙|L̃1(d𝜙; d{𝜙})

+ L̃1
(
𝜌∗(A)d𝜙; {𝜙}

)
+ L̃1

(
𝜌∗(dA)𝜙; {𝜙}

)
= L̃0

(
d𝜙; {𝜙}

)
+ dL̃1

(
d𝜙; {𝜙}

)
− (−)|𝜙|L̃1(d𝜙; d{𝜙})

− (−)|𝜙|L̃1(d𝜙; 𝜌∗(A){𝜙}) + L̃1
(
𝜌∗(dA)𝜙; {𝜙}

)
= L̃0

(
d𝜙; {𝜙}

)
− (−)|𝜙|L̃1(d𝜙;D{𝜙})

+ L̃1
(
𝜌∗(dA)𝜙; {𝜙}

)
+ dL̃1

(
d𝜙; {𝜙}

)
=: E(d𝜙;𝜙) + d𝜃(d𝜙;𝜙)

= E|𝜙 + d𝜽|𝜙,

(317)

where we denote the form degree |d𝜙| = |𝜙|, and we used
the identity L̃1

(
𝜌∗(A)d𝜙; {𝜙}

)
+ (−)|𝜙|L̃1 (d𝜙; 𝜌∗(A){𝜙}) = 0

stemming from the fact that L̃1 is built from P.
By a similar formal computation, and using (315), we get the

expression of the evaluation of the Lagrangian n-form on a vector
field X ∈ Γ(TM) ≃ 𝔡𝔦𝔣𝔣(M), acting as a derivation (like d):

𝜄XL(𝜙) = 𝜄X L̃(𝜙;D𝜙)

= L̃0
(
𝜄X𝜙; {𝜙}

)
+ L̃1

(
𝜄XD𝜙; {𝜙}

)
,

= L̃0
(
𝜄X𝜙; {𝜙}

)
+ L̃1

(
𝜄Xvd𝜙; {𝜙}

)
− L̃1
(
D(𝜄X𝜙); {𝜙}

)
+ L̃1

(
𝜌∗(𝜄XA)𝜙; {𝜙}

)
,

= L̃0
(
𝜄X𝜙; {𝜙}

)
+ L̃1(𝜄Xvd𝜙; {𝜙}) − dL̃1(𝜄X𝜙; {𝜙})

+ (−)|𝜄X𝜙|L̃1(𝜄X𝜙;D{𝜙}) + L̃1
(
𝜌∗(𝜄XA)𝜙; {𝜙}

)
= L̃0

(
𝜄X𝜙; {𝜙}

)
− (−)|𝜙|L̃1(𝜄X𝜙;D{𝜙}) + L̃1

(
𝜌∗(𝜄XA)𝜙; {𝜙}

)
+ L̃1(𝜄Xvd𝜙; {𝜙}) − dL̃1(𝜄X𝜙; {𝜙})

= E(𝜄X𝜙;𝜙) + 𝜄Xv𝜽 − d𝜃(𝜄X𝜙;𝜙). (318)

From this we obtain 𝜄XL − 𝜄Xv𝜽 = E(𝜄X𝜙;𝜙) − d𝜃(𝜄X𝜙;𝜙), so that
we get the first contribution in (314)

𝜄XvE = dE(𝜄X𝜙;𝜙). (319)

There remains only to find 𝜄𝜆vE. The most straightforward way
to do so is to attempt to compute it formally from the expressiond
derived in (317). Using the relevant part in (210), i.e., 𝜄𝜆vd𝜙 = 𝛿𝜆𝜙,
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considering further that 𝛿𝜆𝜙 = (𝛿𝜆A, 𝛿𝜆b) = (D𝜆,−𝜌∗(𝜆)b), and in-
tegrating by part as above, one may be easily convinced that

𝜄𝜆vE = d
(
L̃0
(
𝜆; {𝜙}

)
− (−)|𝜙|L̃1(𝜆;D{𝜙}) + L̃1

(
𝜌∗(𝜆)𝜙; {𝜙}

))
+ L̃2

(
𝜆; {𝜙}

)
= dE(𝜆;𝜙) + L̃2

(
𝜆; {𝜙}

)
,

(320)

where L̃2 is a functional expression (depending on L̃0 and L̃1) lin-
ear in its first argument, an underived 𝜆. But since from more
general considerations we have that 𝜄𝜆vE = d

(
𝛽(𝜆;𝜙) − 𝜄𝜆v𝜽

)
, i.e.,

𝜄𝜆vE is d-exact, it must be that L̃2 ≡ 0. So we get the result

𝜄𝜆vE = dE(𝜆;𝜙). (321)

Finally, we thus get to write the verticality property of E:

𝜄(X,𝜆)vE = dE
(
𝜄X𝜙;𝜙

)
+ dE(𝜆;𝜙) =: dE

(
(𝜄X𝜙, 𝜆);𝜙

)
. (322)

If one fails to be convinced by the above argumentation, one may
take (322), especially (321), as an hypothesis or working assump-
tion that needs to be checked in specific theories whenever one
wishes to apply/use the results presented hereafter.
TheDiff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
-transformation of E is

then easily found to be, using (195):

E(𝛙,𝛄)|𝜙 (𝔛|𝜙) :=Ξ⋆E|𝜙(𝔛|𝜙) = E|Ξ(𝜙)(Ξ⋆𝔛|𝜙)
=E|Ξ(𝜙)

(
R(𝛙,𝛄)⋆

[
𝔛|𝜙 +

{(
d𝛙 ◦𝛙−1, d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)|𝜙(𝔛|𝜙)}v

|𝜙
])

=R⋆(𝛙,𝛄)E|Ξ(𝜙)
(
𝔛|𝜙 +

{(
d𝛙 ◦𝛙−1, d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)|𝜙(𝔛|𝜙)}v

|𝜙
)

=𝛙∗E|𝜙
(
𝔛|𝜙 +

{(
d𝛙 ◦𝛙−1, d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)|𝜙(𝔛|𝜙)}v

|𝜙
)

=𝛙∗E|𝜙(𝔛|𝜙) +𝛙∗dE(𝜄d𝛙 ◦𝛙−1|𝜙 (𝔛|𝜙)𝜙;𝜙
)
+𝛙∗dE

((
d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)|𝜙(𝔛|𝜙);𝜙).

(323)

Hence, written as valid at all points 𝜙 ∈ Φ and ∀𝔛 ∈ Γ(TΦ), this
is

E(𝛙,𝛄) = 𝛙∗
(
E + dE

(
𝜄d𝛙 ◦𝛙−1𝜙;𝜙

)
+ dE

(
d𝛄 𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1;𝜙

))
. (324)

This is one of the most important equations of this paper. It
shows that the space of solutions  of a general-relativistic gauge
theory is stable under field-dependent transformations:  is
fibered by the action of Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
, and

hence a principal bundle in its own right. Which means that
gRGFT admits a much bigger set of symmetries than initially
assumed (Diff(M)⋉loc) and encoded in its foundational prin-
ciples. To the best of our knowledge, this fact was first noticed in

the case of GR by refs. [21, 66], and later by ref. [22], wheremetric-
dependent diffeomorphisms were considered.24 The result (324)
specializes to

E𝛙 = 𝛙∗
(
E + dE

(
𝜄d𝛙 ◦𝛙−1𝜙;𝜙

))
,

E𝛄 = E + dE
(
d𝛄 𝛄−1;𝜙

)
,

(325)

which reproduce and/or generalize respectively e.g., Equa-
tion (233) in ref. [8], and Equation (103) in ref. [6] and Equa-
tion (74) in ref. [42].
By the same logic, from (313) and using (318) and (321) to

find the verticality property if 𝜽, one may obtain its Diff v(Φ) ≃
C∞
(
Φ,Diff(M)⋉loc

)
-transformation – showing explicitly that

dL(𝛙,𝛄) = E(𝛙,𝛄) + d𝜽(𝛙,𝛄). This result, as well as the transformation
of the symplectic 2-form 𝚯 := d𝜽, are relevant to the covariant
phase space analysis of gRGFT. A study we postpone to a forth-
coming part of this series, which will recover and expand on pre-
vious works such as refs. [6, 8, 42, 67, 68]. For now, our focus is
on the relational reformulation of local gRGFT via dressing.

5.2. Relational Formulation via Dressing

The DFM for local theory parallels the treatment of the global
case detailed in Section 4. As the local case has many interesting

specific features, we again provide as much details as needed to
get the clearest conceptual picture.

5.2.1. Building Basic Forms on Local Field Space

We remind that Q → N is the reference bundle with base N fea-
turing in the global DFM. We define the space of (Diff (M)⋉
loc)-dressing fields as

24 And where instances of the FN bracket for metric-dependent vector
fields was computed heuristically. See Equations (3.1)–(3.2) in ref. [21]
and Equation (2.1) in ref. [22].
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r[N;M,H] :=
{
(𝜐,u) with 𝜐 : N → M and u : M → H |
(𝜐,u)(ψ,γ) :=

(
ψ−1 ◦ 𝜐, ψ∗(uγ)

)
:=
(
ψ−1 ◦ 𝜐, ψ∗(γ−1u)

)
= (ψ, γ)−1 ⋅ (𝜐,u)

}
,

(326)

where (ψ, γ)−1 = (ψ−1,ψ∗γ−1), and the group product law (179)
(/(A12)) is used (and extended) to write the last equality in the
defining (Diff (M)⋉loc)-transformation of the dressing field
(𝜐,u). The linearization of which is

𝛿(X,𝜆)(𝜐,u) =
(
−X ◦ 𝜐, 𝔏Xu − 𝜆u

)
. (327)

We will usually refer to (𝜐,u) as a dressing field, despite it being
a pair with 𝜐 a Diff(M)-dressing field as defined in ref. [8] and u
a loc-dressing field as originally defined in refs. [4–6].
We define the space of dressed fields Φ(𝜐,u) by

|u : Φ → Φ(𝜐,u),

𝜙 → 𝜙(𝜐,u) := 𝜐∗(𝜙u).
(328)

We refer to 𝜙(𝜐,u) as a dressed field, or the dressing of 𝜙. The
notation 𝜙u means the same functional expression as the loc-
transformation of 𝜙, i.e., 𝜙γ, but with γ ∈ loc replaced by u.
For example, the loc-dressing of a gauge potential A is Au :=
u−1Au + u−1du. The loc-dressing of a tensorial field b is bu :=
𝜌(u−1) b. In particular the loc-dressing of a field strength F is
Fu := u−1Fu, while that of a matter fields 𝜑 is 𝜑u := 𝜌(u−1)𝜑.
As is clear from these examples, we have that (𝜙u)γ = (𝜙γ)uγ =
(𝜙γ)γ−1u = 𝜙u. By construction, dressed fields are Diff(M)⋉loc-
invariant:(
𝜙(𝜐,u)

)(ψ,γ) = (𝜙(ψ,γ))(𝜐,u)(ψ,γ) = (𝜙(ψ,γ))(ψ,γ)−1⋅(𝜐,u)
= 𝜙(ψ,γ)⋅(ψ,γ)−1⋅(𝜐,u) = 𝜙(𝜐,u). (329)

Or, more explicitly,

(
𝜙(𝜐,u)

)(ψ,γ) = (𝜙(ψ,γ))(𝜐,u)(ψ,γ) = (𝜙(ψ,γ))(ψ−1 ◦ 𝜐, ψ∗(γ−1u))
= (ψ ◦ 𝜐)∗

(
[𝜙(ψ,γ)]ψ

∗(γ−1u)
)
= (ψ ◦ 𝜐)∗

(
ψ∗[𝜙γ]ψ∗(γ−1u)

)
= 𝜐∗ ◦ψ−1

(
ψ∗[(𝜙γ)γ−1u]

)
= 𝜐∗(𝜙u) = 𝜙(𝜐,u). (330)

Observe that we have automatic compatibility conditions for 𝜐
and u, analogous to those displayed in Section 4.2, ensuring the
stepwise reduction (155): Indeed, from (326) we have on the
one hand that uψ = ψ∗u which ensures that the loc-invariant
dressed field 𝜙u still has a well-defined Diff(M)-transformation,
that one can dress for via 𝜐. On the other hand, we have 𝜐γ = 𝜐,
which secures the fact that the loc-invariance achieved via u is
not spoiled after further dressing via 𝜐. So, whenever dressed
fields are defined 𝜙(𝜐,u) ∈ Φ(𝜐,u) ∼ [𝜙] ∈.

We now define field-dependent (Diff (M)⋉loc)-dressing fields
as

(𝝊,u) : Φ → r[N;M,H],

𝜙 → (𝝊(𝜙),u(𝜙)), s.t. R⋆(ψ,γ)(𝝊,u) = (ψ, γ)−1 ⋅ (𝝊,u)

=
(
ψ−1 ◦ 𝝊,ψ∗(γ−1u)

)
,

i.e.,
(
𝝊
(
ψ∗(𝜙γ)

)
,u
(
ψ∗(𝜙γ)

))
= (ψ, γ)−1 ⋅

(
𝝊(𝜙),u(𝜙)

)
.

(331)

The linear version of this defining equivariance is

L(X,𝜆)v (𝝊,u) =
(
−X ◦ 𝝊, 𝔏Xu − 𝜆u

)
. (332)

Such a dressing field can be understood as an equivariant
0-form, i.e., tensorial, with values in r[N;M,H] seen as a
representation space for (a right action of) Diff (M)⋉loc.
Therefore, itsDiff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
and 𝖉𝖎𝖋𝖋v(Φ) ≃

C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
transformations are

(𝝊,u)(𝛙,𝛄) = (𝛙, 𝛄)−1 ⋅ (𝝊,u), and

L(X ,𝝀)v (𝝊,u) =
(
−X ◦ 𝝊, 𝔏Xu − 𝝀u

)
.

(333)

A 𝜙-dependent dressing field induces a map

F(𝝊,u) : Φ → ,

𝜙 → F(𝝊,u)(𝜙) := 𝝊(𝜙)∗
(
𝜙u(𝜙)

)
= 𝜙(𝝊,u) ∼ [𝜙], s.t.

F(𝝊,u) ◦R(ψ,γ) = F(𝝊,u).

(334)

It tells us that a Diff (M)⋉loc-orbit, a point [𝜙] ∈ is rep-
resented by a dressed field 𝜙(𝝊,u), so the image of F(𝝊,u) is a
relational coordinatization of : Indeed, the expression of the
Diff (M)⋉loc-invariant variable 𝜙

(𝝊,u) = 𝝊(𝜙)∗
(
𝜙u(𝜙)

)
is an ex-

plicit field-dependent coordinatization of the physical d.o.f. with
respect to each other.
Let us unpack this further. The field 𝜙u(𝜙) can be understood

to coordinatize the internal d.o.f. of 𝜙 w.r.t each other, exhibiting
how the true physical internal d.o.f. encoded in 𝜙 are co-defined
– Remind that 𝜙 is a priori a collection of fields. Thus, 𝜙u(𝜙) is a
loc-invariant assignation of internal d.o.f. over points ofM. It is
the formal implementation, locally onM, of the core conceptual
gauge theoretic insight stemming from the internal hole argu-
ment and the internal point-coincidence argument as detailed in
Section 2.
The field 𝝊(𝜙)∗

(
𝜙u(𝜙)

)
can be understood to coordinatize the

external d.o.f. of 𝜙u(𝜙) w.r.t each other. It exhibits that the true
physical spatio-temporal d.o.f. encoded in 𝜙u(𝜙) are co-defined. It
is the formal implementation of the core general-relativistic in-
sight stemming from articulating of the hole argument and the
point-coincidence argument… Or at least half of it: The fact that
𝝊(𝜙)∗

(
𝜙u(𝜙)

)
is a field on N further stresses thatM was never the

physical spacetime. We will indicate shortly, when considering
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dressed integrals below, how the DFM makes manifest how the
physical spacetime is defined via the field content.
In short, the dressed field 𝜙(𝝊,u) represents the physical spatio-

temporal and internal d.o.f. in a manifestly Diff (M)⋉loc-
invariant and manifestly relational way.
It is clear that the map (334) realizes the bundle projection,

F(𝝊,u) ∼ 𝜋, and thus allows to build basic forms on the local field
spaceΦ viaΩ∙basic(Φ) = Im𝜋⋆ ≃ ImF⋆(𝝊,u). Our aimwill be in gen-
eral to build the basic counterpart of a form 𝜶 = 𝛼 (∧∙d𝜙;𝜙) ∈
Ω∙(Φ). For this we must first consider its formal analogue on the
base space  of Φ, 𝜶̄ = 𝛼 (∧∙d[𝜙]; [𝜙]) ∈ Ω∙(), and then define
the dressing of 𝜶 as

𝜶(𝝊,u) := F⋆(𝝊,u)𝜶̄ = 𝛼
(
∧∙F⋆(𝝊,u)d[𝜙]; F(𝝊,u)(𝜙)

)
∈ Ω∙basic(Φ). (335)

Since it is basic by construction, it is automatically invariant un-
der Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
.

To obtain a concrete expression of 𝜶(𝝊,u), onemay use the usual
rule of thumb of the DFM: replace in the expression for the trans-
formation 𝜶(𝛙,𝛄) the parameters (𝛙, 𝛄) by the dressing field (𝝊,u).
But for the sake of completness, let us see how we may confirm
the validity of this rule.
From (335), it is clear that all we need is F⋆(𝝊,u)d[𝜙] expressed in

terms of d𝜙 and (𝝊,u). The obvious way to try and find it is to
write F⋆(𝝊,u)d[𝜙]|F(𝝊,u) (𝜙)(𝔛|𝜙) = d[𝜙]|F(𝝊,u) (𝜙)(F(𝝊,u)⋆𝔛|𝜙), for a generic
𝔛 ∈ Γ(TΦ) with flow 𝜑𝜏 : Φ→ Φ, and s.t. 𝔛|𝜙 = d

d𝜏
𝜑𝜏 (𝜙)|𝜏=0 =

𝔛(𝜙) 𝛿
𝛿𝜙
. So, we need the pushforward F(𝝊,u)⋆ : T𝜙Φ → TF(𝝊,u) (𝜙)

,
𝔛|𝜙 → F(𝝊,u)⋆𝔛|𝜙. Using the expression of the map (334) we have

F(𝝊,u)⋆𝔛|𝜙 :=F(𝝊,u)⋆ d
d𝜏
𝜑𝜏 (𝜙)

|||𝜏=0 = d
d𝜏
F(𝝊,u)

(
𝜑𝜏 (𝜙)

)|||𝜏=0
= d

d𝜏
𝝊
(
𝜑𝜏 (𝜙)

)∗(
𝜙u(𝜑𝜏 (𝜙))

)|||𝜏=0
= d

d𝜏
𝝊
(
𝜑𝜏 (𝜙)

)∗(
𝜙u(𝜙)

)|||𝜏=0 + d
d𝜏
𝝊(𝜙)∗

(
𝜑𝜏 (𝜙)

u(𝜙)
)|||𝜏=0

+ d
d𝜏
𝝊(𝜙)∗

(
𝜙u(𝜑𝜏 (𝜙))

)|||𝜏=0.
The result may be written as 𝔛̃([𝜙]) 𝛿

𝛿[𝜙]
as a derivation of C∞().

Let us work out each term in turn. Inserting 𝝊(𝜙)−1 ◦ 𝝊(𝜙) =
idM, the 1st term is d

d𝜏
𝝊(𝜙)∗𝝊(𝜙)−1∗𝝊(𝜑𝜏 (𝜙))

∗(𝜙u(𝜙))|𝜏=0 =
𝝊(𝜙)∗ d

d𝜏
(𝝊(𝜑𝜏 (𝜙)) ◦ 𝝊(𝜙)

−1)∗(𝜙u(𝜙))|𝜏=0. The term 𝝊(𝜑𝜏 (𝜙)) ◦ 𝝊(𝜙)
−1

is a curve in M, so d
d𝜏
𝝊(𝜑𝜏 (𝜙)) ◦ 𝝊(𝜙)

−1|𝜏=0 = d𝝊 ◦ 𝝊−1|𝜙(𝔛|𝜙) ∈
Γ(TM). Thus,

d
d𝜏
𝝊
(
𝜑𝜏 (𝜙)

)∗(
𝜙u(𝜙)

)|||𝜏=0
= 𝝊(𝜙)∗ d

d𝜏

(
𝝊
(
𝜑𝜏 (𝜙)

)
◦ 𝝊(𝜙)−1

)∗(
𝜙u(𝜙)

)|||𝜏=0
= 𝝊(𝜙)∗

(
𝔏d𝝊 ◦ 𝝊−1 |𝜙(𝔛|𝜙)𝜙u(𝜙)

)
= 𝝊(𝜙)∗

[(
𝔏d𝝊 ◦ 𝝊−1 |𝜙(𝔛|𝜙)𝜙 + 𝛿(𝔏{d𝝊 ◦ 𝝊−1 |𝜙 (𝔛|𝜙 )}u(𝜙))u(𝜙)−1𝜙

)u(𝜙)
]
,

(336)

where we used a direct analogue of the identity (215) in the
last step. Inserting u(𝜙)u(𝜙)−1 = idloc

in the 3rd term we get

𝝊(𝜙)∗ d
d𝜏
(𝜙u(𝜙)u(𝜙)−1u(𝜑𝜏 (𝜙)))|𝜏=0 = 𝝊(𝜙)∗ d

d𝜏
(𝜙u(𝜙))u(𝜙)−1u(𝜑𝜏 (𝜙))|𝜏=0. The

term u(𝜙)−1u(𝜑𝜏 (𝜙)) is a curve in loc through the identity, so
d
d𝜏
u(𝜙)−1u(𝜑𝜏 (𝜙))|𝜏=0 = u−1du|𝜙(𝔛|𝜙) ∈ Lieloc. Thus,

d
d𝜏
𝝊(𝜙)∗

(
𝜙u(𝜑𝜏 (𝜙))

)|||𝜏=0 = 𝝊(𝜙)∗𝛿{u−1du|𝜙(𝔛|𝜙)}(𝜙u(𝜙))
= 𝝊(𝜙)∗

[(
𝛿{duu−1 |𝜙(𝔛|𝜙)}𝜙

)u(𝜙)]
, (337)

where we used an exact analogue of (214) in the last step. Finally,
the 2nd term is d

d𝜏
𝝊(𝜙)∗(𝜑𝜏 (𝜙)

u(𝜙))|𝜏=0 =: d
d𝜏
F(𝝊(𝜙),u(𝜙))(𝜑𝜏 (𝜙))|𝜏=0 =

F(𝝊(𝜙),u(𝜙))⋆𝔛|𝜙. As a vector on, we may find its expression as a
derivation by applying it to g ∈ C∞():[
F(𝝊(𝜙),u(𝜙))⋆𝔛

(
g
)]
([𝜙]) = d

d𝜏
g
(
F(𝝊(𝜙),u(𝜙))

(
𝜑𝜏 (𝜙)

)) |||𝜏=0
= d

d𝜏
F(𝝊(𝜙),u(𝜙))

(
𝜑𝜏 (𝜙)

) |||𝜏=0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟[

𝔛(F(𝝊(𝜙),u(𝜙)))
]
(𝜙)

×
(

𝛿

𝛿[𝜙]
g
)(

F(𝝊(𝜙),u(𝜙))(𝜙)
)

=
(

𝛿

𝛿𝜙
F(𝝊(𝜙),u(𝜙))

)
(𝜙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿

𝛿𝜙
𝝊(𝜙)∗(𝜙u(𝜙))= 𝝊(𝜙)∗(( )u(𝜙))

×𝔛(𝜙)
(

𝛿

𝛿[𝜙]
g
)⎛⎜⎜⎜⎜⎝
𝝊(𝜙)∗

(
𝜙u(𝜙)

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

∼[𝜙]

⎞⎟⎟⎟⎟⎠
=
[
𝝊(𝜙)∗

(
𝔛(𝜙)u(𝜙)

) 𝛿

𝛿[𝜙]
(g)
]
([𝜙]).

Gathering all three terms we have finally

F(𝝊(𝜙),u(𝜙))⋆𝔛|𝜙 = 𝝊(𝜙)∗
[ (

d𝜙|𝜙(𝔛|𝜙) + 𝔏d𝝊 ◦ 𝝊−1 |𝜙(𝔛|𝜙)𝜙

+ 𝛿(𝔏{d𝝊 ◦𝝊−1 |𝜙 (𝔛|𝜙 )}u(𝜙))u(𝜙)−1𝜙 + 𝛿{duu−1 |𝜙(𝔛|𝜙)}𝜙
)u(𝜙) ]

× 𝛿
𝛿[𝜙] |F(𝝊,u) (𝜙)

from which we find

d𝜙(𝝊,u)|𝜙(𝔛|𝜙) := F⋆(𝝊,u)d[𝜙]|F(𝝊,u) (𝜙)(𝔛|𝜙) = d[𝜙]|F(𝝊,u) (𝜙)
(
F(𝝊,u)⋆𝔛|𝜙

)
= 𝝊(𝜙)∗

[ (
d𝜙|𝜙(𝔛|𝜙) + 𝔏d𝝊 ◦ 𝝊−1 |𝜙(𝔛|𝜙)𝜙

+ 𝛿(𝔏{d𝝊 ◦𝝊−1 |𝜙 (𝔛|𝜙 )}u(𝜙))u(𝜙)−1𝜙 + 𝛿{duu−1 |𝜙(𝔛|𝜙)}𝜙
)u(𝜙) ]

.

(338)
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Which defines the dressing of d𝜙, the basis 1-form of basic forms
on Φ:

d𝜙(𝝊,u) = 𝝊∗
[(

d𝜙 + 𝔏d𝝊 ◦ 𝝊−1𝜙 + 𝛿(𝔏{d𝝊 ◦ 𝝊−1}u)u−1𝜙 + 𝛿duu−1𝜙
)u]

∈ Ω1
basic(Φ). (339)

This specializes to

d𝜙𝝊 = 𝝊∗
(
d𝜙 + 𝔏d𝝊 ◦ 𝝊−1𝜙

)
,

d𝜙u =
(
d𝜙 + 𝛿duu−1𝜙

)u
,

(340)

which are respectively the Diff (M)-dressing andloc-dressing of
d𝜙, showing that (339) generalizes Equation (149) in ref. [8], as
well as Equations (38)–(38) in ref. [6] and Equation (50) in ref. [42].
Such formulas feature in the sub-literature of covariant phase
space dealing with “edge modes”.[35]

Inserting (339) into (335), this yields the dressing of 𝜶:

𝜶(𝝊,u) = 𝛼
(
∧∙d𝜙(𝝊,u); 𝜙(𝝊,u)

)
∈ Ω∙basic(Φ). (341)

On account of the formal similarity between Ξ(𝜙) = 𝛙∗ (𝜙𝛄)
and F(𝝊,u)(𝜙) = 𝝊∗ (𝜙u), and between d𝜙(𝛙,𝛄) (212) and d𝜙(𝝊,u)

(339), resulting into the close formal expressions of 𝜶(𝛙,𝛄) and
𝜶(𝝊,u) (335)–(341), we confirm the rule of thumb to obtain the
dressing of any form 𝜶 on Φ: First compute the Diff v(Φ) ≃
C∞
(
Φ,Diff(M)⋉loc

)
transformation 𝜶(𝛙,𝛄), then substitute

(𝛙, 𝛄) → (𝝊,u) in the resulting expression to obtain 𝜶(𝝊,u). This
rule will be used systematically in what follows.

5.2.2. Dressing and Flat Connections

As we already observed in Section 4.1.1, dressing fields induce
flat connections, and flat connections are expressible in terms of
dressing fields.

• A 𝜙-dependent dressing field induces the flat Ehresmann con-
nection

𝝎0 :=−d(𝝊,u) ⋅ (𝝊,u)−1

∈Ω1
eq

(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
,(

𝝎0 | Diff , 𝝎0 |loc

)
=−
(
d𝝊 ◦ 𝝊−1, duu−1 − u𝔏d𝝊 ◦ 𝝊−1u

−1),
(342)

using (B19)–(B21) in the second equality. Its Ad-equivariance
is easily proven,

R⋆(ψ,γ)𝝎0 = −d
(
R⋆(ψ,γ)(𝝊,u)

)
⋅
(
R⋆(ψ,γ)(𝝊,u)

)−1
= −(ψ, γ)−1 ⋅ d(𝝊,u) ⋅ (𝝊,u)−1 ⋅ (ψ, γ)

= Ad(ψ,γ)−1𝝎0.

(343)

The verticality is also easily found, using (332) and (B21),

𝜄(X,𝜆)v𝝎0 = −𝜄(X,𝜆)vd(𝝊,u) ⋅ (𝝊,u)
−1

= −
(
−X ◦ 𝝊, 𝔏Xu − 𝜆u

)
⋅ (𝝊,u)−1

= −
(
−X ◦ 𝝊 ◦ 𝜐−1, (𝔏Xu − 𝜆u)u−1 − u𝔏{−X ◦ 𝝊 ◦ 𝜐−1}u

−1)
= (X, 𝜆). (344)

Or, done another way,

𝜄(X,𝜆)v𝝎0 = −𝜄(X,𝜆)v
(
d𝝊 ◦ 𝝊−1, duu−1 − u𝔏d𝝊 ◦ 𝝊−1u

−1)
= −
(
−X ◦ 𝝊 ◦ 𝜐−1, (𝔏Xuu

−1 − 𝜆uu−1) − u𝔏{−X ◦ 𝝊 ◦ 𝜐−1}u
−1)

= (X, 𝜆). (345)

This shows that 𝝎0 satisfies the defining properties of a Ehres-
mann connection (219). Its flatness is manifest from 𝝎0 :=
−d(𝝊,u) ⋅ (𝝊,u)−1, but less trivial to check from the explicit form
𝝎0 = −

(
d𝝊 ◦ 𝝊−1, duu−1 − u𝔏d𝝊 ◦ 𝝊−1u

−1) and the bracket (180).
𝛀0 = d𝝎0 +

1
2
[𝝎0,𝝎0]Lie = 0,

→
(
𝛀0 |Diff ,𝛀0 |loc

)
=
(
d𝝎0 |Diff + 1

2

[
𝝎0 |Diff ,𝝎0 |Diff ]𝔡𝔦𝔣𝔣(M)

,

× d𝝎0 |loc
+ 1

2

[
𝝎0 |loc

,𝝎0 |loc

]
Lie

− 𝜔0 |Diff(𝜔0 |loc

))
= (0, 0). (346)

The non-trivial part to check is 𝛀0 |loc
= 0. Let us show it explic-

itly, for the benefit of the reader:
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As usual, 𝝎0 induces a covariant derivative D0 = d + 𝜌∗(𝝎0) on
Ω∙tens(Φ, 𝜌). In this case is satisfies D

2
0 = 0.

• Consider a G-valued 1-cocycle C for the action of Diff(M)⋉
loc on Φ, satisfying by definition

C
(
𝜙; (ψ, γ) ⋅ (ψ′, γ′)

)
= C
(
𝜙; (ψ, γ)

)
⋅ C
(
𝜙(ψ,γ); (ψ′, γ′)

)
, (347)

where the product “⋅” on the r.h.s. is in the groupG. From this
we have that the inverse is

C
(
𝜙; (ψ, γ)

)−1 = C
(
𝜙(ψ,γ); (ψ, γ)−1

)
. (348)

Its functional form allows to define a twisted dressing field de-
fined by C

(
; (𝝊,u)

)
whose equivariance is indeed,[

R⋆(ψ,γ)C
(
; (𝝊,u)

)]
(𝜙) = C

(
𝜙(ψ,γ); (ψ, γ)−1(𝝊,u)

)
= C
(
𝜙(ψ,γ); (ψ, γ)−1

)
⋅ C
(
𝜙; (𝝊,u)

)
= C
(
𝜙; (ψ, γ)

)−1
⋅ C
(
𝜙; (𝝊,u)

)
,

so R⋆(ψ,γ)C
(
; (𝝊,u)

)
= C
(
; (ψ, γ)

)−1
⋅ C
(
; (𝝊,u)

)
. (349)

The linear version of which is

L(X,𝜆)vC
(
; (𝝊,u)

)
= −a

(
(X, 𝜆);

)
⋅ C
(
; (𝝊,u)

)
. (350)

Such a twisted dressing field is a tensorial 0-form, so
its Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
and 𝔡𝔦𝔣𝔣v(Φ) ≃

C∞
(
Φ, 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

)
transformations are, as a special

case of (207)

C
(
; (𝝊,u)

)(𝛙,𝛄) = C(𝛙, 𝛄)−1 ⋅ C
(
; (𝝊,u)

)
and

L(X ,𝝀)vC
(
; (𝝊,u)

)
= −a(X ,𝝀) ⋅ C

(
; (𝝊,u)

)
,

(351)

and we remind the notation [C(𝛙, 𝛄)](𝜙) := C
(
𝜙;
(
𝛙(𝜙), 𝛄(𝜙)

))
and [a(X ,𝝀)](𝜙) := a

(
(X (𝜙),𝝀(𝜙));𝜙

)
, so that we may likewise

write the twisted dressing field as C(𝝊,u).
The latter induces the flat twisted connection

𝝕0 := −dC(𝝊,u) ⋅ C(𝝊,u)−1 ∈ Ω1
eq(Φ, C), (352)

whose equivariance is easily found to be

R⋆(ψ,γ)𝝕0 = −d
(
R⋆(ψ,γ)C(𝝊,u)

)
⋅
(
R⋆(ψ,γ)C(𝝊,u)

)−1
= −C

(
; (𝛙, 𝛄)

)−1[
dC(𝝊,u) ⋅ C(𝝊,u)−1

]
× C
(
; (𝛙, 𝛄)

)
− dC

(
; (𝛙, 𝛄)

)−1
⋅ C
(
; (𝛙, 𝛄)

)
= Ad

C( ;(𝛙,𝛄))−1𝝕0 + C
(
; (𝛙, 𝛄)

)−1
dC
(
; (𝛙, 𝛄) .

(353)

Its verticality property is derived from (350),

𝜄(X,𝜆)v)𝝕0 = −𝜄(X,𝜆)v)dC(𝝊,u) ⋅ C(𝝊,u)v−1 = a
(
(X, 𝜆);

)
∈ 𝔤.

(354)

These are indeed the defining properties (228) of a twisted con-
nection. Its flatness, 𝛀̄0 = d𝝕0 +

1
2
[𝝕0,𝝕0]𝔤 = 0, is obvious. As

usual, 𝝕0 induces a twisted covariant derivative D̄0 := d +𝝕0

on Ω∙tens(Φ, C), s.t. D̄
2
0 = 0.

In case G = U(1), we have C(𝝊,u) = exp {−i 𝖼(𝝊,u)}, with the
Abelian twisted dressing field

𝖼(𝝊,u) := 𝖼
(
; (𝝊,u)

)
,

s.t. R⋆(ψ,γ)𝖼(𝝊,u) = 𝖼(𝝊,u) − 𝖼
(
; (ψ, γ)

)
.

(355)

The associated twisted connection is 𝝕0 := −dC(𝝊,u) ⋅
C(𝝊,u)−1 = id𝖼(𝝊,u), i.e., it is d-exact as one would expect,
so that its flatness is manifest: 𝛀̄0 = d𝝕0 = 0. For a twisted
tensorial form 𝜶 = exp {i𝜽} ∈ Ω∙tens(Φ, C), the twisted covariant
derivative gives

D̄0𝛼 = d𝜶 +𝝕0𝜶 = id
(
𝜽 + 𝖼(𝝊,u)

)
𝜶 ∈ Ω∙+1tens(Φ, C),

where 𝜽 + 𝖼(𝝊,u) ∈ Ω∙basic(Φ).
(356)

The invariant object 𝜽 + 𝖼(𝝊,u) is also seen to be the phase of the
dressing of 𝜶:

𝜶(𝝊,u) = C(𝝊,u)−1𝜶 = exp i{𝜽 + 𝖼(𝝊,u)} =: exp i𝜽(𝝊,u) ∈ Ω∙basic(Φ).

(357)

This is the geometry underlying the notion of action/Lagrangian
“improved” via WZ counterterms implementing anomaly cance-
lation – see e.g., section 12.3 in ref. [69], Chap. 15 in ref. [64], or
the end of Chap.4 in ref. [63].

5.2.3. Residual Transformations, and Composition of Dressing
Operations

We here details the topic of possible residual transformations
within the local DFM, counterpart of Section 4.3.
Residual Transformations of the First Kind: These are expected

when one has a dressing field by which to reduce only a sub-
group of Diff (M)⋉loc. For residual transformations to be well-
defined as a group  , the equivariance group of the dress-
ing field, i.e., the group under which it has its defining trans-
formation – which may of may not be identical the group in
which it takes value, called its target group – must be a nor-
mal subgroup . Then, the residual transformation group is
 = Diff(M)⋉loc)∕. The residual  -transformations of the
dressed fields 𝜙(𝝊,u) is then determined by the  -transformation
of 𝜙, which is known immediately as a special case of their(
Diff(M)⋉loc

)
-transformation, and of the -dressing field

(𝝊,u), which should naturally arise from its 𝜙-dependence.
From this will follow the residual  -equivariance and verticality
property of any -dressed/basic quantity 𝜶(𝝊,u) – which is  =
C∞(Φ,)-invariant – and thus its transformation under  :=
C∞ (Φ, ) ⊂ Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
.

In favorable circumstances, the -transformation of the dress-
ing field (𝝊,u) is s.t. 𝜙(𝝊,u) have standard transformations under
 – i.e., identical to the  -transformations of the bare fields 𝜙.
Thus, the residual  -equivariance and verticality property of a
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dressed quantity 𝜶(𝝊,u) will be the same as that of 𝜶, and therefore
will share the same  := C∞ (Φ, )-transformation. This leaves
open the possibility that a second  -dressing field may be found
and used to produce completely invariant dressed variables, pro-
vided that this second dressing field is also-invariant. These are
the compatibility conditions analogous to (150)–(153) discussed
in the global case, Section 4.2.
As observed below (330), this occurs naturally when consid-

ering the loc-dressing u, in which case we have  = loc ⊲(
Diff(M)⋉loc

)
and  = Diff(M). As shown there, the dressed

field 𝜙u is loc-invariant. Since furthermore, by (331), R⋆ψu =
ψ∗u, the residual  = Diff(M)-transformation of 𝜙u is the stan-
dard form Rψ𝜙

u = ψ∗(𝜙u), as one would expect. Therefore any
dressed form 𝜶u = 𝛼 (∧∙d𝜙u; 𝜙u), for which one may use (340)
or a special case of (341), will have the same  = Diff(M)-
equivariance and verticality property as 𝜶, and thus the same
 = C∞

(
Φ,Diff(M)

)
-transformation.

This allows for the possibility of using a second  = Diff(M)-
dressing field 𝝊, which again by (331) satisfies the compatiblity
condition R⋆γ 𝝊 = 𝜐, i.e., it is = loc-invariant. Hence the possi-
bility to write the completely invariant dressed field (𝜙u)𝝊 = 𝜙(𝝊,u),
and to build basic objects (𝜶u)𝝊 = 𝜶(𝝊,u).
Another such case presents itself when reducing only part of

the gauge group loc via a -dressing field u, with  ⊲loc so
that there is a residual gauge groupres

loc
:= loc∕, and the resid-

ual transformation group is  = Diff(M)⋉res
loc . We may then

have an analogue of Prop.1 in Section 4.3.1.

Proposition 3. Given a-dressing field u, if its  -residual equivari-
ance is

R⋆(ψ,η)u = ψ
∗(uη) = ψ∗

(
η−1uη

)
for (ψ, η) ∈  = Diff(M)⋉res

loc ,

(358)

then the dressed fields 𝜙u are standard res
loc -gauge fields, i.e.,

have res
loc -transformations identical to their bare counterparts 𝜙:

R(ψ,η)𝜙
u = ψ∗

(
(𝜙u)η

)
. Any dressed form 𝜶u is -basic but has

identical  -equivariance and verticality, hence the same  =
C∞
(
Φ,Diff(M)⋉res

loc

)
-transformation, as its bare counterpart 𝜶.

For example, for d𝜙u we have

(d𝜙u)𝛄 = d𝜙u for 𝛄 ∈ ,

(d𝜙u)(ψ,η) = 𝛙∗
[(
d𝜙u +𝔏d𝛙 ◦𝛙−1𝜙

u + 𝛿(𝔏d𝛙 ◦𝛙−1𝛈)𝛈−1
𝜙u + 𝛿d𝛈𝛈−1𝜙u

)𝛈]
,

for (𝛙,𝛈) ∈  , (359)

the last line being entirely analogous to d𝜙(𝛙,𝛄) (212).

If one happens to identify ares
loc -dressing field u

′ satisfying the
compatibility condition

R⋆(ψ,γ)u
′ = ψ∗u′ i.e., R⋆γ u

′ = u′ for γ ∈ , (360)

then one may build the loc-invariant dressed fields (𝜙u)u′ =
𝜙uu

′ , where the composite uu′ is aloc-dressing field, since (358)
and (360) together ensure that R⋆γ uu

′ = γ−1uu′ and R⋆η uu
′ =

η−1uu′. We can thus produce the loc-basic form (𝜶u)u′ = 𝜶uu′ .

By (360) still, it is manifest that 𝜙uu′ have standard Diff(M)-
residual transformation: Rψ 𝜙

uu′ = ψ∗(𝜙uu′ ). So any dressed
form 𝜶uu′ shares the same Diff(M)-equivariance and verticality
as its bare counterpart 𝜶, and thus the same C∞

(
Φ,Diff(M)

)
-

transformation. For example, for d𝜙uu′ ,

(d𝜙uu
′
)𝛄 = d𝜙u for 𝛄 ∈  loc,

(d𝜙uu
′
)ψ = 𝛙∗

(
d𝜙uu

′ + 𝔏d𝛙 ◦𝛙−1𝜙
uu′
)

for 𝛙 ∈ C∞(Φ,Diff(M)).

(361)

The residual Diff (M)-transformation can be reduced if one finds
a Diff(M)-dressing field 𝝊 satisfying the compatibility condition

R⋆(ψ,γ)𝝊 = ψ
−1 ◦ 𝝊 i.e., R⋆γ 𝝊 = 𝝊 for γ ∈ loc. (362)

Then the final dressed fields (𝜙uu′ )𝝊 = 𝜙(𝝊,uu′) are fully(
Diff(M)⋉loc

)
-invariant, and one may produce finally ba-

sic forms (𝜶uu′ )𝝊 = 𝜶(𝝊,uu′) ∈ Ω∙basic(Φ).
25

Wewill provide an example illustrating this in Section 5.2.7 be-
low, when treating Einsein–Maxwell theory with charged matter
modeled by a complex scalar field.
Residual Transformations of the Second Kind: This distinct type

represents a parametrization of the ambiguity, or arbitrariness, in
the choice of dressing field. It amounts to the statement that two
dressing fields (𝜐′,u′) and (𝜐,u) inr[N;M,H] are a priori related
by an element (φ, ζ) ∈ Diff(N) × loc, with loc := {ζ : U ⊂ M →

𝖦 | ζγ = ζ} and 𝖦 is the target Lie group of the dressing field u
(which may be either s.t. 𝖦 ⊂ H or s.t. 𝖦 ⊃ H, and was initially
put as 𝖦 = H in (326) for simplicity of exposition). That is, we
have

(𝜐′,u′) = (𝜐 ◦φ, uζ ). (363)

Defining ζ̄ := 𝜐∗ζ : N → 𝖦, and ̄loc := 𝜐∗loc, the above can be
rewritten as

(𝜐′,u′) =
(
𝜐 ◦φ, u (𝜐−1)∗ζ̄

)
= (𝜐,u) ⋅ (φ, ζ), (364)

extending the semi-direct product rule (179). Furthermore, we
write

(𝜐′′,u′′) =
(
𝜐′ ◦φ′, u′ζ′

)
=
(
𝜐′ ◦φ′, u′(𝜐′−1)∗ζ̄′

)
=
(
𝜐 ◦φ ◦φ′,u (𝜐−1)∗ζ̄ [(𝜐 ◦φ)−1]∗ζ̄′

)
=
(
𝜐 ◦φ ◦φ′,u (𝜐−1)∗

(
ζ̄ (φ−1)∗ζ̄′

))
= (𝜐,u) ⋅

(
φ ◦φ′, ζ̄ (φ−1)∗ζ̄′

)
= (𝜐,u) ⋅

(
(φ, ζ̄) ⋅ (φ′, ζ̄′)

)
, (365)

25 Conceivably one may have reduced for only a (normal) subgroup of
Diff(M), e.g., compactly supported diffemorphisms, but this seems of
limited interest. See ref. [8] for a brief discussion.
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where in the last step we define the semi-direct product in
Diff(N)⋉ ̄loc. The last two equations show that there is a
right action of Diff(N)⋉ ̄loc on the space of dressing fields
Dr[N;M,H]:

Dr[N;M,H] ×
(
Diff(N)⋉ ̄loc) → Dr[N;M,H],

((𝜐,u), (φ, ζ̄)) → R(φ,ζ̄)(𝜐,u) := (𝜐,u) ⋅ (φ, ζ̄).

(366)

This can be understood as the local counterpart of Section 4.3.2,
where Diff(N)⋉ ̄loc is the local version of Aut(Q). This action
formally extends, a priori, to 𝜙-dependent dressing fields (𝝊,u).
Then, since 𝜙 are local representatives of fields on P, they do

not support the action of Diff (N)⋉ ̄loc, which we may denote
𝜙(φ,ζ) = 𝜙. This, combined to (366), implies that there is a right
action of Diff (N)⋉ ̄loc on the space of dressed fields Φ(𝜐,u)

Φ(𝜐,u) ×
(
Diff(N)⋉ ̄loc)→ Φ(𝜐,u),(
𝜙(𝜐,u), (φ, ζ̄)

)
→ R(φ,ζ) 𝜙

(𝜐,u) := φ∗
([
𝜙(𝜐,u)

]ζ̄)
.

(367)

It is all but analogous to the action (177) of Diff (M)⋉loc on
Φ. Therefore, the space of dressed fields Φ(𝜐,u) is, a priori, a(
Diff(N)⋉ ̄loc)-principal bundle. It is then possible to elaborate
on all the stuctures – tangent bundle, vertical bundle, spaces of
forms, etc. – that exist on Φ(𝜐,u) as we did for Φ. In particular,
dressed forms 𝜶(𝜐,u) (341) are clearly naturally interpretable as
forms on Φ(𝜐,u). We might then write down their vertical trans-
formations under Diff

(
Φ(𝜐,u)

)
≃ C∞

(
Φ(𝜐,u),Diff(N)⋉ ̄loc). It is

easy to see that they would be formally identical to theDiff v(Φ) ≃
C∞
(
Φ,Diff(M)⋉loc

)
-transformation of their bare counterpart

𝜶 onΦ. By this rule of thumb, we immediately write for example,
as an exact analogue of (212),

(
d𝜙(𝜐,u)

)(𝛗,𝛇̄) = 𝛗∗[ (d𝜙(𝜐,u) + 𝔏d𝛗 ◦𝛗−1𝜙
(𝜐,u)

+ 𝛿(𝔏d𝛗 ◦𝛗−1 𝛇̄)𝛇̄
−1𝜙(𝜐,u) + 𝛿d𝛇̄𝛇̄−1𝜙

(𝜐,u)
)𝛇̄ ]

. (368)

Wemay observe that (366)–(368) reproduce and generalize for-
mulas found in the edge mode literature, and pertaining to what
is called there “surface symmetries” or “corner symmetries”.
Compare (366) with e.g., Equation (2.43) and Equation (3.44) in
ref. [35] or Equation (3.68) and Equation (4.64) in ref. [70]. The
name stems from the fact that in this literature, dressing fields
are introduced as “edge modes”, i.e., as d.o.f. living on a codi-
mension 2 submanifold of M (a corner), which is then also the
support of a transformation that they alone support, and is none
other than our (366).
Aswe have stated in introducing the topic, the groupDiff(N)⋉

̄loc parametrizes the a priori ambiguity in the choice of dress-
ing field. It is essentially isomorphic to Diff (M)⋉loc, and thus
encodes neither more nor less information. Which is expected
from the global fact that the dressing is a bundle morphism
u : Q → P, so one indeed would expect the natural morphism
Aut(Q) ≃ Aut(P), fromwhich descends themorphismDiff(N)⋉
̄loc ≃ Diff(M)⋉loc.

This “residual” group is naturally there, and hardly avoidable,
when one introduces an ad hoc dressing field in a theory. By
which we mean that it is introduced as d.o.f. independent from
the original set of fields 𝜙 and for the main purpose of either
implementing a Diff(M)⋉loc symmetry in a theory which ini-
tially does not enjoy it, or, relatedly, to “restore” a Diff(M)⋉loc
symmetry broken by a fixed background structure – in effect the
latter moves amount to concealing the background structure. In
such cases, ad hoc dressing fields generalize Stueckelberg fields.
The only hope for the residual group to be reduced, perhaps

even to a discrete group, is with 𝜙-dependent dressing field, i.e.,
those built from the original d.o.f. of the theory, when the re-
lational interpretation of the formalism is the most natural and
compelling. We will comment further on this in Section 5.2.5.
Before, we need to complete the technical and conceptual pic-

ture of the local DFM by discussing dressed integrals and how it
instantiate a notion of integration on physical spacetime.

5.2.4. Dressed Integrals and Integration on Spacetime

We can now elaborate on the local version of Section 4.4.
In Section 5.1.2, we observed that for U ∈ U(M) and
𝜶 ∈ Ω∙

(
Φ,Ωtop(U)

)
, integrals 𝜶U = ⟨𝜶, U⟩ = ∫U 𝜶 are ob-

jects on Φ ×U(M) with values in Ω∙(Φ). Furthermore, integrals
with tensorial integrand are invariant under the action of
C∞
(
Φ,Diff(M)⋉loc

)
as defined by (264). Their projection

along 𝜋̄ : Φ ×U(M) → Ū(M), (𝜙, U) → [𝜙, U] = [𝜓∗𝜙,𝜓−1(U)]
is well-defined, so that they can be said “basic” w.r.t. 𝜋̄.
Such integrals descend to the associated bundle of regions
Ū(M) := Φ ×U(M)∕∼, which is the quotient of the product
space by the action (237) of Diff (M)⋉loc.
In Section 5.2.1, dressed forms on Φ were defined as basic

on Φ, i.e., in Im𝜋⋆ with the projection realized via a dress-
ing field, F(𝝊,u) ∼ 𝜋. As argued there, we can then rely on
the formal similarity of the actions of Fu and Ξ ∈ Diff v(Φ) ≃
C∞
(
Φ,Diff(M)⋉loc

)
to read the dressing 𝜶(𝛙,u) of a form 𝜶

from its vertical transformation 𝜶(𝛙,𝛄). Likewise, we define dressed
integrals as being basic on Φ ×U(M), i.e., in Im 𝜋̄⋆, with the pro-
jection realized as:

F̄(𝝊,u) : Φ ×U(M) → Ū(M) ≃ Φu ×U(N),

(𝜙, U) → F̄(𝝊,u)(𝜙, U) :=
(
F(𝝊,u)(𝜙), 𝝊

−1(U)
)

=
(
𝝊∗(𝜙u),𝝊−1(U)

)
.

(369)

We remind that, by definition, U ∈ U(M) is acted upon trivially
by loc.
Let us highlight that (369) features the notion of a dressed region

U𝝊 := 𝝊−1(U), which is a map

U𝝊 : Φ ×U(M) → U(N), (370)

s.t. for (ψ, γ) ∈ Diff(M)⋉loc,

(U𝝊)(ψ,γ) := R̄⋆(ψ,γ)U
𝝊 = (R⋆(ψ,γ)𝝊)

−1 ◦ψ−1(U)

= (ψ−1 ◦ 𝝊)−1 ◦𝜓−1(U) = 𝝊−1(U) =: U𝝊. (371)
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From which follows that under the action of (𝛙, 𝛄) ∈
∞ (Φ,Diff(M)⋉loc

)
we have,

(U𝝊)(𝛙,𝛄) := Ξ̄⋆U𝝊 = U𝝊. (372)

In other words, U𝝊 is a 𝜙-dependent
(
Diff(M)⋉loc

)
- and

C∞
(
Φ,Diff(M)⋉loc

)
-invariant region of the physical relation-

ally defined spacetime, which we may denoteM(𝝊,u). As reminded
in Section 2, the hole argument and the point-coincidence ar-
gument establish that physical spacetime is defined relationally,
in a Diff(M)-invariant way, by its gauge field content. This fact
is usually tacitly encoded by the Diff(M)-covariance of general-
relativistic gauge field theories, but made manifest via the DFM:
U𝝊 are manifesly Diff (M)-invariant and manifestly 𝜙-relationally
defined regions, representing faithfully regions of the physical
spacetime, on which relationally defined and

(
Diff(M)⋉loc

)
-

invariant fields 𝜙(𝝊,u) := 𝝊∗(𝜙u) live, and can be integrated over.
This is the second part of the picture whose first part, unpacked
below (334), is that𝜙u implements the internal point-coincidence
argument, showing how the internal d.o.f. of the fields 𝜙 co-
define each other in aloc-invariant way. These invariant internal
d.o.f. in turn coordinatize the “points” of the internal structure
(the fiber) of the enriched physical spacetime.
With (369) we thus get the complete formal implementa-

tion of the relational core of gRGFT arising from the gener-
alized hole and point-coincidence arguments. But observe that
we further get a relational definition of spacetime invariant
under the much bigger field-dependent transformation group
C∞
(
Φ,Diff(M)⋉loc

)
, which is indeed the largest symmetry

group of gRGFT, as observed at the end of Section 5.1.3.
Observe that an immediate consequence of the above is that

the physical relational boundary 𝜕U𝝊 of a physical spacetime re-
gionU𝝊 is necessarily

(
Diff(M)⋉loc

)
-invariant. This invalidate

the claims, often repeated in the GFT and gravity literature, that
boundaries “break” either Diff(M)-invariance orloc-invariance,
or both. These claims are indeed logically equivalent to the hole
argument and its generalization, as they commit the conceptual
mistake of thinking of points ofM as physical entities defined in-
dependently of the field content. Such “boundary problems” over-
look the relational resolution offered by the (generalized) point-
coincidence argument.26 We shall elaborate further on this pre-
cise point in a forthcoming paper.[71]

We have all we need to defined integration on the physical space-
time. On Ω∙

(
Φ,Ωtop(U)

)
×U(M) we define:

F̃(𝝊,u) : Ω∙
(
Φ,Ωtop(U)

)
×U(M) → Ω∙basic

(
Φ,Ωtop(N)

)
×U(N),

(𝜶, U) → F̃⋆(𝝊,u)(𝜶, U)

:=
(
𝜶(𝝊,u), 𝝊−1(U)

)
,

(373)

26 The notion of “edge modes” d.o.f. – i.e., ad hoc dressing fields – some-
times introduced, and interpreted as the Goldstone bosons associated
to these Diff(M) or loc symmetry breaking, is then a solution to an
arguably non-existing problem. Or rather to a problem artificially in-
troduced in gRGFT, i.e., treating a boundary as a background struc-
ture, and then trying to conceal that background structure. See Sec-
tion 5.2.5 next.

with indeed Ω∙basic
(
Φ,Ωtop(N)

)
≃ Ω∙

(
Φ(𝝊,u),Ωtop(N)

)
, as dressed

fields 𝜙(𝝊,u) live on Im(𝝊−1) ⊂ N. Then, in formal analogy with
(264), the dressing of an integral 𝜶U := ⟨𝝎, U⟩ = ∫U 𝜶 is

𝜶U
(𝝊,u) := ⟨ , ⟩ ◦ F̃(𝝊,u)(𝜶, U) = ⟨𝜶(𝝊,u), 𝝊−1(U)⟩ = ∫

𝝊−1(U)
𝜶(𝝊,u)

= ∫U𝝊

𝜶(𝝊,u) =:
(
𝜶(𝝊,u)

)
U𝝊 . (374)

Such dressed integrals define integration on physical spacetime,
insofar as U𝝊 is interpretable as an invariantly and relationally
defined region of spacetime.27 Clearly, when d acts on such an
integral, it sees the dressed region U𝝊 due to its 𝜙-dependence.
Thefore we have, in analogy with (265),

d
((
𝜶(𝝊,u)

)
U𝝊

)
=
(
d𝜶U

)(𝝊,u) − ⟨𝔏𝝊−1∗ d𝝊 𝜶
(𝝊,u), U𝝊⟩. (375)

That is, [F̃⋆(𝝊,u), d] ≠ 0 and the commutator is a boundary term,⟨ 𝜄𝛙−1∗ d𝛙 𝜶
(𝝊,u), 𝜕 (U𝝊) ⟩, by (262) and the fact that 𝜶(𝝊,u) is a top form

on U𝝊. Observe that is means basicity is lost, the boundary term
being manifestly non-horizontal. This impacts our discussion of
the relational variational principle in the next Section 5.2.6.
For 𝜶 ∈ Ω∙tens

(
Φ,Ωtop(U)

)
, i.e., 𝜶(𝛙,𝛄) = 𝛙∗(𝜶𝛄) by (267), a

dressed integral is

𝜶U
(𝝊,u) =

(
𝜶(𝝊,u)

)
U𝝊 = ⟨𝜶(𝝊,u), U𝝊⟩ = ⟨𝝊∗(𝜶u), 𝝊−1(U)⟩

= ⟨𝜶u, U⟩ = ∫U
𝜶u =: (𝜶u)U, (376)

by the invariance property (260) of the integration pairing. Mean-
ing that the integral of the loc-invariant dressed object 𝜶

u over
U is numerically identical to the integral of the physical quantity
𝜶(𝝊,u) over the spacetime region U𝝊. Then we have

d
(
𝜶U

(𝝊,u)
)
= d⟨𝛙∗(𝜶u), 𝝊−1(U)⟩ = d⟨𝜶u, U⟩ = ⟨d(𝜶u), U⟩. (377)

And the relation (375) specializes to

d
((
𝜶(𝝊,u)

)
U𝝊

)
=
(
d𝜶U

)(𝝊,u) − ⟨𝔏𝝊−1∗ d𝝊 𝝊
∗(𝜶u), U𝝊⟩

=
(
d𝜶U

)(𝝊,u) − ⟨𝝊∗𝔏d𝝊 ◦ 𝝊−1 (𝜶
u), 𝝊−1(U)⟩

=
(
d𝜶U

)(𝝊,u) − ⟨𝔏d𝝊 ◦ 𝝊−1 (𝜶
u), U⟩.

(378)

The last two relation imply the following lemma:

d(𝝊∗𝜶) = 𝝊∗
(
d𝜶 + 𝔏d𝝊 ◦ 𝝊−1𝜶

)
. (379)

27 We remark that, if it exists, the residual transformation of the 2nd kind
C∞
(
Φ(𝝊,u),Diff(N)⋉ ̄loc) may act on dressed integrals, analogously

to (264), as(
(𝜶U )

(𝝊,u))(𝛗,𝛇̄) = ∫𝛗−1(U𝝊)
(
𝜶(𝝊,u)

)(𝛗,𝛇̄)
.

But again, this situationmay likely arise only for ad hoc dressing fields,
when the relational interpretation of the DFM is unavailable, or im-
plausible. See next section.
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In case 𝜶 is Diff (M)-equivariant andloc-invariant, it is s.t. 𝜶
u =

𝜶 by the DFM rule of thumb, so

𝜶U
(𝝊,u) =

(
𝜶(𝝊,u)

)
U𝝊 = ⟨𝜶(𝝊,u), U𝝊⟩= ⟨𝝊∗𝜶, 𝝊−1(U)⟩= ⟨𝜶, U⟩=𝜶U .

(380)

Which means that the integral of the bare unphysical quantity
𝜶 over U is numerically identical to the integral of the physical
quantity 𝜶(𝝊,u) over the true spacetime regionU𝝊. It is interesting
to notice that this is an instance where a quantity computed in the
“bare” formalism gives the correct results for the corresponding
physical quantity. In the latter case we have, furthermore, d𝜶U =
d
(
𝜶U

(𝝊,u)
)
, and using (258)–(273) we have that:(

d𝜶U

)(𝝊,u) = d𝜶U + ⟨𝔏d𝝊 ◦ 𝝊−1𝜶, U⟩,⟨d𝜶, U⟩(𝝊,u) = ⟨d𝜶, U⟩ + ⟨𝔏d𝝊 ◦ 𝝊−1𝜶, U⟩. (381)

This has immediate consequences for the variational principle in
field theory, to which we turn after taking stock of a few notewor-
thy conceptual points.

5.2.5. Discussion

As we have established, the DFM is a systematic and formal way
to obtain objects, built from fields 𝜙 and their variations d𝜙, that
are invariant under Diff(M)⋉loc: they are basic objects on field
space Φ and on Φ ×U(M), so that they descend to, or represent,
objects on the moduli space  and on the bundle of regions
Ū(M) = Φ ×U(M)∕∼. Together the latter contain the relevant
physical quantities: physical field d.o.f. for, integral quantities
over physical spacetime for Ū(M). Dressed fields and dressed in-
tegrals can be understood as coordinatizations for them.
Here we elaborate on the constraints in the existence of dress-

ing fields, on the distinction to be made between ad hoc dress-
ings and genuine ones, and on the issue of locality of observables
within the DFM, as well as how “physical integrals” can be un-
derstood as local observables.
Existence and Globality of Dressings: The DFM is a conditional

proposition: If one can find, or build, a dressing field, then it gives
the algorithm to produce these invariants (and analyse possible
residual symmetries). Let us discuss some of what may hide be-
hind the conditional “if”.
It should be stressed that the existence of global dressing fields

(𝜐,u) is not guaranteed, with at least two senses of the word
“global” to be distinguished. Firstly, it is clear that 𝜙-independent
Diff(M)-dressing fields of the type 𝜐 ∈ r[ℝn,M], i.e., 𝜐 : ℝn →
M, are nothing but global coordinate charts forM, which may not
exist depending on the topology of M. The same is true in the
𝜙-dependent case 𝝊 : ℝn → M, as topological obstructions may
imply that no field 𝜙 is globally defined, or non-vanishing, every-
where onM and fit to serve as a global coordinatization. Likewise,
a 𝜙-independent loc-dressing field u ∈ r[H,H], i.e., u : M →
H, is the local representative of a global dressing u : P → H, the
latter providing a global trivialization of P. So, if P is non-trivial,
loc-dressing u fields exist only locally over U ⊂ M. This holds
the same for a 𝜙-dependent u. In such cases, the patching of
multiple dressing fields necessary to globally coverM is achieved

via what we called above residual symmetries of the 2nd kind.
Again, only in the𝜙-dependent casemay the groupDiff(N)⋉ ̄loc
controlling the patching relations be discrete, counting the finite
number or ways to built the dressings from 𝜙.
Secondly, as noted in Section 5.2.2, dressing fields induce flat

Ehresmann connections. If they are defined globally on field space
Φ, so are their associated flat connections, which implies Φ is
globally trivial as a bundle. If Φ is non-trivial, dressing fields
would only be available locally, over open subsets Φ| with  ⊂
 (being compatible with the local triviality ofΦ). In that respect,
the situation is not unlike the Gribov-Singer obstruction to global
gauge-fixings, i.e., global sections 𝝈 :  → Φ.[60,61,72,73]
Relational View vs. ad hoc Dressing Fields: As we have argued

extensively, 𝜙-dependent dressing fields u = u(𝜙), whose d.o.f.
are extracted from the original field space Φ, allow a formal im-
plementation of a relational description of the physics of gRGFT:
The invariant dressed fields 𝜙(𝝊(𝜙),u(𝜙)) are readily understood to
represent physical d.o.f. relationally because the d.o.f. of the
fields 𝜙 are coordinatized relative to each other. As a result, only(
Diff(M)⋉loc

)
-invariant, physical relational d.o.f. (both spatio-

temporal and internal) are manifest. Relatedly, as observed sev-
eral times, only by constructively producing a 𝜙-dependent dress-
ing field is there any chance for the residual symmetry of the 2nd
kind Diff(N)⋉ ̄loc to be reduced to a small, discrete, or trivial
subgroup. In concrete situations, it may be reduced to a discrete
choice: that of reference coordinatizing field among the collec-
tion 𝜙.
So, explicit in the DFM is the proposition that the dressing

field is to be found among, or built from, the existing set of fields
𝜙 of a theory. This is the situation of most fundamental physical
significance for the analysis of gRGFT: it is when the relational
interpretation of the formalism is themost compelling and trans-
parent. But then one must be careful when considering cases
where a dressing fields is introduced in a theory independently
from the original set of d.o.f. 𝜙: i.e., when extending the field
space to Φ′ = Φ + (𝜐,u) and admitting d(𝜐,u) ≠ 0. Naturally, in
that extended context, one may see the newly introduced dress-
ing field as trivially field-dependent, by writing

(𝝊,u) : Φ′ → r[N;M,H],{
𝜙, (𝜐,u)

}
→ u
(
𝜙, (𝜐,u)

)
:= (𝜐,u),

(382)

and d being understood as the exterior derivative on Φ′. This
amounts to considering a different theory, or model, where not
only the kinematics and dynamics are altered, but also where the
physical signature of the symmetries can be radically different.
There is a priori no issue if the initial theory one starts with al-

ready has a native Diff(M)⋉loc-symmetry, and one simply con-
siders a variant with another dynamical field that happens to be a
dressing field. Identifying the dressing field in the variant model,
with Φ′, may be considered a case of “constructive” building of
dressing, as just mentioned. Such is the case e.g., in variants on
the theme of “scalar coordinatizations” of GR, as we will illustrate
in Section 5.2.7. Both the initial and extended theories, with re-
spective field spaces Φ and Φ′, enjoy Diff(M)⋉loc symmetry,
which in both cases encodes what we may call their “general re-
lationality”, characteristic of the gRGFT framework: i.e., the fact,
illustrated in Figure 2, that the physical invariant field d.o.f. and
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spacetime points are relationally and dynamically defined, so that
there is no non-dynamical non-relational background structures.
The situation is quite different when one starts with a

theory without Diff(M)⋉loc symmetries, i.e., having some
background (non-dynamical, non-relational) structures “break-
ing” Diff (M)⋉loc, and one introduces by fiat a dressing
field (𝜐,u) whose sole purpose is to “implement” or “restore”(
Diff(M)⋉loc

)
-invariance. The latter we call ad hoc dressing

fields. Wemay signal two typical instances covered by this ad hoc
case of the DFM, appearing quite frequently in the literature.
The first is the starting premise of the literature on “edge

modes” as introduced, and elaborated on, in refs. [28, 33, 35, 36,
56, 68, 70, 74–76]: One starts from a theory where Diff(M)⋉loc
is seemingly broken by the boundary 𝜕U of a (n − 1)-dimensional
region U ⊂ M, and then introduces extra d.o.f. living on 𝜕U, the
so-called edge modes, whose transformation properties are so
that they compensate for the symmetry breaking at 𝜕U, and thus
restore

(
Diff(M)⋉loc

)
-invariance there. A significant draw-

back of this whole approach is that, since such edge modes are
exactly ad hoc dressing fields, introduced by fiat, there is a priori
no way to restrict the ambiguity in their choice represented by
the residual group Diff(N)⋉ ̄loc. In the edge mode literature,
the latter group is (or was, initially) seen as supported, like edge
modes themselves, on 𝜕U and is thus call “surface symmetry” or
“corner symmetry” (𝜕U being a “corner”, a codimension 2 sub-
manifold in M). It is manifest that, contrary to what is claimed
in the edge mode literature, the residual group encodes neither
more nor less information than the original (physically meaning-
ful) group Diff(M)⋉loc.
It should be further stressed that the starting premise of the

edge mode approach, that boundaries “break” Diff(M)⋉loc,
the so-called “boundary problem”, is faulty. As already previewed
in Section 5.2.4, above (373), it has indeed the same logical struc-
ture as the hole argument: It considers boundaries 𝜕U “drawn”
on M, and their constitutive points, as physical entities defined
independently of the field content. As such it artificially intro-
duces a background structure, a non-relational boundary, and then
introduces an ad hoc dressing field (edge modes) whose sole pur-
pose is to conceal it. It is clear from Section 2 that such “boundary
problems” are a non-starter once the point-coincidence argument
is brought to bear: As argued there, points ofM are not spacetime
points, nor its regions are spacetime regions. Rather, spacetime
points and regions are defined relationally by the fields 𝜙, as is
formally implemented by dressed regionsU𝝊(𝜙) (370)–(372). So a
physical spacetime boundary 𝜕U𝝊(𝜙) is relational and necessarily(
Diff(M)⋉loc

)
-invariant.

A second situation is when one starts from a theory which
does not enjoy a Diff(M)⋉loc symmetry as it has non-
relational/non-dynamical background structures featuring in its
field equations – e.g., a background metric or geometry (pre-
served by a subgroup of Diff (M)⋉loc which is the genuine
symmetry of the theory). But then a Diff(M)⋉loc symmetry
is enforced via the introduction of an ad hoc dressing field: those
generalize Stueckelberg fields,[77–79] and the move is usually seen
as “restoring” or “implementing

(
Diff(M)⋉loc

)
-invariance”.

Such is typically the case in the literature on massive gravity,
bi-gravity, and sometimes string theory – see e.g., refs. [80–82].
It should be clear that such artificially enforced Diff(M)⋉loc
symmetries do not have the same physical status as native ones,

as they are grafted onto a theory essentially to hide its background
non-dynamical structures.
This is what motivates their denomination as “artificial sym-

metries” in the philosophy of physics literature.[83–86] Indeed, en-
forcing a symmetry via ad hoc DFM (generalizing the Stueck-
elberg trick) is an instance of “Kretschmannization” of a the-
ory, i.e., rewriting it so as to display a strictly formal symmetry
devoid of physical signature or content. The name stems from
the notorious “Kretschmann objection” against GC as a funda-
mental feature of GR, according to which any theory can be
made Diff(M)-invariant (or generally covariant). A closer anal-
ysis resulted in the realization that one may distinguish be-
tween substantive Diff(M)/GC as a distinctive native feature of
a theory, whose physical signature is that all physical structures
and d.o.f. are dynamically and relationally defined – so that no
background structures are needed – from artificial Diff(M)/GC
which is implemented by hand (often via the introduction of ex-
tra objects/fields, e.g., à la Stueckelberg) and thus hides back-
ground structures.
A comparable distinction has been developed for internal

gauge symmetries, in response to a “generalized Kretschmann
objection” to the GP[7,41,85] – according to which any field theory
can be rewritten so as to display a gauge symmetry. In that case,
a consensual proposition regarding the physical signature of sub-
stantive gauge symmetries is the trade-off between gauge invari-
ance and locality of a theory, which is absent for artificial gauge
symmetries. See also ref. [1] for a possible counterpoint, and a
broader discussion on the physical meaning of local symmetries.
Theories obtained through Kretschmannization are only su-

perficially and formally alike gRGFT, but betray their key phys-
ical insight, i.e., the complete (or general) relationality of phys-
ical structures implying the absence of any background struc-
ture/field, which is what a “substantive” Diff(M)⋉loc transfor-
mation encodes. So, if one can still hold on to a “partially rela-
tional” view of the DFM when analyzing such theories, they in
fact do not enjoy the signature “general relationality” of genuine
general-relativistic gauge field theories.
From the above follows that the DFM as developed here is

the common geometric framework underpinning a number of
notions appearing in recent years in the literature on gravity
and gauge theories. For example, as mentioned, the ad hoc
DFM underlies massive gravity and bi-gravity theories,[80] as well
as the notion, closely related to edge modes, of “embedding
fields”[28,54–56,87] – see also ref. [51]. The DFM also grounds the
notion of “gravitational dressings” as proposed in refs. [44–48],
as well as that of “dynamical reference frames” as proposed in
refs. [52, 53] – which also has an explicit relational angle.
Locality of Observables, and Relational Integrals as Local Observ-

ables: Let us offer some comments on the issue of locality vs.
non-locality of observables in the DFM. We should start by defin-
ing our terms. Here, by “local” we shall mean “field theoreti-
cally local”, which may be understood to consists in at least three
desiderata: (1) Relativistic causality: Physical processes (carrying
energy/information) propagate within the light-cone structure of
spacetime. (2) Field locality: Physical properties/magnitudes are
(smoothly) assigned to arbitrarily small regions of spacetime, or,
in the idealized limit, to spacetime points, and thus interact point-
wisely in regions where they do not vanish. Relatedly one may
consider (3) Separability: The physical properties/magnitudes
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(fields configurations) of regions of spacetime are recovered from
physical properties/magnitudes of its constitutive subregions.
Relativistic causality (1) remains non-negotiable, so failure of
non-locality means allowing infringement of (2) and/or (3). Both
have been suggested. It is famously the case that accounts of the
Aharonov-Bohm effect, which has often been argued to require
a form of non-locality meant to imply a “non-separability” that is
argued to be a systemic feature of gauge theory – see e.g., refs.
[88, 89].
The DFM accommodates both the possibilities that observ-

ables be local or non-local. If
(
𝝊(𝜙),u(𝜙)

)
is a local functional

of the bare fields 𝜙, then the invariant dressed fields 𝜙(𝝊,u) are
local relational variables and so is any dressed form 𝜶(𝝊,u) =
𝛼
(
∧∙d𝜙(𝝊,u);𝜙(𝝊,u)

)
built from them: these are potential local ob-

servables. If
(
𝝊(𝜙),u(𝜙)

)
is a non-local functional of 𝜙, involving

e.g., integrals or inversion of differential operators, then 𝜙(𝝊,u)

are invariant non-local relational variables, idem for 𝜶(𝝊,u). The
framework developed here is therefore a priori neutral regard-
ing the issue of locality of the observables. Which of the above
cases actually obtains depends essentially on the model under
consideration, i.e., on the precise field content available. See e.g.,
refs. [7, 41] for discussions of this point in the context of internal
gauge theories.
As an important example, consider the natural class of invari-

ants, and potential observables, given by integrals ⟨𝜶;U⟩ = ∫U 𝜶
ofloc-invariant local functionals 𝜶 of the fields 𝜙 – by which we
mean that the value of 𝜶 at x ∈ U ⊂ M depends only on the r-jet
of 𝜙 at x for finite r. Such integrals may be considered non-local
in the sense that a priori they invariantly assign real numbers not
to points, but rather to whole regions U ⊂ M. This appears to be
somewhat in tension with desideratum (2). Some of these inte-
gral quantities, representing key physical quantities, have indeed
been called “quasi-local”: e.g., the quasi-local mass/energy of iso-
lated gravitational systems.[90] However, a relational understand-
ing of such integral quantities – as only indirectly representing in-
tegration on spacetime – allows to see that they do actually satisfy
(2). They indeed arise from the physical properties of invariant
relationally defined physical field d.o.f. 𝜙(𝝊,u) over relationally de-
fined physical spacetime points and subregions U𝝊. This is shown
in a manifest way by the notion of dressed integrals (374), which
by (380) coincide with “bare” integrals for Diff (M)-tensorial and
loc-basic integrand 𝜶.

5.2.6. Relational Formulation of General-Relativistic Gauge Field
Theory

We have developed all that is needed to obtain a rela-
tional reformulation of gRGFT. Let us consider a Lagrangian
L ∈ Ω0

tens

(
Φ,Ωtop(U)

)
as supporting a non-trivial action of

Diff(M)⋉loc (274). Its C∞
(
Φ,Diff(M)⋉loc

)
≃ Diff v(Φ)-

transformation is given by (283), so by the DFM rule of thumb
its dressing is immediately found to be

L(𝝊,u) = 𝝊∗(Lu) = 𝝊∗
(
L + c( ;u)

)
∈ Ω0

basic

(
Φ,Ωtop(U)

)
, (383)

where the 1-cocycle is extended to obtain the Abelian twisted
dressing field c( ;u) as in (355), Section 5.2.2. The dressed La-
grangian, explicitly L(𝝊,u)(𝜙) = L

(
𝜙(𝝊,u)

)
= L
(
𝝊∗(𝜙u)

)
, is a mani-

festly relational and
(
Diff(M)⋉loc

)
-invariant reformulation of

the bare theory L.
Being basic onΦ, a dressed Lagrangian (383) represents (or co-

ordinatizes) a physical quantity on themoduli space. It should
not be confused with a gauge-fixed Lagrangian: A gauge-fixing is
the datum of a (local) section 𝝈 :  ⊂ → Φ| , a gauge-fixed
Lagrangian is then 𝝈⋆L = L ◦𝝈 ∈ Ω0

( ,Ωtop(U)
)
. Observe fur-

thermore that under transformation by (ψ, γ) ∈ Diff ⋉loc, a
new gauge-fixing section is 𝝈′ := R(ψ,γ) ◦𝝈, and the gauge-
fixed Lagrangian transforms to 𝝈′⋆L = L ◦𝝈′ = L ◦R(ψ,γ) ◦𝝈 =(
R⋆(ψ,γ)L

)
◦𝝈 =

(
ψ∗
(
L + c( ; γ)

))
◦ 𝜎 ≠ 𝝈⋆L. In other words, a

gauge-fixed Lagrangian is not invariant under the action of
Diff (M)⋉loc. These two elements should help make clear how
dressed and gauge-fixed Lagrangians differ: the former is ba-
sic on Φ, the latter lives on  ⊂ and is not invariant under
Diff (M)⋉loc. This indeed reflects the fundamental distinction
between dressing, which realizes the projection 𝜋 : Φ → , and
gauge-fixing, which goes the exact opposite way 𝝈 :  → Φ.
Let us also keep in mind that dressings have a natural rela-

tional interpretation that gauge-fixings do not. See ref. [91] for
a comprehensive exposition of the distinction between dressing
and gauge fixing, which further stresses how what is often con-
sidered a case of the latter is actually a case of the former (e.g.,
the Lorenz “gauge” in classical electrodynamics). Many standard
“gauge fixings” turn out to actually be instances of dressings. As
shown in ref. [43], the observation extends to supersymmetric
field theory and supergravity, with the transverse and divergence-
less “gauges” for the Rarita–Schwinger field and the gavitino.
The action S = ⟨L,U⟩ = ∫U L transforms under

C∞
(
Φ,Diff(M)⋉loc

)
by (291), from which we read its

dressing

S(𝝊,u) := ∫U𝝊

L(𝝊,u) = ∫U
L + c( ;u) =: S + 𝖼( ;u), (384)

which indeed is a special case of (374)–(376). The dressed ac-
tion S(𝝊,u) is basic on Φ ×U(M) and thus represents a physical
quantity defined on the bundle of regions Ū(M). It is clear that
S(𝝊,u) is not a gauge-fixed action, as we see by definition integration
over the physical region of spacetime U𝝊, and there is certainly
nothing like a “gauge-fixed region of spacetime” in the standard
bare formalism.
Remark that for an loc-invariant Lagrangian we have L

u = L,
and the above specializes to S(𝝊,u) = S, so that the computation of
the action in the bare formalism gives the correct physical result.
This is a first hint as to why, in theories strictly respecting the
principle of gRGFT – in that case, theGP, so that Lγ = L – the bare
formalism can give sensible results even without solving first the
issue of extracting the physical d.o.f. of the theory.
We may observe that, writing Z = exp i S as in (293), the

dressed action (384) is also obtained from the twisted covari-
ant derivative induced by the flat twisted loc-connection 𝝕0 =
id𝖼( ;u), writing

D̄0Z = dZ +𝝕0Z = id
(
S + 𝖼( ;u)

)
Z, (385)

which is a special case of (356)–(357) – itself a special case of the
non-flat case (295).
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We further highlights that the dressed Lagrangian and action
(383)–(384) have by definition a built-in (classical) loc-anomaly
cancelation mechanism: the twisted dressing field 𝖼( ;u) plays
the role of a WZ term whose linear transformation cancels that
of the Lagrangian – as described e.g., in section 12.3 of ref. [69],
Chap.15 in ref. [64], or the end of Chap.4 in ref. [63]. Indeed, the
defining property of a WZ term is that expected from the pre-
potential of a flat twisted connection: L𝜆v𝖼( ;u) = 𝜄𝜆vd𝖼( ;u) =
−𝜄𝜆v i𝝕0 := 𝖺(𝜆;𝜙), for 𝜆 ∈ Lieloc and 𝖺(𝜆;𝜙) = ∫U a(𝜆;𝜙) the in-
tegraded loc-anomaly.
We now consider the behavior under dressing of the varia-

tional principle: dL = E + d𝜽 and dS = 0
b.c.
←←←←←←←←←←←→ E = 0, with bound-

ary conditions (b.c.) imposed at 𝜕U. We want to establish a rela-
tional variational principle. The most immediate thing to propose
would be to vary the dressed action, dS(𝝊,u). However, by (378),
this is

dS(𝝊,u) = (dS)(𝝊,u) − ⟨𝔏𝝊−1∗ d𝝊 L
(𝝊,u)), U𝝊⟩,

= (dS)(𝝊,u) − ⟨𝜄𝝊−1∗ d𝝊 L
(𝝊,u), 𝜕U𝝊⟩, (386)

which is not basic, since as a rule [F̃⋆(𝝊,u), d] ≠ 0. So, this first guess
does not qualify as a good candidate for relational variational prin-
ciple. However, the quantity (dS)(𝝊,u) is basic by definition, and
differ from dS(𝝊,u) by a boundary term. Hence, both will give the
same field equations, which furthermore will be basic. Therefore,
the basic object (dS)(𝝊,u), representing a well-defined quantity on
the bundle of regions Ū(M) := Φ ×U(M)∕∼, is the natural quan-
tity implementing a relational variational principle.28

It is easy to write it down: The 1-form dL transforms under
Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
by (307), from which we read

its dressing

(dL)(𝝊,u) = 𝝊∗
(
dL + dc( ;u) + 𝔏d𝝊 ◦ 𝝊−1

(
L + c( ;u)

))
. (387)

Here we have indeed, (dL)(𝝊,u) = dL(𝝊,u) since [F⋆(𝝊,u), d] = 0 onΦ →

. Correspondingly,

(dS)(𝝊,u) = ∫U𝝊

L(𝝊,u) = ∫U
dL + dc( ;u) + 𝔏d𝝊 ◦ 𝝊−1

(
L + c( ;u)

)
.

(388)

For a Lagrangian satisfying the principles of gRGFT, i.e., satisfy-
ing dc(𝜙; γ) = db(𝜙; γ) under hypothesis (308), this specializes to

(dS)(𝝊,u) = ∫U
dL + d

[
b( ;u) + 𝜄d𝝊 ◦ 𝝊−1L + 𝜄d𝝊 ◦ 𝝊−1 c( ;u)

]
= dS + ∫𝜕U b( ;u) + 𝜄d𝝊 ◦ 𝝊−1L + 𝜄d𝝊 ◦ 𝝊−1 c( ;u).

(389)

The fact that dS and its dressing (dS)(𝝊,u) differ by boundary terms
implies that the bare variational principle and relational varia-

28 The fact that the most natural quantity dS(𝝊,u) fails is a hint at the fact
that a genuine relational variational principle for gRGFT should in-
volve a variational operator on Φ ×U(M) extending d on Φ – which
only varies fields. We shall develop this viewpoint in a forthcoming
paper.[92]

tional principle are “equivalent”, in that the space u of relational
solutions is isomorphic to the space S of solutions of the bare the-
ory. This we may show explicitly.
The relational (dressed) field equations are directly found

via (dL)(𝝊,u) = E(𝝊,u) + d𝜽(𝝊,u), and read immediately from the
Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉loc

)
-transformation (324) of the

bare field equations E,

E(𝝊,u) = 𝝊∗
(
E + dE

(
𝜄d𝝊 ◦ 𝝊−1𝜙;𝜙

)
+ dE

(
duu−1 − u𝔏d𝝊 ◦ 𝝊−1u

−1;𝜙
))
.

(390)

This reproduces and generalizes results of refs. [6, 8, 42], as it
specializes to general-relativistic and gauge field theories respec-
tively as

E𝝊 = 𝝊∗
(
E + dE

(
𝜄d𝝊 ◦ 𝝊−1𝜙;𝜙

))
,

Eu = E + dE
(
duu−1;𝜙

)
.

(391)

Equation (390) is our most important equation. It implies that
the field equations E(𝝊,u) = E

(
d𝜙(𝝊,u);𝜙(𝝊,u)

)
= 0 satisfied by the

physical relational variables 𝜙(𝝊,u) are functionally identical as
those E = E(d𝜙;𝜙) = 0 satisfied by the bare variables 𝜙. It is of
foundational importance as it explains why it has been possible
to successfully apply gRGFT before solving the issue of its fun-
damental physical d.o.f. and observables. Indeed, what we actu-
ally confront to observations are the field equations E(𝝊,u) = 0 of
the dressed/relational theory L(𝝊,u) = L(𝜙(𝝊,u)) – and not a “gauge-
fixed” version of it, as is often claimed – but due to the fun-
damental principles underlying gRGFT, the latter are formally
equivalent to their bare version E = 0 using bare fields 𝜙 – which
are only “partial observables” in the terminology of refs. [58,
93]. Both are even equal or in strict covariance relation when
the contributions of the variation (d𝝊, du) of the “coordinatizing”
dressing field can be neglected – or when boundary terms are
neglected.
A final crucial observation to be made about the dressed

field equations (390) is that they describe a manifestly(
Diff(M)⋉loc

)
-invariant and fully relational dynamics, where

physical d.o.f. evolves w.r.t. each other, without a predetermined
time variable. Which means not only that there are no issues
with determinism, the generalized point-coincidence argument
being automatically implemented, but also that there is no
so-called “problem of time”. The latter, also called the “frozen
formalism problem”,[94,95] may be formulated as the worry that,
since proper time evolution on M is a special case of diffeo-
morphism transformation, “time evolution is pure gauge in
general-relativistic physics” so that physical observables have
no dynamics. The issue arises only when overlooking that M
is not spacetime, and forgetting the relational core of general-
relativistic physics. This “problem of time” is dissolved in the
relational formulation of gRGFT, or rather never arises in the
first place. We will further elaborate on the importance of this
fact in a forthcoming part of this series dealing with relational
quantization[96] – closely followed by a separate paper where we
present a relational formulation of non-relativistic Quantum
Mechanics.[97]
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In the following last section, we present two applications of the
above relational formalism: The case of scalar coordinatization
of GR, and the case of Einstein gravity coupled to EM and a ℂ-
scalar field.

5.2.7. Relational Einstein Equations

General Relativity with Scalar Matter: We consider GR – with
cosmological constant Λ – coupled to matter described phe-
nomenologically as a set of scalar fields. We separate the discus-
sion of the kinematics from that of the dynamics so as to high-
light that the DFM/relational reformulation takes place at the
kinematical level first.
Kinematics: The field space is Φ = {𝜙} = {g,φ}, where g is a

metric field on M and φ : U ⊂ M → N = ℝn. It means, we con-
sider the connection to be Levi-Civita, Γ = Γ(g), i.e., there is no
torsion T = 0. The action of Diff(M)⋉loc is

R(ψ,γ) 𝜙 = R(ψ,γ)
(
g,φ
)
=
(
ψ∗g,ψ∗φ

)
=
(
ψ∗g,φ ◦ψ

)
. (392)

Naturally in this model there is no gauge grouploc, so the struc-
ture group of Φ is actually just Diff (M).
The first task at hand is to identify a Diff(M)-dressing field.

Considering the section of φ, φ : N = ℝn → U ⊂ M s.t. φ ◦φ =
idN – i.e., the “right inverse”, so φ = φ−1 – we may define the
dressing field

𝝊 = 𝝊(φ) := φ : N → M,

s.t. R⋆(ψ,γ)𝝊(φ) = 𝝊
(
R(ψ,γ)φ

)
= 𝝊(φ ◦ψ) := ψ−1 ◦φ =: ψ−1 ◦ 𝝊(φ).

(393)

Therefore, under Diff v(Φ) ≃ C∞
(
Φ,Diff(M)

)
the dressing field

transforms as 𝝊(𝛙,𝛄) = 𝛙−1 ◦ 𝝊, as is expected. It allows to define
dressed regions of spacetime:

U𝝊 := 𝝊−1(U), s.t. (U𝝊)𝛙 = U𝝊. (394)

This gives a Diff(M)- and C∞
(
Φ,Diff(M)

)
-invariant relational

definition of physical spacetime M𝝊 via matter φ as a reference
physical system, as is expected from the point-coincidence argu-
ment. The dressed field space is then

Φ𝝊 = {𝜙𝝊} = {g𝝊,φ𝝊} = {𝝊∗g, idN}. (395)

The C∞
(
Φ,Diff(M)

)
-invariant dressed metric g𝝊 encodes the ge-

ometric properties of spacetimeM𝝊. It can be understood as the
bare metric g “written in” (“dressed by”) the coordinate system
supplied by the matter distribution φ: writing in abstract index
notation we have

(g𝝊)ab =
𝜕x 𝜇

𝜕𝝊a
𝜕x 𝜈

𝜕𝝊b
g𝜇𝜈 . (396)

Clearly, φ𝝊 = idN simply expresses the fact of coordinatizingmat-
ter distribution w.r.t itself, i.e., that it is (invariantly) at rest in its
own reference frame.

Dynamics: The (bare) Lagrangian of the theory L is Diff (M)-
equivariant and (trivially) loc-invariant,

L(g,φ) = LEH+Λ(g) + LMatter(g,φ)

= 1
2𝜅
volg
(
𝖱(g) − 2Λ

)
+ LMatter(g,φ), (397)

where 𝜅 = 8𝜋G
c4

is the gravitational coupling constant, volg =√|g|dnx is the volume form induced by g, and 𝖱(g) is the Ricci
scalar: in abstract index notation 𝖱(g) := g 𝜇𝜈R𝜇𝜈 , or 𝖱(g) := g−1 ⋅
Ricc, with Ricc the Ricci tensor. The field equations associated to
the variation w.r.t. g are

E = E(dg; {g,φ}) = dg ⋅
(
G(g) + Λg − 𝜅T(g,φ)

)
volg ,

s.t. E = 0 ⇒ G(g) + Λg = 𝜅T(g,φ),
(398)

where G(g) := Ricc − 1
2
𝖱g is the Einstein tensor, and the energy-

momentum tensor associated to the matter distribution φ is de-
fined by dg ⋅ T(g,φ) volg := −

1
2
dLMatter. Since φ is not a fundamen-

tal field, i.e., non-variational, the equation of motion of one of its
constituting particles with 4-velocity v is given by the geodesic
equation∇gv = dv + Γ(g)v = 0. Clearly R⋆(𝜓 ,𝛾)E = 𝜓

∗E, so satisfies
hypothesis (313) as one would expect in gRGFT. By application
of (324)–(325), the Diff v(Φ) ≃ C∞(Φ,Diff(M))-transformation of
E is

E𝛙 = 𝛙∗
(
E + dE(𝜄d𝛙 ◦𝛙−1g; {g,φ})

)
,

⇒ dg𝛙 ⋅
(
G𝛙 + Λg𝛙 − 𝜅T𝛙

)
volg𝛙

= 𝛙∗
[
dg ⋅ (G(g) + Λg−, 𝜅T(g,φ)) volg

+d
(
𝜄d𝛙 ◦𝛙−1g ⋅ (G(g) + Λg − 𝜅T(g,φ)) volg

)]
. (399)

Which implies that if G + Λg = 𝜅T then G𝛙 + Λg𝛙 = 𝜅T𝛙, for
any𝜙-dependent diffeomorphism𝛙. This shows that the covariance
group of GR is much bigger than Diff(M) as required by hypoth-
esis, and as usually understood: it includes 𝜙-dependent diffeo-
morphisms C∞

(
Φ,Diff(M)

)
– as already observed, and first no-

ticed by refs. [21, 66].
We can now write down the relational reformulation of GR via

DFM. The dressed Lagrangian is

L𝝊(g,φ) := 𝝊∗L(g,φ) = L(g𝝊,φ𝝊) = LEH+Λ(g
𝝊) + LMatter(g

𝝊,φ𝝊)

= 1
2𝜅
volg𝝊

(
𝖱(g𝝊) − 2Λ

)
+ LMatter(g

𝝊,φ𝝊),

(400)

with corresponding dressed Einstein equations

E𝝊 = E(dg𝝊; {g𝝊,φ𝝊})

= dg𝝊 ⋅
(
G(g𝝊) + Λg𝝊 − 𝜅T(g𝝊,φ𝝊)

)
volg ,

s.t. E𝝊 = 0 ⇒ G𝝊 + Λg𝝊 = 𝜅T𝝊.

(401)
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These are the strictly Diff (M)- and C∞
(
Φ,Diff(M)

)
-invariant re-

lational Einstein field equations, which have a well-posed Cauchy
problem. We stress that E𝝊 are not a gauge-fixed version of the
bare Einstein equations E, as argued at the end of Section 5.2.6.
Their explicit form in terms of the bare field equations E is read
from (399) and applying the DFM rule of thumb:

E𝝊 = 𝝊∗
(
E + dE(𝜄d𝝊 ◦ 𝝊−1g; {g,φ})

)
,

⇒ dg𝝊 ⋅
(
G𝝊 + Λg𝝊 − 𝜅T𝝊

)
volg 𝜐̄ = 𝝊∗

[
dg ⋅ (G(g) + Λg

− 𝜅T(g,φ)) volg

+ d
(
𝜄d𝝊 ◦ 𝝊−1g ⋅ (G(g)

+Λg − 𝜅T(g,φ)) volg
)]
.

(402)

It shows the equivalence between the bare Einstein equa-
tions G + Λg = 𝜅T and the relational Einstein equations G𝝊 +
Λg𝝊 = 𝜅T𝝊. We also see that if the variation of the coordinatizing
(dressing) field d𝝊 is neglected, the two are in simple covariance
relation: E𝝊 = 𝝊∗E. This, as we observed on more than one oc-
casion, explains why confrontation of GR with observations has
been so successful early on, even though the problem of identify-
ing its fundamental physical d.o.f. and observables has remained
a longstanding open issue. It is thus not a gauge-fixed version of
GR that passes observational tests, as is sometimes claimed, but
its relational dressed version (400)–(401).
This model can be considered to apply to the historical ver-

sion of GR where gravity is coupled to matter which is described
heuristically, or effectively, as a fluid (gas, particles, dust, etc.).
The scalar fields φa could then represents the 4-velocity field of
matter. This encompasses and extends various “scalar coordi-
natizations” of GR, such as refs. [98–100]. A variant of it may
be applied to pure gravity: then the dressing field is metric de-
pendent, 𝝊 = 𝝊(g), and supplies a g-dependent Diff(M)-invariant
definition of space time regions U𝝊. Or, seen otherwise, a g-
dependent coordinate system. This encompasses e.g., the classic
works[21,66,101] where 𝝊 is built from n (= 4) independent (non-
vanishing) scalar invariants, like the Kretschmann–Komar in-
variants – compare e.g., (396) to Equation (2.2).[101]

Finally, let us highlight the fact that the relational formulation
suggests a natural heuristic argument for the necessity of quan-
tization of gravity. An often repeated such heuristics relies on the
dynamics: In view of the bare Einstein equations (398), G(g) +
Λg = 𝜅T(g,φ), the left-hand side contains onlymetric d.o.f., while
the right-hand side contains also the d.o.f. of matter. Now, as
the argument goes, if the matter d.o.f. are quantized, so that
the energy-momentum becomes an operator T̂ with vacuum ex-
pected value ⟨T̂⟩ = T , one expects that the left-hand side should
also contain quantized metric d.o.f. ĝ s.t. ⟨ ĝ ⟩ = g, and so that a
“quantum Einstein equation” (Ĝ + Λĝ ) |Ψ⟩ = 𝜅T̂ |Ψ⟩may hold.
In view of the relational Einstein equation (401), G𝝊 + Λg𝝊 =

𝜅T𝝊, this argument is flawed. Indeed, thematter d.o.f. involved in
the dressing field 𝝊 are seen to actually contribute, like themetric
d.o.f., to both sides of the field equations. Actually, on the basis

of the relational formulation, a stronger, more compelling argu-
ment can be made, that does not rely on the classical on-shell dy-
namics, but rather holds at the kinematical level. Indeed, the very
definition of the physical relational metric (395)–(396) involves
the matter d.o.f., hence if the latter are quantized one expects to
naturally obtain a notion of quantized gravitational d.o.f., so that
g𝝊 → ĝ𝝊 and ⟨ĝ𝝊⟩ = g𝝊. Furthermore, by the same argument, one
may obtain a notion of quantized (relationally defined) spacetime
regions U𝝊 → U𝝊̂, that does not imply a quantization of the un-
derlying manifold M – which is unobservable. This kinematical
argument can be summarized via the following sketch:

Relational d.o.f. in GR + Quantum reference system
⇓

Kinematical quantum gravity

We will revisit and expand on these observations in a forth-
coming paper.[96] We now turn to the second example of gravity
coupled to EM and a charged complex scalar matter field.
Einstein-ℂ-Maxwell Model: We shall now consider GR plus

cosmological constant coupled to EM and a charged complex
scalar matter field ϕ.
Kinematics: The field space isΦ = {𝜙} = {g, A,ϕ}, where g is a

metric field, A is a 𝔲(1)-valued EM potential, and ϕ is a ℂ-valued
scalar field. It means here loc =  (1). The EM field strength is
F = dA, and the minimal coupling between the EM potential and
the matter field is Dϕ = dϕ + Aϕ. The action of Diff(M)⋉ (1)
is

R(ψ,γ)𝜙 = R(ψ,γ)
(
g, A,ϕ

)
=
(
ψ∗g, ψ∗(Aγ), ψ∗(ϕγ)

)
=
(
ψ∗g, ψ∗(A + γ−1dγ),ψ∗(γ−1ϕ)

)
. (403)

In this model, it is possible to dress in steps, for  (1) first, and
then for Diff(M), as indicated in Section 5.2.3.
The first step in thus to identify a  (1)-dressing field. It is

easily done: Using a polar decomposition of the matter field
ϕ = ρ exp i 𝜃, where ρ = |ϕ|1∕2 is the modulus and 𝜃 is the phase,
it is clear by (403) that we may define

u = u(ϕ) := exp i 𝜃,

s.t. R⋆(ψ,γ)u(ϕ) = u
(
R(ψ,γ)ϕ

)
:= ψ∗

(
γ−1 exp i𝜃

)
=: ψ∗

(
γ−1u(ϕ)

)
.

(404)

By the dressing property R⋆γ u = γ
−1u, we define the  (1)-

invariant fields

Φu = {𝜙u} = {gu, Au, ϕu} := {g, A + u−1du, ρ}, (405)

with ϕu = u−1ϕ = ρ by definition. The variable Au implements
the idea that the gauge invariant internal d.o.f. of the EM poten-
tial are coordinatized w.r.t. that of the scalar matter field (i.e., its
phase 𝜃), in accordance with the insight gained from the internal
point-coincidence argument from Section 2. Meanwhile ϕu = 𝜌
signifies the self-coordinatization of the internal d.o.f. of matter,
i.e., it has constant 0 phase w.r.t. itself: this is the internal version
of “being at rest” in its own reference frame, analogue to the case
of the real scalar field in the previous example.
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The dressed EM field strength is Fu := dAu = u−1Fu = F, and
happens to coincide with the bare EM field strength, which as
is well-known is the only (local) gauge-invariant field in the bare
formulation of classical EM. Also, observe that the dressed co-
variant derivative is (Dϕ)u = u−1(Dϕ) = Duϕu = Duρ = dρ + Auρ,
which represents the minimal coupling between the invariant
d.o.f. of the EM potential and the matter field. It shows that in
the relational formulation it is possible to write the coupling of
invariantly defined fields –which is partially in tensionwith some
comments around the main thesis proposed in ref. [93]. As a side
comment, we remark that the variables {Au, ρ} allow in particu-
lar to model the Aharanov–Bohm effect in an invariant and local
way, i.e., as arising from the pointwise (field-local) interaction be-
tween physical fields, described byDuρ = dρ + Auρ. See e.g., refs.
[102] or [7] Chap.5, and also ref. [1].
By the compatibility condition R⋆ψu = ψ

∗u, the  (1)-invariant
(“internally relational”) variables have well-defined Diff(M)-
transformations: the action of Diff (M) on Φu being as expected

Rψ𝜙
u = Rψ

(
g, Au, ρ

)
=
(
ψ∗g, ψ∗(Au), ψ∗ρ

)
. (406)

This makes it natural to look for a Diff(M)-dressing field. The in-
variant EM potential is Au = Au

𝜇 dx
𝜇 , and its components form a

scalar field𝖠u := Au
𝜇 : M → N = ℝn. We consider its section𝖠u :

N = ℝn → M, which is s.t. 𝖠u ◦𝖠u = idN (a right inverse). We
then define the Diff(M)-dressing field

𝝊 = 𝝊(Au) = 𝝊(A,ϕ) := 𝖠u : N → M,

s.t. R⋆(ψ,γ)𝝊(A,ϕ) = R⋆(ψ,γ)𝝊(A
u) = 𝝊

(
R(ψ,γ)A

u
)
= 𝝊
(
ψ∗(Au)

)
:= ψ−1 ◦𝖠u =: ψ−1 ◦ 𝝊(A,ϕ). (407)

Therefore, under Diff v(Φ) ≃ C∞
(
Φ,Diff(M)

)
this dressing field

transforms as 𝝊(𝛙,𝛄) = 𝛙−1 ◦ 𝝊, as is expected. It allows to define
dressed regions of spacetime:

U𝝊 := 𝝊−1(U), s.t. (U𝝊)(𝛙,𝛄) = U𝝊. (408)

As expected from the point-coincidence argument, this gives
a
(
Diff(M)⋉ (1)

)
- and C∞

(
Φ,Diff(M)⋉ (1)

)
-invariant rela-

tional definition of spacetime, with the electromagnetic sector
field content {A,ϕ}, or more precisely the invariant physical elec-
tromagnetic d.o.f. Au, being the reference physical system.
The final dressed field space is then

Φ(𝝊,u) = {𝜙(𝝊,u)} = {g𝝊, A(𝝊,u), ρ𝝊} = {𝝊∗g, 𝝊∗(Au), 𝝊∗ρ}. (409)

These are living on the physical spacetime, whose regions are de-
fined by (408). For example, the scalar matter field is s.t. ρ𝝊 =
𝜌 ◦ 𝝊 : U𝝊 → ℝ. This again illustrates the point-coincidence argu-
ment, and the co-definition of the physical field d.o.f., as the val-
ues of ρ𝝊 are given at values ofA(𝝊,u) (via 𝜐), this coincidence of val-
ues defining, “tagging” or identifying, a physical spacetime point.
The minimal coupling of both fields is given by the dressed co-
variant derivative D(𝝊,u)ρ𝝊 = dρ𝝊 + A(𝝊,u)ρ𝝊, which is then actually
an invariant derivative. Likewise, the C∞

(
Φ,Diff(M)⋉ (1)

)
-

invariant dressed field g𝝊 describes the metric properties of the
physical, relationally defined, spacetime M(𝝊,u). It can be seen as

the bare metric g “written” in the coordinate system supplied by
the (invariant) electromagnetic field content Au ∼ (A,ϕ): in ab-
stract index notation

(g𝝊)ab =
𝜕x 𝜇

𝜕𝝊a
𝜕x 𝜈

𝜕𝝊b
g𝜇𝜈 , with 𝝊 = 𝝊(Au) = 𝝊(A,ϕ). (410)

From the invariant metric g𝝊 one derives the invariant (physical)
Levi–Civita connection field Γ𝝊 = Γ(g𝝊), thus the invariant covari-
ant derivative ∇g𝝊 , which defines the physical parallel transport
and geodesic on spacetimeM(𝝊,u). The invariant Riemann tensor
of spacetime is Riem𝝊 = Riem(g𝝊), fom which one derive the in-
variant Ricci tensor Ricc𝝊 and Ricci scalar 𝖱(g𝝊) = (g𝝊)−1 ⋅ Ricc𝝊.
The physical Einstein tensor is thusG𝝊 = G(g𝝊) = Ricc𝝊 − 1

2
𝖱𝝊g𝝊.

This achieves our analysis of the relational kinematics of the
theory. We now consider its dynamics.
Dynamics: The (bare) Lagrangian of the theory L is

L(g, A,ϕ) = LEH+Λ(g) + LEM(g, A) + LKG(g, A,ϕ)

= 1
2𝜅
volg
(
𝖱(g) − 2Λ

)
+ 1

2
F ∗g F

+ 1
2

(⟨Dϕ, ∗g Dϕ⟩ +m2⟨ϕ, ∗g ϕ⟩), (411)

where ⟨ , ⟩ : ℂ × ℂ → ℂ, (v, w) → ⟨v, w⟩ := v†w, with v† the conju-
gate of v, and ∗g : Ωp(U) → Ωn−p(U) is the Hodge dual operator.
The field equation 1-form is

E = E(d𝜙;𝜙) = E(dg;𝜙) + E(dA;𝜙) + E(dϕ;𝜙)

= dg ⋅
(
G(g) + Λg − 𝜅T(g, A,ϕ)

)
volg

+ dA
(
d ∗g F − J(A,ϕ)

)
+ ⟨dϕ, D ∗g Dϕ +m2ϕ⟩,

(412)

where T and J are, respectively, the energy-momentum tensor of
the EM field and charge matter field, and the EM current. Explic-
itly,

T(g, A,ϕ) = T𝜇𝜈(g, A) + T𝜇𝜈(g,ϕ) =
(
F𝜇𝛼F𝜈𝛽g

𝛼𝛽 − 1
4
g𝜇𝜈F ⋅ F

)
volg

+
(
𝜕𝜇ϕ 𝜕𝜈ϕ −

1
2
g𝜇𝜈 𝜕ϕ ⋅ 𝜕ϕ

)
volg ,

J(A,ϕ) := 1
2

(⟨∗g Dϕ,ϕ⟩ − ⟨ϕ, ∗g Dϕ⟩). (413)

Then, E = 0 implies

G(g) + Λg = 𝜅T(g, A,ϕ), d ∗g F = J(A,ϕ),
(
D ∗g D +m2

)
ϕ = 0.

(414)

These are respectively the Einstein equation, the Maxwell equa-
tion, and the Klein–Gordon equation.
It is easy to check that R⋆(ψ,γ)E = ψ

∗(Eγ) = ψ∗E, satisfying the
general hypothesis (313) of gRGFT. One may also verify that,
applying (324)–(325), the Diff v(Φ) ≃ C∞

(
Φ,Diff(M)⋉ (1)

)
-

transformation E(𝛙,𝛄) are s.t. E = 0 ⇒ E(𝛙,𝛄) = 0. Which means
that the covariance group of the theory is much bigger than
Diff(M)⋉ (1), and encompass 𝜙-dependent transformations:
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its full covariance group is C∞
(
Φ,Diff(M)⋉ (1)

)
. An observa-

tion that generalizes the one made in refs. [21, 66].
We now write down the relational reformulation of the theory

via DFM. The dressed Lagrangian reads

L(𝝊,u)(g, A,ϕ) := 𝝊∗Lu(g, A,ϕ) = L(g𝝊, A(𝝊,u), ρ𝝊)

= LEH+Λ(g
𝝊) + LEM(g

𝝊, A(𝝊,u)) + LKG(g
𝝊, A(𝝊,u), ρ𝝊)

= 1
2𝜅
volg𝝊

(
𝖱(g𝝊) − 2Λ

)
+ 1

2
F(𝝊,u) ∗g𝝊 F(𝝊,u)

+ 1
2

(⟨D(𝝊,u)ρ𝝊, ∗g𝝊 D(𝝊,u)ρ𝝊⟩ +m2⟨ρ𝝊, ∗g𝝊 ρ𝝊⟩),
(415)

with corresponding dressed field equation 1-form

E(𝝊,u) = E(dg𝝊;𝜙(𝝊,u)) + E(dA(𝝊,u);𝜙(𝝊,u)) + E(dρ𝝊;𝜙(𝝊,u))

= dg𝝊 ⋅
(
G(g𝝊) + Λg𝝊 − 𝜅T(g𝝊, A(𝝊,u), ρ𝝊)

)
volg𝝊

+ dA(𝝊,u)
(
d ∗g𝝊 F(𝝊,u) − J(A(𝝊,u), ρ𝝊)

)
+ ⟨dρ𝝊, D(𝝊,u) ∗g𝝊D(𝝊,u)ρ𝝊 +m2ρ𝝊⟩, (416)

so that E(𝝊,u) = 0 implies

G𝝊 + Λg𝝊 = 𝜅T (𝝊,u), d ∗g𝝊 F(𝝊,u) = J(A(𝝊,u), ρ𝝊),(
D(𝝊,u) ∗g𝝊 D(𝝊,u) +m2

)
ρ𝝊 = 0.

(417)

The latter are the strictly
(
Diff(M)⋉ (1)

)
- and

C∞
(
Φ,Diff(M)⋉ (1)

)
-invariant relational Einstein, Maxwell,

Klein–Gordon field equations, which all have a well-posed initial
value (Cauchy) problem. One may check, using (390)–(391) to
express E(𝝊,u) in terms of the bare E, that E = 0 ⇒ E(𝝊,u) = 0. This
is the reason why the bare formalism gives sensible physical
results, as it is actually the relational version (415)–(417) of
the theory which is confronted to experimental tests, not a
gauge-fixed version of it as is often said – we indeed insist that
L(𝝊,u) and E(𝝊,u) are not gauge-fixed versions of the bare L and E.
This model points towards an enriched physical spacetime

whose points internal structure is that of a compact, 1-dimensional
manifold, and whose geometric structure may be represented by
a U(1)-principal bundle. See ref. [1].
Finally, let us observe that this relational formulation provides

a straighforward heuristic argument for the naturality of quanti-
zation of both the EM and the gravitational field.
Such an argument, for the electromagnetic field, is a dynami-

cal one and relies on the bare Maxwell equation d ∗g F = J(A,ϕ):
if thematter d.o.f. – both internal and external – on the right-hand
side are quantized, onewould expect that the EMd.o.f. on the left-
hand side are also quantized. But looking at the  (1)-invariant,
internally relational Maxwell equation d ∗g Fu = J(Au, ρ), we see
that actually the matter d.o.f. contribute on both sides, via u =
u(ϕ). The relational formulation actually allows to make the ar-
gument at the kinematical level: In view of the  (1)-invariant
relational variable Au = A + u−1du, with u = u(ϕ), if ϕ is quan-
tized, it seems unavoidable that the invariant EM potential Au,
and the EM field strength Fu, should be too. This argument can

be thus summarized as follows:

Relational d.o.f . in scalar EM +Quantum (internal) ref . system
⇓

Kinematical quantumEMfield

Similarly, and as seen in the previous example, looking at the
bare Einstein equations G(g) + Λg = 𝜅T(g, A,ϕ), it may seem
that quantization of the d.o.f. of ϕ on the right-hand side would
suggest the quantization of the the d.o.f. of g, while leaving A a
priori unaffected. One would need to appeal to the bare Maxwell
equation to hint at quantization of A. But inspection of the rela-
tional Einstein equations G(g𝝊) + Λg𝝊 = 𝜅T(g𝝊, A(𝝊,u), ρ𝝊) shows
that the matter d.o.f and the EM d.o.f. contribute to both sides
via 𝝊 = 𝜐(Au) = 𝝊(A,ϕ). Also, just by looking at the right-hand
side, it already appears that quantization of ϕ would kinemat-
ically imply that of A(𝝊,u), without using the relational Maxwell
equation d ∗g𝝊 F𝝊 = J(A(𝝊,u), ρ𝝊).
This indicates that the relational formulation via DFM makes

for a solely kinematical argument: Simply by looking at the re-
lational variables A(𝝊,u) = 𝝊∗(Au) and g𝝊 = 𝝊∗g, with u = u(ϕ) and
𝝊 = 𝝊(Au) = 𝝊(A,𝜙), it appears that quantization of the d.o.f. of ϕ
suggests that of the physical EM field A(𝝊,u), as well as that of the
physical gravitational field g𝝊. We summarize this by

Relational d.o.f. in GR-EM + Quantum reference system
⇓

Kinematical quantum EM
⇓

Kinematical quantum gravity

The topic of relational quantization, expanding on these obser-
vations and going beyond these heuristic arguments, will be ad-
dressed in ref. [96].

6. Conclusion

In this paper we have developed a relational formulation for
gRGFT based on the DFM. To do so, we exploited the bundle ge-
ometry of field space Φ, highlighting in particular the structures
encoding the physical d.o.f., i.e., the moduli space  and what
we called the associated bundle of regions Ū(M) := Φ ×U(M)∕∼.
The latter in particular encodes the physical spacetime regions,
as understood via the point-coincidence argument. A key result
stemming from understanding the geometry of the field space of
gRGFT is (324),

E(𝛙,𝛄) =𝛙∗
(
E + dE

(
𝜄d𝛙 ◦𝛙−1𝜙;𝜙

)
+ dE

(
d𝛄𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1;𝜙

))
which shows that, while the covariance group of gRGFT is usu-
ally understood – or defined – to be Diff(M)⋉loc, it actually is
the much bigger group C∞

(
Φ,Diff(M)⋉loc

)
of field-dependent

transformations. This generalizes the observation by refs. [21, 66].
The DFM is then, in a nutshell, a way to realize basic objects

on Φ and Φ ×U(M), which can be naturally interpreted as re-
lational coordinatizations on  and Ū(M). The relational for-
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mulation via DFM therefore technically implements the core in-
sight of gRGFT stemming from the generalized hole and point-
coincidence arguments, as described in Section 2 – see also ref.
[1]. An essential result of this paper is (390), giving the relational
field equations of gRGFT,

E(𝝊,u) = 𝝊∗
(
E+ dE

(
𝜄d𝝊 ◦ 𝝊−1𝜙;𝜙

)
+ dE

(
duu−1 −u𝔏d𝝊 ◦ 𝝊−1u

−1;𝜙
))

which are strictly C∞
(
Φ,Diff(M)⋉loc

)
-invariant, and thus

have a well-posed Cauchy problem. The relational equa-
tions E(𝝊,u) = 0 are the ones tacitly used in practical experimental
situations. The fact that, as the result shows, they are “equiva-
lent” to the bare field equations E = 0, explains why gRGFT was
successfully compared to experiments much before the problem
of identifying the fundamental physical d.o.f. and observables
was solved.
Another fundamental result of the relational reformulation via

DFM is the definition ofC∞
(
Φ,Diff(M)⋉loc

)
-invariant dressed

regionsU𝝊(𝜙), which formally implement the point-coincidence ar-
gument and provides a definition of spacetime regions by its field
content 𝜙. Hence one obtains a relational definition of spacetime
M(𝝊,u). From this, we observed, follows that the so-called “bound-
ary problem”, i.e., the often repeated claim that “boundaries
breakDiff(M) and/orloc symmetry”, is erroneous: a physical re-
lational boundary 𝜕U𝝊 ⊂ M(𝝊,u) is of necessity

(
Diff(M)⋉loc

)
-

invariant, and even invariant under the full covariance group
C∞
(
Φ,Diff(M)⋉loc

)
of gRGFT. Such “boundary problems”

dissolve in the relational understanding of physics. We shall
investigate further the consequences of this in a forthcoming
paper.[71]

We considered a natural relational reformulation of GR, fea-
turing the relational Einstein equations

G𝝊 + Λg𝝊 = 𝜅T (𝝊,u)

which encompass all manners of “scalar coordinatization” such
as refs. [98–100] and [21, 66, 101]. This formulation of GR has
as many natural applications: black holes physics, gravitational
waves physics, and cosmological perturbation theory,29 etc.; We
may also assess the degree to which the relational formulation
influences dark matter models. In the above relational Einstein
equations, it should be stressed that thematter d.o.f., like those of
the (invariant) metric g𝝊, appear on both sides, allowing for a new
take on the heuristics motivating the necessity of quantum grav-
ity.
This brings us to the next phase of our program dealing with

relational path integral quantization, or relational Quantum Field
Theory (rQFT), which will be explored in ref. [96]. As we have
shown in Section 5.2, the relational reformulation of a theorywith
bare action S failing to be loc-invariant implements an auto-
matic mechanism of cancelation of classicalloc-anomaly, where
a twisted dressing field plays the role of WZ term. We expect that
the same will hold in the QFT context. We also highlighted that
anomalies, either classical or quantum, are to be understood via

29 Where we may make contact with e.g., refs. [103, 104].

the twisted connections on field space Φ. It is all but certain that
the geometry of twisted connections will play a key role in rela-
tional quantization.
Furthermore, as a separate item of our program, in ref. [105]

we will also investigate the relational covariant phase space formal-
ism of gRGFT. This may be the starting point of a (formal) re-
lational geometric quantization, where again we expect twisted
geometry to play a non-trivial role.

Appendix A: Semi-Direct Product Structure of
Aut(P)

As is well-known, the group of vertical automorphisms Autv(P)
of a principal bundle P is a normal subgroup of its automor-
phisms group Aut(P): Autv(P) ⊲ Aut(P). Their quotient is thus
a group, isomorphic to the group of diffeomorphisms of the
orbit space P∕H = M, Aut(P)∕Autv(P) =: Diff ≃ Diff(P∕H) =
Diff(M). One shows that Aut(P) has a natural structure of inner
semi-direct product:

Aut(P) = Diff ⋉ Autv(P),

𝜓 = (ψ̄, 𝜂),

with product 𝜓 ′ ◦𝜓 =
(
ψ̄′ ◦ ψ̄, 𝜂′◦Conj(ψ̄′) 𝜂

)
,

(A1)

with the group morphism Conj : Diff → Aut
(
Autv(P)

)
, ψ̄ →

Conj(ψ̄), and Conj(ψ̄) 𝜂 := ψ̄ ◦ 𝜂 ◦ ψ̄−1. Indeed, writing an auto-
morphsism as 𝜓 = 𝜂 ◦ ψ̄, as read from the following graph

(A2)

we get the composition

𝜓 ′ ◦𝜓 =
(
𝜂′ ◦ ψ̄′

)
◦ (𝜂 ◦ ψ̄)

=
(
𝜂′ ◦ ψ̄′

)
◦
(
𝜂 ◦ ψ̄′−1 ◦ ψ̄′ ◦ ψ̄

)
=
(
𝜂′ ◦
(
ψ̄′ ◦ 𝜂 ◦ ψ̄′−1

))
◦
(
ψ̄′ ◦ ψ̄

)
.

(A3)

We have then that a form 𝜙 ∈ Ω∙(P) transform under Aut(P) as
𝜓∗𝜙 = ψ̄∗(𝜂∗𝜙), where 𝜂∗𝜙 defines the Autv(P) ≃ -gauge trans-
formation of 𝜙, while ψ̄∗𝜙 defines its Diff -transformation.
The alternative decomposition of an automorphism, given by

the following graph:

(A4)

Fortschr. Phys. 2024, 2400149 2400149 (51 of 56) © 2024 The Author(s). Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202400149 by Jordan François - C

ochraneItalia , W
iley O

nline L
ibrary on [08/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

gives rise to the semi-direct product rule

𝜓 ′ ◦𝜓 =
(
ψ̄′ ◦ ψ̄, Conj(ψ̄−1) 𝜂′ ◦𝜂

)
, (A5)

from the composition

𝜓 ′ ◦𝜓 =
(
ψ̄′ ◦ 𝜂′

)
◦ (ψ̄ ◦ 𝜂)

=
(
ψ̄′ ◦ ψ̄ ◦ ψ̄−1 ◦ 𝜂′

)
◦ (ψ̄ ◦ 𝜂)

=
(
ψ̄′ ◦ ψ̄

)
◦
((
ψ̄−1 ◦ 𝜂′ ◦ ψ̄

)
◦ 𝜂
)
.

(A6)

This decomposition may be seen as a special case of the canon-
ically split of bundle morphisms arising from the pullback bun-
dle construction: Given a bundle Q → N and a diffeomorphism
ψ : N → M, onemay define the pullback bundleψ∗P → N. Then,
there is a bundle morphism ψ̄ : ψ∗P → P covering ψ, i.e., s.t.
𝜋̄(ψ̄) = ψ. By the (categorical) universality property of the pull-
back, for a bundle morphism 𝜓 : Q → P covering ψ, there is a
unique bundle morphism 𝜂 : Q → ψ∗P covering idN . This is syn-
thesized in the following graph:

(A7)

On the other hand, the natural semi-direct structure (A1)–(A2)
may be understood to follow as a special case of the split of a
bundle morphism given by the graph

(A8)

We may fit the two options into a single graph:

(A9)

The decomposition (A8) is the one we refer to in Section 4.2
to split an Aut(P)-dressing into an Autv(P)-dressing and a Diff -
dressing, as it is the one respecting the necessary compatibility
conditions (152)–(153).

A.1. Semi-Direct Structure of the Local Symmetry Group

From (A3) follows a semi-direct product on Diff ⋉ ≃ Diff ⋉
Autv(P) = Aut(P). Indeed, one finds that the Autv(P) part of𝜓

′ ◦𝜓
is[
𝜂′ ◦
(
ψ̄′ ◦ 𝜂 ◦ ψ̄′−1

)]
(p) = 𝜂′ ◦ ψ̄′

(
ψ̄′−1(p) 𝛾

(
ψ̄′−1(p)

))
= 𝜂′
(
ψ̄′
(
ψ̄′−1(p)

)
𝛾
(
ψ̄′−1(p)

))
= 𝜂′(p) 𝛾

(
ψ̄′−1(p)

)
= p 𝛾 ′(p) 𝛾

(
ψ̄′−1(p)

)
= p
(
𝛾 ′ ⋅
(
ψ̄′−1∗𝛾

))
(p).

(A10)

One has thus the product structure(
ψ̄′, 𝛾 ′

)
⋅ (ψ̄, 𝛾) =

(
ψ̄′ ◦ ψ̄, 𝛾 ′ ⋅

(
ψ̄′−1∗𝛾

))
. (A11)

This directly induces the local version on (U ⊂)M, i.e., the semi-
direct product of Diff (M)⋉loc:(
ψ′, γ′

)
⋅ (ψ, γ) =

(
ψ′ ◦ψ, γ′ ⋅

(
ψ′−1∗γ

))
, (A12)

with loc defined in (176). This is directly relevant to (local)
field theory as discussed in Section 5.1. The inverse element is
(ψ, γ)−1 =

(
ψ−1,ψ∗γ−1

)
.

From this one may derive the adjoint action of Diff(M)⋉loc
on its Lie algebra 𝔡𝔦𝔣𝔣(M)⊕ Lieloc: For an element (X, 𝜆) :=(

d
d𝜏
ψ𝜏
|||𝜏=0, d

ds
γs
|||s=0) of the Lie algebra, we get

Ad(ψ,γ)(X, 𝜆)

:= d2

d𝜏ds
Conj(ψ, γ)(X, 𝜆)|||𝜏=0,s=0

= d2

d𝜏ds
(ψ, γ) ◦ (ψ𝜏 , γs) ◦ (ψ−1,ψ∗γ−1)

|||𝜏=0,s=0
= d2

d𝜏ds
(ψ, γ) ◦

(
ψ𝜏 ◦ψ−1, γs ⋅ ψ−1∗𝜏

ψ∗γ−1
)|||𝜏=0,s=0

= d2

d𝜏ds

(
ψ ◦ψ𝜏 ◦ψ−1, γ ⋅ ψ−1∗γs ⋅ ψ−1∗ψ−1∗𝜏

ψ∗γ−1
)|||𝜏=0,s=0

= d2

d𝜏ds

(
ψ ◦ψ𝜏 ◦ψ−1, γ ⋅ ψ−1∗γs ⋅ (ψ ◦ψ𝜏 ◦ψ−1)−1∗γ−1

)|||𝜏=0,s=0,
Ad(ψ,γ)(X, 𝜆)

=
(
ψ∗X ◦ψ−1,Adγ(ψ−1∗𝜆) − γ ⋅ 𝔏ψ∗X ◦ψ−1γ−1

)
. (A13)

The identity (13) is used in the last step. Similarly, one gets

Ad(ψ,γ)−1 (X, 𝜆)

:= d2

d𝜏ds
(ψ, γ)−1 ◦ (ψ𝜏 , γs) ◦ (ψ, γ)

|||𝜏=0, s=0
= d2

d𝜏ds

(
ψ−1 ◦ψ𝜏 ◦ψ, ψ∗γ−1 ⋅ ψ∗γs ⋅

(
ψ−1 ◦ψ𝜏

)−1∗ γ) |||𝜏=0, s=0
= d2

d𝜏ds

(
ψ−1 ◦ψ𝜏 ◦ψ, ψ∗

(
γ−1 ⋅ γs ⋅ ψ−1∗𝜏

γ
)) |||𝜏=0, s=0
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=
⎧⎪⎨⎪⎩
(
ψ−1∗ X ◦ψ,ψ∗

(
Adγ−1𝜆 − γ−1𝔏Xγ

))
,(

ψ−1∗ X ◦ψ,Adψ∗γ−1 (ψ∗𝜆) − ψ∗γ−1 ⋅ 𝔏ψ−1∗ X ◦ψψ∗γ
)
,

(A14)

using the fact that ψ−1∗
𝜏

= ψ∗−𝜏 and, in the last line, (14).

Appendix B: Lie Algebra (Anti-)Isomorphisms and
Pushforward by a Vertical Diffeomorphism of
(Local) Field Space

B.1. Lie Algebra Morphisms

We prove here that the verticality map |v : 𝔞𝔲𝔱(P) → Γ(VΦ), X →
Xv, is a morphism of Lie algebra. We write the flow through 𝜙 ∈
Φ of Xv ∈ Γ(VΦ) as 𝜓̃𝜏 (𝜙) := R𝜓𝜏𝜙 := 𝜓∗

𝜏
𝜙, with X = d

d𝜏
𝜓𝜏
|||𝜏=0 ∈

Γ(TP), so that

Xv|𝜙 = d
d𝜏
𝜓̃𝜏 (𝜙)

|||𝜏=0 (=X(𝜙)v 𝛿

𝛿𝜙
, written as a derivation of C∞(Φ)

)
.

(B1)

One can thus write the bracket of two vertical vector fields:

[Xv, Yv]|𝜙 = LXvYv|𝜙 := d
d𝜏
(𝜓̃−1

𝜏
)⋆Y

v|𝜓̃𝜏 (𝜙)|||𝜏=0
:= d

d𝜏
d
ds

(
𝜓̃−1
𝜏

◦ 𝜂̃s ◦ 𝜓̃𝜏
)
(𝜙)|||s=0|||𝜏=0

:= d
d𝜏

d
ds
R𝜓−1𝜏 ◦R𝜂s ◦R𝜓𝜏𝜙

|||s=0|||𝜏=0
:= d

d𝜏
d
ds
R(𝜓𝜏 ◦ 𝜂s ◦𝜓−1𝜏 )𝜙

|||s=0|||𝜏=0
:= d

d𝜏
d
ds
(𝜓𝜏 ◦ 𝜂s ◦𝜓

−1
𝜏

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
flow of −[X, Y ]

)∗𝜙|||s=0|||𝜏=0
= : 𝔏−[X,Y ]𝜙=: (−[X, Y ]Γ(TP))v|𝜙 = ([X, Y ]𝔞𝔲𝔱(P))v|𝜙.

(B2)

In the 1st-2nd and 5th–6th lines the definition of 𝜓̃𝜏 and 𝜓𝜏 -
relatedness are used, while in the 1st and 6th lines, we have used
the definitions of the Lie derivatives of a vector field on Φ and of
a field on P.
We now prove that the map |v : 𝖆𝖚𝖙(P) → Γinv(VΦ), X → X v,

is a Lie algebra anti-morphism. The flow through 𝜙 ∈ Φ of X v ∈
Γinv(VΦ) as 𝝍̃ 𝜏 (𝜙) := (R𝝍𝜏 )(𝜙) = R𝝍𝜏 (𝜙)𝜙 := (𝝍 𝜏 (𝜙))

∗𝜙, with X =
d
d𝜏
𝝍 𝜏 |𝜏=0 ∈ Γ(TP). So,

[X v,Y v]|𝜙 = LX vY v|𝜙 := d
d𝜏
(𝝍̃−1

𝜏
)⋆Y

v|𝝍̃𝜏 (𝜙)|||𝜏=0
= d

d𝜏
d
ds

(
𝝍̃−1
𝜏

◦ 𝜼̃s ◦ 𝝍̃ 𝜏

)
(𝜙)|||s=0|||𝜏=0. (B3)

The equivariance property of the elements of the gauge group has
been used. We have then

𝜼̃s ◦ 𝝍̃ 𝜏 (𝜙) = R𝜼s(𝝍̃𝜏 (𝜙)) 𝝍̃ 𝜏 (𝜙) = R𝜼s(R𝝍𝜏 (𝜙)𝜙) R𝝍𝜏 (𝜙)𝜙

= R𝝍𝜏 (𝜙)−1 ◦ 𝜼s(𝜙) ◦𝝍𝜏 (𝜙) R𝝍𝜏 (𝜙)𝜙 = R𝜼s(𝜙) ◦𝝍𝜏 (𝜙) 𝜙

=
(
R𝜼s ◦𝝍𝜏

)
𝜙. (B4)

So,(
𝝍̃−1
𝜏

◦ 𝜼̃s ◦ 𝝍̃ 𝜏

)
(𝜙) = 𝝍̃−1

𝜏

(
𝜼̃s ◦ 𝝍̃ 𝜏 (𝜙)

)
= R𝝍−1𝜏 (R𝜼s (𝜙) ◦𝝍𝜏 (𝜙)𝜙)R𝜼s(𝜙) ◦𝝍𝜏 (𝜙)𝜙

= R[𝜼s(𝜙) ◦𝝍𝜏 (𝜙)]−1 ◦𝝍𝜏 (𝜙)−1 ◦ [𝜼s(𝜙) ◦𝝍𝜏 (𝜙)]
R𝜼s(𝜙) ◦𝝍𝜏 (𝜙)𝜙

= R𝝍𝜏 (𝜙)−1 ◦ 𝜼s(𝜙) ◦𝝍𝜏 (𝜙)𝜙. (B5)

Finally,

[X v,Y v]|𝜙 = d
d𝜏

d
ds
R𝝍𝜏 (𝜙)−1 ◦ 𝜼s(𝜙) ◦𝝍𝜏 (𝜙) 𝜙

|||s=0|||𝜏=0
= d

d𝜏
d
ds
(𝝍 𝜏 (𝜙)

−1 ◦ 𝜼s(𝜙) ◦𝝍 𝜏 (𝜙)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

flow of [X ,Y ]

)∗𝜙 |||s=0 |||𝜏=0
=: 𝔏[X ,Y ] 𝜙 =: ([X ,Y ]Γ(TP))v|𝜙 = (−[X ,Y ]𝔞𝔲𝔱(P))v|𝜙, (B6)

which ends the proof of the assertion. Observe that the above
computations hold the same for both 𝔞𝔲𝔱v(P)[6,42] and 𝔡𝔦𝔣𝔣(M).[8]

B.2. Pushforward by a Vertical Diffeomorphism of Field Space

We consider a generic vector field 𝔛 ∈ Γ(TΦ) with flow 𝜑𝜏 and a
vertical diffeomorphism Ξ ∈ Diff v(𝜙) to which corresponds 𝝍 ∈
C∞
(
Φ,Aut(P)

)
. The pushforward of 𝔛|𝜙 ∈ T𝜙Φ by 𝝍 is

Ξ⋆𝔛|𝜙 = d
d𝜏
Ξ
(
𝜑𝜏 (𝜙)

)|||𝜏=0 = d
d𝜏
R𝝍(𝜑𝜏 (𝜙))𝜑𝜏 (𝜙)|𝜏=0

= d
d𝜏
R𝝍(𝜑𝜏 (𝜙))𝜙

|||𝜏=0 + d
d𝜏
R𝝍 (𝜙)𝜑𝜏 (𝜙)|𝜏=0

= d
d𝜏
R𝝍(𝜑𝜏 (𝜙))𝜙

|||𝜏=0 + R𝝍 (𝜙)⋆𝔛|𝜙. (B7)

In the last equality the definition of the pushforward by the right
action of 𝝍 (𝜙) ∈ Aut(P) is used. The remaining term is mani-
festly a vertical vector field. The question is to find the element
of 𝔞𝔲𝔱(P) that generates it, knowing that it must be anchored at
the point Ξ(𝜙) = R𝝍 (𝜙)𝜙 = 𝝍 (𝜙)∗𝜙 of field space:

d
d𝜏
R𝝍(𝜑𝜏 (𝜙))𝜙

|||𝜏=0 = d
d𝜏
R𝝍 (𝜙) ◦𝝍 (𝜙)−1 ◦𝝍(𝜑𝜏 (𝜙))𝜙

|||𝜏=0
= d

d𝜏
R𝝍 (𝜙)−1 ◦𝝍(𝜑𝜏 (𝜙)) R𝝍 (𝜙)𝜙

|||𝜏=0.
So,𝝍 (𝜙)−1 ◦𝝍

(
𝜑𝜏 (𝜙)

)
is the flow of the vector field on Aut(P) we

are looking for. Now, on the one hand we have

d
d𝜏
𝝍
(
𝜑𝜏 (𝜙)

) |||𝜏=0 = d𝝍 |𝜙(𝔛|𝜙) = 𝝍⋆𝔛|𝜙 ∈ T𝝍 (𝜙) Aut(P),
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since 𝝍 : Φ → Aut(P). On the other hand, the Maurer-Cartan
form – given by the left translation – on Aut(P) is

L𝜓−1⋆ : T𝜓 Aut(P) → TidP Aut(P) = 𝔞𝔲𝔱(P) ≃ Γ(TP),

|𝜓 → L𝜓−1⋆|𝜓 := (𝜓−1)∗|𝜓 . (B8)

So we have

L𝝍 (𝜙)−1⋆ : T𝝍 (𝜙) Aut(P) → 𝔞𝔲𝔱(P) ≃ Γ(TP),[
d𝝍 |𝜙(𝔛|𝜙)]|𝝍 (𝜙) → L𝝍 (𝜙)−1⋆

[
d𝝍 |𝜙(𝔛|𝜙)]|𝝍 (𝜙)

= (𝝍 (𝜙)−1)∗
[
d𝝍 |𝜙(𝔛|𝜙)]|𝝍 (𝜙)

= L𝝍 (𝜙)−1⋆
d
d𝜏
𝝍
(
𝜑𝜏 (𝜙)

)|||𝜏=0
= d

d𝜏
𝝍 (𝜙)−1 ◦𝝍

(
𝜑𝜏 (𝜙)

)|||𝜏=0. (B9)

Thus, (𝝍 (𝜙)−1)∗
[
d𝝍 |𝜙 (𝔛|𝜙)] is the generating vector field of P

we were searching for. We then get

d
d𝜏
R𝝍(𝜑𝜏 (𝜙))𝜙

|||𝜏=0 = d
d𝜏
R𝝍 (𝜙)−1 ◦𝝍(𝜑𝜏 (𝜙)) R𝝍 (𝜙)𝜙

|||𝜏=0
=
{
(𝝍 (𝜙)−1)∗

[
d𝝍 |𝜙(𝔛|𝜙)]}v|R𝝍 (𝜙)𝜙. (B10)

Hence, finally we get

Ξ⋆𝔛|𝜙 = R𝝍 (𝜙)⋆𝔛|𝜙 + {𝝍 (𝜙)−1∗ d𝝍 |𝜙(𝔛|𝜙)}v|Ξ(𝜙)
= R𝝍 (𝜙)⋆

(
𝔛|𝜙 + {d𝝍 |𝜙(𝔛|𝜙) ◦𝝍 (𝜙)−1}v|𝜙), (B11)

where in the second line the property (20) of the fundamental
vertical vector fields under pushforward by the right action of the
structure group has been used. This result is essential to compute
geometrically the vertical and gauge transformations of forms on
Φ.

B.3. Pushforward by a Vertical Diffeomorphism of Local Field
Space

We here derive the local version of the above result, important
for the standard formulation of field theory. Despite some repe-
tition, we deem it pedagogically useful. The local field space Φ
is now that of local representatives of fields on (U ⊂) M, and
its structure group is Diff (M)⋉loc. A vertical diffeomorphism
Ξ ∈ Diff v(Φ) is generated by (𝛙, 𝛄) ∈ C∞

(
Φ,Diff(M)⋉loc

)
. As

above, we consider the pushforward along Ξ of a generic vector
field 𝔛 ∈ Γ(TΦ) with flow 𝜑𝜏 :

Ξ⋆𝔛|𝜙 = d
d𝜏
Ξ
(
𝜑𝜏 (𝜙)

)|||𝜏=0 = d
d𝜏
R(𝛙,𝛄) ◦ (𝜑𝜏 (𝜙)) 𝜑𝜏 (𝜙)

|||𝜏=0
= d

d𝜏
R(𝛙,𝛄) ◦ (𝜑𝜏 (𝜙))𝜙

|||𝜏=0 + R(𝛙(𝜙),𝛄(𝜙))⋆𝔛|𝜙. (B12)

The first term is clearly a vertical vector field, which must be an-
chored at the point Ξ(𝜙) = R(𝛙(𝜙),𝛄(𝜙))𝜙. One needs only to find its
𝔡𝔦𝔣𝔣(M)⊕ Lieloc-generating element.

For notational convenience, let us write (𝛙, 𝛄)𝜏 :=
(𝛙, 𝛄) ◦

(
𝜑𝜏 (𝜙)

)
, and

(
𝛙(𝜙), 𝛄(𝜙)

)
= (𝛙, 𝛄). We have

d
d𝜏
R(𝛙,𝛄)𝜏 𝜙

|||𝜏=0 = d
d𝜏
R(𝛙,𝛄)−1⋅(𝛙,𝛄)𝜏 R(𝛙,𝛄)𝜙

|||𝜏=0,
where (𝛙, 𝛄)−1 ⋅ (𝛙, 𝛄)𝜏 is the flow of the vector field on Diff(M)⋉
loc we are seeking. This is a curve through the identity
(idM, idloc

) in the group. Given that the left action, by an inverse
element, on Diff(M)⋉loc is

L(ψ,γ)−1 (ψ′, γ′) := (ψ, γ)−1 ⋅ (ψ′, γ′) = (ψ−1,ψ∗γ−1) ⋅ (ψ′, γ′)

=
(
ψ−1 ◦ψ′,ψ∗(γ−1γ′)

)
, (B13)

the Maurer–Cartan form is

L(ψ,γ)−1⋆ : T(ψ,γ)
(
Diff(M)⋉loc

)
→ T(idM,idloc )

(
Diff(M)⋉loc

)
= 𝔡𝔦𝔣𝔣(M)⊕ Lieloc

TψDiff(M)⊕ Tγloc →TidMDiff(M)⊕ Tidloc
loc

(B14)(|ψ ,|γ) → L(ψ,γ)−1⋆
(|ψ ,|γ)

:= (ψ, γ)−1 ⋅
(|ψ ,|γ)

=
(
ψ−1∗ |ψ ,ψ∗(γ−1|γ)).

Now, writing (𝛙, 𝛄)𝜏 = (𝛙𝜏 , 𝛄𝜏 ), we have that

d
d𝜏
(𝛙, 𝛄)−1 ⋅ (𝛙, 𝛄)𝜏

|||𝜏=0
= d

d𝜏
L(𝛙,𝛄)−1 (𝛙, γ)𝜏

|||𝜏=0 = L(𝛙,𝛄)−1⋆
d
d𝜏

(
𝛙𝜏 , 𝛄𝜏

) |||𝜏=0
= L(𝛙,𝛄)−1⋆

(
d𝛙|𝜙(𝔛|𝜙), d𝛄|𝜙(𝔛|𝜙 )

)
= (𝛙, 𝛄)−1 ⋅

(
d𝛙|𝜙(𝔛|𝜙), d𝛄|𝜙(𝔛|𝜙 )

)
=
(
𝛙−1∗
[
d𝛙|𝜙(𝔛|𝜙)],𝛙∗ 𝛄−1[d𝛄|𝜙(𝔛|𝜙 )]) ∈ 𝔡𝔦𝔣𝔣⊕ Lieloc,

(B15)

with d𝛙|𝜙(𝔛|𝜙) ∈ T𝛙 Diff(M) and d𝛄|𝜙(𝔛|𝜙) ∈ T𝛄loc. So finally,

Ξ⋆𝔛|𝜙 = R(𝛙,𝛄)⋆𝔛|𝜙 +
{[
(𝛙, 𝛄)−1 ⋅ (d𝛙, d𝛄 )

]|𝜙(𝔛|𝜙)}v

|Ξ(𝜙)
= R(𝛙,𝛄)⋆𝔛|𝜙 +

{(
𝛙−1∗ d𝛙,𝛙∗ (𝛄−1d𝛄)

)|𝜙(𝔛|𝜙)}v

|Ξ(𝜙).
(B16)

There is an alternative form of the above result, which is most
useful in concrete computations. It relies on the pushforward of
fundamental vector fields (183): we have indeed that{
(𝛙, 𝛄)−1 ⋅ (d𝛙, d𝛄 )|𝜙(𝔛|𝜙)}v|Ξ(𝜙)
= R(𝛙,𝛄)⋆

{
Ad(𝛙,𝛄)

([
(𝛙, 𝛄)−1 ⋅ (d𝛙, d𝛄 )

]|𝜙(𝔛|𝜙))}v

|𝜙. (B17)
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We compute the 𝔡𝔦𝔣𝔣(M)⊕ Lieloc-valued 1-form on the right to
be

Ad(𝛙,𝛄)
(
(𝛙, 𝛄)−1 ⋅ (d𝛙, d𝛄 )

)
= Ad(𝛙,𝛄)

(
𝛙−1∗ d𝛙, 𝛙∗(𝛄−1d𝛄)

)
=
(
𝛙∗
(
𝛙−1∗ d𝛙

)
◦𝛙−1,Ad𝛄

(
𝛙−1∗

[
𝛙∗(𝛄−1d𝛄)

])
− 𝛄𝔏𝛙∗(𝛙−1∗ d𝛙) ◦𝛙−1𝛄−1

)
=
(
d𝛙 ◦𝛙−1, d𝛄 𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1

)
. (B18)

This result we denote by

(d𝛙, d𝛄) ⋅ (𝛙, 𝛄)−1 ≡ (d𝛙 ◦𝛙−1, d𝛄 𝛄−1 − 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1
)
. (B19)

This is justified by the fact that it can be understood via the lin-
earization of the right action

R(ψ,γ)−1 (ψ′, γ′) = (ψ′, γ′) ⋅ (ψ, γ)−1 = (ψ′, γ′) ⋅ (ψ−1,ψ∗γ−1)

=
(
ψ′ ◦ψ−1, γ′ ψ′−1∗(ψ∗γ−1)

)
. (B20)

So, one has that

R(ψ,γ)−1⋆ : T(ψ,γ)
(
Diff(M)⋉loc

)
→ T(idM,idloc )

(
Diff(M) ⋉loc

)
=: 𝔡𝔦𝔣𝔣(M)⊕ Lieloc,(|ψ ,|γ) → R(ψ,γ)−1⋆

(|ψ ,|γ)
=
(|ψ , |γ) ⋅ (ψ, γ)−1

:=
(|ψ ◦ψ−1, |γγ−1
− γ𝔏|ψ ◦ψ−1γ−1

)
. (B21)

Thus, we get the final alternative result

Ξ⋆𝔛|𝜙 = R(𝛙,𝛄)⋆

(
𝔛|𝜙 + {(d𝛙, d𝛄)|𝜙(𝔛|𝜙) ⋅ (𝛙, 𝛄)−1}v|𝜙)

= R(𝛙,𝛄)⋆

(
𝔛|𝜙 + {(d𝛙 ◦𝛙−1, d𝛄𝛄−1

− 𝛄𝔏d𝛙 ◦𝛙−1𝛄−1
)|𝜙 (𝔛|𝜙)}v

|𝜙
)
. (B22)
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